1
|
Zhang X, Huang L, Li C, Yang J, Duan F, Su Q, Zhang Y, Kou M, Zhou X, Guo L, Chen S, Niu Y, Li Z, Ou S, Zhang M, Cheng KKY, Wu J, Xu X, Lian Q. Gene therapy prevents onset of mitochondrial cardiomyopathy in neonatal mice with Ndufs6 deficiency. Cell Death Discov 2025; 11:249. [PMID: 40399258 PMCID: PMC12095822 DOI: 10.1038/s41420-025-02524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025] Open
Abstract
Mutations in genes affecting mitochondrial complex I (CI) can lead to mitochondrial cardiomyopathy (MCM) yet no effective treatment. This study sought to determine whether adeno-associated virus 9 (AAV9)-based gene therapy could prevent or rescue Ndufs6 deficiency-induced MCM at different disease stages. Using Ndufs6gt/gt mice to mimic MCM, cardiac dysfunction was evident at week 4 post-birth, showing reduced ejection fraction, CI activity, increased fibrosis, mitochondrial fission, and disrupted cristae. Neonatal and adult mice were intravenously given AAV9-hNdufs6 (1e14 vg kg-1). AAV9-hNdufs6 therapy effectively prevented neonatal mice's cardiac dysfunction onset, preserving CI activity and cristae structure for 11 months. In contrast, therapy in adult mice post-disease onset failed to reverse or halt progression of heart dilation and failure after 3 months, showing mitochondrial abnormalities and cardiomyocyte apoptosis. Mechanistically, adult mouse Kupffer cells demonstrated enhanced phagocytic capabilities compared to neonatal mice, with higher expression levels of AAV9 cell surface receptors observed in neonatal mouse hearts, rendering neonatal mice more responsive to AAV9-mediated gene therapy for heart tissue. Additionally, AAV9-hNdufs6 gene therapy initiated at an early stage increased Ndufs6 expression in cardiac tissue, preserved mitochondrial structure and function, prevented cardiomyocyte fibrosis through modulation of the AMPK/Drp1 signaling pathway. In conclusion, early intervention with AAV9-hNdufs6 gene therapy can effectively prevent the onset of MCM, but intervention after disease onset has limited efficacy.
Collapse
Affiliation(s)
- Xiaoxian Zhang
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li Huang
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Pharmacy, Shenzhen Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Cheng Li
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jinjuan Yang
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Fuyu Duan
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiang Su
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Kou
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoya Zhou
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liyan Guo
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Shaoxiang Chen
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yongxia Niu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziyue Li
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Sihua Ou
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Min Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jianlong Wu
- Department of Pharmacy, Shenzhen Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qizhou Lian
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology; CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Center for Translational Stem Cell Biology, Hong Kong, and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Branco Leote RJ, Sanz CG, Diculescu VC, Barsan MM. Electrochemical assay for the quantification of anticancer drugs and their inhibition mechanism. Methods 2025; 241:13-23. [PMID: 40345605 DOI: 10.1016/j.ymeth.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025] Open
Abstract
Overexpression of pyruvate kinase (PyK) is linked to many kinds of malignant tumors, representing therefore one of the most promising therapeutic targets for cancer treatment. Inhibition of PyK slows down tumor growth or causes tumor cell death, minimizing cancer cell proliferation, and understanding inhibitor mechanism of action can significantly improve cancer therapy. The present work describes the use of an amperometric bienzymatic biosensor, based on PyK and pyruvate oxidase (PyOx), in enzyme inhibition studies of four kinase inhibitors, CPG77675, Nilotinib, Ruxolitinib, Cerdulatinib. Their inhibition mechanism is studied and discussed in detail, with a thorough evaluation of their enzyme-inhibitor complex binding constants (Ki) and the inhibitor concentration required for 50% inhibition (IC50), employing standard inhibition procedure graphical methods. The biosensor is successfully applied for the quantification of the inhibitors by fixed potential amperometry, with excellent detection limit values in the pM range. It is the first detection method reported for the anticancer drugs CPG77675 and Cerdulatinib. The electrochemical assay based on the biosensor brings several advantages over the available assay kits for high-throughput screening (HTS) of kinase inhibitors, namely: low cost, easy operability and robustness demonstrated by biosensor high reproducibility and both operational and storage stability, offering an opportunity to discover new inhibitors and optimize their therapeutic index.
