1
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Short-term exposure to ciprofloxacin and microplastic leads to intrahepatic cholestasis, while long-term exposure decreases energy metabolism and increases the risk of obesity. ENVIRONMENT INTERNATIONAL 2025; 199:109511. [PMID: 40328087 DOI: 10.1016/j.envint.2025.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Microplastics (MPs) and antibiotics are pervasive pollutants that may pose a risk to human health. Studies have shown that both MPs and antibiotics adversely affect lipid metabolism and increase the risk of obesity. However, it remains unclear whether combined exposure to these pollutants intensify the cumulative detrimental effect on obesity and metabolism. This study demonstrated the impact of exposure to polystyrene MPs (PS, 25 nm) and ciprofloxacin (CIP), both individually and combined, for 30 d and 90 d on the hepatic metabolism of male C57BL/6J mice. The results showed that mice exposed to PS and CIP for either 30 d or 90 d exhibited lipid metabolism disorders such as increased body weight, enlarged adipocytes, triglyceride accumulation in the liver, and higher HDL-C. Differentially expressed hepatic proteins were identified via proteomic analysis. The findings indicated that exposure for 30 d caused abnormal bile acid (BA) secretion in the liver and inhibited the BA secretion pathway, which resulted in intrahepatic cholestasis. Furthermore, exposure for 90 d resolved cholestasis and reduced the overall number of differentially expressed proteins. Intestinal pathology revealed more severe damage after exposure for 30 d, while 90 d exposure decreased the adverse effect. Combined CIP and PS exposure caused damage to the organism. However, the adaptive capacity of the organism during prolonged exposure mitigated the damage caused by both, but did not imply the complete eradication of adverse effects. This study found that 90 d exposure to PS and CIP resulted in weight gain, possibly due to changes in the gut flora and suppressed energy metabolism. These results indicated that simultaneous exposure to CIP and PS exacerbated the adverse impact on the liver, causing short-term intrahepatic cholestasis. Prolonged exposure reduced the energy metabolism in the body, exhibiting varied toxicity outcomes and mechanisms at different exposure durations. This study offers novel insights into the effect of MPs and antibiotic CIP exposure on metabolic abnormalities and provides a scientific basis for assessing these risks. It also emphasizes that the adverse effect resulting from 30 d (short-term) toxic exposure may not persist and that long-term chronic toxicity needs warrants.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
2
|
Lu X, Xu Y, Liu Y, Li F, Feng Q, Gao C, Liu D, Zhou L, Yang H, Zhang J, Cui F, Chen Q. Neutrophil Depletion Reduced the Relative Abundance of Unsaturated Long-Chain Fatty Acid Synthesis Microbiota and Intestinal Lipid Absorption. Cell Biochem Funct 2025; 43:e70060. [PMID: 40016914 DOI: 10.1002/cbf.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
As immune cells, neutrophils serve as the first line of defense against infections; however, the mechanism by which neutrophils regulate lipid metabolism is unknown. The neutrophil depletion group was treated with 100 μg InVivoMAb anti-mouse Ly6G 6 times, whereas the control group mice were intraperitoneally injected with the same quantity of InVivoMAb rat IgG2a. Body fat content, triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in the jejunum and ileum, as well as 9 long-chain fatty acids (LCFAs) in the intestinal contents were significantly decreased. Furthermore, genes involved in the absorption of lipids in each segment of the intestine also showed decreased expression. Neutrophil-depletion and control models were administered 25 μCi of 3H-cholesterol by gavage. The distribution of 3H cholesterol in the intestinal segment, heart, liver, serum, and feces was not altered by anti-Ly6G antibodies. Metagenomics was applied to investigate uncultured microorganisms in the intestinal contents to identify bacteria containing lipid metabolism genes. At the species level, 12 bacteria were involved in unsaturated LCFA synthesis, among which 2 increased and 10 decreased. The overall relative abundance of these bacteria decreased from 3.102% to 0.734%. Many genes involved in lipid metabolism were also reduced as a result, such as fatty acid synthase and peroxisome proliferator-activated receptor γ. In conclusion, neutrophil depletion does not affect intestinal lipid absorption in the diet but leads to a decrease in the overall relative abundance of gut bacteria involved in unsaturated LCFA synthesis. Consequently, intestinal lipid synthesis and absorption are reduced.
