1
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
2
|
Wang L, Chen J, Song J, Xiang Y, Yang M, Xia L, Yang J, Hou X, Chen L, Wang L. Activation of the Wnt/β-catenin signalling pathway enhances exosome production by hucMSCs and improves their capability to promote diabetic wound healing. J Nanobiotechnology 2024; 22:373. [PMID: 38926800 PMCID: PMC11201861 DOI: 10.1186/s12951-024-02650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The use of stem cell-derived exosomes (Exos) as therapeutic vehicles is receiving increasing attention. Exosome administration has several advantages over cell transplantation, thus making exosomes promising candidates for large-scale clinical implementation and commercialization. However, exosome extraction and purification efficiencies are relatively low, and therapeutic heterogeneity is high due to differences in culture conditions and cell viability. Therefore, in this study, we investigated a priming procedure to enhance the production and therapeutic effects of exosomes from human umbilical cord mesenchymal stem cells (hucMSCs). After preconditioning hucMSCs with agonists/inhibitors that target the Wnt/β-catenin pathway, we assessed both the production of exosomes and the therapeutic efficacy of the optimized exosomes in the context of diabetic wound healing, hoping to provide a safer, more stable and more effective option for clinical application. RESULTS The Wnt signalling pathway agonist CHIR99021 increased exosome production by 1.5-fold without causing obvious changes in the characteristics of the hucMSCs or the size of the exosome particles. Further studies showed that CHIR99021 promoted the production of exosomes by facilitating exocytosis. This process was partly mediated by SNAP25. To further explore whether CHIR99021 changed the cargo that was loaded into the exosomes and its therapeutic effects, we performed proteomic and transcriptomic analyses of exosomes from primed and control hucMSCs. The results showed that CHIR99021 significantly upregulated the expression of proteins that are associated with cell migration and wound healing. Animal experiments confirmed that, compared to control hucMSC-derived exosomes, CHIR99021-pretreated hucMSC-derived exosomes (CHIR-Exos) significantly accelerated wound healing in diabetic mice, enhanced local collagen deposition, promoted angiogenesis, and reduced chronic inflammation. Subsequent in vitro experiments confirmed that the CHIR-Exos promoted wound healing by facilitating cell migration, inhibiting oxidative stress-induced apoptosis, and preventing cell cycle arrest. CONCLUSIONS The Wnt agonist CHIR99021 significantly increased exosome secretion by hucMSCs, which was partly mediated by SNAP25. Notably, CHIR99021 treatment also significantly increased the exosomal levels of proteins that are associated with wound healing and cell migration, resulting in enhanced acceleration of wound healing. All of these results suggested that pretreatment of hucMSCs with CHIR99021 not only promoted exosome production but also improved the exosome therapeutic efficacy, thus providing a promising option for large-scale clinical implementation and commercialization.
Collapse
Affiliation(s)
- Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jun Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Yingyue Xiang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Longqing Xia
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China.
| | - Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Ng NHJ, Ghosh S, Bok CM, Ching C, Low BSJ, Chen JT, Lim E, Miserendino MC, Tan YS, Hoon S, Teo AKK. HNF4A and HNF1A exhibit tissue specific target gene regulation in pancreatic beta cells and hepatocytes. Nat Commun 2024; 15:4288. [PMID: 38909044 PMCID: PMC11193738 DOI: 10.1038/s41467-024-48647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/08/2024] [Indexed: 06/24/2024] Open
Abstract
HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq. HNF4A was found to bind and regulate known (ACY3, HAAO, HNF1A, MAP3K11) and previously unidentified (ABCD3, CDKN2AIP, USH1C, VIL1) loci in a tissue-dependent manner. Functional follow-up highlighted a potential role for HAAO and USH1C as regulators of beta cell function. Unlike the loss-of-function HNF4A/MODY1 variant I271fs, the T2D-associated HNF4A variant (rs1800961) was found to activate AKAP1, GAD2 and HOPX gene expression, potentially due to changes in DNA-binding affinity. We also found HNF1A to bind to and regulate GPR39 expression in beta cells. Overall, our studies provide a rich resource for uncovering downstream molecular targets of HNF4A and HNF1A that may contribute to beta cell or hepatic cell (dys)function, and set up a framework for gene discovery and functional validation.
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chek Mei Bok
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Blaise Su Jun Low
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Euodia Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - María Clara Miserendino
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, IMCB, A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
4
|
Rizwan MZ, Kamstra K, Pretz D, Shepherd PR, Tups A, Grattan DR. Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity. J Neurosci 2024; 44:e1666232024. [PMID: 38395612 PMCID: PMC10993030 DOI: 10.1523/jneurosci.1666-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Dominik Pretz
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Alexander Tups
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Wang X, Liu W, Luo X, Zheng Q, Shi B, Liu R, Li C. Mesenchymal β-catenin signaling affects palatogenesis by regulating α-actinin-4 and F-actin. Oral Dis 2023; 29:3493-3502. [PMID: 36251469 DOI: 10.1111/odi.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Our previous research have found that mesenchymal β-catenin may be involved in palatal shelf (PS) elevation by regulating F-actin. Here, we further investigated the exact mechanism of β-catenin/F-actin in the PS mesenchyme to regulate palatal reorientation. MATERIALS AND METHODS (1) Firstly, Ctnnb1ex3f (β-catenin) mice were conditionally overexpressed in the palatal mesenchyme by crossing with the Sox9-creERT2 mice (induced by Tamoxifen injections); (2) Subsequently, histology and immunohistochemistry were used to characterize the variations of PS morphology and expression of key molecules associated with developmental process; (3) Finally, experiments in vivo and ex vivo were employed to identify the critical mechanisms in β-catenin silenced and overexpressed models. RESULTS We found that the Sox9CreER; Ctnnb1ex3f mice exhibited failed palatal elevation and visible cleft palate, and overexpression of β-catenin disturbed the F-actin responsible for cytoskeletal remodeling in palatal mesenchymal cells. qRT-PCR results showed mRNA levels of α-actinin4, a gene involved in F-actin cross-linking, were associated with knockdown or overexpression of β-catenin in ex vivo, respectively. Experiments in vivo revealed that mesenchymal specific inactivation or overexpression of β-catenin exhibited decreased or increased α-actinin-4 expression. CONCLUSIONS Mesenchymal β-catenin/F-actin plays an essential role in PS reorientation, which mediate α-actinin-4 to regulate F-actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Xiaoming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weilong Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Renkai Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yang C, Wei M, Zhao Y, Yang Z, Song M, Mi J, Yang X, Tian G. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol 2023; 11:1217189. [PMID: 37601108 PMCID: PMC10436566 DOI: 10.3389/fcell.2023.1217189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post-translational modification (PTM) has a significant impact on cellular signaling and function regulation. In pancreatic β cells, PTMs are involved in insulin secretion, cell development, and viability. The dysregulation of PTM in β cells is clinically associated with the development of diabetes mellitus. Here, we summarized current findings on major PTMs occurring in β cells and their roles in insulin secretion. Our work provides comprehensive insight into understanding the mechanisms of insulin secretion and potential therapeutic targets for diabetes from the perspective of protein PTMs.
