1
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
2
|
Wu HH, Zhu Q, Liang N, Xiang Y, Xu TY, Huang ZC, Cai JY, Weng LL, Ge HS. CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. Redox Rep 2024; 29:2377870. [PMID: 39010730 PMCID: PMC467114 DOI: 10.1080/13510002.2024.2377870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.
Collapse
Affiliation(s)
- Hong-Hui Wu
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Qi Zhu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Na Liang
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tian-Yue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zi-Chao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-Yu Cai
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling-Lin Weng
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong-Shan Ge
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Tang CF, Ding H, Wu YQ, Miao ZA, Wang ZX, Wang WX, Pan Y, Kong LD. Gastrodin attenuates high fructose-induced sweet taste preference decrease by inhibiting hippocampal neural stem cell ferroptosis. J Adv Res 2024:S2090-1232(24)00427-2. [PMID: 39353531 DOI: 10.1016/j.jare.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION High fructose intake has been implicated as a risk factor for behavioral disorders, potentially through cell ferroptosis induction in the central nervous system. Neural stem cells (NSCs) are crucial for maintaining hippocampal neurogenesis to resist behavioral alterations. Gastrodin, derived from the traditional Chinese herb Gastrodia elata, has neuroprotective effect. OBJECTIVES This study aimed to elucidate the underlying mechanism by which high fructose induces sweet taste preference and assesses the impact of gastrodin on hippocampal NSC ferroptosis. METHODS Mice and cultured NSCs were treated with high fructose and/or gastrodin, respectively. NSC ferroptosis was evaluated by assay of lipid peroxidation and DNA double-strand breaks. Transcriptome sequencing (RNA-seq), Western blotting, and chromatin immunoprecipitation (ChIP) were employed to explore the potential mechanism underlying high fructose-induced NSC ferroptosis and the modulation of gastrodin. Simultaneously, specific gene expression was regulated by lentivirus injection into the hippocampus of mice. RESULTS Our data showed that gastrodin mitigated sweet taste preference decline and hippocampal NSC ferroptosis in high fructose-fed mice, being consistent with reduction of reactive oxygen species (ROS) and iron accumulation in hippocampal NSC mitochondria. Mechanistically, we identified CDGSH iron-sulfur domain 1 (CISD1) as a mediator of NSC ferroptosis, with its expression being augmented by high fructose. Overexpression of Zic family member 2 (ZIC2) increased the transcription of Cisd1 gene. Additionally, overexpression of Zic2 with lentiviral vectors in hippocampus showed the decreased sweet taste preference in mice, consistently up-regulated CISD1 protein expression and reduced hippocampal NSC number. Gastrodin downregulated ZIC2 expression to inhibit CISD1 transcription in its attenuation of high fructose-induced NSC ferroptosis and sweet taste preference decrease. CONCLUSION Collectively, high fructose can drive hippocampal NSC ferroptosis by upregulating ZIC2 and CISD1 expression, thereby contributing to the decline in sweet taste preference. Gastrodin emerges as a promising agent for mitigating NSC ferroptosis and improving sweet taste preference.
Collapse
Affiliation(s)
- Chuan-Feng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ya-Qian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-An Miao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wen-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
4
|
Kumar A, Ye C, Nkansah A, Decoville T, Fogo GM, Sajjakulnukit P, Reynolds MB, Zhang L, Quaye O, Seo YA, Sanderson TH, Lyssiotis CA, Chang CH. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl Acad Sci U S A 2024; 121:e2318420121. [PMID: 38621136 PMCID: PMC11047099 DOI: 10.1073/pnas.2318420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Afia Nkansah
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Thomas Decoville
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Garrett M. Fogo
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Peter Sajjakulnukit
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Li Zhang
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI48109
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
5
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Ham SJ, Yoo H, Woo D, Lee DH, Park KS, Chung J. PINK1 and Parkin regulate IP 3R-mediated ER calcium release. Nat Commun 2023; 14:5202. [PMID: 37626046 PMCID: PMC10457342 DOI: 10.1038/s41467-023-40929-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Although defects in intracellular calcium homeostasis are known to play a role in the pathogenesis of Parkinson's disease (PD), the underlying molecular mechanisms remain unclear. Here, we show that loss of PTEN-induced kinase 1 (PINK1) and Parkin leads to dysregulation of inositol 1,4,5-trisphosphate receptor (IP3R) activity, robustly increasing ER calcium release. In addition, we identify that CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) functions downstream of Parkin to directly control IP3R. Both genetic and pharmacologic suppression of CISD1 and its Drosophila homolog CISD (also known as Dosmit) restore the increased ER calcium release in PINK1 and Parkin null mammalian cells and flies, respectively, demonstrating the evolutionarily conserved regulatory mechanism of intracellular calcium homeostasis by the PINK1-Parkin pathway. More importantly, suppression of CISD in PINK1 and Parkin null flies rescues PD-related phenotypes including defective locomotor activity and dopaminergic neuronal degeneration. Based on these data, we propose that the regulation of ER calcium release by PINK1 and Parkin through CISD1 and IP3R is a feasible target for treating PD pathogenesis.