Collapse
Affiliation(s)
- Ricardo Jose Branco Leote
- National Institute of Materials Physics (NIMP), Str. Atomistilor 405A, 077125 Măgurele, Romania; Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Măgurele, Romania
| | - Caroline G Sanz
- National Institute of Materials Physics (NIMP), Str. Atomistilor 405A, 077125 Măgurele, Romania
| | - Victor C Diculescu
- National Institute of Materials Physics (NIMP), Str. Atomistilor 405A, 077125 Măgurele, Romania
| | - Madalina Maria Barsan
- National Institute of Materials Physics (NIMP), Str. Atomistilor 405A, 077125 Măgurele, Romania.
| |
Collapse
|
3
|
Upadhyay S, Bhardwaj M, Kumar SP, Khan S, Kumar A, Hassan MI. Impact of Cancer-Associated PKM2 Mutations on Enzyme Activity and Allosteric Regulation: Structural and Functional Insights into Metabolic Reprogramming. Biochemistry 2025; 64:1463-1475. [PMID: 40080100 DOI: 10.1021/acs.biochem.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Mammalian pyruvate kinase M2 (PKM2) is a key regulator of glycolysis and is highly expressed in proliferative tissues including tumors. Mutations in PKM2 have been identified in various cancers, but their effects on enzyme activity and regulation are not fully understood. This study investigates the structural and functional effects of cancer-associated PKM2 mutations on enzyme kinetics, allosteric regulation, and oligomerization. Using computational modeling, X-ray crystallography, and biochemical assays, we demonstrated how these mutations impact PKM2 activity, substrate binding, and allosteric activation via fructose-1,6-bisphosphate (FBP), contributing to altered enzyme function. In this study, we characterized four cancer-associated PKM2 mutations (P403A, C474S, R516C, and L144P) using computational, structural, and biochemical approaches. Computational modeling revealed disruptions in allosteric signaling pathways, particularly affecting the communication between regulatory sites and the active site. X-ray crystallography demonstrated local conformational changes in the hinge and FBP-binding regions, leading to a shift from the active tetrameric state to a less active dimeric state, particularly in the C474S and R516C mutants. The mutants exhibited reduced maximal velocity, reduced substrate affinity, and altered activation by the allosteric activator fructose-1,6-bisphosphate (FBP). Under alkaline pH conditions, mimicking the tumor microenvironment, these mutations further destabilized the PKM2 oligomeric state, favoring the formation of lower-order species. Our findings suggest that PKM2 is highly sensitive to mutations, and these alterations may contribute to metabolic reprogramming in cancer cells by impairing its enzymatic regulation.