Collapse
Affiliation(s)
- Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Yanpu Zhao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Zhanyi Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengyao Song
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyong Yang
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Ma Y, Potenza DM, Ajalbert G, Brenna A, Zhu C, Ming XF, Yang Z. Paracrine Effects of Renal Proximal Tubular Epithelial Cells on Podocyte Injury under Hypoxic Conditions Are Mediated by Arginase-II and TGF-β1. Int J Mol Sci 2023; 24:ijms24043587. [PMID: 36835007 PMCID: PMC9966309 DOI: 10.3390/ijms24043587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-β1 type-I receptor blocker SB431542. Indeed, TGF-β1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-β1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-β1 cascade, which may contribute to hypoxia-induced podocyte damage.
Collapse
|
9
|
Masson SWC, Dissanayake WC, Broome SC, Hedges CP, Peeters WM, Gram M, Rowlands DS, Shepherd PR, Merry TL. A role for β-catenin in diet-induced skeletal muscle insulin resistance. Physiol Rep 2023; 11:e15536. [PMID: 36807886 PMCID: PMC9937784 DOI: 10.14814/phy2.15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 02/19/2023] Open
Abstract
A central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.
Collapse
Affiliation(s)
- Stewart W. C. Masson
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Waruni C. Dissanayake
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Christopher P. Hedges
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| | - Wouter M. Peeters
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
- Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Martin Gram
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - David S. Rowlands
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - Peter R. Shepherd
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Troy L. Merry
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| |
Collapse
|
10
|
Liu W, Lu Y, Shi B, Li C. Transcriptome sequencing analysis of the role of β-catenin in F-actin reorganization in embryonic palatal mesenchymal cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1332. [PMID: 36660634 PMCID: PMC9843408 DOI: 10.21037/atm-22-5772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Background Palatogenesis is a highly regulated and coordinated developmental process that is coordinated by multiple transcription factors and signaling pathways. Our previous studies identified that defective palatal shelf reorientation due to aberrant mesenchymal β-catenin signaling is associated with Filamentous actin (F-actin) dysregulation. Herein, the underlying mechanism of mesenchymal β-catenin in regulating F-actin cytoskeleton reorganization is further investigated. Methods Firstly, β-catenin silenced and overexpressed mouse embryonic palatal mesenchymal (MEPM) cells were established by adenovirus-mediated transduction. Subsequently, we compared transcriptomes of negative control (NC) group, β-catenin knockdown (KD) group, or β-catenin overexpression group respectively using RNA-sequencing (RNA-seq), and differentially expressed genes (DEGs) screened were further identified by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vivo experiments further verified the expression change of critical molecules. Results We discovered 184 and 522 DEGs in the knockdown and overexpression groups compared to the NC group, respectively (adjusted P<0.05; |fold change| >2.0). Among these, 106 DEGs were altered in both groups. Gene Ontology (GO) enrichment analysis relating to biological functions identified cytokine-cytokine receptor interaction, and positive modulation of cellular migration. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment assessment indicated that these DEGs were chiefly linked by the regulation of signaling receptor activity and chemokine signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the similar expression trend of serum amyloid A3 (Saa3) and CXC-chemokine ligand 5 (Cxcl5) possibly involved in cytoskeletal rearrangement with RNA-seq data. Experiments in vivo displayed that no significant expression change of Saa3 and Cxcl5 was observed in β-catenin knockout and overexpressed mouse models. Conclusions Our study provides an expression landscape of DEGs in β-catenin silenced and overexpressed MEPM cells, which emphasizes the important role of processes such as chemotactic factor and cell migration. Our data gain deeper insight into genes associated with F-actin reorganization that is regulated by β-catenin either directly or by another route, which will contribute to further investigation of the exact mechanism of mesenchymal β-catenin/F-actin in palatal shelf reorientation.
Collapse
Affiliation(s)
- Weilong Liu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Lu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Blandino-Rosano M, Scheys JO, Werneck-de-Castro JP, Louzada RA, Almaça J, Leibowitz G, Rüegg MA, Hall MN, Bernal-Mizrachi E. Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. Am J Physiol Endocrinol Metab 2022; 323:E133-E144. [PMID: 35723227 PMCID: PMC9291412 DOI: 10.1152/ajpendo.00076.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in β-cells has been extensively studied, less is known about mTORC2's function in β-cells. Here, we show that mice with constitutive and inducible β-cell-specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua O Scheys
- Medical School, Division of Metabolism, Endocrinology, and Diabetes and Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruy A Louzada
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Miami VA Healthcare System, Miami, Florida
| |
Collapse
|
12
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
Collares-Buzato CB, Carvalho CP. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp Biol Med (Maywood) 2022; 247:743-755. [PMID: 35466731 DOI: 10.1177/15353702221090464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is nowadays a worldwide epidemic and has become a major challenge for health systems around the world. It is a multifactorial disorder, characterized by a chronic state of hyperglycemia caused by defects in the production as well as in the peripheral action of insulin. This minireview highlights the experimental and clinical evidence that supports the novel idea that intercellular junctions (IJs)-mediated cell-cell contacts play a role in the pathogenesis of T2D. It focuses on IJs repercussion for endocrine pancreas, intestinal barrier, and kidney dysfunctions that contribute to the onset and evolution of this metabolic disorder.