Collapse
Affiliation(s)
- Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heesuk Yoo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daihn Woo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553624. [PMID: 37645817 PMCID: PMC10462106 DOI: 10.1101/2023.08.16.553624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor A. Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J. Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K. Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| |
Collapse
|
8
|
Qi Y, Hu M, Qiu Y, Zhang L, Yan Y, Feng Y, Feng C, Hou X, Wang Z, Zhang D, Zhao J. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET. Toxicol Appl Pharmacol 2023; 465:116440. [PMID: 36870574 DOI: 10.1016/j.taap.2023.116440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Ischemia/reperfusion- (I/R-) induced injury is unavoidable and a major risk factor for graft failure and acute rejection following kidney transplantation. However, few effective interventions are available to improve the outcome due to the complicated mechanisms and lack of appropriate therapeutic targets. Hence, this research aimed to explore the effect of the thiazolidinedione (TZD) compounds on I/R-induced kidney damage. One of the main causes of renal I/R injury is the ferroptosis of renal tubular cells. In this study, compared with the antidiabetic TZD pioglitazone (PGZ), we found its derivative mitoglitazone (MGZ) exerted significantly inhibitory effects on erastin-induced ferroptosis by suppressing mitochondrial membrane potential hyperpolarization and lipid ROS production in HEK293 cells. Moreover, MGZ pretreatment remarkably alleviated I/R-induced renal damages by inhibiting cell death and inflammation, upregulating the expression of glutathione peroxidase 4 (GPX4), and reducing iron-related lipid peroxidation in C57BL/6 N mice. Additionally, MGZ exhibited excellent protection against I/R-induced mitochondrial dysfunction by restoring ATP production, mitochondrial DNA copy numbers, and mitochondrial morphology in kidney tissues. Mechanistically, molecular docking and surface plasmon resonance experiments demonstrated that MGZ exhibited a high binding affinity with the mitochondrial outer membrane protein mitoNEET. Collectively, our findings indicated the renal protective effect of MGZ was closely linked to regulating the mitoNEET-mediated ferroptosis pathway, thus offering potential therapeutic strategies for ameliorating I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyu Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchuang Yan
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Chenghao Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xinyue Hou
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhang
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
9
|
Grifagni D, Silva JM, Cantini F, Piccioli M, Banci L. Relaxation-based NMR assignment: Spotlights on ligand binding sites in human CISD3. J Inorg Biochem 2023; 239:112089. [PMID: 36502664 DOI: 10.1016/j.jinorgbio.2022.112089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - José M Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Tam E, Sung HK, Lam NH, You S, Cho S, Ahmed SM, Abdul-Sater AA, Sweeney G. Role of Mitochondrial Iron Overload in Mediating Cell Death in H9c2 Cells. Cells 2022; 12:cells12010118. [PMID: 36611912 PMCID: PMC9818517 DOI: 10.3390/cells12010118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Iron overload (IO) is associated with cardiovascular diseases, including heart failure. Our study's aim was to examine the mechanism by which IO triggers cell death in H9c2 cells. IO caused accumulation of intracellular and mitochondrial iron as shown by the use of iron-binding fluorescent reporters, FerroOrange and MitoFerroFluor. Expression of cytosolic and mitochondrial isoforms of Ferritin was also induced by IO. IO-induced iron accumulation and cellular ROS was rapid and temporally linked. ROS accumulation was detected in the cytosol and mitochondrial compartments with CellROX, DCF-DA and MitoSOX fluorescent dyes and partly reversed by the general antioxidant N-acetyl cysteine or the mitochondrial antioxidant SkQ1. Antioxidants also reduced the downstream activation of apoptosis and lytic cell death quantified by Caspase 3 cleavage/activation, mitochondrial Cytochrome c release, Annexin V/Propidium iodide staining and LDH release of IO-treated cells. Finally, overexpression of MitoNEET, an outer mitochondrial membrane protein involved in the transfer of Fe-S clusters between mitochondrial and cytosol, was observed to lower iron and ROS accumulation in the mitochondria. These alterations were correlated with reduced IO-induced cell death by apoptosis in MitoNEET-overexpressing cells. In conclusion, IO mediates H9c2 cell death by causing mitochondrial iron accumulation and subsequent general and mitochondrial ROS upregulation.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Hye Kyoung Sung
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Sally You
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Sungji Cho
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Saher M. Ahmed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Ali A. Abdul-Sater
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +1-416-736-2100 (ext. 66635)
| |
Collapse
|
11
|
Camponeschi F, Piccioli M, Banci L. The Intriguing mitoNEET: Functional and Spectroscopic Properties of a Unique [2Fe-2S] Cluster Coordination Geometry. Molecules 2022; 27:8218. [PMID: 36500311 PMCID: PMC9737848 DOI: 10.3390/molecules27238218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the number of cellular and pathological mitoNEET-related processes, very few details are known about the mechanism of action of the protein. The recently discovered existence of a link between NEET proteins and cancer pave the way to consider mitoNEET and its Fe-S clusters as suitable targets to inhibit cancer cell proliferation. Here, we will review the variety of spectroscopic techniques that have been applied to study mitoNEET in an attempt to explain the drastic difference in clusters stability and reactivity observed for the two redox states, and to elucidate the cellular function of the protein. In particular, the extensive NMR assignment and the characterization of first coordination sphere provide a molecular fingerprint helpful to assist the design of drugs able to impair cellular processes or to directly participate in redox reactions or protein-protein recognition mechanisms.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Mario Piccioli
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Rejuvenation: Turning Back Time by Enhancing CISD2. Int J Mol Sci 2022; 23:ijms232214014. [PMID: 36430496 PMCID: PMC9695557 DOI: 10.3390/ijms232214014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine. CDGSH iron-sulfur domain 2 (CISD2), the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928), plays a pivotal role in mediating lifespan and healthspan by maintaining mitochondrial function, endoplasmic reticulum integrity, intracellular Ca2+ homeostasis, and redox status. Here, we summarize the most up-to-date publications on CISD2 and discuss the crucial role that this gene plays in aging and age-associated diseases. This review mainly focuses on the following topics: (1) CISD2 is one of the few pro-longevity genes identified in mammals. Genetic evidence from loss-of-function (knockout mice) and gain-of-function (transgenic mice) studies have demonstrated that CISD2 is essential to lifespan control. (2) CISD2 alleviates age-associated disorders. A higher level of CISD2 during natural aging, when achieved by transgenic overexpression, improves Alzheimer's disease, ameliorates non-alcoholic fatty liver disease and steatohepatitis, and maintains corneal epithelial homeostasis. (3) CISD2, the expression of which otherwise decreases during natural aging, can be pharmaceutically activated at a late-life stage of aged mice. As a proof-of-concept, we have provided evidence that hesperetin is a promising CISD2 activator that is able to enhance CISD2 expression, thus slowing down aging and promoting longevity. (4) The anti-aging effect of hesperetin is mainly dependent on CISD2 because transcriptomic analysis of the skeletal muscle reveals that most of the differentially expressed genes linked to hesperetin are regulated by hesperetin in a CISD2-dependent manner. Furthermore, three major metabolic pathways that are affected by hesperetin have been identified in skeletal muscle, namely lipid metabolism, protein homeostasis, and nitrogen and amino acid metabolism. This review highlights the urgent need for CISD2-based pharmaceutical development to be used as a potential therapeutic strategy for aging and age-associated diseases.
Collapse
|
13
|
Fontenot CR, Cheng Z, Ding H. Nitric oxide reversibly binds the reduced [2Fe-2S] cluster in mitochondrial outer membrane protein mitoNEET and inhibits its electron transfer activity. Front Mol Biosci 2022; 9:995421. [PMID: 36158570 PMCID: PMC9490426 DOI: 10.3389/fmolb.2022.995421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
MitoNEET is a mitochondrial outer membrane protein that regulates energy metabolism, iron homeostasis, and production of reactive oxygen species in cells. Aberrant expression of mitoNEET in tissues has been linked to type II diabetes, neurodegenerative diseases, and several types of cancer. Structurally, the N-terminal domain of mitoNEET has a single transmembrane alpha helix that anchors the protein to mitochondrial outer membrane. The C-terminal cytosolic domain of mitoNEET hosts a redox active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine and one histidine residues. Here we report that the reduced [2Fe-2S] cluster in the C-terminal cytosolic domain of mitoNEET (mitoNEET45-108) is able to bind nitric oxide (NO) without disruption of the cluster. Importantly, binding of NO at the reduced [2Fe-2S] cluster effectively inhibits the redox transition of the cluster in mitoNEET45-108. While the NO-bound [2Fe-2S] cluster in mitoNEET45-108 is stable, light excitation releases NO from the NO-bound [2Fe-2S] cluster and restores the redox transition activity of the cluster in mitoNEET45-108. The results suggest that NO may regulate the electron transfer activity of mitoNEET in mitochondrial outer membrane via reversible binding to its reduced [2Fe-2S] cluster.