Collapse
Affiliation(s)
- Xingyu Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yike Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yitong Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Fang Li
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qiong Feng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chun Gao
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Liu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhou
- Nutriology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haizhen Yang
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Ophthalmology Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ruhnke N, Beyer ASL, Kaemmerer D, Sänger J, Schulz S, Lupp A. Expression of free fatty acid receptor 2 in normal and neoplastic tissues. Exp Mol Pathol 2024; 137:104902. [PMID: 38788249 DOI: 10.1016/j.yexmp.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and β-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.
Collapse
Affiliation(s)
- Niklas Ruhnke
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Tao J, Gong Y, Chen S, Li W, Xie R, Zhang H, Chen N, Huang X, Li S. Dietary inclusion of Clostridium butyricum cultures alleviated impacts of high-carbohydrate diets in largemouth bass ( Micropterus salmoides). Br J Nutr 2024; 131:1308-1325. [PMID: 38073302 DOI: 10.1017/s0007114523002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
Collapse
Affiliation(s)
- Jiajie Tao
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ye Gong
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shiwen Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Wenfei Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xuxiong Huang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Li RJW, Barros DR, Kuah R, Lim YM, Gao A, Beaudry JL, Zhang SY, Lam TKT. Small intestinal CaSR-dependent and CaSR-independent protein sensing regulates feeding and glucose tolerance in rats. Nat Metab 2024; 6:39-49. [PMID: 38167726 DOI: 10.1038/s42255-023-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Daniel R Barros
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Rachel Kuah
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Anna Gao
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Arishi RA, Lai CT, Geddes DT, Stinson LF. Impact of breastfeeding and other early-life factors on the development of the oral microbiome. Front Microbiol 2023; 14:1236601. [PMID: 37744908 PMCID: PMC10513450 DOI: 10.3389/fmicb.2023.1236601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The oral cavity is home to the second most diverse microbiome in the human body. This community contributes to both oral and systemic health. Acquisition and development of the oral microbiome is a dynamic process that occurs over early life; however, data regarding longitudinal assembly of the infant oral microbiome is scarce. While numerous factors have been associated with the composition of the infant oral microbiome, early feeding practices (breastfeeding and the introduction of solids) appear to be the strongest determinants of the infant oral microbiome. In the present review, we draw together data on the maternal, infant, and environmental factors linked to the composition of the infant oral microbiome, with a focus on early nutrition. Given evidence that breastfeeding powerfully shapes the infant oral microbiome, the review explores potential mechanisms through which human milk components, including microbes, metabolites, oligosaccharides, and antimicrobial proteins, may interact with and shape the infant oral microbiome. Infancy is a unique period for the oral microbiome. By enhancing our understanding of oral microbiome assembly in early life, we may better support both oral and systemic health throughout the lifespan.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Ministry of Health, Riyadh, Saudi Arabia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Zamani M, Nikbaf-Shandiz M, Aali Y, Rasaei N, Zarei M, Shiraseb F, Asbaghi O. The effects of acarbose treatment on cardiovascular risk factors in impaired glucose tolerance and diabetic patients: a systematic review and dose-response meta-analysis of randomized clinical trials. Front Nutr 2023; 10:1084084. [PMID: 37599681 PMCID: PMC10433190 DOI: 10.3389/fnut.2023.1084084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Acarbose (ACB) seems to be an effective drug in the management of cardiovascular risk factors. However, no previous meta-analysis of randomized controlled trials (RCTs) has been done to evaluate the effects of ACB on cardiovascular risk factors on impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D), and type 1 diabetes mellitus (T1D). We comprehensively searched electronic databases including Scopus, Web of Science, and PubMed for RCTs for related keywords up to September 2022. A random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence interval (CI). The pooled analysis demonstrated that ACB treatment had a significant effect on fasting blood glucose (FBG) (WMD = -3.55 mg/dL; 95%CI: -6.29, -0.81; p = 0.011), fasting insulin (WMD = -6.73 pmoL/L; 95%CI: -10.37, -3.10; p < 0.001), HbA1c [WMD = -0.32%; 95%CI: -0.45, -0.20; p < 0.001], body weight (WMD = -1.25 kg; 95%CI: -1.79, -0.75; p < 0.001), body mass