Collapse
Affiliation(s)
- Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil
| | - Carolina Pf Carvalho
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, CEP 11015-020, Brazil
| |
Collapse
|
14
|
Martinez C, Maschio DA, de Fontes CC, Vanzela EC, Benfato ID, Gazarini ML, Carneiro EM, de Oliveira CA, Collares-Buzato CB, de F. Carvalho CP. EARLY DECREASE IN CX36 IS ASSOCIATED WITH INCREASED CELL ADHESION MOLECULES (CAMs) JUNCTIONAL CONTENT IN MOUSE PANCREATIC ISLETS AFTER SHORT-TERM HIGH-FAT DIET FEEDING. Ann Anat 2022; 241:151891. [DOI: 10.1016/j.aanat.2022.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
15
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
16
|
Qian B, Yang Y, Tang N, Wang J, Sun P, Yang N, Chen F, Wu T, Sun T, Li Y, Chang X, Zhu Y, Zhang Y, Han X. M1 macrophage-derived exosomes impair beta cell insulin secretion via miR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3β/β-catenin pathway in mice. Diabetologia 2021; 64:2037-2051. [PMID: 34117507 DOI: 10.1007/s00125-021-05489-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Macrophage levels are elevated in pancreatic islets, and the resulting inflammatory response is a major contributor to beta cell failure during obesity and type 2 diabetes mellitus. Previous studies by us and others have reported that exosomes released by macrophages play important roles in mediating cell-to-cell communication, and represent a class of inflammatory factors involved in the inflammatory process associated with type 2 diabetes mellitus. However, to date, no reports have demonstrated the effect of macrophage-derived exosomes on beta cells, and little is known regarding their underlying mechanisms in beta cell injury. Thus, we aimed to study the impact of macrophage-derived exosomes on islet beta cell injury in vitro and in vivo. METHODS The phenotypic profiles of islet-resident macrophages were analysed in C57BL/6J mice fed a high-fat diet (HFD). Exosomes were collected from the medium of cultured bone marrow-derived macrophages (BMDMs) and from isolated islet-resident macrophages of HFD-fed mice (HFD-Exos). The role of exosomes secreted by inflammatory M1 phenotype BMDMs (M1-Exos) and HFD-Exos on beta cell function was assessed. An miRNA microarray and quantitative real-time PCR (qPCR) were conducted to test the level of M1-Exos-derived miR-212-5p in beta cells. Then, miR-212-5p was overexpressed or inhibited in M1-Exos or beta cells to determine its molecular and functional impact. RESULTS M1-polarised macrophages were enriched in the islets of obese mice. M1 macrophages and islet-resident macrophages of HFD-fed mice impaired beta cell insulin secretion in an exosome-dependent manner. miR-212-5p was notably upregulated in M1-Exos and HFD-Exos. Enhancing the expression of miR-212-5p impaired beta cell insulin secretion. Blocking miR-212-5p elicited a significant improvement in M1-Exos-mediated beta cell insulin secretion during injury. Mechanistically, M1-Exos mediated an intercellular transfer of the miR-212-5p, targeting the sirtuin 2 gene and regulating the Akt/GSK-3β/β-catenin pathway in recipient beta cells to restrict insulin secretion. CONCLUSIONS/INTERPRETATION A novel exosome-modulated mechanism was delineated for macrophage-beta cell crosstalk that drove beta cell dysfunction and should be explored for its therapeutic utility.
Collapse
Affiliation(s)
- Bin Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ningyuan Tang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Liu H, Wang H, Chen D, Gu C, Huang J, Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-β1/Smad2/3 and β-catenin signaling. FEBS Open Bio 2021; 11:2607-2618. [PMID: 34320274 PMCID: PMC8409287 DOI: 10.1002/2211-5463.13259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular stress condition involving disturbance in the folding capacity of the ER caused by endogenous and exogenous factors. ER stress signaling pathways affect tumor malignant growth, angiogenesis and progression, and promote the antitumor effects of certain drugs. However, the impact of ER stress on the vasculogenic mimicry (VM) phenotype of cancer cells has not been well addressed. VM is a phenotype that mimics vasculogenesis by forming patterned tubular networks, which are related to stemness and aggressive behaviors of cancer cells. In this study, we used tunicamycin (TM), the unfolded protein response (UPR)-activating agent, to induce ER stress in aggressive triple-negative MDA-MB-231 breast cancer cells, which exhibit a VM phenotype in 3D Matrigel cultures. TM-induced ER stress was able to inhibit the VM phenotype. In addition to the tumor spheroid phenotype observed upon inhibiting the VM phenotype, we observed alterations in glycosylation of integrin β1, loss of VE-cadherin and a decrease in stem cell marker Bmi-1. Further study revealed decreased activated transforming growth factor β1, Smad2/3, Phospho-Smad2 and β-catenin. β-Catenin knockdown markedly inhibited the VM phenotype and resulted in the loss of VE-cadherin. The data suggest that the activation of ER stress inhibited VM phenotype formation of breast cancer cells via both the transforming growth factor β1/Smad2/3 and β-catenin signaling pathways. The discovery of prospective regulatory mechanisms involved in ER stress and VM in breast cancer could lead to more precisely targeted therapies that inhibit vessel formation and affect tumor progression.
Collapse
Affiliation(s)
- Huifen Liu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hao Wang
- Breast SurgerySichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dan Chen
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cuirong Gu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianming Huang
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
18
|
Masson SWC, Woodhead JST, D'Souza RF, Broome SC, MacRae C, Cho HC, Atiola RD, Futi T, Dent JR, Shepherd PR, Merry TL. β-Catenin is required for optimal exercise- and contraction-stimulated skeletal muscle glucose uptake. J Physiol 2021; 599:3897-3912. [PMID: 34180063 DOI: 10.1113/jp281352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Loss of β-catenin impairs in vivo and isolated muscle exercise/contraction-stimulated glucose uptake. β-Catenin is required for exercise-induced skeletal muscle actin cytoskeleton remodelling. β-Catenin675 phosphorylation during exercise may be intensity dependent. ABSTRACT The conserved structural protein β-catenin is an emerging regulator of vesicle trafficking in multiple tissues and supports insulin-stimulated glucose transporter 4 (GLUT4) translocation in skeletal muscle by facilitating cortical actin remodelling. Actin remodelling may be a convergence point between insulin and exercise/contraction-stimulated glucose uptake. Here we investigated whether β-catenin is involved in regulating exercise/contraction-stimulated glucose uptake. We report that the muscle-specific deletion of β-catenin induced in adult mice (BCAT-mKO) impairs both exercise- and contraction (isolated muscle)-induced glucose uptake without affecting running performance or canonical exercise signalling pathways. Furthermore, high intensity exercise in mice and contraction of myotubes and isolated muscles led to the phosphorylation of β-cateninS675 , and this was impaired by Rac1 inhibition. Moderate intensity exercise in control and Rac1 muscle-specific knockout mice did not induce muscle β-cateninS675 phosphorylation, suggesting exercise intensity-dependent regulation of β-cateninS675 . Introduction of a non-phosphorylatable S675A mutant of β-catenin into myoblasts impaired GLUT4 translocation and actin remodelling stimulated by carbachol, a Rac1 and RhoA activator. Exercise-induced increases in cross-sectional phalloidin staining (F-actin marker) of gastrocnemius muscle was impaired in muscle from BCAT-mKO mice. Collectively our findings suggest that β-catenin is required for optimal glucose transport in muscle during exercise/contraction, potentially via facilitating actin cytoskeleton remodelling.
