1
|
Sama B, Selisko B, Falcou C, Fattorini V, Piorkowski G, Touret F, Donckers K, Neyts J, Jochmans D, Shannon A, Coutard B, Canard B. The effects of Remdesivir's functional groups on its antiviral potency and resistance against the SARS-CoV-2 polymerase. Antiviral Res 2024; 232:106034. [PMID: 39510431 DOI: 10.1016/j.antiviral.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Remdesivir (RDV, Veklury®) is the first FDA-approved antiviral treatment for COVID-19. It is a nucleotide analogue (NA) carrying a 1'-cyano (1'-CN) group on the ribose and a pseudo-adenine nucleobase whose contributions to the mode of action (MoA) are not clear. Here, we dissect these independent contributions by employing RDV-TP analogues. We show that while the 1'-CN group is directly responsible for transient stalling of the SARS-CoV-2 replication/transcription complex (RTC), the nucleobase plays a role in the strength of this stalling. Conversely, RNA extension assays show that the 1'-CN group plays a role in fidelity and that RDV-TP can be incorporated as a GTP analogue, albeit with lower efficiency. However, a mutagenic effect by the viral polymerase is not ascertained by deep sequencing of viral RNA from cells treated with RDV. We observe that once added to the 3' end of RNA, RDV-MP is sensitive to excision and its 1'-CN group does not impact its nsp14-mediated removal. A >14-fold RDV-resistant SARS-CoV-2 isolate can be selected carrying two mutations in the nsp12 sequence, S759A and A777S. They confer both RDV-TP discrimination over ATP by nsp12 and stalling during RNA synthesis, leaving more time for excision-repair and potentially dampening RDV efficiency. We conclude that RDV presents a multi-faced MoA. It slows down or stalls overall RNA synthesis but is efficiently repaired from the primer strand, whereas once in the template, read-through inhibition adds to this effect. Its efficient incorporation may corrupt proviral RNA, likely disturbing downstream functions in the virus life cycle.
Collapse
Affiliation(s)
- Bhawna Sama
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Barbara Selisko
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Camille Falcou
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Véronique Fattorini
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | - Franck Touret
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | | | | | | | - Ashleigh Shannon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Bruno Coutard
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France; European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany.
| |
Collapse
|
2
|
Li R, Wang M, Gong P. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res 2022; 50:12389-12399. [PMID: 36477355 PMCID: PMC9757066 DOI: 10.1093/nar/gkac1133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
The nucleic acid polymerase-catalyzed nucleotidyl transfer reaction associated with polymerase active site closure is a key step in the nucleotide addition cycle (NAC). Two proton transfer events can occur in such a nucleotidyl transfer: deprotonation of the priming nucleotide 3'-hydroxyl nucleophile and protonation of the pyrophosphate (PPi) leaving group. In viral RNA-dependent RNA polymerases (RdRPs), whether and how active site residues participate in this two-proton transfer reaction remained to be clarified. Here we report a 2.5 Å resolution crystal structure of enterovirus 71 (EV71) RdRP in a catalytically closed pre-chemistry conformation, with a proposed proton donor candidate K360 in close contact with the NTP γ-phosphate. Enzymology data reveal that K360 mutations not only reduce RdRP catalytic efficiency but also alter pH dependency profiles in both elongation and pre-elongation synthesis modes. Interestingly, mutations at R174, an RdRP-invariant residue in motif F, had similar effects with additional impact on the Michaelis constant of NTP (KM,NTP). However, direct participation in protonation was not evident for K360 or R174. Our data suggest that both K360 and R174 participate in nucleotidyl transfer, while their possible roles in acid-base or positional catalysis are discussed in comparison with other classes of nucleic acid polymerases.
Collapse
Affiliation(s)
| | | | - Peng Gong
- To whom correspondence should be addressed.
| |
Collapse
|
3
|
Campagnola G, Govindarajan V, Pelletier A, Canard B, Peersen OB. The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication. J Virol 2022; 96:e0067122. [PMID: 35924919 PMCID: PMC9400494 DOI: 10.1128/jvi.00671-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Vishnu Govindarajan
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annelise Pelletier
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université CNRS UMR 7257, AFMB, Marseille, France
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
5
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
6
|
Xu X, Zhang L, Chu JTS, Wang Y, Chin AWH, Chong TH, Dai Z, Poon LLM, Cheung PPH, Huang X. A novel mechanism of enhanced transcription activity and fidelity for influenza A viral RNA-dependent RNA polymerase. Nucleic Acids Res 2021; 49:8796-8810. [PMID: 34379778 PMCID: PMC8421151 DOI: 10.1093/nar/gkab660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
During RNA elongation, the influenza A viral (IAV) RNA-dependent RNA polymerase (RdRp) residues in the active site interact with the triphosphate moiety of nucleoside triphosphate (NTP) for catalysis. The molecular mechanisms by which they control the rate and fidelity of NTP incorporation remain elusive. Here, we demonstrated through enzymology, virology and computational approaches that the R239 and K235 in the PB1 subunit of RdRp are critical to controlling the activity and fidelity of transcription. Contrary to common beliefs that high-fidelity RdRp variants exert a slower incorporation rate, we discovered a first-of-its-kind, single lysine-to-arginine mutation on K235 exhibited enhanced fidelity and activity compared with wild-type. In particular, we employed a single-turnover NTP incorporation assay for the first time on IAV RdRp to show that K235R mutant RdRp possessed a 1.9-fold increase in the transcription activity of the cognate NTP and a 4.6-fold increase in fidelity compared to wild-type. Our all-atom molecular dynamics simulations further elucidated that the higher activity is attributed to the shorter distance between K235R and the triphosphate moiety of NTP compared with wild-type. These results provide novel insights into NTP incorporation and fidelity control mechanisms, which lay the foundation for the rational design of IAV vaccine and antiviral targets.