index (BMI) (WMD = -0.64 kg/m2; 95%CI: -0.92, -0.37; p < 0.001), tumor necrosis factor-alpha (TNF-α) (WMD = -2.70 pg/mL, 95%CI: -5.25, -0.16; p = 0.037), leptin (WMD = -1.58 ng/mL; 95%CI: -2.82, -0.35; p = 0.012), alanine transaminase (ALT) (WMD = 0.71 U/L; 95%CI: -0.31, 1.85; p = 0.164), triglyceride (TG) (WMD = -13.89 mg/dL; 95%CI: -20.69, -7.09; p < 0.001), total cholesterol (TC) (WMD = -2.26 mg/dL; 95%CI: -4.18, -0.34; p = 0.021), systolic blood pressure (SBP) (WMD = -1.29 mmHg; 95%CI: -2.44, -0.15; p = 0.027), and diastolic blood pressure (DBP) (WMD = 0.02 mmHg; 95%CI: -0.41, 0.45; p = 0.925) in an intervention group, compared with a placebo group. The non-linear dose-response analysis showed that ACB reduces the TC in trial duration by >50 weeks, and 180 mg/day is more effective for the decrement of CRP. ACB can improve lipid profiles, glycemic indices, anthropometric indices, and inflammatory markers in T2D, T1D, and IGT patients.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Aali
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
10
|
Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022; 14:nu14091977. [PMID: 35565943 PMCID: PMC9105144 DOI: 10.3390/nu14091977] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal microbiota has its role as an important component of human physiology. It produces metabolites that module key functions to establish a symbiotic crosstalk with their host. Among them, short chain fatty acids (SCFAs), produced by intestinal bacteria during the fermentation of partially and non-digestible polysaccharides, play key roles in regulating colon physiology and changing intestinal environment. Recent research has found that SCFAs not only influence the signal transduction pathway in the gut, but they also reach tissues and organs outside of the gut, through their circulation in the blood. Growing evidence highlights the importance of SCFAs level in influencing health maintenance and disease development. SCFAs are probably involved in the management of host health in a complicated (positive or negative) way. Here, we review the current understanding of SCFAs effects on host physiology and discuss the potential prevention and therapeutics of SCFAs in a variety of disorders. It provides a systematic theoretical basis for the study of mechanisms and precise intake level of SCFAs to promote human health.
Collapse
|
11
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Howard EJ, Lam TKT, Duca FA. The Gut Microbiome: Connecting Diet, Glucose Homeostasis, and Disease. Annu Rev Med 2021; 73:469-481. [PMID: 34678047 DOI: 10.1146/annurev-med-042220-012821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes rates continue to rise unabated, underscoring the need to better understand the etiology and potential therapeutic options available for this disease. The gut microbiome plays a role in glucose homeostasis, and diabetes is associated with alterations in the gut microbiome. Given that consumption of a Western diet is associated with increased metabolic disease, and that a Western diet alters the gut microbiome, it is plausible that changes in the gut microbiota mediate the dysregulation in glucose homeostasis. In this review, we highlight a few of the most significant mechanisms by which the gut microbiome can influence glucose regulation, including changes in gut permeability, gut-brain signaling, and production of bacteria-derived metabolites like short-chain fatty acids and bile acids. A better understanding of these pathways could lead to the development of novel therapeutics to target the gut microbiome in order to restore glucose homeostasis in metabolic disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Elizabeth J Howard
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, USA.,BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA;
| |
Collapse
|
13
|
Lopez-Pier MA, Koppinger MP, Harris PR, Cannon DK, Skaria RS, Hurwitz BL, Watts G, Aras S, Slepian MJ, Konhilas JP. An adaptable and non-invasive method for tracking Bifidobacterium animalis subspecies lactis 420 in the mouse gut. J Microbiol Methods 2021; 189:106302. [PMID: 34391819 PMCID: PMC8473990 DOI: 10.1016/j.mimet.2021.106302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Matthew P Koppinger
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Preston R Harris
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | | | - George Watts
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Marvin J Slepian
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Carey RA, Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc Med 2021; 7:e000930. [PMID: 33981447 PMCID: PMC8061837 DOI: 10.1136/bmjsem-2020-000930] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. By looking at research conducted in animal models, we identify several pathways downstream of SCFAs, either directly modulating metabolic pathways through second messenger pathways or through neuronal pathways, that contribute to energy utilisation. These pathways contribute to efficient energy metabolism and are thus key to maximising substrate utilisation in endurance exercise. Future research may prove the usefulness of targeted dietary interventions allowing athletes to maximise their performance in competition.