Collapse
Affiliation(s)
- Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Mohit Bhardwaj
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Shumayila Khan
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Ashwani Kumar
- Macromolecular Crystallography Section, Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
4
|
Wang Y, Xu N, Ndzie Noah ML, Chen L, Zhan X. Pyruvate Kinase M1/2 Proteoformics for Accurate Insights into Energy Metabolism Abnormity to Promote the Overall Management of Ovarian Cancer Towards Predictive, Preventive, and Personalized Medicine Approaches. Metabolites 2025; 15:203. [PMID: 40137167 PMCID: PMC11944880 DOI: 10.3390/metabo15030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ovarian cancer (OC) is a global health problem that frequently presents at advanced stages, is predisposed to recurrence, readily develops resistance to platinum-based drugs, and has a low survival rate. Predictive, preventive, and personalized medicine (PPPM/3PM) offers an integrated solution with the use of genetic, proteomic, and metabolic biomarkers to identify high-risk individuals for early detection. Metabolic reprogramming is one of the key strategies employed by tumor cells to adapt to the microenvironment and support unlimited proliferation. Pyruvate kinases M1 and M2 (PKM1/2) are encoded by the PKM gene, a pivotal enzyme in the last step of the glycolytic pathway, which is at the crossroads of aerobic oxidation and the Warburg effect to serve as a potential regulator of glucose metabolism and influence cellular energy production and metabolic reprogramming. Commonly, the ratio of PKM1-to-PKM2 is changed in tumors compared to normal controls, and PKM2 is highly expressed in OC to induce a high glycolysis rate and participate in the malignant invasion and metastatic characteristics of cancer cells with epithelial/mesenchymal transition (EMT). PKM2 inhibitors suppress the migration and growth of OC cells by interfering with the Warburg effect. Proteoforms are the final structural and functional forms of a gene/protein, and the canonical protein PKM contains all proteoforms encoded by the same PKM gene. The complexity of PKM can be elucidated by proteoformics. The OC-specific PKM proteoform might represent a specific target for therapeutic interventions against OC. In the framework of PPPM/3PM, the OC-specific PKM proteoform might be the early warning and prognosis biomarker. It is important to clarify the molecular mechanisms of PKM proteoforms in cancer metabolism. This review analyzes the expression, function, and molecular mechanisms of PKM proteoforms in OC, which help identify specific biomarkers for OC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Department of Gynecology, Gaotang County Medical Center, Liaocheng 252800, China
| | - Nuo Xu
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Marie Louise Ndzie Noah
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| | - Xianquan Zhan
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| |
Collapse
|
5
|
Zhu Y, Gao L, Zhang J, Li M, Zhou J, Zhou J. Extracellular vesicle-packaged PKM2 from endometriotic stromal cells promotes endometrial collagen I deposition by inhibiting autophagy in endometriosis. Cell Signal 2025; 127:111523. [PMID: 39586523 DOI: 10.1016/j.cellsig.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Aberrant endometrial collagen I deposition during the implantation window impairs endometrial stromal cell (ESC) decidualization, which may contribute to lower pregnancy rate in endometriosis (EMs) patients with in vitro fertilization (IVF) treatment. However, the underlying mechanism of eutopic aberrant endometrium collagen I deposition in EMs remains unclear. In this study, we found increased endometrial collagen I and defective decidualization in the mid-secretory phase of EMs patients, while the level of eutopic ESCs' autophagy was decreased, which was an important mechanism of intracellular collagen degradation. Lower ESCs' autophagy level may cause the endometrial collagen I deposition in EMs. Furthermore, in vivo and in vitro studies showed that the extracellular vesicles derived from the ectopic ESCs of EMs patients (EMs-EVs) encapsulated higher PKM2 inhibited autophagy of the ESCs accompanied by an increase of collagen I. We also found that the constructed EMs-EVsAd-PKM2 with PKM2 overexpression inhibited ESCs' autophagy by activating the Akt/mTOR signaling pathway. And the expressions of PKM2, p-Akt and p-mTOR were also increased in the endometrium of EMs patients. Collectively, these data showed that EMs-EVs delivering PKM2 inhibited autophagy inducing aberrant endometrial collagen I deposition via the Akt/mTOR signaling pathway to impair decidualization, which provided a potential therapeutic target for improving the IVF pregnancy rate in EMs patients.
