1
|
Mondal S, Becskei A. Gene choice in cancer cells is exclusive in ion transport but concurrent in DNA replication. Comput Struct Biotechnol J 2024; 23:2534-2547. [PMID: 38974885 PMCID: PMC11226983 DOI: 10.1016/j.csbj.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Cancers share common cellular and physiological features. Little is known about whether distinctive gene expression patterns can be displayed at the single-cell level by gene families in cancer cells. The expression of gene homologs within a family can exhibit concurrence and exclusivity. Concurrence can promote all-or-none expression patterns of related genes and underlie alternative physiological states. Conversely, exclusive gene families express the same or similar number of homologs in each cell, allowing a broad repertoire of cell identities to be generated. We show that gene families involved in the cell-cycle and antigen presentation are expressed concurrently. Concurrence in the DNA replication complex MCM reflects the replicative status of cells, including cell lines and cancer-derived organoids. Exclusive expression requires precise regulatory mechanism, but cancer cells retain this form of control for ion homeostasis and extend it to gene families involved in cell migration. Thus, the cell adhesion-based identity of healthy cells is transformed to an identity based on migration in the population of cancer cells, reminiscent of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Samuel Mondal
- Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| |
Collapse
|
2
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
3
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Bachmann M, Kessler J, Burri E, Wehrle-Haller B. New tools to study the interaction between integrins and latent TGFβ1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525682. [PMID: 36747767 PMCID: PMC9901185 DOI: 10.1101/2023.01.26.525682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transforming growth factor beta (TGFβ) 1 regulates cell differentiation and proliferation in different physiological settings, but is also involved in fibrotic progression and protects tumors from the immune system. Integrin αVβ6 has been shown to activate latent TGFβ1 by applying mechanical forces onto the latency-associated peptide (LAP). While the extracellular binding between αVβ6 and LAP1 is well characterized, less is known about the cytoplasmic adaptations that enable αVβ6 to apply such forces. Here, we generated new tools to facilitate the analysis of this interaction. We combined the integrin-binding part of LAP1 with a GFP and the Fc chain of human IgG. This chimeric protein, sLAP1, revealed a mechanical rearrangement of immobilized sLAP1 by αVβ6 integrin. This unique interaction was not observed between sLAP1 and other integrins. We also analyzed αVβ6 integrin binding to LAP2 and LAP3 by creating respective sLAPs. Compared to sLAP1, integrin αVβ6 showed less binding to sLAP3 and no rearrangement. These observations indicate differences in the binding of αVβ6 to LAP1 and LAP3 that have not been appreciated so far. Finally, αVβ6-sLAP1 interaction was maintained even at strongly reduced cellular contractility, highlighting the special mechanical connection between αVβ6 integrin and latent TGFβ1.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Jérémy Kessler
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Elisa Burri
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
5
|
Corti A, Anderluzzi G, Curnis F. Neuropilin-1 and Integrins as Receptors for Chromogranin A-Derived Peptides. Pharmaceutics 2022; 14:2555. [PMID: 36559048 PMCID: PMC9785887 DOI: 10.3390/pharmaceutics14122555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Human chromogranin A (CgA), a 439 residue-long member of the "granin" secretory protein family, is the precursor of several peptides and polypeptides involved in the regulation of the innate immunity, cardiovascular system, metabolism, angiogenesis, tissue repair, and tumor growth. Despite the many biological activities observed in experimental and preclinical models for CgA and its most investigated fragments (vasostatin-I and catestatin), limited information is available on the receptor mechanisms underlying these effects. The interaction of vasostatin-1 with membrane phospholipids and the binding of catestatin to nicotinic and b2-adrenergic receptors have been proposed as important mechanisms for some of their effects on the cardiovascular and sympathoadrenal systems. Recent studies have shown that neuropilin-1 and certain integrins may also work as high-affinity receptors for CgA, vasostatin-1 and other fragments. In this case, we review the results of these studies and discuss the structural requirements for the interactions of CgA-related peptides with neuropilin-1 and integrins, their biological effects, their mechanisms, and the potential exploitation of compounds that target these ligand-receptor systems for cancer diagnosis and therapy. The results obtained so far suggest that integrins (particularly the integrin avb6) and neuropilin-1 are important receptors that mediate relevant pathophysiological functions of CgA and CgA fragments in angiogenesis, wound healing, and tumor growth, and that these interactions may represent important targets for cancer imaging and therapy.