Collapse
Affiliation(s)
- Ryan A Carey
- Global Public Health, Queen Mary University of London, London, UK
| | - Doreen Montag
- Global Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
16
|
Abstract
Blood glucose and insulin homeostasis is disrupted during the progression of type 2 diabetes. Insulin levels and action are regulated by both peripheral and central responses that involve the intestine and microbiome. The intestine and its microbiota process nutrients and generate molecules that influence blood glucose and insulin. Peripheral insulin regulation is regulated by gut-segment-dependent nutrient sensing and microbial factors such as short-chain fatty acids and bile acids that engage G-protein-coupled receptors. Innate immune sensing of gut-derived bacterial cell wall components and lipopolysaccharides also alter insulin homeostasis. These bacterial metabolites and postbiotics influence insulin secretion and insulin clearance in part by altering endocrine responses such as glucagon-like peptide-1. Gut-derived bacterial factors can promote inflammation and insulin resistance, but other postbiotics can be insulin sensitizers. In parallel, activation of small intestinal sirtuin 1 increases insulin sensitivity by reversing high fat-induced hypothalamic insulin resistance through a gut-brain neuronal axis, whereas high fat-feeding alters small intestinal microbiome and increases taurochenodeoxycholic acid in the plasma and the dorsal vagal complex to induce insulin resistance. In summary, emerging evidence indicates that intestinal molecular signaling involving nutrient sensing and the host-microbe symbiosis alters insulin homeostasis and action. Gut-derived host endocrine and paracrine factors as well as microbial metabolites act on the liver, pancreas, and the brain, and in parallel on the gut-brain neuronal axis. Understanding common nodes of peripheral and central insulin homeostasis and action may reveal new ways to target the intestinal host-microbe relationship in obesity, metabolic disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13:1-24. [PMID: 33764858 PMCID: PMC8007165 DOI: 10.1080/19490976.2021.1897212] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in cardio-metabolic diseases with diet being among the strongest modulators of gut microbiota composition and function. Resistant dietary carbohydrates are fermented to short-chain fatty acids (SCFAs) by the gut bacteria. Fiber and omega-3 rich diets increase SCFAs production and abundance of SCFA-producing bacteria. Likewise, SCFAs can improve gut barrier integrity, glucose, and lipid metabolism, regulate the immune system, the inflammatory response, and blood pressure. Therefore, targeting the gut microbiota with dietary strategies leading to increased SCFA production may benefit cardio-metabolic health. In this review, we provide an overview of the association between diet, SCFAs produced by the gut microbiota and cardio-metabolic diseases. We first discuss the association between the human gut microbiota and cardio-metabolic diseases, then investigate the role of SCFAs and finally explore the beneficial effects of specific dietary interventions that can improve cardio-metabolic outcomes through boosting the SCFA production.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| | - Ana M. Valdes
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
- School of Medicine, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| |
Collapse
|
18
|
Dewi L, Rosidi A, Noer ER, Ayuningtyas A. The Prospect for Type 2 Diabetes Mellitus Combined with Exercise and Synbiotics: A Perspective. Curr Diabetes Rev 2021; 17:e012821190875. [PMID: 33511948 DOI: 10.2174/1573399817666210129102956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
Change in gut microbiome diversity (the so-called dysbiosis) is correlated with insulin resistance conditions. Exercise is typically the first management for people with type 2 diabetes mellitus (T2DM), which is generally well-known for improving glucose regulation. The new prebiotics and probiotics, like synbiotics, designed to target specific diseases, require additional studies. While the effectiveness of exercise combined with synbiotics seems promising, this review discusses these agents' possibility of increasing the gut microbiota's diversity. Therefore, they could enhance short-chain fatty acids (SCFA). In particular, the synbiotic interaction on gut microbiota, the exercise mechanism in improving gut microbiota, and the prospect of the synergistic effect of the combination of synbiotic and exercise to improve insulin sensitivity are addressed.