Collapse
Affiliation(s)
- Xinzhou Xu
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julie Tung Sem Chu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Wang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alex Wing Hong Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Tin Hang Chong
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zixi Dai
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Leo Lit Man Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Peter Pak-Hang Cheung
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Li Ka Shing Medical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuhui Huang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Lanahan MR, Maples RW, Pfeiffer JK. Tradeoffs for a viral mutant with enhanced replication speed. Proc Natl Acad Sci U S A 2021; 118:e2105288118. [PMID: 34282021 PMCID: PMC8325337 DOI: 10.1073/pnas.2105288118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Collapse
Affiliation(s)
- Matthew R Lanahan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Robert W Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| |
Collapse
|
8
|
Winston DS, Boehr DD. Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. Enzymes 2021; 49:149-193. [PMID: 34696831 DOI: 10.1016/bs.enz.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.
Collapse
Affiliation(s)
- Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
9
|
Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility In Vivo. J Virol 2020; 95:JVI.01569-20. [PMID: 33028719 DOI: 10.1128/jvi.01569-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The low fidelity of foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase allows FMDV to exhibit high genetic diversity. Previously, we showed that the genetic diversity of FMDV plays an important role in virulence in suckling mice. Here, we mutated the amino acid residue Phe257, located in the finger domain of FMDV polymerase and conserved across FMDV serotypes, to a cysteine (F257C) to study the relationship between viral genetic diversity, virulence, and transmissibility in natural hosts. The single amino acid substitution in FMDV polymerase resulted in a high-fidelity virus variant, rF257C, with growth kinetics indistinguishable from those of wild-type (WT) virus in cell culture, but it displayed smaller plaques and impaired fitness in direct competition assays. Furthermore, we found that rF257C was attenuated in vivo in both suckling mice and pigs (one of its natural hosts). Importantly, contact exposure experiments showed that the rF257C virus exhibited reduced transmissibility compared to that of wild-type FMDV in the porcine model. This study provides evidence that FMDV genetic diversity is important for viral virulence and transmissibility in susceptible animals. Given that type O FMDV exhibits the highest genetic diversity among all seven serotypes of FMDV, we propose that the lower polymerase fidelity of the type O FMDV could contribute to its dominance worldwide.IMPORTANCE Among the seven serotypes of FMDV, serotype O FMDV have the broadest distribution worldwide, which could be due to their high virulence and transmissibility induced by high genetic diversity. In this paper, we generated a single amino acid substitution FMDV variant with a high-fidelity polymerase associated with viral fitness, virulence, and transmissibility in a natural host. The results highlight that maintenance of viral population diversity is essential for interhost viral spread. This study provides evidence that higher genetic diversity of type O FMDV could increase both virulence and transmissibility, thus leading to their dominance in the global epidemic.
Collapse
|
10
|
Watkins CL, Kempf BJ, Beaucourt S, Barton DJ, Peersen OB. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. J Biol Chem 2020; 295:10624-10637. [PMID: 32493771 PMCID: PMC7397104 DOI: 10.1074/jbc.ra120.013906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Indexed: 01/23/2023] Open
Abstract
Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.
Collapse
Affiliation(s)
- Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. An Extended Primer Grip of Picornavirus Polymerase Facilitates Sexual RNA Replication Mechanisms. J Virol 2020; 94:e00835-20. [PMID: 32522851 PMCID: PMC7394906 DOI: 10.1128/jvi.00835-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Picornaviruses have both asexual and sexual RNA replication mechanisms. Asexual RNA replication mechanisms involve one parental template, whereas sexual RNA replication mechanisms involve two or more parental templates. Because sexual RNA replication mechanisms counteract ribavirin-induced error catastrophe, we selected for ribavirin-resistant poliovirus to identify polymerase residues that facilitate sexual RNA replication mechanisms. We used serial passage in ribavirin, beginning with a variety of ribavirin-sensitive and ribavirin-resistant parental viruses. Ribavirin-sensitive virus contained an L420A polymerase mutation, while ribavirin-resistant virus contained a G64S polymerase mutation. A G64 codon mutation (G64Fix) was used to inhibit emergence of G64S-mediated ribavirin resistance. Revertants (L420) or pseudorevertants (L420V and L420I) were selected from all independent lineages of L420A, G64Fix L420A, and G64S L420A parental viruses. Ribavirin resistance G64S mutations were selected in two independent lineages, and novel