Collapse
Affiliation(s)
| | | | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Tasnim H, Ding H. Electron transfer activity of the nanodisc-bound mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2022; 187:50-58. [PMID: 35609862 PMCID: PMC10693299 DOI: 10.1016/j.freeradbiomed.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
Abstract
MitoNEET is the first iron-sulfur protein found in mitochondrial outer membrane. Abnormal expression of mitoNEET in cells has been linked to several types of cancer, type II diabetes, and neurodegenerative diseases. Structurally, mitoNEET is anchored to mitochondrial outer membrane via its N-terminal single transmembrane alpha helix. The C-terminal cytosolic domain of mitoNEET binds a [2Fe-2S] cluster via three cysteine and one histidine residues. It has been shown that mitoNEET has a crucial role in energy metabolism, iron homeostasis, and free radical production in cells. However, the exact function of mitoNEET remains elusive. Previously, we reported that the C-terminal soluble domain of mitoNEET has a specific binding site for flavin mononucleotide (FMN) and can transfer electrons from FMNH2 to oxygen or ubiquinone-2 via its [2Fe-2S] cluster. Here we have constructed a hybrid protein using the N-terminal transmembrane domain of Escherichia coli YneM and the C-terminal soluble domain of human mitoNEET and assembled the hybrid protein YneM-mitoNEET into phospholipid nanodiscs. The results show that the [2Fe-S] clusters in the nanodisc-bound YneM-mitoNEET can be rapidly reduced by FMNH2 which is reduced by flavin reductase using NADH as the electron donor. Addition of lumichrome, a FMN analog, effectively inhibits the FMNH2-mediated reduction of the [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET. The reduced [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET are quickly oxidized by oxygen under aerobic conditions or by ubiquinone-10 in the nanodiscs under anaerobic conditions. Because NADH oxidation is required for cellular glycolytic activity, we propose that the mitochondrial outer membrane protein mitoNEET may promote glycolysis by transferring electrons from FMNH2 to oxygen or ubiquinone-10 in mitochondria.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
16
|
Kozłowska L, Santonen T, Duca RC, Godderis L, Jagiello K, Janasik B, Van Nieuwenhuyse A, Poels K, Puzyn T, Scheepers PTJ, Sijko M, Silva MJ, Sosnowska A, Viegas S, Verdonck J, Wąsowicz W. HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites 2022; 12:362. [PMID: 35448548 PMCID: PMC9032989 DOI: 10.3390/metabo12040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland;
| | - Radu Corneliu Duca
- Labotoire National de Santé (LNS), Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 3555 Dudelange, Luxembourg;
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Karolina Jagiello
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- Laboratoire National de Santé (LNS), Department of Health Protection, 3555 Dudelange, Luxembourg
| | - Katrien Poels
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Tomasz Puzyn
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Monika Sijko
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Dr. Ricardo Jorge (INSA), Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Anita Sosnowska
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisbon, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Wojciech Wąsowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | | | | |
Collapse
|
17
|
Inhibition of mitoNEET attenuates LPS-induced inflammation and oxidative stress. Cell Death Dis 2022; 13:127. [PMID: 35136051 PMCID: PMC8825830 DOI: 10.1038/s41419-022-04586-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
MitoNEET (mitochondrial protein containing Asn–Glu–Glu–Thr (NEET) sequence) is a 2Fe–2S cluster-containing integral membrane protein that resides in the mitochondrial outer membrane and participates in a redox-sensitive signaling and Fe–S cluster transfer. Thus, mitoNEET is a key regulator of mitochondrial oxidative capacity and iron homeostasis. Moreover, mitochondrial dysfunction and oxidative stress play critical roles in inflammatory diseases such as sepsis. Increased iron levels mediated by mitochondrial dysfunction lead to oxidative damage and generation of reactive oxygen species (ROS). Increasing evidence suggests that targeting mitoNEET to reverse mitochondrial dysfunction deserves further investigation. However, the role of mitoNEET in inflammatory diseases is unknown. Here, we investigated the mechanism of action and function of mitoNEET during lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Levels of mitoNEET protein increased during microbial or LPS-induced sepsis. Pharmacological inhibition of mitoNEET using mitoNEET ligand-1 (NL-1) decreased the levels of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in animal models of sepsis, as well as LPS-induced inflammatory responses by macrophages in vitro. Inhibition of mitoNEET using NL-1 or mitoNEET shRNA abrogated LPS-induced ROS formation and mitochondrial dysfunction. Furthermore, mitochondrial iron accumulation led to generation of LPS-induced ROS, a process blocked by NL-1 or shRNA. Taken together, these data suggest that mitoNEET could be a key therapeutic molecule that targets mitochondrial dysfunction during inflammatory diseases and sepsis.