Collapse
Affiliation(s)
- Luthfia Dewi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Ali Rosidi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Etika Ratna Noer
- Nutrition Department, Faculty of Medicine, Diponegoro University 50275, Semarang, Indonesia
| | - Annisa Ayuningtyas
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| |
Collapse
|
19
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr 2020; 62:1-12. [PMID: 33261516 DOI: 10.1080/10408398.2020.1854675] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids with carbon atom numbers less than 6, which are important metabolites of gut microbiome. Existing research shows that SCFAs play a vital role in the health and disease of the host. First, SCFAs are the key energy source for colon and ileum cells, and affect the intestinal epithelial barrier and defense functions by regulating related gene expression. Second, SCFAs regulate the function of innate immune cells to participate in the immune system, such as macrophages, neutrophils and dendritic cells. Third, SCFAs can also regulate the differentiation of T cells and B cells and the antigen-specific adaptive immunity mediated by them. Besides, SCFAs are raw materials for sugar and lipid synthesis, which provides a theoretical basis for studying the potential role of SCFAs in regulating energy homeostasis and metabolism. There are also studies showing that SCFAs inhibit tumor cell proliferation and promote apoptosis. In this article, we summarized in detail the role of SCFAs in immunity, inflammation and metabolism, and briefly introduced the role of SCFAs in tumor cell survival. It provides a systematic theoretical basis for the study of SCFAs as potential drugs to promote human health.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats. Mol Metab 2020; 44:101132. [PMID: 33264656 PMCID: PMC7753965 DOI: 10.1016/j.molmet.2020.101132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Objective The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown. Methods Intravenous glucose tolerance test was performed in rats that received USI or ileal infusion of nutrients (i.e., oleic acids or glucose) via catheters placed toward the lumen of USI and/or ileum, while mechanistic gain- and loss-of-function studies targeting the TCDCA-FXR axis or bile salt hydrolase activity in USI and ileum were performed. Results USI or ileum infusion of nutrients increased glucose tolerance in healthy but not HF rats. Transplantation of healthy microbiome obtained from USI into the USI of HF rats restored nutrient sensing and inhibited FXR via a reduction of TCDCA in the USI and ileum. Further, inhibition of USI and ileal FXR enhanced nutrient sensing in HF rats, while inhibiting USI (but not ileal) bile salt hydrolase of HF rats transplanted with healthy microbiome activated FXR and disrupted nutrient sensing in the USI and ileum. Conclusions We reveal a TCDCA-FXR axis in both the USI and ileum that is necessary for the upper small intestinal microbiome to govern local nutrient-sensing glucoregulatory pathways in rats. Upper small intestinal infusion of oleic acid or glucose increases glucose tolerance in healthy but not HF-fed rats. Ileal infusion of oleic acid or glucose increases glucose tolerance in healthy but not HF-fed rats. Upper small intestinal healthy microbiome transplant enhances nutrient sensing and inhibits FXR via reduced TCDCA levels. Inhibition of FXR in the upper small intestine or ileum enhances oleic acid sensing to increase glucose tolerance. Inhibition of upper small intestinal bile salt hydrolase negates oleic acid sensing and activates FXR in the small intestine.
Collapse
|
21
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
22
|
Yu K, Zhang Y, Chen H, Zhu W. Hepatic Metabolomic and Transcriptomic Responses Induced by Cecal Infusion of Sodium Propionate in a Fistula Pig Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13073-13081. [PMID: 31675219 DOI: 10.1021/acs.jafc.9b05070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Short-chain fatty acids (SCFAs) are the major products of the microbial fermentation of indigestible carbohydrates. SCFAs are known to improve the host metabolism, but their underlying mechanism of action remains elusive. In this study, 16 growing pigs were infused with saline or sodium propionate solution (25 mL, 2 mol/L) through a cecal fistula twice a day during a 28 day experimental period. The results showed that the cecal infusion of the SCFA propionate decreased serum and liver triglyceride levels and increased serum PYY secretion in growing pigs. Hepatic metabolomics identified 12 metabolites that were significantly altered by propionate. These included decreased levels of lipid metabolism-related stearic acid and glycerol-2-phosphate; increased levels of TCA cycle components including malic acid, fructose-6-phosphate, and succinic acid; and decreased levels of the amino acid metabolism products aspartic acid and serine. Hepatic transcriptomics demonstrated that propionate inhibited fatty acid synthesis and promoted the lipid metabolic process. Pathway enrichment analysis showed that propionate accelerated gluconeogenesis and decreased glycolysis. Taken together, these data support a role of the SCFA propionate on host lipid and glucose metabolism.
