1
|
Harirah HAA, Mohammed MH, Basha SAZ, Uthirapathy S, Ganesan S, Shankhyan A, Sharma GC, Devi A, Kadhim AJ, S NH. Targeting EZH2 in autoimmune diseases: unraveling epigenetic regulation and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04127-6. [PMID: 40198399 DOI: 10.1007/s00210-025-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Approximately 8-10% of the global population is affected by autoimmune diseases (ADs), which encompass a wide array of idiopathic conditions resulting from dysregulated immune responses. The enzymatic component of the polycomb-repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2, also referred to as KMT6), functions as a methyltransferase possessing a SET domain that plays crucial roles in epigenetic regulation, explicitly facilitating the methylation of histone H3 at lysine 27. Notably, EZH2 is catalytically inactive and requires association with EED and SUZ12 to form an active PRC2 complex. Hyperactivation of EZH2 has been implicated in various malignancies, prompting the development of EZH2 inhibitors as therapeutic agents for several cancers, including lymphoma, prostate, breast, and colon cancer. The application of EZH2-targeting therapies has also been explored in the context of autoimmune diseases. While there have been advancements in certain ADs, responses can vary significantly, as evidenced by mixed outcomes in cases such as inflammatory bowel disease. Consequently, the dual role of EZH2 and the therapeutic potential of its inhibitors in the treatment of ADs remain nascent fields of study. This review will elucidate the interplay between EZH2 and autoimmune diseases, highlighting emerging insights and therapeutic avenues.
Collapse
Affiliation(s)
- Hashem Ahmed Abu Harirah
- Medical Laboratory Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Sami Ahmed Zaher Basha
- Physical Therapy Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
- Department of Cardiovascular Pulmonary and Geriatrics, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Naher H S
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Cao B, Zhao X, Lu Z, Zhang H. Accelerated biological aging and risk of inflammatory bowel disease: A prospective study from 401,013 participants. J Nutr Health Aging 2025; 29:100505. [PMID: 39952016 DOI: 10.1016/j.jnha.2025.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES Relationship between biological aging and inflammatory bowel disease (IBD) remains unclear. We aimed to explore the associations of biological age and genetic predisposition with IBD and the predictive ability. METHODS Biological age and genetic predisposition were measured by PhenoAge and the polygenic risk score (PRS), respectively. The hazard ratio (HR) and 95% confidence interval (CI) of PhenoAge and combined PRS for Crohn's disease (CD) and ulcerative colitis (UC) were evaluated by Cox proportional hazards models. Additive interactions were examined to evaluate the joint effect. C statistic was employed to assess the predictive ability. RESULTS During the follow-up period of 5,320,311 person-years of 401,013 participants, 2467 patients with UC and 1262 patients with CD were observed. PhenoAge showed a significant association with an increased risk of incident IBD. Each standard deviation of PhenoAge acceleration correlated with a 38% (95% CI: 34%-41%), 35% (95% CI: 30%-38%), and 46% (95% CI: 41%-51%) increased risk of IBD, UC, and CD, respectively. Joint effects and additive interactions were noted between PhenoAge and the PRS. Individuals with a high PRS and the highest PhenoAge acceleration had the highest risk for UC (HR: 9.16, 95% CI: 7.08-11.85) and CD (7.72, 6.05-9.86), respectively. Incorporating PhenoAge and the PRS could enhance the accuracy of predicting IBD, with a highest C statistic of 0.71 for UC and 0.72 for CD. CONCLUSION Accelerated biological aging is associated with an increased risk of IBD, particularly in individuals with high genetic predisposition. Identifying individuals with accelerated biological aging has significant implications for reducing IBD risk.
Collapse
Affiliation(s)
- Baolong Cao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China
| | - Zhixi Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongmei Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China.
| |
Collapse
|
3
|
Chiarolla CM, Schulz AR, Meir M, Ferrara S, Xiao Y, Reu-Hofer S, Romero-Olmedo AJ, Falcone V, Hoffmann K, Büttner-Herold M, Prelog M, Rosenwald A, Hengel H, Lohoff M, Chang HD, Schlegel N, Mei HE, Berberich-Siebelt F. Pro-inflammatory NK-like T cells are expanded in the blood and inflamed intestine in Crohn's disease. Mucosal Immunol 2025; 18:162-175. [PMID: 39521274 DOI: 10.1016/j.mucimm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Altered intestinal immune homeostasis leads to chronic inflammation in Crohn's disease (CD). To address disease- and tissue-specific alterations, we performed a T cell-centric mass cytometry analysis of peripheral and intestinal lymphocytes from patients with CD and healthy donors' PBMCs. Chronic intestinal inflammation enforced activation, exhaustion, and terminal differentiation of CD4+ and CD8+ T cells and a relative enrichment of CD4+ regulatory T (Treg) cells. Moreover, enigmatic rare Treg subsets appeared upon inflammation, e.g. CD4+FOXP3+HLA-DR+TIGIT- and CD4+FOXP3+CD56+, expressing pro-inflammatory IFN-γ upon in vitro stimulation. Some conventional T (Tcon) cells acquired NK-like features. In CD patients' blood, not well studied CD16+CCR6+CD127+ T cells appeared, being CD4+ or CD8+, a phenotype inducible on healthy T cells by CD blood plasma. Upon CD16-mediated antibody binding, they could attain effector function. These findings suggest an uncommon pro-inflammatory innate-like differentiation of Treg and Tcon cells with acquisition of non-specific cytotoxicity. Most likely, this is both cause and consequence of intestinal inflammation during CD.
Collapse
Affiliation(s)
- Cristina M Chiarolla
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Michael Meir
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Ferrara
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Addi J Romero-Olmedo
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Katja Hoffmann
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, 10117 Berlin, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | | |
Collapse
|
4
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Hyperactivating EZH2 to augment H3K27me3 levels in regulatory T cells enhances immune suppression by driving early effector differentiation. Cell Rep 2024; 43:114724. [PMID: 39264807 DOI: 10.1016/j.celrep.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.
Collapse
Affiliation(s)
- Janneke G C Peeters
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Silveria
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Merve Ozdemir
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Bamidele AO, Mishra SK, Piovezani Ramos G, Hirsova P, Klatt EE, Abdelrahman LM, Sagstetter MR, Davidson HM, Fehrenbach PJ, Valenzuela-Pérez L, Kim Lee HS, Zhang S, Aguirre Lopez A, Kurdi AT, Westphal MS, Gonzalez MM, Gaballa JM, Kosinsky RL, Lee HE, Smyrk TC, Bantug G, Gades NM, Faubion WA. Interleukin 21 Drives a Hypermetabolic State and CD4 + T-Cell-Associated Pathogenicity in Chronic Intestinal Inflammation. Gastroenterology 2024; 166:826-841.e19. [PMID: 38266738 PMCID: PMC11034723 DOI: 10.1053/j.gastro.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 β pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Emily E Klatt
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Leena M Abdelrahman
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Heidi M Davidson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Abner Aguirre Lopez
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed T Kurdi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria S Westphal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph M Gaballa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hee Eun Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Glenn Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
7
|
Li T, Han B, Wang L, Sun L, Cai Y, Yu M, Xiao W, Yang H. Activation of mucosal insulin receptor exacerbates intestinal inflammation by promoting tissue resident memory T cells differentiation through EZH2. J Transl Med 2024; 22:78. [PMID: 38243324 PMCID: PMC10797971 DOI: 10.1186/s12967-023-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/09/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD), an autoimmune disease characterised by abnormal intestinal immunity, are related to vital morbidity around the world. However, therapeutic agents for IBD have not achieved desired benefit. Exploring new therapeutic targets for IBD, especially based on its abnormally intestinal immunity, could alleviate the flare-up and worsening of IBD. Tissue resident memory T cells (TRM) are core of multiple autoimmune diseases, including IBD. However, the mechanism of TRM differentiation remains to be investigated. METHODS The alterations in mRNA and lncRNA profile of intestinal intraepithelial lymphocytes (IELs), the largest component of intestinal TRM, were analyzed in DSS-induced chronic colitis. Based on it, we examined the function of rectal insulin instillation in a dextran sodium sulfate (DSS) induced chronic colitis. Furthermore, we investigated the downstream-target of the insulin pathway-EZH2 and the crucial role of EZH2 in intestinal tissue resident memory T cell differentiation by utilizing EZH2fl/flCD4cre mice. RESULTS Insulin receptor (INSR) expression was found to be significantly reduced. Activation of mucosal insulin pathway by rectal insulin instillation exacerbated colitis by disrupting IELs subgroups and up-regulating TNF-ɑ and IL-17 expression. Rectal insulin instillation promoted EZH2 expression and EZH2 inhibition alleviated chronic colitis. EZH2fl/flCD4cre mice restored the normal IEL subgroups and suppressed TNF-ɑ and IL-17 expression, exhibiting alleviated colitis. IELs from EZH2fl/flCD4cre mice exhibit significant changes in TRM related phenotype. CD4+TRM was significantly increased in chronic colitis and decreased in EZH2fl/flCD4cre mice. CONCLUSION Insulin receptor of intestinal mucosal T-cells could promote intestinal TRM differentiation via EZH2. Our discoveries suggest that therapies targeting colonic INSR and EZH2 could be potential treatment for IBD based on its regulatory effects on TRM. Insulin receptor inhibitors rather than insulin should be applied during colitis-active phase. In addition, EZH2 shows to be a downstream signal of the insulin pathway and EZH2 inhibitor could alleviating intestinal inflammation. However, the critical role of EZH2 in TRM differentiation restricts the anti-tumor effects of EZH2 inhibitor in vivo.