Collapse
|
18
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
19
|
Zhang W, Tan B, Deng J, Haitao Z. Multiomics analysis of soybean meal induced marine fish enteritis in juvenile pearl gentian grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Sci Rep 2021; 11:23319. [PMID: 34857775 PMCID: PMC8640039 DOI: 10.1038/s41598-021-02278-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an important protein source, soybean products can cause intestinal inflammation and injury in many animals including human beings, particularly infants and juvenile individuals. Research in this field has been performed for terrestrial animals and fish, but still lacks integrity and systematicness. In this study, the main biological processes in the intestinal tract of marine fish juvenile pearl gentian grouper in the state of soybean meal-induced enteritis (SBMIE) were analyzed. A total of 720 groupers with an approximate initial weight of 12.5 g were randomly divided into three groups: the fish meal (FM) control group, the 20% SBM group (SBM20), and the SBM40 group (n = 4). Three iso-nitrogenous and iso-lipidic diets were prepared and fed to fish for 10 weeks. Each barrel contained a water volume of about 1 m3 in and was exposed to natural light and temperature. Results indicated that the growth and physiology of groupers fed with SBM were significantly negatively affected, with the gene expressions of intestinal structural protein abnormal. 16SrDNA high-throughput sequencing showed that the intestinal microflora played an important role in the pathogenesis of pearl gentian grouper SBMIE, which may activate a variety of pathogen pattern recognition receptors, such as toll-like receptors (TLRs), RIG-I-like receptors, and nod-like receptors. Transcriptome analysis revealed that changes of the SBMIE signaling pathway in pearl gentian groupers were conservative to some extent than that of terrestrial animals and freshwater fish. Moreover, the TLRs-nuclear factor kappa-B signaling pathway becomes activated, which played an important role in SBMIE. Meanwhile, the signal pathways related to nutrient absorption and metabolism were generally inhibited. Metabolomics analysis showed that isoflavones and saponins accounted for a large proportion in the potential biomarkers of pearl gentian grouper SBMIE, and most of the biomarkers had significantly positive or negative correlations with each other; 56 metabolites were exchanged between intestinal tissues and contents, which may play an important role in the development of enteritis, including unsaturated fatty acids, organic acids, amino acids, vitamins, small peptides, and nucleotides, etc. These results provide a basic theoretical reference for solving the intestinal issues of fish SBMIE and research of inflammatory bowel disease in mammals.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Zhang Haitao
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
21
|
Oakley K, Sterling K, Shearer J, Kim E. Controlled Protonation of [2Fe-2S] Leading to MitoNEET Analogues and Concurrent Cluster Modification. Inorg Chem 2021; 60:16074-16078. [PMID: 34672568 DOI: 10.1021/acs.inorgchem.1c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MitoNEET, a key regulatory protein in mitochondrial energy metabolism, exhibits a uniquely ligated [2Fe-2S] cluster with one histidine and three cysteines. This unique cluster has been postulated to sense the redox environment and release Fe-S cofactors under acidic pH. Reported herein is a synthetic system that shows how [2Fe-2S] clusters react with protons and rearrange their coordination geometry. The low-temperature stable, site-differentiated clusters [Fe2S2(SPh)3(CF3COO)]2- and [Fe2S2(SPh)3(py)]- have been prepared via controlled protonation below -35 °C and characterized by NMR, UV-vis, and X-ray absorption spectroscopy. Both complexes exhibit anodically shifted redox potentials compared to [Fe2S2(SPh)4]2- and convert to [Fe4S4(SPh)4]2- upon warming to room temperature. The current study provides insight into how mitoNEET releases its [2Fe-2S] in response to highly tuned acidic conditions, the chemistry of which may have further implications in Fe-S biogenesis.
Collapse
Affiliation(s)
- Kady Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kevin Sterling
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
22
|
Geldenhuys WJ, Piktel D, Moore JC, Rellick SL, Meadows E, Pinti MV, Hollander JM, Ammer AG, Martin KH, Gibson LF. Loss of the redox mitochondrial protein mitoNEET leads to mitochondrial dysfunction in B-cell acute lymphoblastic leukemia. Free Radic Biol Med 2021; 175:226-235. [PMID: 34496224 PMCID: PMC8478879 DOI: 10.1016/j.freeradbiomed.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 01/12/2023]
Abstract
B-cell acute lymphoblastic leukemia (ALL) affects both pediatric and adult patients. Chemotherapy resistant tumor cells that contribute to minimal residual disease (MRD) underlie relapse and poor clinical outcomes in a sub-set of patients. Targeting mitochondrial oxidative phosphorylation (OXPHOS) in the treatment of refractory leukemic cells is a potential novel approach to sensitizing tumor cells to existing standard of care therapeutic agents. In the current study, we have expanded our previous investigation of the mitoNEET ligand NL-1 in the treatment of ALL to interrogate the functional role of the mitochondrial outer membrane protein mitoNEET in B-cell ALL. Knockout (KO) of mitoNEET (gene: CISD1) in REH leukemic cells led to changes in mitochondrial ultra-structure and function. REH cells have significantly reduced OXPHOS capacity in the KO cells coincident with reduction in electron flow and increased reactive oxygen species. In addition, we found a decrease in lipid content in KO cells, as compared to the vector control cells was observed. Lastly, the KO of mitoNEET was associated with decreased proliferation as compared to control cells when exposed to the standard of care agent cytarabine (Ara-C). Taken together, these observations suggest that mitoNEET is essential for optimal function of mitochondria in B-cell ALL and may represent a novel anti-leukemic drug target for treatment of minimal residual disease.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA; Mitochondria Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Debbie Piktel
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA; West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Javohn C Moore
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Stephanie L Rellick
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Ethan Meadows
- Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, USA; Mitochondria Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V Pinti
- Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, USA; Mitochondria Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M Hollander
- Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, USA; Mitochondria Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Amanda G Ammer
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Karen H Martin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA; West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA; West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
23
|
Heidorn-Czarna M, Heidorn HM, Fernando S, Sanislav O, Jarmuszkiewicz W, Mutzel R, Fisher PR. Chronic Activation of AMPK Induces Mitochondrial Biogenesis through Differential Phosphorylation and Abundance of Mitochondrial Proteins in Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms222111675. [PMID: 34769115 PMCID: PMC8584165 DOI: 10.3390/ijms222111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Malgorzata Heidorn-Czarna
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-375-62-73
| | - Herbert-Michael Heidorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Sanjanie Fernando
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Rupert Mutzel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| |
Collapse
|
24
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
25
|
Zhu J, Kong W, Xie Z. Expression and Prognostic Characteristics of Ferroptosis-Related Genes in Colon Cancer. Int J Mol Sci 2021; 22:ijms22115652. [PMID: 34073365 PMCID: PMC8199073 DOI: 10.3390/ijms22115652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a new type of programmed cell death, which occurs with iron dependence. Previous studies have showed that ferroptosis plays an important regulatory role in the occurrence and development of tumors. Colon cancer is one of the major morbidities and causes of mortality in the world. This study used RNA-seq and colon cancer clinical data to explore the relationship between ferroptosis-related genes and colon cancer. Based on the fifteen prognostic ferroptosis-related genes, two molecular subgroups of colon cancer were identified. Surprisingly, we also found cluster2 was characterized by lower mutation burden and expression of checkpoint genes, better survival, and higher expression of NOX1. Moreover, cluster2 has fewer BRAF mutations. We also found the expression of NOX1 is related to the status of BRAF. Finally, using 15 ferroptosis-related genes from The Cancer Genome Atlas cohort, we constructed a prognosis model, and this model may be used to predict the prognosis of patients in clinics.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pharmacology and International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
| | - Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China;
| | - Zhengwei Xie
- Department of Pharmacology and International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
- Correspondence:
| |
Collapse
|
26