Collapse
Affiliation(s)
- Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sophie C Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hyun C Cho
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Robert D Atiola
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tumanu Futi
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
20
|
Yu J, Kang X, Xiong Y, Luo Q, Dai D, Ye J. Gene Expression Profiles of Circular RNAs and MicroRNAs in Chronic Rhinosinusitis With Nasal Polyps. Front Mol Biosci 2021; 8:643504. [PMID: 34124144 PMCID: PMC8194396 DOI: 10.3389/fmolb.2021.643504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Chronic rhinosinusitis (CRS) is often classified primarily on the basis of the absence or presence of nasal polyps (NPs), that is, as CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). Additionally, according to the percentage of eosinophils, CRSwNP can be further divided into eosinophilic CRSwNP (ECRSwNP) and non-ECRSwNP. CRSwNP is a significant public health problem with a considerable socioeconomic burden. Previous research reported that the pathophysiology of CRSwNP is a complex, multifactorial disease. There have been many studies on its etiology, but its pathogenesis remains unclear. Dysregulated expression of microRNAs (miRNAs) has been shown in psoriasis, rheumatoid arthritis, pulmonary fibrosis, and allergic asthma. Circular RNAs (circRNAs) are also involved in inflammatory diseases such as rheumatoid arthritis, septic acute kidney injury, myocardial ischemia/reperfusion injury, and sepsis-induced liver damage. The function of miRNAs in various diseases, including CRSwNP, is a research hotspot. In contrast, there have been no studies on circRNAs in CRSwNP. Overall, little is known about the functions of circRNAs and miRNAs in CRSwNP. This study aimed to investigate the expression of circRNAs and miRNAs in a CRSwNP group and a control group to determine whether these molecules are related to the occurrence and development of CRSwNP. Methods: Nine nasal mucosa samples were collected, namely, three ECRSwNP samples, three non-ECRSwNP samples, and three control samples, for genomic microarray analysis of circRNA and microRNA expression. All of the tissue samples were from patients who were undergoing functional endoscopic sinus surgery in our department. Then we selected some differentially expressed miRNAs and circRNAs for qPCR verification. Meanwhile, GO enrichment analysis and KEGG pathway analysis were applied to predict the biological functions of aberrantly expressed circRNAs and miRNAs based on the GO and KEGG databases. Receiver operating characteristic (ROC) curve analysis and principal component analysis (PCA) were performed to confirm these molecules are involved in the occurrence and development of CRSwNP. Results: In total, 2,875 circRNAs showed significant differential expression in the CRSwNP group. Specifically, 1794 circRNAs were downregulated and 1,081 circRNAs were upregulated. In the CRSwNP group, the expression of 192 miRNAs was significantly downregulated, and none of the miRNAs were significantly upregulated. GO and KEGG analysis showed differential circRNAs and miRNAs were enriched in "amoebiasis," "salivary secretion," "pathways in cancer," and "endocytosis." Through qRT-PCR verification, the expression profiles of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p were shown to have statistical differences. In addition, ROC curve analysis showed that the molecules with the two highest AUCs were hsa-circ-0031593 with AUC 0.8353 and hsa-miR-145-5p with AUC 0.8690. Through PCA with the six ncRNAs, the first principal component explained variance ratio was 98.87%. The AUC of the six ncRNAs was 0.8657. Conclusion: In our study, the expression profiles of ECRSwNP and non-ECRSwNP had no statistical differences. The differentially expressed circRNAs and miRNAs between CRSwNP and control may play important roles in the pathogenesis of CRSwNP. Altered expression of hsa-circ-0031593 and hsa-miR-145-5p have the strongest evidence for involvement in the occurrence and development of CRSwNP because their AUCs are higher than the other molecules tested in this study.
Collapse
Affiliation(s)
- Jieqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Nanchang, China
| | - Xue Kang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Yuanping Xiong
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daofeng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Nanchang, China
| |
Collapse
|
21
|
From Channels to Canonical Wnt Signaling: A Pathological Perspective. Int J Mol Sci 2021; 22:ijms22094613. [PMID: 33924772 PMCID: PMC8125460 DOI: 10.3390/ijms22094613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is an important pathway mainly active during embryonic development and controlling cell proliferation. This regulatory pathway is aberrantly activated in several human diseases. Ion channels are known modulators of several important cellular functions ranging from the tuning of the membrane potential to modulation of intracellular pathways, in particular the influence of ion channels in Wnt signaling regulation has been widely investigated. This review will discuss the known links between ion channels and canonical Wnt signaling, focusing on their possible roles in human metabolic diseases, neurological disorders, and cancer.
Collapse
|
22
|
A role for PAK1 mediated phosphorylation of β-catenin Ser552 in the regulation of insulin secretion. Biochem J 2021; 478:1605-1615. [PMID: 33605402 DOI: 10.1042/bcj20200862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
The presence of adherens junctions and the associated protein β-catenin are requirements for the development of glucose-stimulated insulin secretion (GSIS) in β-cells. Evidence indicates that modulation of β-catenin function in response to changes in glucose levels can modulate the levels of insulin secretion from β-cells but the role of β-catenin phosphorylation in this process has not been established. We find that a Ser552Ala version of β-catenin attenuates glucose-stimulated insulin secretion indicating a functional role for Ser552 phosphorylation of β-catenin in insulin secretion. This is associated with alterations F/G actin ratio but not the transcriptional activity of β-catenin. Both glucose and GLP-1 stimulated phosphorylation of the serine 552 residue on β-catenin. We investigated the possibility that an EPAC-PAK1 pathway might be involved in this phosphorylation event. We find that reduction in PAK1 levels using siRNA attenuates both glucose and GLP-1 stimulated phosphorylation of β-catenin Ser552 and the effects of these on insulin secretion in β-cell models. Furthermore, both the EPAC inhibitor ESI-09 and the PAK1 inhibitor IPA3 do the same in both β-cell models and mouse islets. Together this identifies phosphorylation of β-catenin at Ser552 as part of a cell signalling mechanism linking nutrient and hormonal regulation of β-catenin to modulation of insulin secretory capacity of β-cells and indicates this phosphorylation event is regulated downstream of EPAC and PAK1 in β-cells.