Collapse
Affiliation(s)
- Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Department of General Surgery, Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Ben Han
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Min Yu
- Department of General Surgery, Chongqing General Hospital, Chongqing, 401147, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Department of General Surgery, Chongqing General Hospital, Chongqing, 401147, China.
| |
Collapse
|
8
|
Ye S, Lyu Y, Chen L, Wang Y, He Y, Li Q, Tian L, Liu F, Wang X, Ai F. Construction of a molecular inflammatory predictive model with histone modification-related genes and identification of CAMK2D as a potential response signature to infliximab in ulcerative colitis. Front Immunol 2024; 14:1282136. [PMID: 38274809 PMCID: PMC10808628 DOI: 10.3389/fimmu.2023.1282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Ulcerative colitis (UC) is a lifelong inflammatory disease affecting the rectum and colon with numerous treatment options that require an individualized treatment plan. Histone modifications regulate chromosome structure and gene expression, resulting in effects on inflammatory and immune responses. However, the relationship between histone modification-related genes and UC remains unclear. Methods Transcriptomic data from GSE59071 and GSE66407 were obtained from the Gene Expression Omnibus (GEO), encompassing colonic biopsy expression profiles of UC patients in inflamed and non-inflamed status. Differentially expressed gene (DEG) analyses, functional enrichment analyses, weighted gene co-expression network analysis (WGCNA), and random forest were performed to identify histone modification-related core genes associated with UC inflammation. Features were screened through the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), establishing a molecular inflammatory predictive model using logistic regression. The model was validated in the GSE107499 dataset, and the performance of the features was assessed using receiver operating characteristic (ROC) and calibration curves. Immunohistochemistry (IHC) staining of colonic biopsy tissues from UC patients treated with infliximab was used to further confirm the clinical application value. Univariate logistic regression on GSE14580 highlighted features linked to infliximab response. Results A total of 253 histone modification-related DEGs were identified between inflammatory and non-inflammatory patients with UC. Seven key genes (IL-1β, MSL3, HDAC7, IRF4, CAMK2D, AUTS2, and PADI2) were selected using WGCNA and random forest. Through univariate logistic regression, three core genes (CAMK2D, AUTS2, and IL-1β) were further incorporated to construct the molecular inflammatory predictive model. The area under the curve (AUC) of the model was 0.943 in the independent validation dataset. A significant association between CAMK2D protein expression and infliximab response was observed, which was validated in another independent verification set of GSE14580 from the GEO database. Conclusion The molecular inflammatory predictive model based on CAMK2D, AUTS2, and IL-1β could reliably distinguish the mucosal inflammatory status of UC patients. We further revealed that CAMK2D was a predictive marker of infliximab response. These findings are expected to provide a new evidence base for personalized treatment and management strategies for UC patients.
Collapse
Affiliation(s)
- Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Quansi Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Sun Z, Braga-Neto MB, Xiong Y, Bhagwate AV, Gibbons HR, Sagstetter MR, Hamdan FH, Baheti S, Friton J, Nair A, Ye Z, Faubion WA. Hypomethylation and Overexpression of Th17-Associated Genes is a Hallmark of Intestinal CD4+ Lymphocytes in Crohn's Disease. J Crohns Colitis 2023; 17:1847-1857. [PMID: 37280154 PMCID: PMC10673812 DOI: 10.1093/ecco-jcc/jjad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The development of Crohn's disease [CD] involves immune cell signalling pathways regulated by epigenetic modifications. Aberrant DNA methylation has been identified in peripheral blood and bulk intestinal tissue from CD patients. However, the DNA methylome of disease-associated intestinal CD4+ lymphocytes has not been evaluated. MATERIALS AND METHODS Genome-wide DNA methylation sequencing was performed from terminal ileum CD4+ cells from 21 CD patients and 12 age- and sex-matched controls. Data were analysed for differentially methylated CpGs [DMCs] and methylated regions [DMRs]. Integration was performed with RNA-sequencing data to evaluate the functional impact of DNA methylation changes on gene expression. DMRs were overlapped with regions of differentially open chromatin [by ATAC-seq] and CCCTC-binding factor [CTCF] binding sites [by ChIP-seq] between peripherally derived Th17 and Treg cells. RESULTS CD4+ cells in CD patients had significantly increased DNA methylation compared to those from the controls. A total of 119 051 DMCs and 8113 DMRs were detected. While hypermethylated genes were mostly related to cell metabolism and homeostasis, hypomethylated genes were significantly enriched within the Th17 signalling pathway. The differentially enriched ATAC regions in Th17 cells [compared to Tregs] were hypomethylated in CD patients, suggesting heightened Th17 activity. There was significant overlap between hypomethylated DNA regions and CTCF-associated binding sites. CONCLUSIONS The methylome of CD patients shows an overall dominant hypermethylation yet hypomethylation is more concentrated in proinflammatory pathways, including Th17 differentiation. Hypomethylation of Th17-related genes associated with areas of open chromatin and CTCF binding sites constitutes a hallmark of CD-associated intestinal CD4+ cells.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Manuel B Braga-Neto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuning Xiong
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adytia V Bhagwate
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hunter R Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Baheti
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica Friton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha Nair
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, UT Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Medina TS, Murison A, Smith M, Kinker GS, Chakravarthy A, Vitiello GAF, Turpin W, Shen SY, Yau HL, Sarmento OF, Faubion W, Lupien M, Silverberg MS, Arrowsmith CH, De Carvalho DD. The chromatin and single-cell transcriptional landscapes of CD4 T cells in inflammatory bowel disease link risk loci with a proinflammatory Th17 cell population. Front Immunol 2023; 14:1161901. [PMID: 37600767 PMCID: PMC10436103 DOI: 10.3389/fimmu.2023.1161901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The imbalance between Th17 and regulatory T cells in inflammatory bowel diseases (IBD) promotes intestinal epithelial cell damage. In this scenario, T helper cell lineage commitment is accompanied by dynamic changes to the chromatin that facilitate or repress gene expression. Methods Here, we characterized the chromatin landscape and heterogeneity of intestinal and peripheral CD4 T cellsfrom IBD patients using in house ATAC-Seq and single cell RNA-Seq libraries. Results We show that chromatin accessibility profiles of CD4 T cells from inflamed intestinal biopsies relate to genes associated with a network of inflammatory processes. After integrating the chromatin profiles of tissue-derived CD4 T cells and in-vitro polarized CD4 T cell subpopulations, we found that the chromatin accessibility changes of CD4 T cells were associated with a higher predominance of pathogenic Th17 cells (pTh17 cells) in inflamed biopsies. In addition, IBD risk loci in CD4 T cells were colocalized with accessible chromatin changes near pTh17-related genes, as shown in intronic STAT3 and IL23R regions enriched in areas of active intestinal inflammation. Moreover, single cell RNA-Seq analysis revealed a population of pTh17 cells that co-expresses Th1 and cytotoxic transcriptional programs associated with IBD severity. Discussion Altogether, we show that cytotoxic pTh17 cells were specifically associated with IBD genetic variants and linked to intestinal inflammation of IBD patients.