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Camponeschi F, Gallo A, Piccioli M, Banci L. The long-standing relationship between paramagnetic NMR and iron-sulfur proteins: the mitoNEET example. An old method for new stories or the other way around? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:203-221. [PMID: 37904758 PMCID: PMC10539769 DOI: 10.5194/mr-2-203-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/01/2023]
Abstract
Paramagnetic NMR spectroscopy and iron-sulfur (Fe-S) proteins have maintained a synergic relationship for decades. Indeed, the hyperfine shifts with their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues have been extensively used as a fingerprint of the type and of the oxidation state of the Fe-S cluster within the protein frame. The identification of NMR signals from residues surrounding the metal cofactor is crucial for understanding the structure-function relationship in Fe-S proteins, but it is generally impaired in standard NMR experiments by paramagnetic relaxation enhancement due to the presence of the paramagnetic cluster(s). On the other hand, the availability of systems of different sizes and stabilities has, over the years, stimulated NMR spectroscopists to exploit iron-sulfur proteins as paradigmatic cases to develop experiments, models, and protocols. Here, the cluster-binding properties of human mitoNEET have been investigated by 1D and 2D 1 H diamagnetic and paramagnetic NMR, in its oxidized and reduced states. The NMR spectra of both oxidation states of mitoNEET appeared to be significantly different from those reported for previously investigated [ Fe 2 S 2 ] 2 + / + proteins. The protocol we have developed in this work conjugates spectroscopic information arising from "classical" paramagnetic NMR with an extended mapping of the signals of residues around the cluster which can be taken, even before the sequence-specific assignment is accomplished, as a fingerprint of the protein region constituting the functional site of the protein. We show how the combined use of 1D NOE experiments, 13 C direct-detected experiments, and double- and triple-resonance experiments tailored using R1 - and/or R2 -based filters significantly reduces the "blind" sphere of the protein around the paramagnetic cluster. This approach provided a detailed description of the unique electronic properties of mitoNEET, which are responsible for its biological function. Indeed, the NMR properties suggested that the specific electronic structure of the cluster possibly drives the functional properties of different [ Fe 2 S 2 ] proteins.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, 26504,
Greece
| | - Mario Piccioli
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
28
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
29
|
Currin-Ross D, Husdell L, Pierens GK, Mok NE, O'Neill SL, Schirra HJ, Brownlie JC. The Metabolic Response to Infection With Wolbachia Implicates the Insulin/Insulin-Like-Growth Factor and Hypoxia Signaling Pathways in Drosophila melanogaster. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, are best known for their ability to manipulate insect-host reproduction systems that enhance their vertical transmission within host populations. Increasingly, Wolbachia have been shown to depend on their hosts' metabolism for survival and in turn provision metabolites to their host. Wolbachia depends completely on the host for iron and as such iron has been speculated to be a fundamental aspect of Wolbachia-host interplay. However, the mechanisms by which dietary iron levels, Wolbachia, and its host interact remain to be elucidated. To understand the metabolic dependence of Wolbachia on its host, the possibility of metabolic provisioning and extraction, and the interplay with available dietary iron, we have used NMR-based metabolomics and compared metabolite profiles of Wolbachia-infected and uninfected Drosophila melanogaster flies raised on varying levels of dietary iron. We observed marked metabolite differences in the affected metabolite pathways between Wolbachia-infected and uninfected Drosophila, which were dependent on the dietary iron levels. Excess iron led to lipid accumulation, whereas iron deficiency led to changes in carbohydrate levels. This represents a major metabolic shift triggered by alterations in iron levels. Lipids, some amino acids, carboxylic acids, and nucleosides were the major metabolites altered by infection. The metabolic response to infection showed a reprogramming of the mitochondrial metabolism in the host. Based on these observations, we developed a physiological model which postulates that the host's insulin/insulin-like-growth factor pathway is depressed and the hypoxia signaling pathway is activated upon Wolbachia infection. This reprogramming leads to predominantly non-oxidative metabolism in the host, whereas Wolbachia maintains oxidative metabolism. Our data also support earlier predictions of the extraction of alanine from the host while provisioning riboflavin and ATP to the host.
Collapse
|
30
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Markin AM, Khotina VA, Zabudskaya XG, Bogatyreva AI, Starodubova AV, Ivanova E, Nikiforov NG, Orekhov AN. Disturbance of Mitochondrial Dynamics and Mitochondrial Therapies in Atherosclerosis. Life (Basel) 2021; 11:life11020165. [PMID: 33672784 PMCID: PMC7924632 DOI: 10.3390/life11020165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is associated with a wide range of chronic human disorders, including atherosclerosis and diabetes mellitus. Mitochondria are dynamic organelles that undergo constant turnover in living cells. Through the processes of mitochondrial fission and fusion, a functional population of mitochondria is maintained, that responds to the energy needs of the cell. Damaged or excessive mitochondria are degraded by mitophagy, a specialized type of autophagy. These processes are orchestrated by a number of proteins and genes, and are tightly regulated. When one or several of these processes are affected, it can lead to the accumulation of dysfunctional mitochondria, deficient energy production, increased oxidative stress and cell death—features that are described in many human disorders. While severe mitochondrial dysfunction is known to cause specific and mitochondrial disorders in humans, progressing damage of the mitochondria is also observed in a wide range of other chronic diseases, including cancer and atherosclerosis, and appears to play an important role in disease development. Therefore, correction of mitochondrial dynamics can help in developing new therapies for the treatment of these conditions. In this review, we summarize the recent knowledge on the processes of mitochondrial turnover and the proteins and genes involved in it. We provide a list of known mutations that affect mitochondrial function, and discuss the emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 117418 Moscow, Russia; (A.M.M.); (V.A.K.); (A.I.B.); (N.G.N.); (A.N.O.)
| | - Viktoria A. Khotina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 117418 Moscow, Russia; (A.M.M.); (V.A.K.); (A.I.B.); (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| | - Xenia G. Zabudskaya
- FSBI National Medical Research Center of Oncology named after N.N. Blokhin of the Ministry of Health of Russia, 115478 Moscow, Russia;
| | - Anastasia I. Bogatyreva
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 117418 Moscow, Russia; (A.M.M.); (V.A.K.); (A.I.B.); (N.G.N.); (A.N.O.)
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Ustinsky Passage, 109240 Moscow, Russia;
| | - Ekaterina Ivanova
- Department of Basic Research, Institute of Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)4159594
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 117418 Moscow, Russia; (A.M.M.); (V.A.K.); (A.I.B.); (N.G.N.); (A.N.O.)
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, 117418 Moscow, Russia
- Institute of Gene Biology, Centre of collective usage, 119344 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 117418 Moscow, Russia; (A.M.M.); (V.A.K.); (A.I.B.); (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
32
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
33
|
Furihata T, Takada S, Kakutani N, Maekawa S, Tsuda M, Matsumoto J, Mizushima W, Fukushima A, Yokota T, Enzan N, Matsushima S, Handa H, Fumoto Y, Nio-Kobayashi J, Iwanaga T, Tanaka S, Tsutsui H, Sabe H, Kinugawa S. Cardiac-specific loss of mitoNEET expression is linked with age-related heart failure. Commun Biol 2021; 4:138. [PMID: 33514783 PMCID: PMC7846856 DOI: 10.1038/s42003-021-01675-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) occurs frequently among older individuals, and dysfunction of cardiac mitochondria is often observed. We here show the cardiac-specific downregulation of a certain mitochondrial component during the chronological aging of mice, which is detrimental to the heart. MitoNEET is a mitochondrial outer membrane protein, encoded by CDGSH iron sulfur domain 1 (CISD1). Expression of mitoNEET was specifically downregulated in the heart and kidney of chronologically aged mice. Mice with a constitutive cardiac-specific deletion of CISD1 on the C57BL/6J background showed cardiac dysfunction only after 12 months of age and developed HF after 16 months; whereas irregular morphology and higher levels of reactive oxygen species in their cardiac mitochondria were observed at earlier time points. Our results suggest a possible mechanism by which cardiac mitochondria may gradually lose their integrity during natural aging, and shed light on an uncharted molecular basis closely related to age-associated HF.