Collapse
Affiliation(s)
- Angelo Corti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Anderluzzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
6
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
7
|
Bauer A, Puglisi M, Nagl D, Schick JA, Werner T, Klingl A, El Andari J, Hornung V, Kessler H, Götz M, Grimm D, Brack‐Werner R. Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adeno-Associated Viral Vector rAAV9P1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104979. [PMID: 35398994 PMCID: PMC9165502 DOI: 10.1002/advs.202104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, β8, and either β3 or β5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.
Collapse
Affiliation(s)
- Amelie Bauer
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
| | - Matteo Puglisi
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Dennis Nagl
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Joel A Schick
- Institute of Molecular Toxicology and PharmacologyGenetics and Cellular Engineering GroupHelmholtz Center MunichNeuherberg85764Germany
| | - Thomas Werner
- Department of Computational Medicine and Bioinformatics & Department of Internal MedicineUniversity of MichiganAnn ArborMI48109USA
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment Biology IBiocenterLudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Jihad El Andari
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
| | - Veit Hornung
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM)Department ChemieTechnische Universität MünchenGarching85748Germany
| | - Magdalena Götz
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Excellence Cluster of Systems Neurology (SYNERGY)Munich81377Germany
| | - Dirk Grimm
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK)Partner site HeidelbergHeidelberg69120Germany
| | - Ruth Brack‐Werner
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
- Department of Biology IILudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| |
Collapse
|
8
|
Chen SY, Mamai O, Akhurst RJ. TGFβ: Signaling Blockade for Cancer Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:123-146. [PMID: 36382146 PMCID: PMC9645596 DOI: 10.1146/annurev-cancerbio-070620-103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type–specific manner to improve the therapeutic window between response rates and adverse effects.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Ons Mamai
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Department of Anatomy, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Bieri M, Hendrickx R, Bauer M, Yu B, Jetzer T, Dreier B, Mittl PRE, Sobek J, Plückthun A, Greber UF, Hemmi S. The RGD-binding integrins αvβ6 and αvβ8 are receptors for mouse adenovirus-1 and -3 infection. PLoS Pathog 2021; 17:e1010083. [PMID: 34910784 PMCID: PMC8673666 DOI: 10.1371/journal.ppat.1010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.
Collapse
Affiliation(s)
- Manuela Bieri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Rodinde Hendrickx
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tania Jetzer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, Xiao Q, Li A, Che X, Li Z, Zheng L. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther 2021; 6:366. [PMID: 34711804 PMCID: PMC8553927 DOI: 10.1038/s41392-021-00769-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
How tumor-associated macrophages transit from a predominant antitumor M1-like phenotype to a protumoral M2-like phenotype during the development of pancreatic ductal adenocarcinoma (PDA) remains to be elucidated. We thus conducted a study by employing a PDA-macrophage co-culture system, an "orthotopic" PDA syngeneic mouse model, and human PDA specimens, together with macrophages derived from GARP knockout mice and multiple analytic tools including whole-genome RNA sequencing, DNA methylation arrays, multiplex immunohistochemistry, metabolism measurement, and invasion/metastasis assessment. Our study showed that PDA tumor cells, through direct cell-cell contact, induce DNA methylation and downregulation of a panel of glucose metabolism and OXPHOS genes selectively in M1-like macrophages, leading to a suppressed glucose metabolic status in M1-like but not in M2-like macrophages. Following the interaction with PDA tumor cells, M1-like macrophages are reprogrammed phenotypically to M2-like macrophages. The interaction between M1-like macrophages and PDA cells is mediated by GARP and integrin αV/β8, respectively. Blocking either GARP or integrin would suppress tumor-induced DNA methylation in Nqo-1 gene and the reprogramming of M1-like macrophages. Glucose-response genes such as Il-10 are subsequently activated in tumor-educated M1-like macrophages. Partly through Il-10 and its receptor Il-10R on tumor cells, M1-like macrophages functionally acquire a pro-cancerous capability. Both exogenous M1-like and M2-like macrophages promote metastasis in a mouse model of PDA while such a role of M1-like macrophages is dependent on DNA methylation. Our results suggest that PDA cells are able to reprogram M1-like macrophages metabolically and functionally through a GARP-dependent and DNA methylation-mediated mechanism to adopt a pro-cancerous fate.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyi Pan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Sada Hospital, Fukuoka, Japan
| | - Noelle Jurcak
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen Muth
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jiaojiao Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anqi Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Cancer Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Zihai Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC, Lowe MM, Cohen JN, Macon CE, Leech JM, Kalekar LA, Scharschmidt TC, Rosenblum MD. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci Immunol 2021; 6:6/62/eabg2329. [PMID: 34452925 DOI: 10.1126/sciimmunol.abg2329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Regulatory T cells (Tregs) use multiple mechanisms to attenuate inflammation and prevent autoimmunity. Tregs residing in peripheral (i.e., nonlymphoid) tissues have specialized functions; specifically, skin Tregs promote wound healing, suppress dermal fibrosis, facilitate epidermal regeneration, and augment hair follicle cycling. Here, we demonstrated that skin Tregs were transcriptionally attuned to interact with their tissue environment through increased expression of integrin and TGF-β pathway genes that influence epithelial cell biology. We identified a molecular pathway where skin Tregs license keratinocytes to promote innate inflammation after skin barrier breach. Using a single-cell discovery approach, we identified preferential expression of the integrin αvβ8 on skin Tregs Upon skin injury, Tregs used this integrin to activate latent TGF-β, which acted directly on epithelial cells to promote CXCL5 production and neutrophil recruitment. Induction of this circuit delayed epidermal regeneration but provided protection from Staphylococcus aureus infection across a compromised barrier. Thus, αvβ8-expressing Tregs in the skin, somewhat paradoxical to their canonical immunosuppressive functions, facilitated inflammation acutely after loss of barrier integrity to promote host defense against infection.