Collapse
Affiliation(s)
- Tiago S. Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Smith
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Gabriela S. Kinker
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Williams Turpin
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Helen L. Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olga F. Sarmento
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - William Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mark S. Silverberg
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Bamidele AO, Mishra SK, Hirsova P, Fehrenbach PJ, Valenzuela-Pérez L, Lee HSK. Interleukin-21 Drives a Hypermetabolic State and CD4 + T Cell-associated Pathogenicity in Chronic Intestinal Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543518. [PMID: 37333332 PMCID: PMC10274654 DOI: 10.1101/2023.06.02.543518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease (IBD); however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing Seahorse XF analyzer. We utilized Crohn's disease single-cell RNA sequencing dataset to infer therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically-modified Tregs in CD4+ T cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum (ER) appositions, known to mediate pyruvate entry into mitochondria via VDAC1, are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate (MePyr) supplementation. Notably, IL-21 diminished mitochondria-ER appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β (GSK3β), a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. MePyr and GSK3β pharmacologic inhibitor (LY2090314) reversed IL-21-induced metabolic rewiring and inflammatory state. Moreover, IL-21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL-21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL-21-induced metabolism in Tregs may mitigate CD4+ T cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lucia Valenzuela-Pérez
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Gu D, Cao T, Yi S, Liu Y, Fan C. CCCTC-Binding Factor Mediates the Transcription of Insulin-Like Growth Factor Binding Protein 5 Through EZH2 in Ulcerative Colitis. Dig Dis Sci 2023; 68:778-790. [PMID: 35705732 DOI: 10.1007/s10620-022-07566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/11/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) features chronic, non-infectious inflammation of the colon. Insulin-like growth factor binding protein 5 (IGFBP5) has been indicated to be related to various inflammation-related diseases. However, its association with UC remains largely unclear. AIMS Here, we investigate the role of IGFBP5 in colonic mucosal epithelial cell injury in UC. METHODS Differentially expressed genes in the colonic tissues of UC mice were screened using the Gene Expression Omnibus database, and IGFBP5 was identified. UC mice were developed using dextran sulfate sodium, and IGFBP5 expression in the colonic tissues of UC mice was confirmed by immunohistochemistry and RT-qPCR. The effects of IGFBP5 in vivo and in vitro were investigated by intraperitoneal injection of adeno-associated virus into UC mice or by transfection with an IGFBP5 overexpression plasmid into lipopolysaccharide-treated colonic mucosal epithelial cells. The mechanisms causing IGFBP5 deletion in UC were predicted by bioinformatics analysis and ChIP-qPCR and verified by rescue experiments. RESULTS IGFBP5 was reduced in UC. IGFBP5 impaired the NFκB pathway in the colonic tissue of UC mice and ameliorated inflammatory infiltration and colonic mucosal cell injury. IGFBP5 depletion was associated with H3K27me3 modification, which was induced by EZH2. CTCF was responsible for recruiting EZH2 to the promoter region of IGFBP5. CTCF inhibition repressed UC progression by reducing H3K27me3 modification via the discouragement of the enrichment of EZH2 in the IGFBP5 promoter. CONCLUSIONS CTCF modulates H3K27me3 modification of the IGFBP5 promoter by recruiting EZH2, thereby downregulating IGFBP5 to accentuate colonic mucosal epithelial cell injury in UC mice.
Collapse
Affiliation(s)
- Dan Gu
- Department of Gastroenterology, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ting Cao
- Department of Gastroenterology, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shijie Yi
- Department of Gastrointestinal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya Liu
- Department of Anorectal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, People's Republic of China
| | - Chao Fan
- Department of Anorectal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Immunoepigenetic Regulation of Inflammatory Bowel Disease: Current Insights into Novel Epigenetic Modulations of the Systemic Immune Response. Genes (Basel) 2023; 14:genes14030554. [PMID: 36980826 PMCID: PMC10047925 DOI: 10.3390/genes14030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The immune system and environmental factors are involved in various diseases, such as inflammatory bowel disease (IBD), through their effect on genetics, which modulates immune cells. IBD encompasses two main phenotypes, Crohn’s disease, and ulcerative colitis, which are manifested as chronic and systemic relapse-remitting gastrointestinal tract disorders with rising global incidence and prevalence. The pathophysiology of IBD is complex and not fully understood. Epigenetic research has resulted in valuable information for unraveling the etiology of this immune-mediated disease. Thus, the main objective of the present review is to summarize the current findings on the role of epigenetic mechanisms in IBD to shed light on their potential clinical relevance. This review focuses on the latest evidence regarding peripheral blood mononuclear cells and epigenetic changes in histone modification, DNA methylation, and telomere shortening in IBD. The various identified epigenetic DNA profiles with clinical value in IBD could be used as biomarkers for more accurately predicting disease development, treatment response, and therapy-related adverse events. Ultimately, the information presented here could be of potential relevance for future clinical practice in developing more efficient and precise medicine to improve the quality of life for patients with IBD.
Collapse
|
14
|
Malviya V, Yshii L, Junius S, Garg AD, Humblet-Baron S, Schlenner SM. Regulatory T-cell stability and functional plasticity in health and disease. Immunol Cell Biol 2023; 101:112-129. [PMID: 36479949 DOI: 10.1111/imcb.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
FOXP3-expressing regulatory T cells (Treg ) are indispensable for immune homeostasis and tolerance, and in addition tissue-resident Treg have been found to perform noncanonical, tissue-specific functions. For optimal tolerogenic function during inflammatory disease, Treg are equipped with mechanisms that assure lineage stability. Treg lineage stability is closely linked to the installation and maintenance of a lineage-specific epigenetic landscape, specifically a Treg -specific DNA demethylation pattern. At the same time, for local and directed immune regulation Treg must possess a level of functional plasticity that requires them to partially acquire T helper cell (TH ) transcriptional programs-then referred to as TH -like Treg . Unleashing TH programs in Treg , however, is not without risk and may threaten the epigenetic stability of Treg with consequently pathogenic ex-Treg contributing to (auto-) inflammatory conditions. Here, we review how the Treg -stabilizing epigenetic landscape is installed and maintained, and further discuss the development, necessity and lineage instability risks of TH 1-, TH 2-, TH 17-like Treg and follicular Treg .
Collapse
Affiliation(s)
- Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Steffie Junius
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Bai L, Dermadi D, Kalesinskas L, Dvorak M, Chang SE, Ganesan A, Rubin SJS, Kuo A, Cheung P, Donato M, Utz PJ, Habtezion A, Khatri P. Mass-cytometry-based quantitation of global histone post-translational modifications at single-cell resolution across peripheral immune cells in IBD. J Crohns Colitis 2022; 17:804-815. [PMID: 36571819 PMCID: PMC10155749 DOI: 10.1093/ecco-jcc/jjac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Current understanding of histone post-translational modifications (histone modifications) across immune cell types in patients with inflammatory bowel disease (IBD) during remission and flare is limited. The study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS We performed a case-control study of 94 subjects (83 IBD patients and 11 healthy controls). IBD patients had either UC (n=38) or CD (n=45) in clinical remission or flare. We used epigenetic profiling by time-of-flight (EpiTOF) to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34 + hematopoietic progenitors, and a subset of CD56 bright NK cells and γδ T cells characterized by distinct histone modifications associated with the gene transcription. The subset of CD56 bright NK cells had increased several histone acetylations. An epigenetically defined subset of NK was associated with higher levels of CRP in peripheral blood. CD14+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, 1265 Welch Road, MSOB X-343, Stanford, CA 94305 USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananthakrishnan Ganesan
- Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite B060, Stanford, CA 94305 USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggie Cheung
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Purvesh Khatri
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Li T. The functions of polycomb group proteins in T cells. CELL INSIGHT 2022; 1:100048. [PMID: 37193554 PMCID: PMC10120301 DOI: 10.1016/j.cellin.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/18/2023]
Abstract
T cells are involved in many aspects of adaptive immunity, including autoimmunity, anti-tumor activity, and responses to allergenic substances and pathogens. T cells undergo comprehensive epigenome remodeling in response to signals. Polycomb group (PcG) proteins are a well-studied complex of chromatin regulators, conserved in animals, and function in various biological processes. PcG proteins are divided into two distinct complexes: PRC1 (Polycomb repressive complex 1) and PRC2. PcG is correlated with the regulation of T cell development, phenotypic transformation, and function. In contrast, PcG dysregulation is correlated with pathogenesis of immune-mediated diseases and compromised anti-tumor responses. This review discusses recent findings on the involvement of PcG proteins in T cell maturation, differentiation, and activation. In addition, we explore implications in the development of the immune system diseases and cancer immunity, which offers promising targets for various treatment protocols.