ribavirin resistance mutations were selected in the polymerase in other lineages (M299I, M323I, M392V, and T353I). The structural orientation of M392, immediately adjacent to L420 and the polymerase primer grip region, led us to engineer additional polymerase mutations into poliovirus (M392A, M392L, M392V, K375R, and R376K). L420A revertants and pseudorevertants (L420V and L420I) restored efficient viral RNA recombination, confirming that ribavirin-induced error catastrophe coincides with defects in sexual RNA replication mechanisms. Viruses containing M392 mutations (M392A, M392L, and M392V) and primer grip mutations (K375R and R376K) exhibited divergent RNA recombination, ribavirin sensitivity, and biochemical phenotypes, consistent with changes in the fidelity of RNA synthesis. We conclude that an extended primer grip of the polymerase, including L420, M392, K375, and R376, contributes to the fidelity of RNA synthesis and to efficient sexual RNA replication mechanisms.IMPORTANCE Picornaviruses have both asexual and sexual RNA replication mechanisms. Sexual RNA replication shapes picornavirus species groups, contributes to the emergence of vaccine-derived polioviruses, and counteracts error catastrophe. Can viruses distinguish between homologous and nonhomologous partners during sexual RNA replication? We implicate an extended primer grip of the viral polymerase in sexual RNA replication mechanisms. By sensing RNA sequence complementarity near the active site, the extended primer grip of the polymerase has the potential to distinguish between homologous and nonhomologous RNA templates during sexual RNA replication.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Colorado, USA
| |
Collapse
|
12
|
Kautz TF, Jaworski E, Routh A, Forrester NL. A Low Fidelity Virus Shows Increased Recombination during the Removal of an Alphavirus Reporter Gene. Viruses 2020; 12:E660. [PMID: 32575413 PMCID: PMC7354468 DOI: 10.3390/v12060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Reporter genes for RNA viruses are well-known to be unstable due to putative RNA recombination events that excise inserted nucleic acids. RNA recombination has been demonstrated to be co-regulated with replication fidelity in alphaviruses, but it is unknown how recombination events at the minority variant level act, which is important for vaccine and trans-gene delivery design. Therefore, we sought to characterize the removal of a reporter gene by a low-fidelity alphavirus mutant over multiple replication cycles. To examine this, GFP was inserted into TC-83, a live-attenuated vaccine for the alphavirus Venezuelan equine encephalitis virus, as well as a low-fidelity variant of TC-83, and passaged until fluorescence was no longer observed. Short-read RNA sequencing using ClickSeq was performed to determine which regions of the viral genome underwent recombination and how this changed over multiple replication cycles. A rapid removal of the GFP gene was observed, where minority variants in the virus population accumulated small deletions that increased in size over the course of passaging. Eventually, these small deletions merged to fully remove the GFP gene. The removal was significantly enhanced during the passaging of low-fidelity TC-83, suggesting that increased levels of recombination are a defining characteristic of this mutant.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Naomi L Forrester
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Life Sciences, University of Keele, Keele ST5 5BG, UK
| |
Collapse
|
13
|
Patterson EI, Khanipov K, Swetnam DM, Walsdorf S, Kautz TF, Thangamani S, Fofanov Y, Forrester NL. Measuring Alphavirus Fidelity Using Non-Infectious Virus Particles. Viruses 2020; 12:v12050546. [PMID: 32429270 PMCID: PMC7291308 DOI: 10.3390/v12050546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations are incorporated into the genomes of RNA viruses at an optimal frequency and altering this precise frequency has been proposed as a strategy to create live-attenuated vaccines. However, determining the effect of specific mutations that alter fidelity has been difficult because of the rapid selection of the virus population during replication. By deleting residues of the structural polyprotein PE2 cleavage site, E3Δ56-59, in Venezuelan equine encephalitis virus (VEEV) TC-83 vaccine strain, non-infectious virus particles were used to assess the effect of single mutations on mutation frequency without the interference of selection that results from multiple replication cycles. Next-generation sequencing analysis revealed a significantly lower frequency of transversion mutations and overall mutation frequency for the fidelity mutants compared to VEEV TC-83 E3Δ56-59. We demonstrate that deletion of the PE2 cleavage site halts virus infection while making the virus particles available for downstream sequencing. The conservation of the site will allow the evaluation of suspected fidelity mutants across alphaviruses of medical importance.
Collapse
Affiliation(s)
- Edward I. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence:
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.K.); (Y.F.)
| | - Daniele M. Swetnam
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA;
| | - Samantha Walsdorf
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| | - Tiffany F. Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.K.); (Y.F.)