Collapse
|
23
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Zhang Z, Chen X, Zhao J, Tian C, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J, Zhao X. Effects of a Lactulose-Rich Diet on Fecal Microbiome and Metabolome in Pregnant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7674-7683. [PMID: 31132256 DOI: 10.1021/acs.jafc.9b01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lactulose, a safe and beneficial molecule, can be used in food as a prebiotic and as an osmotic laxative during pregnancy. This work evaluated the effects of dietary lactulose on the gut microenvironment of pregnant mice using the fecal microbiota and metabolomic profiling. After 2 weeks of feeding, the Bifidobacterium and Bacteroides abundances in the mouse feces were significantly increased in the LAC-high (the diet supplemented with 15% lactulose) group. A total of 15 metabolites, including 1-monoolein, glucose-6-phosphate, and short-chain fatty acids, were increased significantly in the LAC-high group. The serum glucose and total cholesterol concentrations were significantly decreased, while the progesterone level was significantly increased in the lactulose-fed mice. In the LAC-high group, the colonic pH and intestinal permeability were decreased, while the immunoglobulins in the colonic epithelial cells and the small intestinal absorption capacity were significantly increased. These findings indicated that lactulose supplementation benefitted pregnancy performance in mice.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Xiao Chen
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Jiangtao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Changyu Tian
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Xiao Wei
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Huan Li
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Weishi Lin
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Aimin Jiang
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Jing Yuan
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| |
Collapse
|
25
|
Yousi F, Kainan C, Junnan Z, Chuanxing X, Lina F, Bangzhou Z, Jianlin R, Baishan F. Evaluation of the effects of four media on human intestinal microbiota culture in vitro. AMB Express 2019; 9:69. [PMID: 31123874 PMCID: PMC6533344 DOI: 10.1186/s13568-019-0790-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
The human intestinal microbiota has an important role in the maintenance of human health and disease pathogenesis. The aim of this research was to investigate the impact of four media on human intestinal microbiota metabolite and composition changes, we performed in vitro batch culture using intestinal microbiota samples from three fecal microbiota transplantation (FMT) donors. After 48 h culture, gut microbiota medium (GMM) had the highest production of acetic acid (73.00 ± 7.56 mM) and propionic acid (16.79 ± 1.59 mM), bacterial growth media (BGM) had the highest production of butyric acid (13.39 ± 0.56 mM). In addition, brain heart infusion (BHI) promoted (p < 0.05) the growth of Bacteroidetes, especially Bacteroides after 48 h, GMM resulted in a significant increase (p < 0.05) in Actinobacteria and increased the beneficial genus Bifidobacterium, fastidious anaerobe broth (FAB) increased Firmicutes population, and BGM promoted the growth of Escherichia-Shigella and Akkermansia. The results suggest that four media had different effects on the human intestinal microbiota metabolism and composition in vitro. These results may facilitate the culture of bacteria from the human intestinal microbiota.
Collapse
|
26
|
Salehi M, Purnell JQ. The Role of Glucagon-Like Peptide-1 in Energy Homeostasis. Metab Syndr Relat Disord 2019; 17:183-191. [PMID: 30720393 DOI: 10.1089/met.2018.0088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Energy homeostasis is coordinated by bidirectional communication pathways between the brain and peripheral organs, including adipose tissue, muscle, the pancreas, liver, and gut. Disruption of the integrated chemical, hormonal, and neuronal signals that constitute the gut-brain axis significantly contributes to disorders of metabolism and body weight. Initial studies of glucagon-like peptide-1 (GLP-1), a gut hormone released in response to the ingestion of nutrients, focused on its incretin actions to improve postprandial glucose homeostasis by enhancing meal-induced insulin secretion. However, GLP-1 is also a key player in the gut-brain regulatory axis with multiple effects on appetite and energy metabolism outside of its peripheral glucoregulatory actions. In this review, we explore the function of GLP-1 as a component of the gut-brain axis in the regulation of energy homeostasis, and consider the implications of this role for the development of therapeutic treatment options for obesity.
Collapse
Affiliation(s)
- Marzieh Salehi
- 1 Division of Diabetes, Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, Texas.,2 Bartter Research Unit, Audie Murphy Hospital, South Texas Veteran Health Care System, San Antonio, Texas
| | - Jonathan Q Purnell
- 3 The Knight Cardiovascular Institute, Mailcode MDYMI, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
27
|
Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. J Nutr Biochem 2019; 64:206-217. [PMID: 30553096 DOI: 10.1016/j.jnutbio.2018.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/30/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022]
|
28
|
Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 2018; 48:15-34. [PMID: 29722430 DOI: 10.1111/apt.14689] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Butyrate, propionate and acetate are short chain fatty acids (SCFA), important for maintaining a healthy colon and are considered as protective in colorectal carcinogenesis. However, they may also regulate immune responses and the composition of the intestinal microbiota. Consequently, their importance in a variety of chronic inflammatory diseases is emerging. AIMS To review the physiology and metabolism of SCFA in humans, cellular and molecular mechanisms by which SCFA may act in health and disease, and approaches for therapeutic delivery of SCFA. METHODS A PubMed literature search was conducted for clinical and pre-clinical studies using search terms: 'dietary fibre', short-chain fatty acids', 'acetate', 'propionate', 'butyrate', 'inflammation', 'immune', 'gastrointestinal', 'metabolism'. RESULTS A wide range of pre-clinical evidence supports roles for SCFA as modulators of not only colonic function, but also multiple inflammatory and metabolic processes. SCFA are implicated in many autoimmune, allergic and metabolic diseases. However, translating effects of SCFA from animal studies to human disease is limited by physiological and dietary differences and by the challenge of delivering sufficient amounts of SCFA to the target sites that include the colon and the systemic circulation. Development of novel targeted approaches for colonic delivery, combined with postbiotic supplementation, may represent desirable strategies to achieve adequate targeted SCFA delivery. CONCLUSIONS There is a large array of potential disease-modulating effects of SCFA. Adequate targeted delivery to the sites of action is the main limitation of such application. The ongoing development and evaluation of novel delivery techniques offer potential for translating promise to therapeutic benefit.