Collapse
Affiliation(s)
- Joshua M Moreau
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Miqdad O Dhariwala
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Devi P Boda
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Ian C Boothby
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.,Medical Scientist Training Program, University of California at San Francisco, San Francisco, CA
| | - Margaret M Lowe
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Jarish N Cohen
- Department of Pathology, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Courtney E Macon
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - John M Leech
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Lokesh A Kalekar
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Seed RI, Kobayashi K, Ito S, Takasaka N, Cormier A, Jespersen JM, Publicover J, Trilok S, Combes AJ, Chew NW, Chapman J, Krummel MF, Lou J, Marks J, Cheng Y, Baron JL, Nishimura SL. A tumor-specific mechanism of T reg enrichment mediated by the integrin αvβ8. Sci Immunol 2021; 6:6/57/eabf0558. [PMID: 33771888 DOI: 10.1126/sciimmunol.abf0558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) that promote tumor immune evasion are enriched in certain tumors and correlate with poor prognosis. However, mechanisms for Treg enrichment remain incompletely understood. We described a mechanism for Treg enrichment in mouse and human tumors mediated by the αvβ8 integrin. Tumor cell αvβ8 bound to latent transforming growth factor-β (L-TGF-β) presented on the surface of T cells, resulting in TGF-β activation and immunosuppressive Treg differentiation in vitro. In vivo, tumor cell αvβ8 expression correlated with Treg enrichment, immunosuppressive Treg gene expression, and increased tumor growth, which was reduced in mice by αvβ8 inhibition or Treg depletion. Structural modeling and cell-based studies suggested a highly geometrically constrained complex forming between αvβ8-expressing tumor cells and L-TGF-β-expressing T cells, facilitating TGF-β activation, independent of release and diffusion, and providing limited access to TGF-β inhibitors. These findings suggest a highly localized tumor-specific mechanism for Treg enrichment.
Collapse
Affiliation(s)
- Robert I Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenji Kobayashi
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Saburo Ito
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Naoki Takasaka
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Anthony Cormier
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Jillian M Jespersen
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean Publicover
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suprita Trilok
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX CoLabs, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nayvin W Chew
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX CoLabs, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jocelyne Chapman
- Department of Gynecology and Oncology, University of California, San Francisco San Francisco, CA 94110, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jody L Baron
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephen L Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA. .,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Kelly SC, Rau CD, Ouyang A, Thorne PK, Olver TD, Edwards JC, Domeier TL, Padilla J, Grisanti LA, Fleenor BS, Wang Y, Rector RS, Emter CA. The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: implications for the coronary vasculature. Physiol Genomics 2021; 53:99-115. [PMID: 33491589 PMCID: PMC7988741 DOI: 10.1152/physiolgenomics.00093.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.