Collapse
|
23
|
Masson SWC, Sorrenson B, Shepherd PR, Merry TL. β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding. Mol Metab 2020; 42:101091. [PMID: 33011305 PMCID: PMC7568189 DOI: 10.1016/j.molmet.2020.101091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Skeletal muscle glucose disposal following a meal is mediated through insulin-stimulated movement of the GLUT4-containing vesicles to the cell surface. The highly conserved scaffold-protein β-catenin is an emerging regulator of vesicle trafficking in other tissues. Here, we investigated the involvement of β-catenin in skeletal muscle insulin-stimulated glucose transport. Methods Glucose homeostasis and transport was investigated in inducible muscle specific β-catenin knockout (BCAT-mKO) mice. The effect of β-catenin deletion and mutation of β-catenin serine 552 on signal transduction, glucose uptake and protein–protein interactions were determined in L6-G4-myc cells, and β-catenin insulin-responsive binding partners were identified via immunoprecipitation coupled to label-free proteomics. Results Skeletal muscle specific deletion of β-catenin impaired whole-body insulin sensitivity and insulin-stimulated glucose uptake into muscle independent of canonical Wnt signalling. In response to insulin, β-catenin was phosphorylated at serine 552 in an Akt-dependent manner, and in L6-G4-myc cells, mutation of β-cateninS552 impaired insulin-induced actin-polymerisation, resulting in attenuated insulin-induced glucose transport and GLUT4 translocation. β-catenin was found to interact with M-cadherin in an insulin-dependent β-cateninS552-phosphorylation dependent manner, and loss of M-cadherin in L6-G4-myc cells attenuated insulin-induced actin-polymerisation and glucose transport. Conclusions Our data suggest that β-catenin is a novel mediator of glucose transport in skeletal muscle and may contribute to insulin-induced actin-cytoskeleton remodelling to support GLUT4 translocation. Deletion of β-catenin from the muscles of adult mice attenuates skeletal muscle glucose uptake. Insulin stimulates phosphorylation of β-cateninS552 by a mechanism involving Akt, and this is required for insulin's effects on both GLUT4 trafficking and actin remodelling. Insulin promotes β-catenin/M-cadherin binding, to support cortical actin remodelling associated with GLUT4 translocation.
Collapse
Affiliation(s)
- Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
α-catenin isoforms are regulated by glucose and involved in regulating insulin secretion in rat clonal β-cell models. Biochem J 2020; 477:763-772. [PMID: 32003420 PMCID: PMC7036346 DOI: 10.1042/bcj20190832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
The recent finding that β-catenin levels play an important rate-limiting role in processes regulating insulin secretion lead us to investigate whether its binding partner α-catenin also plays a role in this process. We find that levels of both α-E-catenin and α-N-catenin are rapidly up-regulated as levels of glucose are increased in rat clonal β-cell models INS-1E and INS-832/3. Lowering in levels of either α-catenin isoform using siRNA resulted in significant increases in glucose stimulated insulin secretion (GSIS) and this effect was attenuated when β-catenin levels were lowered indicating these proteins have opposing effects on insulin release. This effect of α-catenin knockdown on GSIS was not due to increases in insulin expression but was associated with increases in calcium influx into cells. Moreover, simultaneous depletion of α-E catenin and α-N catenin decreased the actin polymerisation to a similar degree as latrunculin treatment and inhibition of ARP 2/3 mediated actin branching with CK666 attenuated the α-catenin depletion effect on GSIS. This suggests α-catenin mediated actin remodelling may be involved in the regulation of insulin secretion. Together this indicates that α-catenin and β-catenin can play opposing roles in regulating insulin secretion, with some degree of functional redundancy in roles of α-E-catenin and α-N-catenin. The finding that, at least in β-cell models, the levels of each can be regulated in the longer term by glucose also provides a potential mechanism by which sustained changes in glucose levels might impact on the magnitude of GSIS.
Collapse
|
25
|
Hughes JW, Cho JH, Conway HE, DiGruccio MR, Ng XW, Roseman HF, Abreu D, Urano F, Piston DW. Primary cilia control glucose homeostasis via islet paracrine interactions. Proc Natl Acad Sci U S A 2020; 117:8912-8923. [PMID: 32253320 PMCID: PMC7184063 DOI: 10.1073/pnas.2001936117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell-intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Jing W Hughes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| | - Jung Hoon Cho
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hannah E Conway
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael R DiGruccio
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Xue Wen Ng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Henry F Roseman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Damien Abreu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Laurenti MC, Dalla Man C, Varghese RT, Andrews JC, Rizza RA, Matveyenko A, De Nicolao G, Cobelli C, Vella A. Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight 2020; 5:136136. [PMID: 32182220 DOI: 10.1172/jci.insight.136136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDMetabolic disorders such as type 2 diabetes have been associated with a decrease in insulin pulse frequency and amplitude. We hypothesized that the T allele at rs7903146 in TCF7L2, previously associated with β cell dysfunction, would be associated with changes in these insulin pulse characteristics.METHODSTwenty-nine nondiabetic subjects (age 46 ± 2, BMI 28 ± 1 kg/m2) participated in this study. Of these, 16 were homozygous for the C allele at rs7903146 and 13 were homozygous for the T allele. Deconvolution of peripheral C-peptide concentrations allowed the reconstruction of portal insulin secretion over time. These data were used for subsequent analyses. Pulse orderliness was assessed by approximate entropy (ApEn), and the dispersion of insulin pulses was measured by a frequency dispersion index (FDI) after a Fast Fourier Transform (FFT) of individual insulin secretion rates.RESULTSDuring fasting conditions, the CC genotype group exhibited decreased pulse disorderliness compared with the TT genotype group (1.10 ± 0.03 vs. 1.19 ± 0.04, P = 0.03). FDI decreased in response to hyperglycemia in the CC genotype group, perhaps reflecting less entrainment of insulin secretion during fasting.CONCLUSIONDiabetes-associated variation in TCF7L2 is associated with decreased orderliness and pulse dispersion, unchanged by hyperglycemia. Quantification of ApEn and FDI could represent novel markers of β cell health.FUNDINGThis work was funded by US NIH (DK78646, DK116231), University of Padova research grant CPDA145405, and Mayo Clinic General Clinical Research Center (UL1 TR000135).