Collapse
Affiliation(s)
- P A Gill
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - M C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - J G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| | - P R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| |
Collapse
|
29
|
Microbial Fermentation of Starch: Its Impact on the Range of Acceptable Carbohydrate Intake. J Pediatr Gastroenterol Nutr 2018; 66 Suppl 3:S42-S45. [PMID: 29762376 DOI: 10.1097/mpg.0000000000001827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starch, a major source of carbohydrates in human nutrition, is extensively hydrolyzed in the gastrointestinal tract of children and adults. A small fraction of the ingested starch reaches the cecum and colon where it is fermented by the gut microbiome into short-chain fatty acids (SCFA) and other products. Recent data in humans and in animal models have demonstrated the extensive effects of short-chain fatty acids on whole body energy metabolism, appetite, insulin resistance, fatty acid oxidation, fat accretion, obesity, and diabetes. Clear discernible effects of SCFA on the rates of production of glucose, its oxidation and uptake in the fasting state were, however, not observed. In the fed state, the effects on glucose metabolism are related to the effects of SCFA on insulin sensitivity, possibly the consequence of their influence on lipid metabolism. The suggested limits of carbohydrate intake were based upon the kinetics and metabolism of glucose in the basal state and on the responses to glucose administration. It is postulated that in healthy subjects, the present data do not suggest any significant impact of microbial fermentation of starch on the range of acceptable intake of carbohydrates.
Collapse
|
30
|
Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing. Nat Commun 2018; 9:1118. [PMID: 29549253 PMCID: PMC5856761 DOI: 10.1038/s41467-018-03490-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
High protein feeding improves glucose homeostasis in rodents and humans with diabetes, but the mechanisms that underlie this improvement remain elusive. Here we show that acute administration of casein hydrolysate directly into the upper small intestine increases glucose tolerance and inhibits glucose production in rats, independently of changes in plasma amino acids, insulin levels, and food intake. Inhibition of upper small intestinal peptide transporter 1 (PepT1), the primary oligopeptide transporter in the small intestine, reverses the preabsorptive ability of upper small intestinal casein infusion to increase glucose tolerance and suppress glucose production. The glucoregulatory role of PepT1 in the upper small intestine of healthy rats is further demonstrated by glucose homeostasis disruption following high protein feeding when PepT1 is inhibited. PepT1-mediated protein-sensing mechanisms also improve glucose homeostasis in models of early-onset insulin resistance and obesity. We demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by PepT1 have beneficial effects on whole-body glucose homeostasis. High protein diets are known to improve metabolic parameters including adiposity and glucose homeostasis. Here the authors demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by peptide transporter 1 improve glucose homeostasis by inhibiting hepatic glucose production.
Collapse
|
31
|
Bauer PV, Duca FA, Waise TMZ, Dranse HJ, Rasmussen BA, Puri A, Rasti M, O'Brien CA, Lam TKT. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metab 2018. [PMID: 29514066 DOI: 10.1016/j.cmet.2018.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Helen J Dranse
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Brittany A Rasmussen
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshita Puri
- Princess Margaret Cancer Centre, UHN, Toronto, ON M5G 2M9, Canada
| | - Mozhgan Rasti
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Catherine A O'Brien
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, UHN, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, MaRS Centre, Toronto Medical Discovery Tower, Room 10-705, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
32
|
Abstract
Early nutrition may have long-lasting metabolic impacts in adulthood. Even though breast milk is the gold standard, most infants are at least partly formula-fed. Despite obvious improvements, infant formulas remain perfectible to reduce the gap between breastfed and formula-fed infants. Improvements such as reducing the protein content, modulating the lipid matrix and adding prebiotics, probiotics and synbiotics, are discussed regarding metabolic health. Numerous questions remain to be answered on how impacting the infant formula composition may modulate the host metabolism and exert long-term benefits. Interactions between early nutrition (composition of human milk and infant formula) and the gut microbiota profile, as well as mechanisms connecting gut microbiota to metabolic health, are highlighted. Gut microbiota stands as a key actor in the nutritional programming but additional well-designed longitudinal human studies are needed.