| | - Naomi L. Forrester
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| |
Collapse
|
14
|
Shi W, Ye HQ, Deng CL, Li R, Zhang B, Gong P. A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability. Nucleic Acids Res 2020; 48:1392-1405. [PMID: 31863580 PMCID: PMC7026628 DOI: 10.1093/nar/gkz1170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
The enterovirus 71 (EV71) 3Dpol is an RNA-dependent RNA polymerase (RdRP) that plays the central role in the viral genome replication, and is an important target in antiviral studies. Here, we report a crystal structure of EV71 3Dpol elongation complex (EC) at 1.8 Å resolution. The structure reveals that the 5′-end guanosine of the downstream RNA template interacts with a fingers domain pocket, with the base sandwiched by H44 and R277 side chains through hydrophobic stacking interactions, and these interactions are still maintained after one in-crystal translocation event induced by nucleotide incorporation, implying that the pocket could regulate the functional properties of the polymerase by interacting with RNA. When mutated, residue R277 showed an impact on virus proliferation in virological studies with residue H44 having a synergistic effect. In vitro biochemical data further suggest that mutations at these two sites affect RNA binding, EC stability, but not polymerase catalytic rate (kcat) and apparent NTP affinity (KM,NTP). We propose that, although rarely captured by crystallography, similar surface pocket interaction with nucleobase may commonly exist in nucleic acid motor enzymes to facilitate their processivity. Potential applications in antiviral drug and vaccine development are also discussed.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Tyr82 Amino Acid Mutation in PB1 Polymerase Induces an Influenza Virus Mutator Phenotype. J Virol 2019; 93:JVI.00834-19. [PMID: 31462570 DOI: 10.1128/jvi.00834-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
In various positive-sense single-stranded RNA viruses, a low-fidelity viral RNA-dependent RNA polymerase (RdRp) confers attenuated phenotypes by increasing the mutation frequency. We report a negative-sense single-stranded RNA virus RdRp mutant strain with a mutator phenotype. Based on structural data of RdRp, rational targeting of key residues, and screening of fidelity variants, we isolated a novel low-fidelity mutator strain of influenza virus that harbors a Tyr82-to-Cys (Y82C) single-amino-acid substitution in the PB1 polymerase subunit. The purified PB1-Y82C polymerase indeed showed an increased frequency of misincorporation compared with the wild-type PB1 in an in vitro biochemical assay. To further investigate the effects of position 82 on PB1 polymerase fidelity, we substituted various amino acids at this position. As a result, we isolated various novel mutators other than PB1-Y82C with higher mutation frequencies. The structural model of influenza virus polymerase complex suggested that the Tyr82 residue, which is located at the nucleoside triphosphate entrance tunnel, may influence a fidelity checkpoint. Interestingly, although the PB1-Y82C variant replicated with wild-type PB1-like kinetics in tissue culture, the 50% lethal dose of the PB1-Y82C mutant was 10 times lower than that of wild-type PB1 in embryonated chicken eggs. In conclusion, our data indicate that the Tyr82 residue of PB1 has a crucial role in regulating polymerase fidelity of influenza virus and is closely related to attenuated pathogenic phenotypes in vivo IMPORTANCE Influenza A virus rapidly acquires antigenic changes and antiviral drug resistance, which limit the effectiveness of vaccines and drug treatments, primarily owing to its high rate of evolution. Virus populations formed by quasispecies can contain resistance mutations even before a selective pressure is applied. To study the effects of the viral mutation spectrum and quasispecies, high- and low-fidelity variants have been isolated for several RNA viruses. Here, we report the discovery of a low-fidelity RdRp variant of influenza A virus that contains a substitution at Tyr82 in PB1. Viruses containing the PB1-Y82C substitution showed growth kinetics and viral RNA synthesis levels similar to those of the wild-type virus in cell culture; however, they had significantly attenuated phenotypes in a chicken egg infection experiment. These data demonstrated that decreased RdRp fidelity attenuates influenza A virus in vivo, which is a desirable feature for the development of safer live attenuated vaccine candidates.
Collapse
|
16
|
Shi J, Perryman JM, Yang X, Liu X, Musser DM, Boehr AK, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry 2019; 58:3735-3743. [PMID: 31424194 DOI: 10.1021/acs.biochem.9b00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conserved structural motif D is an important determinant of the speed and fidelity of viral RNA-dependent RNA polymerases (RdRps). Structural and computational studies have suggested that conformational changes in the motif-D loop that help to reposition the catalytic lysine represent critical steps in nucleotide selection and incorporation. Conformations of the motif-D loop in the poliovirus RdRp are likely controlled in part by noncovalent interactions involving the motif-D residue Glu364. This residue swivels between making interactions with Lys228 and Asn370 to stabilize the open and closed loop conformations, respectively. We show here that we can rationally control the motif-D loop conformation by breaking these interactions. The K228A variant favors a more active closed conformation, leading to increased nucleotide incorporation rates and decreased nucleotide selectivity, and the N370A variant favors a less active open conformation, leading to decreased nucleotide incorporation rates and increased nucleotide selectivity. Similar competing interactions likely control nucleotide incorporation rates and fidelity in other viral RdRps. Rational engineering of these interactions may be important in the generation of live, attenuated vaccine strains, considering the established relationships between RdRp function and viral pathogenesis.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jacob M Perryman
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xiaorong Yang
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinran Liu
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Derek M Musser
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Alyson K Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David D Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
17
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
18