Collapse
Affiliation(s)
- Shannon C Kelly
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Christoph D Rau
- Department of Computational Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - An Ouyang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Bradley S Fleenor
- Human Performance Laboratory, School of Kinesiology, Ball State University, Muncie, Indiana
| | - Yibin Wang
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial VA Hospital, University of Missouri, Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Song G, Luo BH. Effects of the association of the α v β 8 lower legs on integrin ligand binding. J Cell Biochem 2021; 122:801-813. [PMID: 33619784 DOI: 10.1002/jcb.29912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Many integrins transmit signals through global conformational changes. However, it is unclear whether integrin αv β8 adopts a similar mechanism during integrin activation and signaling on the cell surface. Here, we showed that disulfide-bonded mutants, which prevented integrin αv β8 lower leg dissociation, bound ligands with similar level as the wild-type protein, suggesting that αv β8 ligand binding did not require lower leg disassociation. We further showed that the N-glycosylation mutant at the interface between the β I and hybrid domains did not affect ligand binding, suggesting that the αv β8 open headpiece was not present on the cell surface. We proposed that αv β8 integrin may adopt only one state, that is, the extended conformation with a closed headpiece. Our results showed that two lower legs retained heterodimeric interfaces, and this association might be important for stabilizing integrin in the extended conformation. Therefore, αv β8 may not transmit bidirectional signals across the plasma membrane but instead may serve as an anchoring site with high affinity and high accessibility for extracellular ligands.
Collapse
Affiliation(s)
- Guannan Song
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bing-Hao Luo
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
15
|
Zhang J, Wang T, Saigal A, Johnson J, Morrisson J, Tabrizifard S, Hollingsworth SA, Eddins MJ, Mao W, O'Neill K, Garcia-Calvo M, Carballo-Jane E, Liu D, Ham T, Zhou Q, Dong W, Meng HW, Hicks J, Cai TQ, Akiyama T, Pinto S, Cheng AC, Greshock T, Marquis JC, Ren Z, Talukdar S, Shaheen HH, Handa M. Discovery of a new class of integrin antibodies for fibrosis. Sci Rep 2021; 11:2118. [PMID: 33483531 PMCID: PMC7822819 DOI: 10.1038/s41598-021-81253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Tao Wang
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ashmita Saigal
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Josephine Johnson
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jennifer Morrisson
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Sahba Tabrizifard
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Scott A Hollingsworth
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Michael J Eddins
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Wenxian Mao
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Kim O'Neill
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Margarita Garcia-Calvo
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ester Carballo-Jane
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - DingGang Liu
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taewon Ham
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Qiong Zhou
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Weifeng Dong
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hsien-Wei Meng
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jacqueline Hicks
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Tian-Quan Cai
- In Vivo Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taro Akiyama
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shirly Pinto
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Alan C Cheng
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Thomas Greshock
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - John C Marquis
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhao Ren
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Saswata Talukdar
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hussam Hisham Shaheen
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Masahisa Handa
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| |
Collapse
|
16
|
Song G, Luo BH. Atypical structure and function of integrin α V β 8. J Cell Physiol 2020; 236:4874-4887. [PMID: 33368230 DOI: 10.1002/jcp.30242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Integrins are heterodimeric transmembrane proteins that play important roles in various biological processes. Most integrins serve as adhesion molecules and transmit bidirectional signaling across the cell membrane through global conformational changes from the bent closed to the extended open conformation. However, integrin β8 is distinctive in structure and function. Its cytoplasmic domain lacks the conserved protein-binding sequence, which is important in transmitting inside-out signals, suggesting that integrin β8 may have a different activation mechanism or lack such signaling. In addition, the ligand-binding or activating metal ion Mn2+ does not induce a global conformational change in integrin β8 . It may have only one conformation, that is, an extended, closed conformation, but with high affinity for ligands under physiological conditions, and is, therefore, considered an atypical integrin member. The extended structure and high ligand-binding affinity of integrin αv β8 make it ideal for encountering and binding ligands expressed on an opposing cell or in the extracellular matrix. In this review, we summarize the progress in integrin β8 research with a focus on its distinctive function and structure among integrin members.