Collapse
Affiliation(s)
- Marcello C Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ron T Varghese
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robert A Rizza
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giuseppe De Nicolao
- Department of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Gan WJ, Do OH, Cottle L, Ma W, Kosobrodova E, Cooper-White J, Bilek M, Thorn P. Local Integrin Activation in Pancreatic β Cells Targets Insulin Secretion to the Vasculature. Cell Rep 2019; 24:2819-2826.e3. [PMID: 30208309 DOI: 10.1016/j.celrep.2018.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) critically affects β cell functions via integrin activation. But whether these ECM actions drive the spatial organization of β cells, as they do in epithelial cells, is unknown. Here, we show that within islets of Langerhans, focal adhesion activation in β cells occurs exclusively where they contact the capillary ECM (vascular face). In cultured β cells, 3D mapping shows enriched insulin granule fusion where the cells contact ECM-coated coverslips, which depends on β1 integrin receptor activation. Culture on micro-contact printed stripes of E-cadherin and fibronectin shows that β cell contact at the fibronectin stripe selectively activates focal adhesions and enriches exocytic machinery and insulin granule fusion. Culture of cells in high glucose, as a model of glucotoxicity, abolishes granule targeting. We conclude that local integrin activation targets insulin secretion to the islet capillaries. This mechanism might be important for islet function and may change in disease.
Collapse
Affiliation(s)
- Wan Jun Gan
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Oanh Hoang Do
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Louise Cottle
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei Ma
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nanoscience Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
29
|
Yang J, Sun Y, Liu X, Xu F, Liu W, Hayashi T, Imamura Y, Mizuno K, Hattori S, Tanaka K, Fujisaki H, Tashiro SI, Onodera S, Ikejima T. Silibinin's regulation of proliferation and collagen gene expressions of rat pancreatic β-cells cultured on types I and V collagen involves β-catenin nuclear translocation. Connect Tissue Res 2019; 60:463-476. [PMID: 30871385 DOI: 10.1080/03008207.2019.1593393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) molecules have multiple functions; prevention of cytotoxicity, provision of mechanical support, cell adhesive substrates and structural integrity in addition to mediation of cellular signaling. In this study, we report that the proliferation of INS-1 cells cultured on collagen I-coated dishes is enhanced, but it is inhibited on collagen V-coated dishes. Inhibitory proliferation on collagen V-coated is not due to apoptosis induction. Silibinin decreases hepatic glucose production and protects pancreatic β-cells, as a potential medicine for type II diabetes. Silibinin up-regulates the proliferation of cells cultured on both collagen I- and V-coated dishes. Collagen-coating regulates gene expression of collagen in a collagen type-related manner. Silibinin increases mRNA expression of collagen I in the cells on collagen I- and V-coated dishes; however, silibinin decreases collagen V mRNA expression on collagen I- and V-coated dishes. Collagen I-coating significantly enhances nuclear translocation of β-catenin, while collagen V-coating reduces it. Differential effects of silibinin on collagen I mRNA and collagen V mRNA can be accounted for by the finding that silibinin enhances nuclear translocation of β-catenin on both collagen I- and V-coated dishes, since phenomenologically nuclear translocation of β-catenin enhances collagen I mRNA but represses collagen V mRNA. These results demonstrate that nuclear translocation of β-catenin up-regulates proliferation and collagen I gene expression, whereas it down-regulates collagen V gene expression of INS-1 cells. Differential gene expressions of collagen I and V by nuclear β-catenin could be important for understanding fibrosis where collagen I and V may have differential effects.
Collapse
Affiliation(s)
- Jing Yang
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China.,b Department of Pharmacy , The Third People's Hospital of Chengdu , Chengdu , P.R. China
| | - Yue Sun
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Xiaoling Liu
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Fanxing Xu
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Weiwei Liu
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Toshihiko Hayashi
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China.,c Department of Chemistry and Life science, School of Advanced Engineering , Kogakuin University , Hachioji , Japan
| | - Yasutada Imamura
- c Department of Chemistry and Life science, School of Advanced Engineering , Kogakuin University , Hachioji , Japan
| | | | - Shunji Hattori
- d Nippi Research Institute of Biomatrix , Toride , Japan
| | - Keisuke Tanaka
- d Nippi Research Institute of Biomatrix , Toride , Japan
| | | | - Shin-Ichi Tashiro
- e Department of Medical Education and Primary Care , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Satoshi Onodera
- f Department of Clinical and Biomedical Sciences , Showa Pharmaceutical University , Tokyo , Japan
| | - Takashi Ikejima
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P.R. China.,g Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development , Shenyang Pharmaceutical University , Shenyang , P.R. China
| |
Collapse
|
30
|
Scheibner K, Bakhti M, Bastidas-Ponce A, Lickert H. Wnt signaling: implications in endoderm development and pancreas organogenesis. Curr Opin Cell Biol 2019; 61:48-55. [PMID: 31377680 DOI: 10.1016/j.ceb.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The pancreas is derived from the foregut endoderm during embryonic development. After gastrulation and endoderm germ layer formation complex morphogenetic events coupled with cell differentiation programs pattern the gut tube and induce pancreas organogenesis. This results in formation of exocrine, ductal and hormone-producing endocrine cells. Among these, endocrine cells are responsible for blood glucose homeostasis and their malfunction leads to diabetes mellitus, which cannot be stopped or reversed by the current standard treatments. Thus, intense efforts to regenerate or replace the lost or dysfunctional insulin-producing β-cells are on the way. This depends on identifying the factors that coordinate pancreas organogenesis. Here, we highlight the contribution of canonical and non-canonical Wnt signaling branches in orchestrating endoderm formation, pancreatic morphogenesis as well as endocrine cell formation and function.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
31
|
Chen X, Liu J, Li N, Wang Y, Zhou N, Zhu L, Shi Y, Wu Y, Xiao J, Liu C. Mesenchymal Wnt/β-catenin signaling induces Wnt and BMP antagonists in dental epithelium. Organogenesis 2019; 15:55-67. [PMID: 31240991 DOI: 10.1080/15476278.2019.1633871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies indicated that the elevated mesenchymal Wnt/β-catenin signaling deprived dental mesenchyme of odontogenic fate. By utilizing ex vivo or pharmacological approaches, Wnt/β-catenin signaling in the developing dental mesenchyme was suggested to suppress the odontogenic fate by disrupting the balance between Axin2 and Runx2. In our study, the Osr2-creKI; Ctnnb1ex3f mouse was used to explore how mesenchymal Wnt/β-catenin signaling suppressed the odontogenic fate in vivo. We found that all of the incisor and half of the molar germs of Osr2-creKI; Ctnnb1ex3fmice started to regress at E14.5 and almost disappeared at birth. The expression of Fgf3 and Msx1 was dramatically down-regulated in the E14.5 Osr2-creKI; Ctnnb1ex3f incisor and molar mesenchyme, while Runx2transcription was only diminished in incisor mesenchyme. Intriguingly, in the E14.5 Osr2-creKI; Ctnnb1ex3f incisor epithelium, the expression of Noggin was activated, while Shh was abrogated. Similarly, the Wnt and BMP antagonists, Ectodin and Noggin were also ectopically activated in the E14.5 Osr2-creKI; Ctnnb1ex3f molar epithelium. Recombination of E13.5 Osr2-creKI; Ctnnb1ex3f molar mesenchyme with E10.5 and E13.5 WT dental epithelia failed to develop tooth. Taken together, the mesenchymal Wnt/β-catenin signaling resulted in the loss of odontogenic fate in vivo not only by directly suppressing odontogenic genes expression but also by inducing Wnt and BMP antagonists in dental epithelium.