Collapse
Affiliation(s)
- Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Enzan
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
34
|
Shen ZQ, Huang YL, Teng YC, Wang TW, Kao CH, Yeh CH, Tsai TF. CISD2 maintains cellular homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118954. [PMID: 33422617 DOI: 10.1016/j.bbamcr.2021.118954] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for the disease Wolfram syndrome 2 (WFS2; MIM 604928), which is an autosomal recessive disorder showing metabolic and neurodegenerative manifestations. CISD2 protein can be localized on the endoplasmic reticulum (ER), outer mitochondrial membrane (OMM) and mitochondria-associated membrane (MAM). CISD2 plays a crucial role in the regulation of cytosolic Ca2+ homeostasis, ER integrity and mitochondrial function. Here we summarize the most updated publications and discuss the central role of CISD2 in maintaining cellular homeostasis. This review mainly focuses on the following topics. Firstly, that CISD2 has been recognized as a prolongevity gene and the level of CISD2 is a key determinant of lifespan and healthspan. In mice, Cisd2 deficiency shortens lifespan and accelerates aging. Conversely, a persistently high level of Cisd2 promotes longevity. Intriguingly, exercise stimulates Cisd2 gene expression and thus, the beneficial effects offered by exercise may be partly related to Cisd2 activation. Secondly, that Cisd2 is down-regulated in a variety of tissues and organs during natural aging. Three potential mechanisms that may mediate the age-dependent decrease of Cisd2, via regulating at different levels of gene expression, are discussed. Thirdly, the relationship between CISD2 and cell survival, as well as the potential mechanisms underlying the cell death control, are discussed. Finally we discuss that, in cancers, CISD2 may functions as a double-edged sword, either suppressing or promoting cancer development. This review highlights the importance of the CISD2 in aging and age-related diseases and identifies the urgent need for the translation of available genetic evidence into pharmaceutic interventions in order to alleviate age-related disorders and extend a healthy lifespan in humans.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan; Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan; Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
35
|
Molino D, Pila-Castellanos I, Marjault HB, Dias Amoedo N, Kopp K, Rochin L, Karmi O, Sohn YS, Lines L, Hamaï A, Joly S, Radreau P, Vonderscher J, Codogno P, Giordano F, Machin P, Rossignol R, Meldrum E, Arnoult D, Ruggieri A, Nechushtai R, de Chassey B, Morel E. Chemical targeting of NEET proteins reveals their function in mitochondrial morphodynamics. EMBO Rep 2020; 21:e49019. [PMID: 33180995 DOI: 10.15252/embr.201949019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/27/2023] Open
Abstract
Several human pathologies including neurological, cardiac, infectious, cancerous, and metabolic diseases have been associated with altered mitochondria morphodynamics. Here, we identify a small organic molecule, which we named Mito-C. Mito-C is targeted to mitochondria and rapidly provokes mitochondrial network fragmentation. Biochemical analyses reveal that Mito-C is a member of a new class of heterocyclic compounds that target the NEET protein family, previously reported to regulate mitochondrial iron and ROS homeostasis. One of the NEET proteins, NAF-1, is identified as an important regulator of mitochondria morphodynamics that facilitates recruitment of DRP1 to the ER-mitochondria interface. Consistent with the observation that certain viruses modulate mitochondrial morphogenesis as a necessary part of their replication cycle, Mito-C counteracts dengue virus-induced mitochondrial network hyperfusion and represses viral replication. The newly identified chemical class including Mito-C is of therapeutic relevance for pathologies where altered mitochondria dynamics is part of disease etiology and NEET proteins are highlighted as important therapeutic targets in anti-viral research.
Collapse
Affiliation(s)
- Diana Molino
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Irene Pila-Castellanos
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France.,ENYO-Pharma, Lyon, France
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Katja Kopp
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Leila Rochin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Sud University, Saclay University, Paris, Gif-sur-Yvette, France
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yang-Sung Sohn
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | | | | | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Sud University, Saclay University, Paris, Gif-sur-Yvette, France
| | | | - Rodrigue Rossignol
- Cellomet, Genomic Functional Center, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | | | - Damien Arnoult
- Institut André Lwoff, INSERM UMRS1197, Hôpital Paul Brousse, Université Paris-Saclay, Villejuif, France
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| |
Collapse
|
36
|
Tasnim H, Landry AP, Fontenot CR, Ding H. Exploring the FMN binding site in the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2020; 156:11-19. [PMID: 32445867 PMCID: PMC7434653 DOI: 10.1016/j.freeradbiomed.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
MitoNEET is a mitochondrial outer membrane protein that hosts a redox active [2Fe-2S] cluster in the C-terminal cytosolic domain. Increasing evidence has shown that mitoNEET has an essential role in regulating energy metabolism in human cells. Previously, we reported that the [2Fe-2S] clusters in mitoNEET can be reduced by the reduced flavin mononucleotide (FMNH2) and oxidized by oxygen or ubiquinone-2, suggesting that mitoNEET may act as a novel redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone. Here, we explore the FMN binding site in mitoNEET by using FMN analogs and find that lumiflavin, like FMN, at nanomolar concentrations can mediate the redox transition of the mitoNEET [2Fe-2S] clusters in the presence of flavin reductase and NADH (100 μM) under aerobic conditions. The electron paramagnetic resonance (EPR) measurements show that both FMN and lumiflavin can dramatically change the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters and form a covalently bound complex with mitoNEET under blue light exposure, suggesting that FMN/lumiflavin has specific interactions with the [2Fe-2S] clusters in mitoNEET. In contrast, lumichrome, another FMN analog, fails to mediate the redox transition of the mitoNEET [2Fe-2S] clusters and has no effect on the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters under blue light exposure. Instead, lumichrome can effectively inhibit the FMNH2-mediated reduction of the mitoNEET [2Fe-2S] clusters, indicating that lumichrome may act as a potential inhibitor to block the electron transfer activity of mitoNEET.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
37
|
Homma T, Kobayashi S, Fujii J. Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 2020; 54:397-407. [DOI: 10.1080/10715762.2020.1780229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
38
|
Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury. Exp Neurol 2020; 327:113243. [PMID: 32057797 DOI: 10.1016/j.expneurol.2020.113243] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.