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. Picornavirus RNA Recombination Counteracts Error Catastrophe. J Virol 2019; 93:e00652-19. [PMID: 31068422 PMCID: PMC6600191 DOI: 10.1128/jvi.00652-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Template-dependent RNA replication mechanisms render picornaviruses susceptible to error catastrophe, an overwhelming accumulation of mutations incompatible with viability. Viral RNA recombination, in theory, provides a mechanism for viruses to counteract error catastrophe. We tested this theory by exploiting well-defined mutations in the poliovirus RNA-dependent RNA polymerase (RDRP), namely, a G64S mutation and an L420A mutation. Our data reveal two distinct mechanisms by which picornaviral RDRPs influence error catastrophe: fidelity of RNA synthesis and RNA recombination. A G64S mutation increased the fidelity of the viral polymerase and rendered the virus resistant to ribavirin-induced error catastrophe, but only when RNA recombination was at wild-type levels. An L420A mutation in the viral polymerase inhibited RNA recombination and exacerbated ribavirin-induced error catastrophe. Furthermore, when RNA recombination was substantially reduced by an L420A mutation, a high-fidelity G64S polymerase failed to make the virus resistant to ribavirin. These data indicate that viral RNA recombination is required for poliovirus to evade ribavirin-induced error catastrophe. The conserved nature of L420 within RDRPs suggests that RNA recombination is a common mechanism for picornaviruses to counteract and avoid error catastrophe.IMPORTANCE Positive-strand RNA viruses produce vast amounts of progeny in very short periods of time via template-dependent RNA replication mechanisms. Template-dependent RNA replication, while efficient, can be disadvantageous due to error-prone viral polymerases. The accumulation of mutations in viral RNA genomes leads to error catastrophe. In this study, we substantiate long-held theories regarding the advantages and disadvantages of asexual and sexual replication strategies among RNA viruses. In particular, we show that picornavirus RNA recombination counteracts the negative consequences of asexual template-dependent RNA replication mechanisms, namely, error catastrophe.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
19
|
Enterovirus A71 Containing Codon-Deoptimized VP1 and High-Fidelity Polymerase as Next-Generation Vaccine Candidate. J Virol 2019; 93:JVI.02308-18. [PMID: 30996087 DOI: 10.1128/jvi.02308-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD), which occasionally results in severe neurological complications. In this study, we developed four EV-A71 (rgEV-A71) strains by reverse genetics procedures as possible vaccine candidates. The four rgEV-A71 viruses contained various codon-deoptimized VP1 capsid proteins (VP1-CD) and showed replication rates and antigenicity similar to that of the wild-type virus, while a fifth virus, rg4643C4VP-CD, was unable to form plaques but was still able to be examined by median tissue culture infectious dose (TCID50) titers, which were similar to those of the others, indicating the effect of CD on plaque formation. However, the genome stability showed that there were some mutations which appeared during just one passage of the VP1-CD viruses. Thus, we further constructed VP1-CD rgEV-A71 containing high-fidelity determinants in 3D polymerase (CD-HF), and the number of mutations in CD-HF rgEV-A71 was shown to have decreased. The CD-HF viruses showed less virulence than the parental strain in a mouse infection model. After 14 days postimmunization, antibody titers had increased in mice infected with CD-HF viruses. The mouse antisera showed similar neutralizing antibody titers against various CD-HF viruses and different genotypes of EV-A71. The study demonstrates the proof of concept that VP1 codon deoptimization combined with high-fidelity 3D polymerase decreased EV-A71 mutations and virulence in mice but retained their antigenicity, indicating it is a good candidate for next-generation EV-A71 vaccine development.IMPORTANCE EV-A71 can cause severe neurological diseases with fatality in infants and young children, but there are still no effective drugs to date. Here, we developed a novel vaccine strategy with the combination of CD and HF substitutions to generate the genetically stable reverse genetics virus. We found that CD combined with HF polymerase decreased the virulence but maintained the antigenicity of the virus. This work demonstrated the simultaneous introduction of CD genome sequences and HF substitutions as a potential new strategy to develop attenuated vaccine seed virus. Our work provides insight into the development of a low-virulence candidate vaccine virus through a series of genetic editing of virus sequences while maintaining its antigenicity and genome stability, which will provide an additional strategy for next-generation vaccine development of EV-A71.
Collapse
|
20
|
Prostova MA, Smertina E, Bakhmutov DV, Gasparyan AA, Khitrina EV, Kolesnikova MS, Shishova AA, Gmyl AP, Agol VI. Characterization of Mutational Tolerance of a Viral RNA-Protein Interaction. Viruses 2019; 11:v11050479. [PMID: 31130655 PMCID: PMC6563195 DOI: 10.3390/v11050479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Replication of RNA viruses is generally markedly error-prone. Nevertheless, these viruses usually retain their identity under more or less constant conditions due to different mechanisms of mutation tolerance. However, there exists only limited information on quantitative aspects of the mutational tolerance of distinct viral functions. To address this problem, we used here as a model the interaction between a replicative cis-acting RNA element (oriL) of poliovirus and its ligand (viral protein 3CD). The mutational tolerance of a conserved tripeptide of 3CD, directly involved in this interaction, was investigated. Randomization of the relevant codons and reverse genetics were used to define the space of viability-compatible sequences. Surprisingly, at least 11 different amino acid substitutions in this tripeptide were not lethal. Several altered viruses exhibited wild-type-like phenotypes, whereas debilitated (but viable) genomes could increase their fitness by the acquisition of reversions or compensatory mutations. Together with our study on the tolerance of oriL (Prostova et al., 2015), the results demonstrate that at least 42 out of 51 possible nucleotide replacements within the two relevant genomic regions are viability-compatible. These results provide new insights into structural aspects of an important viral function as well as into the general problems of viral mutational robustness and evolution.
Collapse
Affiliation(s)
- Maria A Prostova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia.
| | - Elena Smertina
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, 117192 Moscow, Russia.
| | - Denis V Bakhmutov
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anna A Gasparyan
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Elena V Khitrina
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| | - Marina S Kolesnikova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anna A Shishova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anatoly P Gmyl
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Vadim I Agol
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| |
Collapse
|
21
|
Riemersma KK, Steiner C, Singapuri A, Coffey LL. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. J Virol 2019; 93:e01606-18. [PMID: 30429348 PMCID: PMC6340026 DOI: 10.1128/jvi.01606-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.