Collapse
Affiliation(s)
- Xiaoyan Chen
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Jing Liu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Nan Li
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yu Wang
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Nan Zhou
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Lei Zhu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yiding Shi
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yingzhang Wu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Jing Xiao
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Chao Liu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| |
Collapse
|
32
|
Kurita Y, Ohki T, Soejima E, Yuan X, Kakino S, Wada N, Hashinaga T, Nakayama H, Tani J, Tajiri Y, Hiromatsu Y, Yamada K, Nomura M. A High-Fat/High-Sucrose Diet Induces WNT4 Expression in Mouse Pancreatic β-cells. Kurume Med J 2019; 65:55-62. [PMID: 30853690 DOI: 10.2739/kurumemedj.ms652008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aims/Introduction: Several lines of evidence suggest that dysregulation of the WNT signaling pathway is involved in the pathogenesis of type 2 diabetes. This study was performed to elucidate the effects of a high-fat/high-sucrose (HF/HS) diet on pancreatic islet functions in relation to modulation of WNT ligand expression in β-cells. MATERIALS AND METHODS Mice were fed either standard mouse chow or a HF/HS diet from 8 weeks of age. At 20 weeks of age, intraperitoneal glucose tolerance tests were performed in both groups of mice, followed by euthanasia and isolation of pancreatic islets. WNT-related gene expression in islets and MIN6 cells was measured by quantitative real-time RT-PCR. To explore the direct effects of WNT signals on pancreatic β-cells, MIN6 cells were exposed to recombinant mouse WNT4 protein (rmWNT4) for 48 h, and glucose-induced insulin secretion was measured. Furthermore, Wnt4 siRNAs were transfected into MIN6 cells, and cell viability and insulin secretion were measured in control and Wnt4 siRNA-transfected MIN6 cells. RESULTS Mice fed the HF/HS diet were heavier and their plasma glucose and insulin levels were higher compared with mice fed standard chow. Wnt4, Wnt5b, Ror1, and Ror2 expression was upregulated, while Fzd4, Fzd5, Fzd6, Lrp5, and Lrp6 expression was downregulated in the islets of mice fed the HF/HS diet. Wnt4 was the most abundantly expressed WNT ligand in β-cells, and its expression was increased by the HF/HS diet. Although exposure to recombinant mouse WNT4 protein for 48 h did not alter glucose-induced insulin secretion, it was significantly reduced by knockdown of Wnt4 in MIN6 cells. CONCLUSIONS We demonstrated that the HF/HS diet-induced increase of WNT4 signaling in β-cells is involved in augmentation of glucose-induced insulin secretion and impaired β-cell proliferation. These results strongly indicate an essential role of WNT4 in the regulation of β-cell functions in mouse pancreatic islets.
Collapse
Affiliation(s)
- Yayoi Kurita
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Tsuyoshi Ohki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Eri Soejima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Xiaohong Yuan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Satomi Kakino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Nobuhiko Wada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Toshihiko Hashinaga
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Hitomi Nakayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Junichi Tani
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Yuji Hiromatsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
33
|
Kalwat MA, Hwang IH, Macho J, Grzemska MG, Yang JZ, McGlynn K, MacMillan JB, Cobb MH. Chromomycin A 2 potently inhibits glucose-stimulated insulin secretion from pancreatic β cells. J Gen Physiol 2018; 150:1747-1757. [PMID: 30352794 PMCID: PMC6279362 DOI: 10.1085/jgp.201812177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Drugs that target insulin secretion are useful to understand β cell function and the pathogenesis of diabetes. Kalwat et al. investigate an aureolic acid that inhibits insulin secretion and reveal that it disrupts Wnt signaling, interferes with gene expression, and suppresses Ca2+ influx in β cells. Modulators of insulin secretion could be used to treat diabetes and as tools to investigate β cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 β cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of β cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt–GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3β phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical β cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, Wanju, South Korea
| | - Jocelyn Macho
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA
| | - Magdalena G Grzemska
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan Z Yang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kathleen McGlynn
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
34
|
Huang ZQ, Liao YQ, Huang RZ, Chen JP, Sun HL. Possible role of TCF7L2 in the pathogenesis of type 2 diabetes mellitus. BIOTECHNOL BIOTEC EQ 2018; 32:830-834. [DOI: 10.1080/13102818.2018.1438211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/05/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Zhi-qiu Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yao-qi Liao
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Run-ze Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Jin-peng Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hui-lin Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
35
|
McEwen HJL, Cognard E, Ladyman SR, Khant-Aung Z, Tups A, Shepherd PR, Grattan DR. Feeding and GLP-1 receptor activation stabilize β-catenin in specific hypothalamic nuclei in male rats. J Neuroendocrinol 2018; 30:e12607. [PMID: 29752762 DOI: 10.1111/jne.12607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
β-catenin is a multifunctional protein that can act in the canonical Wnt/β-catenin pathway to regulate gene expression but can also bind to cadherin proteins in adherens junctions where it plays a key role in regulating cytoskeleton linked with these junctions. Recently, evidence has been presented indicating an essential role for β-catenin in regulating trafficking of insulin vesicles in β-cells and showing that changes in nutrient levels rapidly alter levels of β-catenin in these cells. Given the importance of neuroendocrine hormone secretion in the regulation of whole body glucose homeostasis, the objective of this study was to investigate whether β-catenin signalling is regulated in the hypothalamus during the normal physiological response to food intake. Rats were subjected to a fasting/re-feeding paradigm, and then samples collected at specific timepoints for analysis of β-catenin expression by immunohistochemistry and Western blotting. Changes in gene expression were assessed by RT-qPCR. Using immunohistochemistry, feeding acutely increased detectable cytoplasmic levels of β-catenin ('stabilized β-catenin') in neurons in specific regions of the hypothalamus involved in metabolic regulation, including the arcuate, dorsomedial and paraventricular nuclei of the hypothalamus. Feeding-induced elevations in β-catenin in these nuclei were associated with increased transcription of several genes that are known to be responsive to Wnt/β-catenin signalling. The effect of feeding was mimicked by administration of the GLP-1 agonist exendin-4, and was characterized by cAMP-dependent phosphorylation of β-catenin at serine residues 552 and 675. The data suggest that β-catenin/TCF signalling is involved in metabolic sensing in the hypothalamus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hayden J L McEwen
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Zin Khant-Aung
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| |
Collapse
|
36
|
Piovan S, Pavanello A, Peixoto GML, Matiusso CCI, de Moraes AMP, Martins IP, Malta A, Palma-Rigo K, da Silva Franco CC, Milani PG, Dacome AS, da Costa SC, de Freitas Mathias PC, Mareze-Costa CE. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets. Int J Endocrinol 2018; 2018:3189879. [PMID: 29853880 PMCID: PMC5949184 DOI: 10.1155/2018/3189879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stevia rebaudiana (Bert.) Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF), has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS) only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells.