Collapse
Affiliation(s)
- Ting Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| |
Collapse
|
17
|
Xu WD, Huang Q, Huang AF. Emerging role of EZH2 in rheumatic diseases: A comprehensive review. Int J Rheum Dis 2022; 25:1230-1238. [PMID: 35933601 DOI: 10.1111/1756-185x.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/03/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methylated enzyme. It trimethylates histone 3 lysine 27 (H3K27) to regulate epigenetic processes. Recently, studies showed excessive expression of EZH2 in rheumatic diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, and systemic sclerosis. Moreover, epigenetic modification of EZH2 regulates differentiation and proliferation of different immune cells. Therefore, in this review, we comprehensively discuss the role of EZH2 in rheumatic diseases. Collection of the evidence may provide a basis for further understanding the role of EZH2 and give potential for targeting these diseases.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Melo GA, Calôba C, Brum G, Passos TO, Martinez GJ, Pereira RM. Epigenetic regulation of T cells by Polycomb group proteins. J Leukoc Biol 2022; 111:1253-1267. [DOI: 10.1002/jlb.2ri0122-039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme A. Melo
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carolina Calôba
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gabrielle Brum
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Thaís O. Passos
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology and Infection, Discipline of Microbiology and Immunology Rosalind Franklin University of Medicine and Science Chicago Illinois USA
| | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
19
|
Abstract
The transforming growth factor-β (TGF-β) family includes cytokines controlling cell behavior, differentiation and homeostasis of various tissues including components of the immune system. Despite well recognized importance of TGF-β in controlling T cell functions, the immunomodulatory roles of many other members of the TGF-β cytokine family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone Morphogenic Protein Receptor 1α (BMPR1α) is upregulated by activated effector and Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell types. BMPR1α inhibits generation of proinflammatory Th17 cells and sustains peripheral Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell plasticity and transition between Treg and Th cells. BMPR1α deficiency in in vitro induced and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a (p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1α may represent regulatory modules shaping epigenetic landscape and controlling proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP receptors and their crosstalk with receptors for TGF-β will contribute to our understanding of peripheral immunoregulation.
Collapse
Affiliation(s)
- Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
20
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Kosinsky RL, Zerche M, Kutschat AP, Nair A, Ye Z, Saul D, von Heesen M, Friton JJ, Schwarzer AC, Paglilla N, Sheikh SZ, Wegwitz F, Sun Z, Ghadimi M, Newberry RD, Sartor RB, Faubion WA, Johnsen SA. RNF20 and RNF40 regulate vitamin D receptor-dependent signaling in inflammatory bowel disease. Cell Death Differ 2021; 28:3161-3175. [PMID: 34088983 PMCID: PMC8563960 DOI: 10.1038/s41418-021-00808-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Despite the identification of several genetic factors linked to increased susceptibility to inflammatory bowel disease (IBD), underlying molecular mechanisms remain to be elucidated in detail. The ubiquitin ligases RNF20 and RNF40 mediate the monoubiquitination of histone H2B at lysine 120 (H2Bub1) and were shown to play context-dependent roles in the development of inflammation. Here, we aimed to examine the function of the RNF20/RNF40/H2Bub1 axis in intestinal inflammation in IBD patients and mouse models. For this purpose, intestinal sections from IBD patients were immunohistochemically stained for H2Bub1. Rnf20 or Rnf40 were conditionally deleted in the mouse intestine and mice were monitored for inflammation-associated symptoms. Using mRNA-seq and chromatin immunoprecipitation (ChIP)-seq, we analyzed underlying molecular pathways in primary intestinal epithelial cells (IECs) isolated from these animals and confirmed these findings in IBD resection specimens using ChIP-seq.The majority (80%) of IBD patients displayed a loss of H2Bub1 levels in inflamed areas and the intestine-specific deletion of Rnf20 or Rnf40 resulted in spontaneous colorectal inflammation in mice. Consistently, deletion of Rnf20 or Rnf40 promoted IBD-associated gene expression programs, including deregulation of various IBD risk genes in these animals. Further analysis of murine IECs revealed that H3K4me3 occupancy and transcription of the Vitamin D Receptor (Vdr) gene and VDR target genes is RNF20/40-dependent. Finally, these effects were confirmed in a subgroup of Crohn's disease patients which displayed epigenetic and expression changes in RNF20/40-dependent gene signatures. Our findings reveal that loss of H2B monoubiquitination promotes intestinal inflammation via decreased VDR activity thereby identifying RNF20 and RNF40 as critical regulators of IBD.
Collapse
Affiliation(s)
| | - Maria Zerche
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Maximilian von Heesen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica J Friton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ana Carolina Schwarzer
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Nadia Paglilla
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Rodney D Newberry
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Zhan Y, Zhang Y, Zhang S, Coughlan H, Baldoni PL, Jacquelot N, Cao WHJ, Preston S, Louis C, Rautela J, Pellegrini M, Wicks IP, Alexander WS, Harrison LC, Lew AM, Smyth GK, Nutt SL, Chopin M. Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis. Sci Immunol 2021; 6:eabf7268. [PMID: 34533976 DOI: 10.1126/sciimmunol.abf7268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharma, Shanghai, China
| | - Yuxia Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pedro L Baldoni
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang H J Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Preston
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
23
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
24
|
Gonzalez MM, Bamidele AO, Svingen PA, Sagstetter MR, Smyrk TC, Gaballa JM, Hamdan FH, Kosinsky RL, Gibbons HR, Sun Z, Ye Z, Nair A, Ramos GP, Braga Neto MB, Wixom AQ, Mathison AJ, Johnsen SA, Urrutia R, Faubion WA. BMI1 maintains the Treg epigenomic landscape to prevent inflammatory bowel disease. J Clin Invest 2021; 131:e140755. [PMID: 34128475 DOI: 10.1172/jci140755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
FOXP3+ Tregs are expanded within the inflamed intestine of human Crohn's disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs. Using human Tregs and lamina propria T cells, we inferred PRC1 to regulate Crohn's associated gene networks through assays of chromatin accessibility. Conditional deletion of BMI1 in murine FOXP3+ cells led to systemic inflammation. BMI1-deficient Tregs beared a TH1/TH17-like phenotype as assessed by assays of genome wide transcription, chromatin accessibility and proteomic techniques. Finally, BMI1 mutant FOXP3+ cells did not suppress colitis in the adoptive transfer model of human inflammatory bowel disease. We propose that BMI1 plays an important role in enforcing Treg identity in vitro and in vivo. Loss of Treg identity via genetic or transient BMI1 depletion perturbs the epigenome and converts Tregs into Th1/Th17-like proinflammatory cells, a transition relevant to human Crohn's disease associated CD4+ T cells.