Collapse
|
33
|
Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, Puri A, O'Brien CA, Lam TKT. Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metab 2018; 27:101-117.e5. [PMID: 29056513 DOI: 10.1016/j.cmet.2017.09.019] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/04/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
The gut microbiota alters energy homeostasis. In parallel, metformin regulates upper small intestinal sodium glucose cotransporter-1 (SGLT1), but whether changes of the microbiota or SGLT1-dependent pathways in the upper small intestine mediate metformin action is unknown. Here we report that upper small intestinal glucose sensing triggers an SGLT1-dependent pathway to lower glucose production in rodents. High-fat diet (HFD) feeding reduces glucose sensing and SGLT1 expression in the upper small intestine. Upper small intestinal metformin treatment restores SGLT1 expression and glucose sensing while shifting the upper small intestinal microbiota partly by increasing the abundance of Lactobacillus. Transplantation of upper small intestinal microbiota from metformin-treated HFD rats to the upper small intestine of untreated HFD rats also increases the upper small intestinal abundance of Lactobacillus and glucose sensing via an upregulation of SGLT1 expression. Thus, we demonstrate that metformin alters upper small intestinal microbiota and impacts a glucose-SGLT1-sensing glucoregulatory pathway.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada
| | - Brittany A Rasmussen
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mona A Abraham
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Helen J Dranse
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada
| | - Akshita Puri
- Princess Margaret Cancer Centre, UHN, Toronto, ON M5G 2M9, Canada
| | - Catherine A O'Brien
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, UHN, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
34
|
Bernal-Morales B, Cueto-Escobedo J, Guillén-Ruiz G, Rodríguez-Landa JF, Contreras CM. A Fatty Acids Mixture Reduces Anxiety-Like Behaviors in Infant Rats Mediated by GABA A Receptors. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8798546. [PMID: 29392140 PMCID: PMC5748109 DOI: 10.1155/2017/8798546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/01/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
Abstract
Fatty acids (C6-C18) found in human amniotic fluid, colostrum, and maternal milk reduce behavioral indicators of experimental anxiety in adult Wistar rats. Unknown, however, is whether the anxiolytic-like effects of fatty acids provide a natural mechanism against anxiety in young offspring. The present study assessed the anxiolytic-like effect of a mixture of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, and linoleic acid in Wistar rats on postnatal day 28. Infant rats were subjected to the elevated plus maze, defensive burying test, and locomotor activity test. Diazepam was used as a reference anxiolytic drug. A group that was pretreated with picrotoxin was used to explore the participation of γ-aminobutyric acid-A (GABAA) receptors in the anxiolytic-like effects. Similar to diazepam, the fatty acid mixture significantly increased the frequency of entries into and time spent on the open arms of the elevated plus maze and decreased burying behavior in the defensive burying test, without producing significant changes in spontaneous locomotor activity. These anxiolytic-like effects were blocked by picrotoxin. Results suggest that these fatty acids that are contained in maternal fluid may reduce anxiety-like behavior by modulating GABAergic neurotransmission in infant 28-day-old rats.
Collapse
Affiliation(s)
- Blandina Bernal-Morales
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Jonathan Cueto-Escobedo
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Gabriel Guillén-Ruiz
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Juan F. Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Carlos M. Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
- Unidad Periférica Xalapa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 91190 Xalapa, VER, Mexico
| |
Collapse
|
35
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Winer DA, Winer S, Dranse HJ, Lam TKT. Immunologic impact of the intestine in metabolic disease. J Clin Invest 2017; 127:33-42. [PMID: 28045403 DOI: 10.1172/jci88879] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are associated with increased chronic low-grade inflammation and elevated plasma glucose levels. Although inflammation in the fat and liver are established features of obesity-associated insulin resistance, the intestine is emerging as a new site for immunologic changes that affect whole-body metabolism. Specifically, microbial and dietary factors incurred by diet-induced obesity influence underlying innate and adaptive responses of the intestinal immune system. These responses affect the maintenance of the intestinal barrier, systemic inflammation, and glucose metabolism. In this Review we propose that an understanding of the changes to the intestinal immune system, and how these changes influence systemic immunity and glucose metabolism in a whole-body integrative and a neuronal-dependent network, will unveil novel intestinal pathologic and therapeutic targets for diabetes and obesity.
Collapse
|
37
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|