Collapse
|
39
|
Drareni K, Ballaire R, Barilla S, Mathew MJ, Toubal A, Fan R, Liang N, Chollet C, Huang Z, Kondili M, Foufelle F, Soprani A, Roussel R, Gautier JF, Alzaid F, Treuter E, Venteclef N. GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Rep 2019; 24:2957-2971.e6. [PMID: 30208320 PMCID: PMC6153369 DOI: 10.1016/j.celrep.2018.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic white adipose tissue (WAT) represents a maladaptive mechanism linked to the risk for developing type 2 diabetes in humans. However, the molecular events that predispose WAT to hypertrophy are poorly defined. Here, we demonstrate that adipocyte hypertrophy is triggered by loss of the corepressor GPS2 during obesity. Adipocyte-specific GPS2 deficiency in mice (GPS2 AKO) causes adipocyte hypertrophy, inflammation, and mitochondrial dysfunction during surplus energy. This phenotype is driven by HIF1A activation that orchestrates inadequate WAT remodeling and disrupts mitochondrial activity, which can be reversed by pharmacological or genetic HIF1A inhibition. Correlation analysis of gene expression in human adipose tissue reveals a negative relationship between GPS2 and HIF1A, adipocyte hypertrophy, and insulin resistance. We propose therefore that the obesity-associated loss of GPS2 in adipocytes predisposes for a maladaptive WAT expansion and a pro-diabetic status in mice and humans. Adipose-specific GPS2 deficiency predisposes for adipocyte hypertrophy Loss of GPS2 triggers transcriptional activation of HIF1A pathways Deregulation of GPS2-HIF1A interplay provokes disrupted mitochondrial activity GPS2 and HIF1A levels are negatively correlated in human adipose tissue
Collapse
Affiliation(s)
- Karima Drareni
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Raphaëlle Ballaire
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Inovarion, 75013 Paris, France
| | - Serena Barilla
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Amine Toubal
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Rongrong Fan
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Ning Liang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Catherine Chollet
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Zhiqiang Huang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Maria Kondili
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fabienne Foufelle
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Antoine Soprani
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, Paris, France
| | - Ronan Roussel
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Jean-François Gautier
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Lariboisière Hospital, Department of Diabetes, Clinical Investigation Centre (CIC-9504), University Paris-Diderot, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Fawaz Alzaid
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Eckardt Treuter
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden.
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.
| |
Collapse
|
40
|
Abstract
This work demonstrates that the outer mitochondrial-anchored [2Fe-2S] mitoNEET is able to bind within the central cavity of the voltage-dependent anion channel (VDAC) and regulate its gating in a redox-dependent manner. These findings have implications for ferroptosis, apoptosis, and iron metabolism by linking VDAC function, mitoNEET, and the redox environment of the cell. Furthermore, these findings introduce a potential player to the many mechanisms that may alter VDAC’s governance in times of homeostasis or strife. MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson’s diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a “governator” sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC’s flow of metabolites.
Collapse
|
41
|
Wang Y, Lee J, Ding H. Light-induced release of nitric oxide from the nitric oxide-bound CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2. Nitric Oxide 2019; 89:96-103. [PMID: 31150776 DOI: 10.1016/j.niox.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
Abstract
Human mitochondrial matrix protein Miner2 hosts two [2Fe-2S] clusters via two CDGSH (Cys-Asp-Gly-Ser-His) motifs. Unlike other iron-sulfur clusters in proteins, the reduced CDGSH-type [2Fe-2S] clusters in Miner2 are able to bind nitric oxide (NO) and form stable NO-bound [2Fe-2S] clusters without disruption of the clusters. Here we report that the NO-bound Miner2 [2Fe-2S] clusters can quickly release NO upon the visible light excitation. The UV-visible and Electron Paramagnetic Resonance (EPR) measurements show that the NO-bound Miner2 [2Fe-2S] clusters are converted to the reduced Miner2 [2Fe-2S] clusters upon the light excitation under anaerobic conditions, suggesting that NO binding in the reduced Miner2 [2Fe-2S] clusters is reversible. Additional studies reveal that binding of NO effectively inhibits the redox transition of the Miner2 [2Fe-2S] clusters, indicating that NO may modulate the physiological activity of Miner2 in mitochondria by directly binding to the CDGSH-type [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jeonghoon Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
42
|
Vigano MA, Bieli D, Schaefer JV, Jakob RP, Matsuda S, Maier T, Plückthun A, Affolter M. DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations. Biol Open 2018; 7:bio.036749. [PMID: 30237292 PMCID: PMC6262872 DOI: 10.1242/bio.036749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the last few years, protein-based affinity reagents have proven very helpful in cell and developmental biology. While many of these versatile small proteins can be expressed both in the intracellular and extracellular milieu in cultured cells and in living organisms, they can also be functionalized by fusing them to different protein domains in order to regulate or modulate their target proteins in diverse manners. For example, protein binders have been employed to degrade, trap, localize or enzymatically modify specific target proteins. Whereas binders to many endogenous proteins or small protein tags have been generated, several affinity reagents against fluorescent proteins have also been created and used to manipulate target proteins tagged with the corresponding fluorescent protein. Both of these approaches have resulted in improved methods for cell biological and developmental studies. While binders against GFP and mCherry have been previously isolated and validated, we now report the generation and utilization of designed ankyrin repeat proteins (DARPins) against the monomeric teal fluorescent protein 1 (mTFP1). Here we use the generated DARPins to delocalize Rab proteins to the nuclear compartment, in which they cannot fulfil their regular functions anymore. In the future, such manipulations might enable the production of acute loss-of-function phenotypes in different cell types or in living organisms based on direct protein manipulation rather than on genetic loss-of-function analyses. Summary: Structural characterization of two novel DARPins (designed ankyrin repeat proteins) recognizing the monomeric teal fluorescent protein 1 (mTFP1) and their functionalization for protein manipulation strategies in cultured cells and potentially in living organisms.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Roman P Jakob
- Structural Biology and Biophysics, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Timm Maier
- Structural Biology and Biophysics, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Li X, Wang Y, Tan G, Lyu J, Ding H. Electron transfer kinetics of the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2018; 121:98-104. [PMID: 29704621 DOI: 10.1016/j.freeradbiomed.2018.04.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/21/2018] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that the mitochondrial outer membrane protein mitoNEET is a key regulator of energy metabolism, iron homeostasis, and production of reactive oxygen species in mitochondria. Previously, we reported that mitoNEET is a redox enzyme that catalyzes electron transfer from the reduced flavin mononucleotide (FMNH2) to oxygen or ubiquinone via its unique [2Fe-2S] clusters. Here, we explore the reduction and oxidation kinetics of the mitoNEET [2Fe-2S] clusters under anaerobic and aerobic conditions. We find that the mitoNEET [2Fe-2S] clusters are rapidly reduced by a catalytic amount of FMNH2 which is reduced by flavin reductase and an equivalent amount of NADH under anaerobic conditions. When the reduced mitoNEET [2Fe-2S] clusters are exposed to air, the [2Fe-2S] clusters are slowly oxidized by oxygen at a rate constant of about 6.0 M-1 s-1. Compared with oxygen, ubiquinone-2 has a much higher activity to oxidize the reduced mitoNEET [2Fe-2S] clusters at a rate constant of about 3.0 × 103 M-1 s-1 under anaerobic conditions. Under aerobic conditions, the mitoNEET [2Fe-2S] clusters can still be reduced by FMNH2 in the presence of flavin reductase and excess NADH. However, when NADH is completely consumed, the reduced mitoNEET [2Fe-2S] clusters are gradually oxidized by oxygen. Addition of ubiquinone-2 also rapidly oxidizes the pre-reduced mitoNEET [2Fe-2S] clusters and effectively prevents the FMNH2-mediated reduction of the mitoNEET [2Fe-2S] clusters under aerobic conditions. The results suggest that ubiquinone may act as an intrinsic oxidant of the reduced mitoNEET [2Fe-2S] clusters in mitochondria under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Xiaokang Li
- Laboratory of Molecular Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yiming Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianxin Lyu
- Laboratory of Molecular Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
44
|
Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes. Neuropharmacology 2018; 135:431-443. [PMID: 29578037 DOI: 10.1016/j.neuropharm.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immunity. Lastly, PPF and PIO have therapeutic potential to ameliorate cocaine-mediated dysregulation of astrocyte antiviral immunity possibly via a myriad of protective actions including decreases in reactive phenotype and damaging immune factors.