Collapse
Affiliation(s)
- Michelle M Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Phyllis A Svingen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | | | - Joseph M Gaballa
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Feda H Hamdan
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Robyn Laura Kosinsky
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Hunter R Gibbons
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Zhifu Sun
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhenqing Ye
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Department of Genetics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Guilherme P Ramos
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Alexander Q Wixom
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven A Johnsen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine (CIM)
| |
Collapse
|
25
|
Zhou J, Yang Y, Wang YL, Zhao Y, Ye WJ, Deng SY, Lang JY, Lu S. Enhancer of zeste homolog 2 contributes to apoptosis by inactivating janus kinase 2/ signal transducer and activator of transcription signaling in inflammatory bowel disease. World J Gastroenterol 2021; 27:3073-3084. [PMID: 34168409 PMCID: PMC8192283 DOI: 10.3748/wjg.v27.i22.3073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a prevalent worldwide health problem featured by relapsing, chronic gastrointestinal inflammation. Enhancer of zeste homolog 2 (EZH2) is a critical epigenetic regulator in different pathological models, such as cancer and inflammation. However, the role of EZH2 in the IBD development is still obscure.
AIM To explore the effect of EZH2 on IBD progression and the underlying mechanism.
METHODS The IBD mouse model was conducted by adding dextran sodium sulfate (DSS), and the effect of EZH2 on DSS-induced colitis was assessed in the model. The function of EZH2 in regulating apoptosis and permeability was evaluated by Annexin V-FITC Apoptosis Detection Kit, transepithelial electrical resistance analysis, and Western blot analysis of related markers, including Zona occludens 1, claudin-5, and occludin, in NCM460 and fetal human colon (FHC) cells. The mechanical investigation was performed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and chromatin immunoprecipitation assays.
RESULTS The colon length was inhibited in the DSS-treated mice and was enhanced by the EZH2 depletion in the system. DSS treatment caused a decreased histological score in the mice, which was reversed by EZH2 depletion. The inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were induced in the DSS-treated mice, in which the depletion of EZH2 could reverse this effect. Moreover, the tumor necrosis factor-α treatment induced the apoptosis of NCM460 and FHC cells, in which EZH2 depletion could reverse this effect in the cells. Moreover, the depletion of EZH2 attenuated permeability of colonic epithelial cells. Mechanically, the depletion of EZH2 or EZH2 inhibitor GSK343 was able to enhance the expression and the phosphorylation of janus kinase 2 (JK2) and signal transducer and activator of transcription in the NCM460 and FHC cells. Specifically, EZH2 inactivated JAK2 expression by regulating histone H3K27me3. JAK2 inhibitor TG101348 was able to reverse EZH2 knockdown-mediated colonic epithelial cell permeability and apoptosis.
CONCLUSION Thus, we concluded that EZH2 contributed to apoptosis and inflammatory response by inactivating JAK2/ signal transducer and activator of transcription signaling in IBD. EZH2 may be applied as a potential target for IBD therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yang Yang
- Department of Oncology, The Third People's Hospital of Chengdu, Chengdu 255415, Sichuan Province, China
| | - Yi-Ling Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yue Zhao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Wen-Jing Ye
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Si-Yao Deng
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| |
Collapse
|
26
|
Pyziak K, Sroka-Porada A, Rzymski T, Dulak J, Łoboda A. Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation. Drug Dev Res 2021; 82:730-753. [PMID: 33565092 DOI: 10.1002/ddr.21796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.
Collapse
Affiliation(s)
- Karolina Pyziak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Biology R&D, Ryvu Therapeutics S.A., Kraków, Poland
| | | | | | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
29
|
Sawada Y, Gallo RL. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J Invest Dermatol 2020; 141:1157-1166. [PMID: 33256976 DOI: 10.1016/j.jid.2020.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
This review is intended to illuminate the emerging understanding of epigenetic modifications that regulate both adaptive and innate immunity in the skin. Host defense of the epidermis and dermis involves the interplay of many cell types to enable homeostasis; tolerance to the external environment; and appropriate response to transient microbial, chemical, and physical insults. To understand this process, the study of cutaneous immunology has focused on immune responses that reflect both adaptive learned and genetically programmed innate defense systems. However, recent advances have begun to reveal that epigenetic modifications of chromatin structure also have a major influence on the skin immune system. This deeper understanding of how enzymatic changes in chromatin structure can modify the skin immune system and may explain how environmental exposures during life, and the microbiome, lead to both short-term and long-term changes in cutaneous allergic and other inflammatory processes. Understanding the mechanisms responsible for alterations in gene and chromatin structure within skin immunocytes could provide key insights into the pathogenesis of inflammatory skin diseases that have thus far evaded understanding by dermatologists.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
30
|
Nutt SL, Keenan C, Chopin M, Allan RS. EZH2 function in immune cell development. Biol Chem 2020; 401:933-943. [DOI: 10.1515/hsz-2019-0436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
AbstractThe polycomb repressive complex 2 (PRC2) consists of three core components EZH2, SUZ12 and EED. EZH2 catalyzes the methylation of lysine 27 of histone H3, a modification associated with gene silencing. Through gene duplication higher vertebrate genomes also encode a second partially redundant methyltransferase, EZH1. Within the mammalian immune system most research has concentrated on EZH2 which is expressed predominantly in proliferating cells. EZH2 and other PRC2 components are required for hematopoietic stem cell function and lymphocyte development, at least in part by repressing cell cycle inhibitors. At later stages of immune cell differentiation, EZH2 plays essential roles in humoral and cell-mediated adaptive immunity, as well as the maintenance of immune homeostasis. EZH2 is often overactive in cancers, through both gain-of-function mutations and over-expression, an observation that has led to the development and clinical testing of specific EZH2 inhibitors. Such inhibitors may also be of use in inflammatory and autoimmune settings, as EZH2 inhibition dampens the immune response. Here, we will review the current state of understanding of the roles for EZH2, and PRC2 more generally, in the development and function of the immune system.
Collapse
Affiliation(s)
- Stephen L. Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Keenan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
31
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
33
|
Xiao XY, Li YT, Jiang X, Ji X, Lu X, Yang B, Wu LJ, Wang XH, Guo JB, Zhao LD, Fei YY, Yang HX, Zhang W, Zhang FC, Tang FL, Zhang JM, He W, Chen H, Zhang X. EZH2 deficiency attenuates Treg differentiation in rheumatoid arthritis. J Autoimmun 2020; 108:102404. [PMID: 31952907 DOI: 10.1016/j.jaut.2020.102404] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
The chromatin modifier enhancer of zeste homolog 2 (EZH2) methylates lysine 27 of histone H3 (H3K27) and regulates T cell differentiation. However, the potential role of EZH2 in the pathogenesis of rheumatoid arthritis (RA) remains elusive. We analyzed EZH2 expression in PBMC, CD4+ T cells, CD19+ B cell, and CD14+ monocytes from active treatment-naïve RA patients and healthy controls (HC). We also suppressed EZH2 expression using EZH2 inhibitor GSK126 and measured CD4+ T cell differentiation, proliferation and apoptosis. We further examined TGFβ-SMAD and RUNX1 signaling pathways in EZH2-suppressed CD4+ T cells. Finally, we explored the regulation mechanism of EZH2 by RA synovial fluid and fibroblast-like synoviocyte (FLS) by neutralizing key proinflammatory cytokines. EZH2 expression is lower in PBMC and CD4+ T cells from RA patients than those from HC. EZH2 inhibition suppressed regulatory T cells (Tregs) differentiation and FOXP3 transcription, and downregulated RUNX1 and upregulated SMAD7 expression in CD4+ T cells. RA synovial fluid and fibroblast-like synoviocytes suppressed EZH2 expression in CD4+ T cells, which was partially neutralized by anti-IL17 antibody. Taken together, EZH2 in CD4+ T cells from RA patients was attenuated, which suppressed FOXP3 transcription through downregulating RUNX1 and upregulating SMAD7 in CD4+ T cells, and ultimately suppressed Tregs differentiation. IL17 in RA synovial fluid might promote downregulation of EZH2 in CD4+ T cells. Defective EZH2 in CD4+ T cells might contribute to Treg deficiency in RA.