Collapse
Affiliation(s)
- Guannan Song
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bing-Hao Luo
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
18
|
Zhou M, Niu J, Wang J, Gao H, Shahbaz M, Niu Z, Li Z, Zou X, Liang B. Integrin αvβ8 serves as a Novel Marker of Poor Prognosis in Colon Carcinoma and Regulates Cell Invasiveness through the Activation of TGF-β1. J Cancer 2020; 11:3803-3815. [PMID: 32328185 PMCID: PMC7171496 DOI: 10.7150/jca.43826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022] Open
Abstract
Integrin αvβ8 expressed on tumor cells executes crucial regulatory functions during cell adhesion in the tumor microenvironment and supports the activation of TGF-β1. This study aimed to investigate the expression of integrin αvβ8 and its clinical significance in colon cancer, in addition to its influence on the invasion and migration of cancer cells. Our results showed that integrin αvβ8 was an indicator of progression and poor prognosis in patients with colon cancer. Moreover, integrin αvβ8 significantly promoted the invasion and migration of colon cancer cells by the activation of TGF-β1 and upregulation of metalloproteinase-9. Furthermore, suppression of integrin αvβ8 was found to inhibit the growth of colon cancer in vivo. Our results indicate that integrin αvβ8 promotes tumor invasiveness and the migration of colon cancer through TGF-β1 activation and is a potential prognostic biomarker. This study may provide clues to further understand the manner in which the tumor microenvironment mediates the development of colon cancer and develop strategies for novel therapeutic targets in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Mingliang Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Muhammad Shahbaz
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012 Shandong, China
| | - Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Xueqing Zou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Benjia Liang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| |
Collapse
|
19
|
Campbell MG, Cormier A, Ito S, Seed RI, Bondesson AJ, Lou J, Marks JD, Baron JL, Cheng Y, Nishimura SL. Cryo-EM Reveals Integrin-Mediated TGF-β Activation without Release from Latent TGF-β. Cell 2020; 180:490-501.e16. [PMID: 31955848 PMCID: PMC7238552 DOI: 10.1016/j.cell.2019.12.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Integrin αvβ8 binds with exquisite specificity to latent transforming growth factor-β (L-TGF-β). This binding is essential for activating L-TGF-β presented by a variety of cell types. Inhibiting αvβ8-mediated TGF-β activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvβ8 ectodomain and its intact natural ligand, L-TGF-β, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvβ8 binding specificity and TGF-β activation. Our studies reveal a mechanism of TGF-β activation where mature TGF-β signals within the confines of L-TGF-β and the release and diffusion of TGF-β are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvβ8-mediated L-TGF-β activation.
Collapse
Affiliation(s)
- Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Cormier
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Bondesson
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Jody L Baron
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Stephen L Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Nardelli F, Ghitti M, Quilici G, Gori A, Luo Q, Berardi A, Sacchi A, Monieri M, Bergamaschi G, Bermel W, Chen F, Corti A, Curnis F, Musco G. A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chem Commun (Camb) 2020; 55:14777-14780. [PMID: 31755501 DOI: 10.1039/c9cc08518a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Combining 2D STD-NMR, computation, biochemical assays and click-chemistry, we have identified a chromogranin-A derived compound (5) that has high affinity and bi-selectivity for αvβ6 and αvβ8 integrins and is stable in microsomal preparations. 5 is suitable for nanoparticle functionalization and delivery to cancer cells, holding promise for diagnostic and/or therapeutic applications.
Collapse
Affiliation(s)
- Francesca Nardelli
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Michela Ghitti
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Giacomo Quilici
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milan, Italy
| | - Qingqiong Luo
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Andrea Berardi
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Matteo Monieri
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Greta Bergamaschi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milan, Italy
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, Rheinstetten, 76287, Germany
| | - Fuxiang Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. and Vita Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Giovanna Musco
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
21
|
Kiyozumi D, Nakano I, Sato-Nishiuchi R, Tanaka S, Sekiguchi K. Laminin is the ECM niche for trophoblast stem cells. Life Sci Alliance 2020; 3:3/2/e201900515. [PMID: 31937556 PMCID: PMC6977391 DOI: 10.26508/lsa.201900515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/07/2023] Open
Abstract
Laminin functions as an ECM niche factor for trophoblast stem cells and secures trophoblast stem cell expansion through its interactions with integrin. The niche is a specialized microenvironment for tissue stem cells in vivo. It has long been emphasized that niche ECM molecules act on tissue stem cells to regulate their behavior, but the molecular entities of these interactions remain to be fully elucidated. Here, we report that laminin forms the in vivo ECM niche for trophoblast stem cells (TSCs), the tissue stem cells of the placenta. TSCs expressed fibronectin-binding, vitronectin-binding, and laminin-binding integrins, whereas the integrin ligands present in the TSC niche were collagen and laminin. Therefore, the only niche integrin ligand available for TSCs in vivo was laminin. Laminin promoted TSC adhesion and proliferation in vitro in an integrin binding–dependent manner. Importantly, when the integrin-binding ability of laminin was genetically ablated in mice, the size of the TSC population was significantly reduced compared with that in control mice. The present findings underscore an ECM niche function of laminin to support tissue stem cell maintenance in vivo.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Itsuko Nakano