Collapse
|
45
|
Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev 2018; 19:406-420. [PMID: 29243339 DOI: 10.1111/obr.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Adipose tissue plays a significant role in whole body energy homeostasis. Obesity-associated diabetes, fatty liver and metabolic syndrome are closely linked to adipose stress and dysfunction. Genetic predisposition, overeating and physical inactivity influence the expansion of adipose tissues. Under conditions of constant energy surplus, adipocytes become hypertrophic and adipose tissues undergo hyperplasia so as to increase their lipid storage capacity, thereby keeping circulating blood glucose and fatty acids below toxic levels. Nonetheless, adipocytes have a saturation point where they lose capacity to store more lipids. At this stage, when adipocytes are fully lipid-engorged, they express stress signals. Adipose depots (particularly visceral compartments) from obese individuals with a severe metabolic phenotype are characterized by the high proportion of hypertrophic adipocytes. This review focuses on the mechanisms of adipocyte enlargement in relation to adipose fatty acid and cholesterol metabolism, and considers how this may be related to adipose dysfunction.
Collapse
Affiliation(s)
- F Haczeyni
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| | - K S Bell-Anderson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - G C Farrell
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
46
|
The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease. J Biol Inorg Chem 2018; 23:599-612. [PMID: 29435647 PMCID: PMC6006223 DOI: 10.1007/s00775-018-1538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Collapse
|
47
|
|
48
|
Geldenhuys WJ, Benkovic SA, Lin L, Yonutas HM, Crish SD, Sullivan PG, Darvesh AS, Brown CM, Richardson JR. MitoNEET (CISD1) Knockout Mice Show Signs of Striatal Mitochondrial Dysfunction and a Parkinson's Disease Phenotype. ACS Chem Neurosci 2017; 8:2759-2765. [PMID: 28880525 DOI: 10.1021/acschemneuro.7b00287] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is thought to play a significant role in neurodegeneration observed in Parkinson's disease (PD), yet the mechanisms underlying this pathology remain unclear. Here, we demonstrate that loss of mitoNEET (CISD1), an iron-sulfur containing protein that regulates mitochondrial bioenergetics, results in mitochondrial dysfunction and loss of striatal dopamine and tyrosine hydroxylase. Mitochondria isolated from mice lacking mitoNEET were dysfunctional as revealed by elevated reactive oxygen species (ROS) and reduced capacity to produce ATP. Gait analysis revealed a shortened stride length and decreased rotarod performance in knockout mice, consistent with the loss of striatal dopamine. Together, these data suggest that mitoNEET KO mice exhibit many of the characteristics of early neurodegeneration in PD and may provide a novel drug discovery platform to evaluate compounds for enhancing mitochondrial function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Werner J. Geldenhuys
- Department
of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stanley A. Benkovic
- Department
of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Li Lin
- Department
of Pharmaceutical Sciences and Center for Neurodegenerative Disease
and Aging, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio 44272, United States
| | - Heather M. Yonutas
- Department
of Neuroscience; University of Kentucky Chandler College of Medicine, Lexington, Kentucky 40536, United States
| | - Samuel D. Crish
- Department
of Pharmaceutical Sciences and Center for Neurodegenerative Disease
and Aging, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio 44272, United States
| | - Patrick G. Sullivan
- Department
of Neuroscience; University of Kentucky Chandler College of Medicine, Lexington, Kentucky 40536, United States
| | - Altaf S. Darvesh
- Department
of Pharmaceutical Sciences and Center for Neurodegenerative Disease
and Aging, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio 44272, United States
| | - Candice M. Brown
- Department
of Microbiology, Immunology, and Cell Biology; School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jason R. Richardson
- Department
of Pharmaceutical Sciences and Center for Neurodegenerative Disease
and Aging, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio 44272, United States
| |
Collapse
|
49
|
Structure of the human monomeric NEET protein MiNT and its role in regulating iron and reactive oxygen species in cancer cells. Proc Natl Acad Sci U S A 2017; 115:272-277. [PMID: 29259115 DOI: 10.1073/pnas.1715842115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The NEET family is a relatively new class of three related [2Fe-2S] proteins (CISD1-3), important in human health and disease. While there has been growing interest in the homodimeric gene products of CISD1 (mitoNEET) and CISD2 (NAF-1), the importance of the inner mitochondrial CISD3 protein has only recently been recognized in cancer. The CISD3 gene encodes for a monomeric protein that contains two [2Fe-2S] CDGSH motifs, which we term mitochondrial inner NEET protein (MiNT). It folds with a pseudosymmetrical fold that provides a hydrophobic motif on one side and a relatively hydrophilic surface on the diametrically opposed surface. Interestingly, as shown by molecular dynamics simulation, the protein displays distinct asymmetrical backbone motions, unlike its homodimeric counterparts that face the cytosolic side of the outer mitochondrial membrane/endoplasmic reticulum (ER). However, like its counterparts, our biological studies indicate that knockdown of MiNT leads to increased accumulation of mitochondrial labile iron, as well as increased mitochondrial reactive oxygen production. Taken together, our study suggests that the MiNT protein functions in the same pathway as its homodimeric counterparts (mitoNEET and NAF-1), and could be a key player in this pathway within the mitochondria. As such, it represents a target for anticancer or antidiabetic drug development.
Collapse
|