Collapse
Affiliation(s)
- Xin-Yue Xiao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yue-Ting Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xu Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xin Ji
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xin Lu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Yang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li-Jun Wu
- Department of Rheumatology and Clinical Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumchi, 830001, China
| | - Xiao-Han Wang
- Department of Rheumatology, AnYang District Hospital, AnYang, HeNan Province, 455000, China
| | - Jing-Bo Guo
- Department of Traditional Chinese Medicine, 256th Clinical Department of Bethune International Peace Hospital of PLA, Shijiazhuang, 050800, China
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Hua-Xia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Fu-Lin Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jian-Min Zhang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Wei He
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China.
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
34
|
Braga-Neto MB, Gaballa JM, Bamidele AO, Sarmento OF, Svingen P, Gonzalez M, Ramos GP, Sagstetter MR, Aseem SO, Sun Z, Faubion WA. Deregulation of Long Intergenic Non-coding RNAs in CD4+ T Cells of Lamina Propria in Crohn's Disease Through Transcriptome Profiling. J Crohns Colitis 2020; 14:96-109. [PMID: 31158273 PMCID: PMC6930003 DOI: 10.1093/ecco-jcc/jjz109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aetiology of Crohn's disease [CD] involves immune dysregulation in a genetically susceptible individual. Genome-wide association studies [GWAS] have identified 200 loci associated with CD, ulcerative colitis, or both, most of which fall within non-coding DNA regions. Long non-coding RNAs [lncRNAs] regulate gene expression by diverse mechanisms and have been associated with disease activity in inflammatory bowel disease. However, disease-associated lncRNAs have not been characterised in pathogenic immune cell populations. METHODS Terminal ileal samples were obtained from 22 CD patients and 13 controls. RNA from lamina propria CD4+ T cells was sequenced and long intergenic non-coding RNAs [lincRNAs] were detected. Overall expression patterns, differential expression [DE], and pathway and gene enrichment analyses were performed. Knockdown of novel lincRNAs XLOC_000261 and XLOC_000014 was performed. Expression of Th1 or Th17-associated transcription factors, T-bet and RORγt, respectively, was assessed by flow cytometry. RESULTS A total of 6402 lincRNAs were expressed, 960 of which were novel. Unsupervised clustering and principal component analysis showed that the lincRNA expression discriminated patients from controls. A total of 1792 lincRNAs were DE, and 295 [79 novel; 216 known] mapped to 267 of 5727 DE protein-coding genes. The novel lincRNAs were enriched in inflammatory and Notch signalling pathways [p <0.05]. Furthermore, DE lincRNAs in CD patients were more frequently found in DNA regions with known inflammatory bowel disease [IBD]-associated loci. The novel lincRNA XLOC_000261 negatively regulated RORγt expression in Th17 cells. CONCLUSIONS We describe a novel set of DE lincRNAs in CD-associated CD4+ cells and demonstrate that novel lincRNA XLOC_000261 appears to negatively regulate RORγt protein expression in Th17 cells.
Collapse
Affiliation(s)
- Manuel B Braga-Neto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph M Gaballa
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Adebowale O Bamidele
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Olga F Sarmento
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Phyllis Svingen
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michelle Gonzalez
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Guilherme Piovezani Ramos
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mary R Sagstetter
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Lou X, Zhu H, Ning L, Li C, Li S, Du H, Zhou X, Xu G. EZH2 Regulates Intestinal Inflammation and Necroptosis Through the JNK Signaling Pathway in Intestinal Epithelial Cells. Dig Dis Sci 2019; 64:3518-3527. [PMID: 31273598 DOI: 10.1007/s10620-019-05705-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a common disorder of chronic intestinal inflammation that can be caused by the disruption of intestinal immune homeostasis. AIM We aimed to evaluate the role of enhancer of zeste homolog 2 (EZH2) in the inflammatory response and explore the association between EZH2 and necroptosis in human epithelial colorectal adenocarcinoma cell lines. METHODS In both in vitro and in vivo models, expression of EZH2 in intestinal tissues was verified by histology. The expression of inflammatory cytokines in cell lines treated with EZH2 siRNA with or without stimulus was analyzed by quantitative real-time polymerase chain reaction. An intestinal necroptosis cell model was established to elucidate whether EZH2 is involved in necroptosis. RESULTS Our present data indicated that EZH2 expression was decreased in in vitro and in vivo models and in patients with inflammatory bowel disease. EZH2 downregulation increased the expression of inflammatory factors, including TNF-α, IL-8, IL-17, CCL5, and CCL20 in a Caco-2 cell model. The JNK pathway was activated with the reduction of EZH2. In the necroptosis model, downregulation of EZH2 was detected with the upregulation of necroptotic markers RIP1 and RIP3. In addition, EZH2 knockdown with siRNA increased p-JNK and p-c-Jun. CONCLUSION Our data suggest that EZH2 plays an important role in the development of intestinal inflammation and necroptosis. Hence, EZH2 could be a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Xinhe Lou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huatuo Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Longgui Ning
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chunxiao Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haojie Du
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guoqiang Xu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
36
|
Yang YX, Shen HH, Cao F, Xie LY, Zhu GL, Sam NB, Wang DG, Pan HF. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases. Expert Opin Ther Targets 2019; 23:1015-1030. [PMID: 31747802 DOI: 10.1080/14728222.2019.1696309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autoimmune diseases (ADs) are idiopathic and heterogeneous disorders with contentious pathophysiology. Great strides have been made in epigenetics and its involvement in ADs. Zeste homolog 2 (EZH2) has sparked extensive interest because of its pleiotropic roles in distinct pathologic contexts.Areas covered: This review summarizes the epigenetic functions and the biological significance of EZH2 in the etiology of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). A brief recapitulation of the therapeutic potential of EZH2 targeting is provided.Expert opinion: There are questions marks and controversies surrounding the feasibility and safety of EZH2 targeting; it is recommended in RA and SLE, but queried in T1D, IBD, MS, and SSc. Future work should focus on contrast studies, systematic analyses and preclinical studies with optimizing methodologies. Selective research studies conducted in a stage-dependent manner are necessary because of the relapsing-remitting clinical paradigms.
Collapse
Affiliation(s)
- Yue-Xin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Yu Xie
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Guang-Lin Zhu
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
37
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity. Cell Rep 2019; 23:3262-3274. [PMID: 29898397 PMCID: PMC6094952 DOI: 10.1016/j.celrep.2018.05.050] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/20/2018] [Accepted: 05/15/2018] [Indexed: 01/21/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for maintaining immune homeostasis, but their presence in tumor tissues impairs anti-tumor immunity and portends poor prognoses in cancer patients. Here, we reveal a mechanism to selectively target and reprogram the function of tumor-infiltrating Tregs (TI-Tregs) by exploiting their dependency on the histone H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) in tumors. Disruption of EZH2 activity in Tregs, either pharmacologically or genetically, drove the acquisition of pro-inflammatory functions in TI-Tregs, remodeling the tumor microenvironment and enhancing the recruitment and function of CD8+ and CD4+ effector T cells that eliminate tumors. Moreover, abolishing EZH2 function in Tregs was mechanistically distinct from, more potent than, and less toxic than a generalized Treg depletion approach. This study reveals a strategy to target Tregs in cancer that mitigates autoimmunity by reprogramming their function in tumors to enhance anti-cancer immunity.