Collapse
Affiliation(s)
- Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cody Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
22
|
Liu W, Shi X, Gong P. A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase. Nucleic Acids Res 2018; 46:10840-10854. [PMID: 30239956 PMCID: PMC6237809 DOI: 10.1093/nar/gky848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Typically not assisted by proofreading, the RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses may need to independently control its fidelity to fulfill virus viability and fitness. However, the precise mechanism by which the RdRP maintains its optimal fidelity level remains largely elusive. By solving 2.1-2.5 Å resolution crystal structures of the classical swine fever virus (CSFV) NS5B, an RdRP with a unique naturally fused N-terminal domain (NTD), we identified high-resolution intra-molecular interactions between the NTD and the RdRP palm domain. In order to dissect possible regulatory functions of NTD, we designed mutations at residues Y471 and E472 to perturb key interactions at the NTD-RdRP interface. When crystallized, some of these NS5B interface mutants maintained the interface, while the others adopted an 'open' conformation that no longer retained the intra-molecular interactions. Data from multiple in vitro RdRP assays indicated that the perturbation of the NTD-RdRP interactions clearly reduced the fidelity level of the RNA synthesis, while the processivity of the NS5B elongation complex was not affected. Collectively, our work demonstrates an explicit and unique mode of polymerase fidelity modulation and provides a vivid example of co-evolution in multi-domain enzymes.
Collapse
Affiliation(s)
- Weichi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,To whom correspondence should be addressed. Tel: +86 27 87197578;
| |
Collapse
|
23
|
RNA Virus Fidelity Mutants: A Useful Tool for Evolutionary Biology or a Complex Challenge? Viruses 2018; 10:v10110600. [PMID: 30388745 PMCID: PMC6267201 DOI: 10.3390/v10110600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
RNA viruses replicate with low fidelity due to the error-prone nature of the RNA-dependent RNA polymerase, which generates approximately one mutation per round of genome replication. Due to the large population sizes produced by RNA viruses during replication, this results in a cloud of closely related virus variants during host infection, of which small increases or decreases in replication fidelity have been shown to result in virus attenuation in vivo, but not typically in vitro. Since the discovery of the first RNA virus fidelity mutants during the mid-aughts, the field has exploded with the identification of over 50 virus fidelity mutants distributed amongst 7 RNA virus families. This review summarizes the current RNA virus fidelity mutant literature, with a focus upon the definition of a fidelity mutant as well as methods to confirm any mutational changes associated with the fidelity mutant. Due to the complexity of such a definition, in addition to reports of unstable virus fidelity phenotypes, the future translational utility of these mutants and applications for basic science are examined.
Collapse
|
24
|
Lukashev AN, Vakulenko YA, Turbabina NA, Deviatkin AA, Drexler JF. Molecular epidemiology and phylogenetics of human enteroviruses: Is there a forest behind the trees? Rev Med Virol 2018; 28:e2002. [PMID: 30069956 DOI: 10.1002/rmv.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 11/05/2022]
Abstract
Enteroviruses are among the best studied small non-enveloped enteric RNA viruses. Most enteroviruses are easy to isolate in cell culture, and many non-polio enterovirus strains were archived worldwide as a byproduct of the WHO poliovirus surveillance system. Common outbreaks and epidemics, most prominently the epidemic of hand-foot-and-mouth disease with severe neurological complications in East and South-East Asia, justify practical interest of non-polio enteroviruses. As a result, there are over 50 000 enterovirus nucleotide sequences available in GenBank. Technical possibilities have been also improving, as Bayesian phylogenetic methods with an integrated molecular clock were introduced a decade ago and provided unprecedented opportunities for phylogenetic analysis. As a result, hundreds of papers were published on the molecular epidemiology of enteroviruses. This review covers the modern methodology, structure, and biases of the sequence dataset available in GenBank. The relevance of the subtype classification, findings of co-circulation of multiple genetic variants, previously unappreciated complexity of viral populations, and global evolutionary patterns are addressed. The most relevant conclusions and prospects for further studies on outbreak emergence mechanisms are discussed.
Collapse
Affiliation(s)
- Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, Moscow, Russia
| | - Yulia A Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Virology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Turbabina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| |
Collapse
|
25
|
Dolan PT, Whitfield ZJ, Andino R. Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annu Rev Virol 2018; 5:69-92. [PMID: 30048219 DOI: 10.1146/annurev-virology-101416-041718] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA viruses are unique in their evolutionary capacity, exhibiting high mutation rates and frequent recombination. They rapidly adapt to environmental changes, such as shifts in immune pressure or pharmacological challenge. The evolution of RNA viruses has been brought into new focus with the recent developments of genetic and experimental tools to explore and manipulate the evolutionary dynamics of viral populations. These studies have uncovered new mechanisms that enable viruses to overcome evolutionary challenges in the environment and have emphasized the intimate relationship of viral populations with evolution. Here, we review some of the emerging viral and host mechanisms that underlie the evolution of RNA viruses. We also discuss new studies that demonstrate that the relationship between evolutionary dynamics and virus biology spans many spatial and temporal scales, affecting transmission dynamics within and between hosts as well as pathogenesis.
Collapse
Affiliation(s)
- Patrick T Dolan
- Department of Biology, Stanford University, Stanford, California 94305, USA.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
26
|
Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics. Virol Sin 2018; 32:548-552. [PMID: 29164396 DOI: 10.1007/s12250-017-4066-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. Unlike other classes of single-subunit polymerases, viral RdRPs have evolved a unique conformational change in their palm domain to close the active site during catalysis. The hallmark of this conformational change is the backbone shift of the polymerase motif A from an "open" state to a "closed" state, allowing two universally conserved aspartic acid residues to orient toward each other for divalent metal binding and catalysis. The "closed" motif A conformation was only observed upon the binding of correct NTP in RdRP catalytic complexes or under rare conditions such as induced by a bound lutetium ion or a bound glutamate molecule. By solving the crystal structure of the catalytic elongation complex of the coxsackievirus RdRP, we in this work observed for the first time the "closed" motif A conformation in the absence of an NTP substrate or other conformational-change-inducing factors. This observation emphasizes the intrinsic dynamic features of viral RdRP motif A, and solidifies the structural basis for how this important structural element participates in catalytic events of the RdRPs.