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryoko Sato-Nishiuchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoshi Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Nolte M, Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-β. Trends Cell Biol 2020; 30:49-59. [DOI: 10.1016/j.tcb.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
|
23
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
24
|
Cao Y, Huang HY, Chen LQ, Du HH, Cui JH, Zhang LW, Lee BJ, Cao QR. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9763-9776. [PMID: 30776886 DOI: 10.1021/acsami.8b20810] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The combination of gene therapy and chemotherapy has recently received considerable attention for cancer treatment. However, low transfection efficiency and poor endosomal escape of genes from nanocarriers strongly limit the success of the clinical use of small interfering RNA (siRNA). In this study, a novel pH-responsive, surface-modified single-walled carbon nanotube (SWCNT) was designed for the codelivery of doxorubicin (DOX) and survivin siRNA. Polyethylenimine (PEI) was covalently conjugated with betaine, and the resulting PEI-betaine (PB) was further synthesized with the oxidized SWCNT to form SWCNT-PB (SPB), which exhibits an excellent pH-responsive lysosomal escape of siRNA. SPB was modified with the targeting and penetrating peptide BR2 (SPBB), thereby achieving considerably higher uptake of siRNA than SWCNT-PEI (SP) or SPB. Furthermore, SPBB-siRNA presented substantially lower survivin expression and higher apoptotic index than Lipofectamine 2000. DOX and survivin siRNA were adsorbed onto SPB to form DOX-SPBB-siRNA, and siRNA/DOX was released into the cytoplasm and nuclei of adenocarcinomic human alveolar basal epithelial (A549) cells without lysosomal retention. Compared with SPBB-siRNA or DOX-SPBB treatment alone, DOX-SPBB-siRNA significantly reduced tumor volume in A549 cell-bearing nude mice, demonstrating the synergistic effects of DOX and survivin siRNA. Pathological analysis also indicated the potential therapeutic effects of DOX-SPBB-siRNA on tumors without distinct damages to normal tissues. In conclusion, the novel functionalized SWCNT loaded with DOX and survivin siRNA was successfully synthesized, and the nanocomplex exhibited effective antitumor effects both in vitro and in vivo, thereby providing an alternative strategy for the codelivery of antitumor drugs and genes.
Collapse
Affiliation(s)
- Yue Cao
- Department of Pharmacy , Beijing Health Vocational College , Beijing 100053 , People's Republic of China
| | | | | | | | | | | | - Beom-Jin Lee
- College of Pharmacy , Ajou University , Suwon 16499 , Republic of Korea
| | | |
Collapse
|
25
|
Reichart F, Maltsev OV, Kapp TG, Räder AFB, Weinmüller M, Marelli UK, Notni J, Wurzer A, Beck R, Wester HJ, Steiger K, Di Maro S, Di Leva FS, Marinelli L, Nieberler M, Reuning U, Schwaiger M, Kessler H. Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. J Med Chem 2019; 62:2024-2037. [DOI: 10.1021/acs.jmedchem.8b01588] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Oleg V. Maltsev
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Tobias G. Kapp
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michael Weinmüller
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Alexander Wurzer
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Roswitha Beck
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Katja Steiger
- Department of Pathology, Technische Universität München, Trogerstraße 18, 81675 München, Germany
| | - Salvatore Di Maro
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital Rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81679 München, Germany
| | | | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
26
|
Takasaka N, Seed RI, Cormier A, Bondesson AJ, Lou J, Elattma A, Ito S, Yanagisawa H, Hashimoto M, Ma R, Levine MD, Publicover J, Potts R, Jespersen JM, Campbell MG, Conrad F, Marks JD, Cheng Y, Baron JL, Nishimura SL. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 2018; 3:122591. [PMID: 30333313 DOI: 10.1172/jci.insight.122591] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
TGF-β is a promising immunotherapeutic target. It is expressed ubiquitously in a latent form that must be activated to function. Determination of where and how latent TGF-β (L-TGF-β) is activated in the tumor microenvironment could facilitate cell- and mechanism-specific approaches to immunotherapeutically target TGF-β. Binding of L-TGF-β to integrin αvβ8 results in activation of TGF-β. We engineered and used αvβ8 antibodies optimized for blocking or detection, which - respectively - inhibit tumor growth in syngeneic tumor models or sensitively and specifically detect β8 in human tumors. Inhibition of αvβ8 potentiates cytotoxic T cell responses and recruitment of immune cells to tumor centers - effects that are independent of PD-1/PD-L1. β8 is expressed on the cell surface at high levels by tumor cells, not immune cells, while the reverse is true of L-TGF-β, suggesting that tumor cell αvβ8 serves as a platform for activating cell-surface L-TGF-β presented by immune cells. Transcriptome analysis of tumor-associated lymphoid cells reveals macrophages as a key cell type responsive to β8 inhibition with major increases in chemokine and tumor-eliminating genes. High β8 expression in tumor cells is seen in 20%-80% of various cancers, which rarely coincides with high PD-L1 expression. These data suggest tumor cell αvβ8 is a PD-1/PD-L1-independent immunotherapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, and.,Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| | | | | |