Collapse
|
39
|
Byrum SD, Washam CL, Patterson JD, Vyas KK, Gilbert KM, Blossom SJ. Continuous Developmental and Early Life Trichloroethylene Exposure Promoted DNA Methylation Alterations in Polycomb Protein Binding Sites in Effector/Memory CD4 + T Cells. Front Immunol 2019; 10:2016. [PMID: 31555266 PMCID: PMC6724578 DOI: 10.3389/fimmu.2019.02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and drinking water pollutant associated with CD4+ T cell-mediated autoimmunity. In our mouse model, discontinuation of TCE exposure during adulthood after developmental exposure did not prevent immunotoxicity. To determine whether persistent effects were linked to epigenetic changes we conducted whole genome reduced representation bisulfite sequencing (RRBS) to evaluate methylation of CpG sites in autosomal chromosomes in activated effector/memory CD4+ T cells. Female MRL+/+ mice were exposed to vehicle control or TCE in the drinking water from gestation until ~37 weeks of age [postnatal day (PND) 259]. In a subset of mice, TCE exposure was discontinued at ~22 weeks of age (PND 154). At PND 259, RRBS assessment revealed more global methylation changes in the continuous exposure group vs. the discontinuous exposure group. A majority of the differentially methylated CpG regions (DMRs) across promoters, islands, and regulatory elements were hypermethylated (~90%). However, continuous developmental TCE exposure altered the methylation of 274 CpG sites in promoters and CpG islands. In contrast, only 4 CpG island regions were differentially methylated (hypermethylated) in the discontinuous group. Interestingly, 2 of these 4 sites were also hypermethylated in the continuous exposure group, and both of these island regions are associated with lysine 27 on histone H3 (H3K27) involved in polycomb complex-dependent transcriptional repression via H3K27 tri-methylation. CpG sites were overlapped with the Open Regulatory Annotation database. Unlike the discontinuous group, continuous TCE treatment resulted in 129 DMRs including 12 unique transcription factors and regulatory elements; 80% of which were enriched for one or more polycomb group (PcG) protein binding regions (i.e., SUZ12, EZH2, JARID2, and MTF2). Pathway analysis of the DMRs indicated that TCE primarily altered the methylation of genes associated with regulation of cellular metabolism and cell signaling. The results demonstrated that continuous developmental exposure to TCE differentially methylated binding sites of PcG proteins in effector/memory CD4+ cells. There were minimal yet potentially biologically significant effects that occurred when exposure was discontinued. These results point toward a novel mechanism by which chronic developmental TCE exposure may alter terminally differentiated CD4+ T cell function in adulthood.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Patterson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
40
|
Zhou J, Huang S, Wang Z, Huang J, Xu L, Tang X, Wan YY, Li QJ, Symonds ALJ, Long H, Zhu B. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun 2019; 10:2427. [PMID: 31160593 PMCID: PMC6547712 DOI: 10.1038/s41467-019-10176-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2)-mediated trimethylation of histone 3 lysine 27 (H3K27Me3) is critical for immune regulation. However, evidence is lacking to address the effect of EZH2 enzyme's activity on intestinal immune responses during inflammatory bowel disease (IBD). Here we report that suppressing EZH2 activity ameliorates experimental intestinal inflammation and delayed the onset of colitis-associated cancer. In addition, we identified an increased number of functional MDSCs in the colons, which are essential for EZH2 inhibitor activity. Moreover, inhibition of EZH2 activity promotes the generation of MDSCs from hematopoietic progenitor cells in vitro, demonstrating a previously unappreciated role for EZH2 in the development of MDSCs. Together, these findings suggest the feasibility of EZH2 inhibitor clinical trials for the control of IBD. In addition, this study identifies MDSC-promoting effects of EZH2 inhibitors that may be undesirable in other therapeutic contexts and should be addressed in a clinical trial setting.
Collapse
Affiliation(s)
- Jie Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuo Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liang Xu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xuefeng Tang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yisong Y Wan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, 27710, North Carolina, USA
| | - Alistair L J Symonds
- Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, University of London, London, E1 2AT, UK
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
41
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Omar HA, Tolba MF. Tackling molecular targets beyond PD-1/PD-L1: Novel approaches to boost patients' response to cancer immunotherapy. Crit Rev Oncol Hematol 2019; 135:21-29. [PMID: 30819443 DOI: 10.1016/j.critrevonc.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
In the new era of immunotherapy, which has changed the clinical oncology practice guidelines, there is a pressing need for finding novel approaches to tune up the clinical outcomes of immunotherapy and extend its benefits to a wider cohort of cancer patients. Several non-classical molecular immune targets beyond PD-1/PD-L1 signaling were shown to be engaged as feedback resistance circuits to shut down the antitumor immune response mediated by the classical immune checkpoint inhibitors. Those include T-cell inducible co-stimulator (ICOS), CD40, CD47, V-domain Ig suppressor of T-cell activation (VISTA), cyclin-dependent kinase (CDK)12, enhancer of Zeste homolog 2 (EZH2), toll-like receptors (TLRs) and OX-40 (CD134). Herein we critically discussed the latest studies concerned with understanding the mechanisms involved in the negative clinical response to classical immunotherapies and strategies to optimize the efficacy of cancer immunotherapy through novel combinatorial approaches.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
43
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
44
|
Gaballa JM, Braga Neto MB, Ramos GP, Bamidele AO, Gonzalez MM, Sagstetter MR, Sarmento OF, Faubion WA. The Role of Histone Methyltransferases and Long Non-coding RNAs in the Regulation of T Cell Fate Decisions. Front Immunol 2018; 9:2955. [PMID: 30619315 PMCID: PMC6300512 DOI: 10.3389/fimmu.2018.02955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
T cell lineage decisions are critical for the development of proper immune responses to pathogens as well as important for the resolution of inflammatory responses. This differentiation process relies on a combination of intrinsic and extrinsic factors converging upon epigenetic regulation of transcriptional networks relevant to specific T cell lineages. As these biochemical modifications represent therapeutic opportunities in cancer biology and autoimmunity, implications of writers and readers of epigenetic marks to immune cell differentiation and function are highly relevant. Given the ready adoption of histone methyltransferase inhibitors in the clinic, we focus this review on the role of three histone modifying complexes: PRC-1, PRC-2, and G9A in modulating T cell fate decisions. Furthermore, we explore the role of long non-coding RNAs in regulating these processes, and discuss recent advances and challenges of implementing epigenetic therapies into clinical practice.
Collapse
Affiliation(s)
- Joseph M Gaballa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Adebowale O Bamidele
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Olga F Sarmento
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
45
|
Bamidele AO, Svingen PA, Sagstetter MR, Sarmento OF, Gonzalez M, Braga Neto MB, Kugathasan S, Lomberk G, Urrutia RA, Faubion WA. Disruption of FOXP3-EZH2 Interaction Represents a Pathobiological Mechanism in Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2018; 7:55-71. [PMID: 30510991 PMCID: PMC6260395 DOI: 10.1016/j.jcmgh.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Background & Aims Forkhead box protein 3 (FOXP3)+ regulatory T cell (Treg) dysfunction is associated with autoimmune diseases; however, the mechanisms responsible for inflammatory bowel disease pathophysiology are poorly understood. Here, we tested the hypothesis that a physical interaction between transcription factor FOXP3 and the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is essential for gene co-repressive function. Methods Human FOXP3 mutations clinically relevant to intestinal inflammation were generated by site-directed mutagenesis. T lymphocytes were isolated from mice, human blood, and lamina propria of Crohn's disease (CD) patients and non-CD controls. We performed proximity ligation or a co-immunoprecipitation assay in FOXP3-mutant+, interleukin 6 (IL6)-treated or CD-CD4+ T cells to assess FOXP3-EZH2 protein interaction. We studied IL2 promoter activity and chromatin state of the interferon γ locus via luciferase reporter and chromatin-immunoprecipitation assays, respectively, in cells expressing FOXP3 mutants. Results EZH2 binding was abrogated by inflammatory bowel disease-associated FOXP3 cysteine 232 (C232) mutation. The C232 mutant showed impaired repression of IL2 and diminished EZH2-mediated trimethylation of histone 3 at lysine 27 on interferon γ, indicative of compromised Treg physiologic function. Generalizing this mechanism, IL6 impaired FOXP3-EZH2 interaction. IL6-induced effects were reversed by Janus kinase 1/2 inhibition. In lamina propria-derived CD4+T cells from CD patients, we observed decreased FOXP3-EZH2 interaction. Conclusions FOXP3-C232 mutation disrupts EZH2 recruitment and gene co-repressive function. The proinflammatory cytokine IL6 abrogates FOXP3-EZH2 interaction. Studies in lesion-derived CD4+ T cells have shown that reduced FOXP3-EZH2 interaction is a molecular feature of CD patients. Destabilized FOXP3-EZH2 protein interaction via diverse mechanisms and consequent Treg abnormality may drive gastrointestinal inflammation.