Collapse
|
27
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|
28
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
29
|
Kautz TF, Guerbois M, Khanipov K, Patterson EI, Langsjoen RM, Yun R, Warmbrod KL, Fofanov Y, Weaver SC, Forrester NL. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol 2018; 4:vey004. [PMID: 29593882 PMCID: PMC5841381 DOI: 10.1093/ve/vey004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mathilde Guerbois
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rose M Langsjoen
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruimei Yun
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey L Warmbrod
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
30
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
31
|
Selisko B, Papageorgiou N, Ferron F, Canard B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018; 10:v10020059. [PMID: 29385764 PMCID: PMC5850366 DOI: 10.3390/v10020059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5'-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A-G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps.
Collapse
Affiliation(s)
- Barbara Selisko
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Nicolas Papageorgiou
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - François Ferron
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Bruno Canard
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
32
|
Shen H, Deng M, Zhang Y. Effects of mutations on active site conformation and dynamics of RNA-dependent RNA polymerase from Coxsackievirus B3. J Mol Graph Model 2017; 77:330-337. [PMID: 28922636 DOI: 10.1016/j.jmgm.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/01/2022]
Abstract
Recent crystal structures of RNA-dependent RNA polymerase (3Dpol) from Coxsackievirus B3 (CVB3) revealed that a tyrosine mutation at Phe364 (F364Y) resulted in structures with open active site whereas a hydrophobic mutation at Phe364 (F364A) led to conformations with closed active site. Besides, the crystal structures showed that the F364W mutation had no preference between the open and closed active sites, similar to wild-type. In this paper, we present a molecular dynamics (MD) study on CVB3 3Dpol in order to address some important questions raised by experiments. First, MD simulations of F364Y and F364A were carried out to explore how these mutations at Phe364 influence active site dynamics and conformations. Second, MD simulations of wild-type and mutants were performed to discover the connection between active site dynamics and polymerase function. MD simulations reveal that the effect of mutations on active site dynamics is associated with the interaction between the structural motifs A and D in CVB3 3Dpol. Interestingly, we discover that the active site state is influenced by the formation of a hydrogen bond between backbone atoms of Ala231 (in motif A) and Ala358 (in motif D), which has never been revealed before.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China.
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China.
| | - Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China
| |
Collapse
|
33
|
Rai DK, Diaz-San Segundo F, Campagnola G, Keith A, Schafer EA, Kloc A, de Los Santos T, Peersen O, Rieder E. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity. J Virol 2017; 91:e00081-17. [PMID: 28515297 PMCID: PMC5651715 DOI: 10.1128/jvi.00081-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches.
Collapse
Affiliation(s)
- Devendra K Rai
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- University of Connecticut, Storrs, Connecticut, USA
| | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- University of Connecticut, Storrs, Connecticut, USA
| | - Grace Campagnola
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anna Keith
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Schafer
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| | - Anna Kloc
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, Tennessee, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| |
Collapse
|
34
|
Revealing enterovirus infection in chronic human disorders: An integrated diagnostic approach. Sci Rep 2017; 7:5013. [PMID: 28694527 PMCID: PMC5504018 DOI: 10.1038/s41598-017-04993-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/09/2017] [Indexed: 01/10/2023] Open
Abstract
Enteroviruses (EVs) causing persisting infection are characterized by minimal replication and genetic changes. Typing of these agents may complement disease assessment and shed light on pathogenesis. Here we report an integrated approach for EV detection in human samples that is based on pre-enrichment of virus in cell culture before search for the viral genome and viral antigens. Cases of post-polio syndrome, type 1 diabetes, and chronic cardiomyopathy were investigated. As tissue-based approaches require invasive procedures, information was mainly gleaned from virus in blood. Molecular assays targeting conserved genome regions of all EV types (5'UTR, 2 C, 3Dpol) were employed. As compared to direct assays of plasma or leukocytes, the EV detection rate was significantly enhanced by co-culture of leukocytes with cell lines prior to molecular and immunologic tests. Results of RT-PCR and sequencing were confirmed by staining cell cultures with a panel of EV-specific antibodies. Sequence and phylogenetic analysis showed that EVs of the C species (polioviruses) were associated with the post-polio syndrome, while members of the B species were found in type 1 diabetes and cardiomyopathy. The procedure may be used for investigating the possible association of different EVs with a variety of chronic neurologic, endocrine, and cardiac disorders.
Collapse
|
35
|
Moratorio G, Henningsson R, Barbezange C, Carrau L, Bordería AV, Blanc H, Beaucourt S, Poirier EZ, Vallet T, Boussier J, Mounce BC, Fontes M, Vignuzzi M. Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat Microbiol 2017; 2:17088. [PMID: 28581455 PMCID: PMC7098180 DOI: 10.1038/nmicrobiol.2017.88] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Abstract
RNA viruses pose serious threats to human health. Their success relies on their capacity to generate genetic variability and, consequently, on their adaptive potential. We describe a strategy to attenuate RNA viruses by altering their evolutionary potential. We rationally altered the genomes of Coxsackie B3 and influenza A viruses to redirect their evolutionary trajectories towards detrimental regions in sequence space. Specifically, viral genomes were engineered to harbour more serine and leucine codons with nonsense mutation targets: codons that could generate Stop mutations after a single nucleotide substitution. Indeed, these viruses generated more Stop mutations both in vitro and in vivo, accompanied by significant losses in viral fitness. In vivo, the viruses were attenuated, generated high levels of neutralizing antibodies and protected against lethal challenge. Our study demonstrates that cornering viruses in ‘risky’ areas of sequence space may be implemented as a broad-spectrum vaccine strategy against RNA viruses. Virus attenuation is used to obtain vaccine strains. Here, the rapid evolution of RNA viruses is exploited by engineering their genomes to encode sites that are a mutation away from a stop codon, a clever method to generate attenuated viruses.