Collapse
Affiliation(s)
- Yuan Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liang Gao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Jingyu Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengyun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianjun Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Liu L, Yao Z, Zhang H, Wu C, Guo X, Lin Y, Zhang H, Zeng C, Bai X, Cai D, Lai P. Deapi-platycodin D3 attenuates osteoarthritis development via suppression of PTP1B. J Bone Miner Res 2024; 39:1673-1687. [PMID: 39298571 DOI: 10.1093/jbmr/zjae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Dysregulated chondrocyte metabolism is an essential risk factor for osteoarthritis (OA) progression. Maintaining cartilage homeostasis represents a promising therapeutic strategy for the treatment of OA. However, no effective disease-modifying therapy is currently available to OA patients. To discover potential novel drugs for OA, we screened a small-molecule natural product drug library and identified deapi-platycodin D3 (D-PDD3), which was subsequently tested for its effect on extracellular matrix (ECM) properties and on OA progression. We found that D-PDD3 promoted the generation of ECM components in cultured chondrocytes and cartilage explants and that intra-articular injection of D-PDD3 delayed disease progression in a trauma-induced mouse model of OA. To uncover the underlying molecular mechanisms supporting these observed functions of D-PDD3, we explored the targets of D-PDD3 via screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry. The results suggested that D-PDD3 targeted tyrosine-protein phosphatase non-receptor type 1 (PTP1B), deletion of which restored chondrocyte homeostasis and markedly attenuated destabilization of the medial meniscus induced OA. Further cellular and molecular analyses showed that D-PDD3 maintained cartilage homeostasis by directly binding to PTP1B and consequently suppressing the PKM2/AMPK pathway. These findings demonstrated that D-PDD3 was a potential therapeutic drug for the treatment of OA and that PTP1B served as a protein target for the development of drugs to treat OA. This study provided significant insights into the development of therapeutics for OA treatment, which, in turn, helped to improve the quality of life of OA patients and to reduce the health and economic burden.
Collapse
Affiliation(s)
- Liangliang Liu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zihao Yao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunyu Wu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiongtian Guo
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhi Lin
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
TANG C, JIN Y, ZHAO P, TIAN L, LI H, YANG C, ZHONG R, LIU J, MA L, CHENG Y. [PKM1 Regulates the Expression of Autophagy and Neuroendocrine Markers
in Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:645-653. [PMID: 39492579 PMCID: PMC11534549 DOI: 10.3779/j.issn.1009-3419.2024.102.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is known as recalcitrant cancer with high malignancy and heterogeneity. Immunotherapy has changed the treatment pattern of extensive-disease SCLC (ED-SCLC), but the beneficiary population is limited. Therefore, exploring new therapeutic strategies is an urgent clinical problem to be solved for SCLC. SCLC is characterized by highly active glycolytic metabolism and pyruvate kinase M1 (PKM1) is one of the isozymes of PK, an important rate-limiting enzyme in glycolysis pathway. Previous studies have shown that PKM1 is related to autophagy and drug sensitivity, however, how PKM1 regulates drug sensitivity in SCLC and its mechanism remain unclear. The aim of this study was to investigate the biological functions of PKM1 in SCLC, including its effects on proliferation, migration, autophagy, drug sensitivity, and expression of neuroendocrine (NE)-related markers in SCLC. METHODS Western blot was used to detect the expression level of PKM1 in SCLC cells. PKM1 gene-overexpressed SCLC cell lines were constructed by stable lentivirus transfection. Proliferation of cells and drug sensitivity were detected by MTT, and migration ability of cells was determined by Transwell. The level of autophagy was detected by flow cytometry. Western blot was used to determine the expression levels of NE-related proteins. RESULTS PKM1 was differentially expressed among various SCLC cell lines, and was lower in H1092 cells (P<0.01). Compared with the control group, there was no significant difference in proliferation level of PKM1 overexpressing H1092 cell, but the migration ability was significantly increased (P<0.001), the drug sensitivity was reduced, and the level of autophagy was inhibited (P<0.001). Additionally, overexpression of PKM1 could upregulate the expression of non-neuroendocrine (non-NE)-related proteins (P<0.01) and decrease the expression of NE-related proteins (P<0.01). CONCLUSIONS PKM1 was differentially expressed in SCLC cell lines, and high expression of PKM1 did not affect the proliferation, but affected the migration of SCLC cells. PKM1 might affect drug sensitivity by inhibiting autophagy and regulating the expression of NE markers. These results provide a theoretical basis for exploring the role of PKM1 in SCLC.