Collapse
Key Words
- C232, cysteine 232
- CD, Crohn’s disease
- ChIP, chromatin-immunoprecipitation
- Crohn’s Disease
- EED, embryonic ectoderm development
- EZH2, enhancer of zeste homolog 2
- Epigenetics
- FCS, fetal calf serum
- FOXP3, forkhead domain-containing X-chromosome–encoded protein
- H3K27me3, trimethylated histone H3 at lysine 27
- IBD, inflammatory bowel disease
- IL, interleukin
- IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-linked
- JAK, Janus kinase
- LZ, leucine zipper
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PLA, proximity ligation assay
- PMA, phorbol 12-myristate 13-acetate
- PRC2, polycomb repressive complex 2
- Proinflammatory Cytokine
- Regulatory T Cells
- STAT, signal transducer and activator of transcription
- SUZ12, suppressor of zeste
- Th, T helper
- Treg, regulatory T cell
- WT, wild-type
- co-IP, co-immunoprecipitation
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Phyllis A Svingen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga F Sarmento
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michelle Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, School of Medicine, Atlanta, Georgia
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
46
|
Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, Xiong L, Trojer P, Aparicio A, Subudhi SK, Allison JP, Zhao H, Sharma P. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 2018; 128:3813-3818. [PMID: 29905573 DOI: 10.1172/jci99760] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Enhancer of zeste homolog 2-mediated (EZH2-mediated) epigenetic regulation of T cell differentiation and Treg function has been described previously; however, the role of EZH2 in T cell-mediated antitumor immunity, especially in the context of immune checkpoint therapy, is not understood. Here, we showed that genetic depletion of EZH2 in Tregs (FoxP3creEZH2fl/fl mice) leads to robust antitumor immunity. In addition, pharmacological inhibition of EZH2 in human T cells using CPI-1205 elicited phenotypic and functional alterations of the Tregs and enhanced cytotoxic activity of Teffs. We observed that ipilimumab (anti-CTLA-4) increased EZH2 expression in peripheral T cells from treated patients. We hypothesized that inhibition of EZH2 expression in T cells would increase the effectiveness of anti-CTLA-4 therapy, which we tested in murine models. Collectively, our data demonstrated that modulating EZH2 expression in T cells can improve antitumor responses elicited by anti-CTLA-4 therapy, which provides a strong rationale for a combination trial of CPI-1205 plus ipilimumab.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irina Apostolou
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Jan Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jill Skepner
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuejun Zhang
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liangwen Xiong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James P Allison
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Zhao
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Marks DL, Olson RL, Urrutia R, Billadeau DD, Roy N, Calin GA, Fabbri M, Koutsioumpa M, Iliopoulos D, Ordog T, Huebert R, Sarmento O, Bamidele AO, Faubion W, Lomberk GL, Siveke J, Ahuja N, Iovanna J, Hlady RA, Robertson K, Kisiel J, Pin CL, Fernandez-Zapico ME. Epigenetics of gastrointestinal diseases: notes from a workshop. Epigenetics 2018; 13:449-457. [PMID: 30056798 PMCID: PMC6140811 DOI: 10.1080/15592294.2018.1464351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
International experts gathered at the Mayo Clinic (Rochester MN, USA) on February 27th-28th, 2017 for a meeting entitled ‘Basic and Translational Facets of the Epigenetics of GI Diseases’. This workshop summarized recent advances on the role of epigenetics in the pathobiology of gastrointestinal (GI) diseases. Highlights of the meeting included recent advances on the involvement of different epigenetic mechanisms in malignant and nonmalignant GI disorders and the epigenetic heterogeneity exhibited in these diseases. The translational value of epigenetic drugs, as well as the current and future use of epigenetic changes (i.e., DNA methylation patterns) as biomarkers for early detection tools or disease stratification were also important topics of discussion.
Collapse
Affiliation(s)
- David L Marks
- a Schulze Center for Novel Therapeutics, Division of Oncology Research , Mayo Clinic , Rochester , MN , USA
| | - Rachel L Olson
- a Schulze Center for Novel Therapeutics, Division of Oncology Research , Mayo Clinic , Rochester , MN , USA
| | - Raul Urrutia
- b Division of Research, Department of Surgery , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Daniel D Billadeau
- a Schulze Center for Novel Therapeutics, Division of Oncology Research , Mayo Clinic , Rochester , MN , USA
| | - Nilotpal Roy
- c Diabetes Center , University of California at San Francisco , San Francisco , CA , USA
| | - George A Calin
- d Department of Experimental Therapeutics, Division of Cancer Medicine , MD Anderson Cancer Center , Houston , TX , USA
| | - Muller Fabbri
- e Children's Center for Cancer and Blood Diseases, Keck School of Medicine of USC , University of Southern California , Los Angeles , CA , USA
| | - Marina Koutsioumpa
- f Laboratory and the Center for Systems Biomedicine , University of California at Los Angeles , Los Angeles , CA , USA
| | - Dimitrios Iliopoulos
- f Laboratory and the Center for Systems Biomedicine , University of California at Los Angeles , Los Angeles , CA , USA
| | - Tamas Ordog
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Robert Huebert
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Olga Sarmento
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Adebowale O Bamidele
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - William Faubion
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Gwen L Lomberk
- b Division of Research, Department of Surgery , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Jens Siveke
- h Division of Solid Tumor Translational Oncology, West German Cancer Center , University Hospital Essen , Essen , Germany
| | - Nita Ahuja
- i Department of Surgery , Yale School of Medicine , New Haven , CT , USA
| | - Juan Iovanna
- j Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258 , Institut Paoli-Calmettes , Aix Marseille , France
| | - Ryan A Hlady
- k Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Keith Robertson
- k Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - John Kisiel
- g Division of Gastroenterology, Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Christopher L Pin
- l Division of Genetics & Development, Children's Health Research Institute, Departments of Pediatrics, Physiology and Pharmacology, and Oncology , The University of Western Ontario , London , ON , Canada
| | - Martin E Fernandez-Zapico
- a Schulze Center for Novel Therapeutics, Division of Oncology Research , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
48
|
Kasomva K, Sen A, Paulraj MG, Sailo S, Raphael V, Puro KU, Assumi SR, Ignacimuthu S. Roles of microRNA in prostate cancer cell metabolism. Int J Biochem Cell Biol 2018; 102:109-116. [PMID: 30010013 DOI: 10.1016/j.biocel.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
MicroRNAs are non-coding RNA which functions as regulators of genes expression. MicroRNAs have shown their biological functions in cell proliferation, cell cycle, cell metabolism, apoptosis, invasion and metastasis. Cancer cells have the ability to grow in the absence of growth factors by increased metabolic activity. MicroRNAs regulate cell metabolic processes by targeting the key enzymes or transporters and change the metabolic activities by interfering with oncogenes/tumor suppressors, hypoxia, signalling pathways and cell adhesion. This review mainly explains the roles of microRNAs in prostate cancer cell metabolism, such as glucose uptake, glycolysis and lactate secretion, lipid metabolism and interaction with signalling pathways. The relation of microRNAs with hypoxia and cell adhesion in cell metabolism is also highlighted. Therefore, miRNAs help in regulating the metabolism of survived tumor cells, understanding such miRNA-mediated interaction could lead to new avenues in therapeutic application to treat PCa.
Collapse
Affiliation(s)
- Khanmi Kasomva
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India; Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India; Department of Urology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Arnab Sen
- Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India
| | - Michael Gabriel Paulraj
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India
| | - Stephen Sailo
- Department of Urology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Vandana Raphael
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Kekungu-U Puro
- Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India
| | | | - Savarimuthu Ignacimuthu
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India; International Scientific Partnership Program, King Saud University, Saudi Arabia.
| |
Collapse
|
49
|
Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biol 2018; 16:47. [PMID: 29730990 PMCID: PMC5937035 DOI: 10.1186/s12915-018-0518-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood. Results To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset. Conclusion The data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s12915-018-0518-3) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|