Collapse
|
27
|
Malric L, Monferran S, Delmas C, Arnauduc F, Dahan P, Boyrie S, Deshors P, Lubrano V, Da Mota DF, Gilhodes J, Filleron T, Siegfried A, Evrard S, Kowalski-Chauvel A, Moyal ECJ, Toulas C, Lemarié A. Inhibiting Integrin β8 to Differentiate and Radiosensitize Glioblastoma-Initiating Cells. Mol Cancer Res 2018; 17:384-397. [PMID: 30266751 DOI: 10.1158/1541-7786.mcr-18-0386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Glioblastomas (GB) are malignant brain tumors with poor prognosis despite treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a subpopulation of GB-initiating cells (GIC), which contribute to tumor aggressiveness, resistance, and recurrence. Some integrins are specifically expressed by GICs and could be actionable targets to improve GB treatment. Here, integrin β8 (ITGB8) was identified as a potential selective target in this highly tumorigenic GIC subpopulation. Using several patient-derived primocultures, it was demonstrated that ITGB8 is overexpressed in GICs compared with their differentiated progeny. Furthermore, ITGB8 is also overexpressed in GB, and its overexpression is correlated with poor prognosis and with the expression of several other classic stem cell markers. Moreover, inhibiting ITGB8 diminished several main GIC characteristics and features, including self-renewal ability, stemness, migration potential, and tumor formation capacity. Blockade of ITGB8 significantly impaired GIC cell viability via apoptosis induction. Finally, the combination of radiotherapy and ITGB8 targeting radiosensitized GICs through postmitotic cell death. IMPLICATIONS: This study identifies ITGB8 as a new selective marker for GICs and as a promising therapeutic target in combination with chemo/radiotherapy for the treatment of highly aggressive brain tumors.
Collapse
Affiliation(s)
- Laure Malric
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Caroline Delmas
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Florent Arnauduc
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sabrina Boyrie
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Pauline Deshors
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Vincent Lubrano
- Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,INSERM UMR 1214 - ToNIC, Toulouse, France
| | - Dina Ferreira Da Mota
- Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Aurore Siegfried
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Solène Evrard
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France. .,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
28
|
Kiyozumi D, Taniguchi Y, Nakano I, Toga J, Yagi E, Hasuwa H, Ikawa M, Sekiguchi K. Laminin γ1 C-terminal Glu to Gln mutation induces early postimplantation lethality. Life Sci Alliance 2018; 1:e201800064. [PMID: 30456378 PMCID: PMC6238537 DOI: 10.26508/lsa.201800064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/24/2022] Open
Abstract
Mouse embryos with an ablated ability of integrins to bind laminins are still able to form basement membranes, but die just after implantation because of deficient extraembryonic development. Laminin–integrin interactions regulate various adhesion-dependent cellular processes. γ1C-Glu, the Glu residue in the laminin γ1 chain C-terminal tail, is crucial for the binding of γ1-laminins to several integrin isoforms. Here, we investigated the impact of γ1C Glu to Gln mutation on γ1-laminin binding to all possible integrin partners in vitro, and found that the mutation specifically ablated binding to α3, α6, and α7 integrins. To examine the physiological significance of γ1C-Glu, we generated a knock-in allele, Lamc1EQ, in which the γ1C Glu to Gln mutation was introduced. Although Lamc1EQ/EQ homozygotes developed into blastocysts and deposited laminins in their basement membranes, they died just after implantation because of disordered extraembryonic development. Given the impact of the Lamc1EQ allele on embryonic development, we developed a knock-in mouse strain enabling on-demand introduction of the γ1C Glu to Gln mutation by the Cre-loxP system. The present study has revealed a crucial role of γ1C-Glu–mediated integrin binding in postimplantation development and provides useful animal models for investigating the physiological roles of laminin–integrin interactions in vivo.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yukimasa Taniguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Itsuko Nakano
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Junko Toga
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Emiko Yagi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hidetoshi Hasuwa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing integrin extension. Nat Struct Mol Biol 2018; 25:698-704. [PMID: 30061598 PMCID: PMC6214843 DOI: 10.1038/s41594-018-0093-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Integrins are conformationally flexible cell surface receptors that survey the extracellular environment for their cognate ligands. Interactions with ligands are thought to be linked to global structural rearrangements involving transitions between bent, extended-closed and -open forms. Thus far, structural details are lacking for integrins in the extended conformation due to extensive flexibility between the headpiece and legs within this conformation. Here we present single-particle electron cryo-microscopy structures of human αvβ8 integrin in the extended-closed conformation, which has been considered to be a low-affinity intermediate. Our structures show the headpiece rotating about a flexible αv-knee, suggesting a ligand surveillance mechanism for integrins in their extended-closed form. Our model predicts that the extended conformation is mainly stabilized by an interface formed between flexible loops in the upper and lower domains of the αv-leg. Confirming these findings with the αvβ3 integrin suggests that our model of stabilizing the extended-closed conformation is generalizable to other integrins.