Collapse
|
8
|
Jin C, Hu W, Wang Y, Wu H, Zeng S, Ying M, Hu X. Deciphering the interaction between PKM2 and the built-in thermodynamic properties of the glycolytic pathway in cancer cells. J Biol Chem 2024; 300:107648. [PMID: 39121998 PMCID: PMC11402776 DOI: 10.1016/j.jbc.2024.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes in the ΔGs of the two reactions cause the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Hu
- Center for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Yuqi Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Liu Y, Kwok W, Yoon H, Ryu JC, Stevens P, Hawkinson TR, Shedlock CJ, Ribas RA, Medina T, Keohane SB, Scharre D, Bruschweiler-Li L, Bruschweiler R, Gaultier A, Obrietan K, Sun RC, Yoon SO. Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1. J Neurosci 2024; 44:e1563232024. [PMID: 38565291 PMCID: PMC11097271 DOI: 10.1523/jneurosci.1563-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Witty Kwok
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Hyojung Yoon
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210
| | - Tara R Hawkinson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Cameron J Shedlock
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Roberto A Ribas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Terrymar Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Shannon B Keohane
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Douglas Scharre
- Department of Neurology, The Ohio State University, Columbus, Ohio 43210
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Rafael Bruschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, 22908
| | - Karl Obrietan
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
10
|
Das R, Pulugu P, Singh AA, Chatterjee DR, Baviskar S, Vyas H, Behera SK, Srivastava A, Kumar H, Shard A. Mechanistic Investigation of Thiazole-Based Pyruvate Kinase M2 Inhibitor Causing Tumor Regression in Triple-Negative Breast Cancer. J Med Chem 2024; 67:3339-3357. [PMID: 38408027 DOI: 10.1021/acs.jmedchem.3c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a deadly breast cancer with a poor prognosis. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, is abnormally highly expressed in TNBC. Overexpressed PKM2 amplifies glucose uptake, enhances lactate production, and suppresses autophagy, thereby expediting the progression of oncogenic processes. A high mortality rate demands novel chemotherapeutic regimens at once. Herein, we report the rational development of an imidazopyridine-based thiazole derivative 7d as an anticancer agent inhibiting PKM2. Nanomolar range PKM2 inhibitors with favorable drug-like properties emerged through enzyme assays. Experiments on two-dimensional (2D)/three-dimensional (3D) cell cultures, lactate release assay, surface plasmon resonance (SPR), and quantitative real-time polymerase chain reaction (qRT-PCR) validated 7d preclinically. In vivo, 7d outperformed lapatinib in tumor regression. This investigation introduces a lead-based approach characterized by its clear-cut chemistry and robust efficacy in designing an exceptionally potent inhibitor targeting PKM2, with a focus on combating TNBC.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Priyanka Pulugu
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, (NIPER-A) National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Shraddha Baviskar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Het Vyas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, (NIPER-A) National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
11
|
Wang AH, Ma HY, Yi YL, Zhu SJ, Yu ZW, Zhu J, Mei S, Bahetibike S, Lu YQ, Huang LT, Yang RY, Rui-Wang, Xiao SL, Qi R. Oleanolic acid derivative alleviates cardiac fibrosis through inhibiting PTP1B activity and regulating AMPK/TGF-β/Smads pathway. Eur J Pharmacol 2023; 960:176116. [PMID: 38059443 DOI: 10.1016/j.ejphar.2023.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-β/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-β/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-β/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- An-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Hao-Yue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yan-Liang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Su-Jie Zhu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Zhe-Wei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Si Mei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shamuha Bahetibike
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - You-Qun Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Li-Ting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ruo-Yao Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rui-Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Su-Long Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
12
|
Li Y, Liu T, Wang X, Jia Y, Cui H. Autophagy and Glycometabolic Reprograming in the Malignant Progression of Lung Cancer: A Review. Technol Cancer Res Treat 2023; 22:15330338231190545. [PMID: 37605558 PMCID: PMC10467373 DOI: 10.1177/15330338231190545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.