Collapse
Affiliation(s)
- Silvano Piovan
- Department of Physiology Sciences, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Audrei Pavanello
- Department of Cell Biology and Genetics, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | | | - Isabela Peixoto Martins
- Department of Cell Biology and Genetics, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Ananda Malta
- Department of Cell Biology and Genetics, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Kesia Palma-Rigo
- Department of Cell Biology and Genetics, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Paula Gimenez Milani
- Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | | | | |
Collapse
|
37
|
The role of adherens junction proteins in the regulation of insulin secretion. Biosci Rep 2018; 38:BSR20170989. [PMID: 29459424 PMCID: PMC5861323 DOI: 10.1042/bsr20170989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
In healthy individuals, any rise in blood glucose levels is rapidly countered by the release of insulin from the β-cells of the pancreas which in turn promotes the uptake and storage of the glucose in peripheral tissues. The β-cells possess exquisite mechanisms regulating the secretion of insulin to ensure that the correct amount of insulin is released. These mechanisms involve tight control of the movement of insulin containing secretory vesicles within the β-cells, initially preventing most vesicles being able to move to the plasma membrane. Elevated glucose levels trigger an influx of Ca2+ that allows fusion of the small number of insulin containing vesicles that are pre-docked at the plasma membrane but glucose also stimulates processes that allow other insulin containing vesicles located further in the cell to move to and fuse with the plasma membrane. The mechanisms controlling these processes are complex and not fully understood but it is clear that the interaction of the β-cells with other β-cells in the islets is very important for their ability to develop the appropriate machinery for proper regulation of insulin secretion. Emerging evidence indicates one factor that is key for this is the formation of homotypic cadherin mediated adherens junctions between β-cells. Here, we review the evidence for this and discuss the mechanisms by which these adherens junctions might regulate insulin vesicle trafficking as well as the implications this has for understanding the dysregulation of insulin secretion seen in pathogenic states.
Collapse
|
38
|
Dissanayake WC, Sorrenson B, Cognard E, Hughes WE, Shepherd PR. β-catenin is important for the development of an insulin responsive pool of GLUT4 glucose transporters in 3T3-L1 adipocytes. Exp Cell Res 2018. [PMID: 29540328 DOI: 10.1016/j.yexcr.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLUT4 is unique among specialized glucose transporters in being exclusively expressed in muscle and adipocytes. In the absence of insulin the distribution of GLUT4 is preferentially intracellular and insulin stimulation results in the movement of GLUT4 containing vesicles to the plasma membrane. This process is responsible for the insulin stimulation of glucose uptake in muscle and fat. While signalling pathways triggering the translocation of GLUT4 are well understood, the mechanisms regulating the intracellular retention of GLUT4 are less well understood. Here we report a role for β-catenin in this process. In 3T3-L1 adipocytes in which β-catenin is depleted, the levels of GLUT4 at and near the plasma membrane rise in unstimulated cells while the subsequent increase in GLUT4 at the plasma membrane upon insulin stimulation is reduced. Small molecule approaches to acutely activate or inhibit β-catenin give results that support the results obtained with siRNA and these changes are accompanied by matching changes in glucose transport into these cells. Together these results indicate that β-catenin is a previously unrecognized regulator of the mechanisms that control the insulin sensitive pool of GLUT4 transporters inside these adipocyte cells.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William E Hughes
- Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney 2010, Australia; The Garvan Institute of Medical Research, 384 Victoria Street, Sydney 2010, Australia
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
39
|
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab 2017; 19 Suppl 1:115-123. [PMID: 28880475 DOI: 10.1111/dom.13001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β-cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β-cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi-SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non-fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub-PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β-cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β-cells.
Collapse
|
40
|
Wan J, Hou X, Zhou Z, Geng J, Tian J, Bai X, Nie J. WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy. Free Radic Biol Med 2017; 108:280-299. [PMID: 28315733 DOI: 10.1016/j.freeradbiomed.2017.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Epigenetic modulation of podocyte injury plays a pivotal role in diabetic nephropathy (DN). Wilm's tumor 1 (WT1) has been found to have opposing roles with β-catenin in podocyte biology. Herein, we asked whether the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) promotes WT1-induced podocyte injury via β-catenin activation and the underlying mechanisms. We found that WT1 antagonized EZH2 and ameliorated β-catenin-mediated podocyte injury as demonstrated by attenuated podocyte mesenchymal transition, maintenance of podocyte architectural integrity, decreased podocyte apoptosis and oxidative stress. Further, we provided mechanistical evidence that EZH2 was required in WT1-mediated β-catenin inactivation via repression of secreted frizzled-related protein 1 (SFRP-1), a Wnt antagonist. Moreover, EZH2-mediated silencing of SFRP-1 was due to increased histone 3 lysine 27 trimethylation (H3K27me3) on its promoter region. WT1 favored renal function and decreased podocyte injury in diabetic rats and DN patients. Notably, WT1 exhibited clinical and biological relevance as it was linked to dropped serum creatinine, decreased proteinuria and elevated estimated glomerular filtration rate (eGFR). We propose an epigenetic process via the WT1/EZH2/β-catenin axis in attenuating podocyte injury in DN. Targeting WT1 and EZH2 could be potential therapeutic approaches for DN.
Collapse
Affiliation(s)
- Jiao Wan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Xiaoyan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Xiaoyan Bai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China.
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China.
| |
Collapse
|