Collapse
|
30
|
Significant Down-Regulation of "Biological Adhesion" Genes in Porcine Oocytes after IVM. Int J Mol Sci 2017; 18:ijms18122685. [PMID: 29232894 PMCID: PMC5751287 DOI: 10.3390/ijms18122685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group), or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group). As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.
Collapse
|
31
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
32
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
33
|
Ahmedah HT, Patterson LH, Shnyder SD, Sheldrake HM. RGD-Binding Integrins in Head and Neck Cancers. Cancers (Basel) 2017; 9:cancers9060056. [PMID: 28587135 PMCID: PMC5483875 DOI: 10.3390/cancers9060056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alterations in integrin expression and function promote tumour growth, invasion, metastasis and neoangiogenesis. Head and neck cancers are highly vascular tumours with a tendency to metastasise. They express a wide range of integrin receptors. Expression of the αv and β1 subunits has been explored relatively extensively and linked to tumour progression and metastasis. Individual receptors αvβ3 and αvβ5 have proved popular targets for diagnostic and therapeutic agents but lesser studied receptors, such as αvβ6, αvβ8, and β1 subfamily members, also show promise. This review presents the current knowledge of integrin expression and function in squamous cell carcinoma of the head and neck (HNSCC), with a particular focus on the arginine-glycine-aspartate (RGD)-binding integrins, in order to highlight the potential of integrins as targets for personalised tumour-specific identification and therapy.
Collapse
Affiliation(s)
- Hanadi Talal Ahmedah
- Radiological Sciences Department, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia.
| | | | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
34
|
Hu P, Luo BH. Integrin αv
β8
Adopts a High Affinity State for Soluble Ligands Under Physiological Conditions. J Cell Biochem 2017; 118:2044-2052. [DOI: 10.1002/jcb.25780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/01/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Hu
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana
| | - Bing-Hao Luo
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana
| |
Collapse
|
35
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
36
|
Tsui P, Higazi DR, Wu Y, Dunmore R, Solier E, Kasali T, Bond NJ, Huntington C, Carruthers A, Hood J, Borrok MJ, Barnes A, Rickert K, Phipps S, Shirinian L, Zhu J, Bowen MA, Dall'Acqua W, Murray LA. The TGF-β inhibitory activity of antibody 37E1B5 depends on its H-CDR2 glycan. MAbs 2016; 9:104-113. [PMID: 27834568 DOI: 10.1080/19420862.2016.1255390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Excessive transforming growth factor (TGF)-β is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-β activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-β inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-β activation utilized by an αvβ8 targeting antibody, 37E1B5. This antibody blocks TGF-β activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-β activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvβ8 association, and TGF-β activation in an αvβ8-mediated TGF-β signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvβ8-mediated TGF-β activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.
Collapse
Affiliation(s)
- Ping Tsui
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Daniel R Higazi
- b Biopharmaceutical Development, MedImmune Ltd , Cambridge , UK
| | - Yanli Wu
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Rebecca Dunmore
- c Respiratory, Inflammation and Autoimmunity, MedImmune Ltd , Cambridge , UK
| | - Emilie Solier
- b Biopharmaceutical Development, MedImmune Ltd , Cambridge , UK
| | - Toyin Kasali
- b Biopharmaceutical Development, MedImmune Ltd , Cambridge , UK
| | - Nicholas J Bond
- b Biopharmaceutical Development, MedImmune Ltd , Cambridge , UK
| | | | - Alan Carruthers
- c Respiratory, Inflammation and Autoimmunity, MedImmune Ltd , Cambridge , UK
| | - John Hood
- e Translational Sciences, Medimmune Ltd ., Cambridge , UK
| | - M Jack Borrok
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Arnita Barnes
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Keith Rickert
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Sandrina Phipps
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Lena Shirinian
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Jie Zhu
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Michael A Bowen
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - William Dall'Acqua
- a Antibody Discovery and Protein Engineering, Medimmune LLC , Gaithersburg , MD , USA
| | - Lynne A Murray
- c Respiratory, Inflammation and Autoimmunity, MedImmune Ltd , Cambridge , UK
| |
Collapse
|