Collapse
Affiliation(s)
- Gonzalo Moratorio
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Rasmus Henningsson
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
| | - Cyril Barbezange
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Lucia Carrau
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Sorbonne Paris Cité, Université Paris Diderot, Cellule Pasteur, 75013 Paris, France
| | - Antonio V Bordería
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Stephanie Beaucourt
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Enzo Z Poirier
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Sorbonne Paris Cité, Université Paris Diderot, Cellule Pasteur, 75013 Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jeremy Boussier
- International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, Inserm 1223, 25 rue du Dr. Roux, 75724 Paris cedex 15, Paris, France.,Ecole doctorale Frontières du vivant, Université Paris Diderot, 75013 Paris, France
| | - Bryan C Mounce
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Magnus Fontes
- International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
36
|
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 2017; 234:4-20. [PMID: 28163093 PMCID: PMC5476519 DOI: 10.1016/j.virusres.2017.01.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.
Collapse
Affiliation(s)
- Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
37
|
Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain. J Virol 2017; 91:JVI.01073-16. [PMID: 28053101 DOI: 10.1128/jvi.01073-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/24/2016] [Indexed: 12/20/2022] Open
Abstract
Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production.IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate, vaccines must be updated to ensure a good match of the HA and NA antigens between the vaccine and the circulating strain. Here, we generated a genetically stable master virus of the A/Puerto Rico/8/1934 (H1N1) backbone encoding an engineered high-fidelity viral polymerase. Importantly, following the application of the high-fidelity PR8 backbone, no mutation resulting in antigenic change was introduced into the HA gene during propagation of the A(H1N1)pdm09 candidate vaccine virus. The low error rate of the present vaccine virus should decrease the risk of generating mutant viruses with increased virulence. Therefore, our findings are expected to be useful for the development of prepandemic vaccines and live attenuated vaccines with higher safety than that of the present candidate vaccines.
Collapse
|
38
|
Yang X, Liu X, Musser DM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases. J Biol Chem 2017; 292:3810-3826. [PMID: 28100782 DOI: 10.1074/jbc.m116.750638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
The nucleotide incorporation fidelity of the viral RNA-dependent RNA polymerase (RdRp) is important for maintaining functional genetic information but, at the same time, is also important for generating sufficient genetic diversity to escape the bottlenecks of the host's antiviral response. We have previously shown that the structural dynamics of the motif D loop are closely related to nucleotide discrimination. Previous studies have also suggested that there is a reorientation of the triphosphate of the incoming nucleotide, which is essential before nucleophilic attack from the primer RNA 3'-hydroxyl. Here, we have used 31P NMR with poliovirus RdRp to show that the binding environment of the triphosphate is different when correct versus incorrect nucleotide binds. We also show that amino acid substitutions at residues known to interact with the triphosphate can alter the binding orientation/environment of the nucleotide, sometimes lead to protein conformational changes, and lead to substantial changes in RdRp fidelity. The analyses of other fidelity variants also show that changes in the triphosphate binding environment are not always accompanied by changes in the structural dynamics of the motif D loop or other regions known to be important for RdRp fidelity, including motif B. Altogether, our studies suggest that the conformational changes in motifs B and D, and the nucleoside triphosphate reorientation represent separable, "tunable" fidelity checkpoints.
Collapse
Affiliation(s)
| | | | | | - Ibrahim M Moustafa
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamie J Arnold
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
39
|
Abstract
The RNA-dependent RNA polymerases from positive-strand RNA viruses, such as picornaviruses and flaviviruses, close their active sites for catalysis via a unique NTP-induced conformational change in the palm domain. Combined with a fully prepositioned templating nucleotide, this mechanism is error-prone and results in a distribution of random mutations in the viral progeny often described as a quasi-species. Here we examine the extent to which noncognate NTPs competitively inhibit single-cycle elongation by coxsackievirus B3 3D(pol), a polymerase that generates three to four mutations per 10 kb of RNA synthesized during viral infection. Using an RNA with a templating guanosine combined with 2-aminopurine fluorescence as a reporter for elongation, we find that the cognate CTP has a Km of 24 μM and the three noncognate nucleotides competitively inhibit the reaction with Kic values of 500 μM for GTP, 1300 μM for ATP, and 3000 μM for UTP. Unexpectedly, ATP also acted as an uncompetitive inhibitor with a Kiu of 1800 μM, resulting in allosteric modulation of 3D(pol) that slowed the polymerase elongation rate ≈4-fold. ATP uncompetitive inhibition required the β- and γ-phosphates, and its extent was significantly diminished in two previously characterized low-fidelity polymerases. This led to further mutational analysis and the identification of a putative allosteric binding site below the NTP entry channel at the interface of conserved motifs A and D, although cocrystallization failed to reveal any density for bound ATP in this pocket. The potential role of an ATP allosteric effect during the virus life cycle is discussed.
Collapse
Affiliation(s)
- Jonathan P. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|