Collapse
Affiliation(s)
- Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tongzuo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
13
|
Demeter JB, Elshaarrawi A, Dowker‐Key PD, Bettaieb A. The emerging role of
PKM
in keratinocyte homeostasis and pathophysiology. FEBS J 2022; 290:2311-2319. [PMID: 36541050 DOI: 10.1111/febs.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Increased aerobic glycolysis in keratinocytes has been reported as a hallmark of skin diseases while its pharmacological inhibition restores keratinocyte homeostasis. Pyruvate kinase muscle (PKM) isoforms are key enzymes in the glycolytic pathway and, therefore, an attractive therapeutic target. Simon Nold and colleagues used CRISPR/Cas9-mediated gene editing to investigate the outcomes of PKM splicing perturbations and specific PKM1 or PKM2 deficiency in human HaCaT keratinocytes. Collectively, the study demonstrated different effects of PKM1 or PKM2 depletion on the reciprocal PKM isoform and on keratinocyte gene expression, metabolism and proliferation. Findings from this study provide novel insights into the role of PKM in keratinocyte homeostasis, warranting additional investigations into the underlying molecular mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Jenna B. Demeter
- Department of Nutrition The University of Tennessee Knoxville TN USA
| | - Ahmed Elshaarrawi
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
| | | | - Ahmed Bettaieb
- Department of Nutrition The University of Tennessee Knoxville TN USA
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
- Department of Biochemistry & Cellular and Molecular Biology The University of Tennessee Knoxville TN USA
| |
Collapse
|
14
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
15
|
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol 2022; 86:1216-1230. [PMID: 36330953 DOI: 10.1016/j.semcancer.2022.09.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India.
| |
Collapse
|
16
|
Correlation of Glucose Metabolism with Cancer and Intervention with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2192654. [PMID: 36276846 PMCID: PMC9586738 DOI: 10.1155/2022/2192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Cancer is a complex disease with several distinct characteristics, referred to as “cancer markers” one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.
Collapse
|
17
|
Prakasam G, Iqbal MA, Srivastava A, Bamezai RNK, Singh RK. HPV18 oncoproteins driven expression of PKM2 reprograms HeLa cell metabolism to maintain aerobic glycolysis and viability. Virusdisease 2022; 33:223-235. [PMID: 36277414 PMCID: PMC9481809 DOI: 10.1007/s13337-022-00776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The molecular basis of human papillomavirus (HPV)-mediated cellular immortalization and malignant transformation has illustrated an indispensable role of viral E6/E7-oncoproteins. However, the impact of viral-oncoproteins on the metabolic phenotype of cancer cells remains ambiguous. We showed silencing of HPV18-encoded E6/E7-oncoprotein significantly reduced glucose consumption, lactate production, ATP level and viability. Silencing of HPV18-encoded E6/E7 in HeLa cells significantly down-regulated expression and activity of HK1, HK2, LDHA, and LDHB. Interestingly, there was an increased pyruvate kinase activity due to switch in expression from PKM2 isoform to PKM1. The switch in favor of alternatively spliced isoform PKM1, was regulated by viral-E6/E7-oncoprotein by inhibiting the c-Myc/hnRNP-axis. Further, the near absence of the PKM1 protein despite an adequate amount of PKM1 mRNA in HeLa cells was due to its proteasomal degradation. Our results suggests HPV18-encoded E6/E7 driven preferential expression of PKM2 is essential to support aerobic glycolysis and cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00776-w.
Collapse
Affiliation(s)
- Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Rameshwar N. K. Bamezai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Delhi School of Public Health, University of Delhi, New Delhi, 110007 India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
18
|
Lv L, Huang RH, Li J, Xu J, Gao W. Impact of NSCLC metabolic remodeling on immunotherapy effectiveness. Biomark Res 2022; 10:66. [PMID: 36038935 PMCID: PMC9425942 DOI: 10.1186/s40364-022-00412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
It is known that metabolic reprogramming (MR) contributes to tumorigenesis through the activation of processes that support survival of cells, proliferation, and grow in the tumor microenvironment. In order to keep the tumor proliferating at a high rate, metabolic pathways must be upregulated, and tumor metabolism must be adapted to meet this requirement. Additionally, immune cells engage in metabolic remodeling to maintain body and self-health. With the advent of immunotherapy, the fate of individuals suffering from non-small cell lung cancer (NSCLC) has been transformed dramatically. MR may have a profound influence on their prognosis. The aim of this review is to summarize current research advancements in metabolic reprogramming and their impact on immunotherapy in NSCLC. Moreover, we talk about promising approaches targeting and manipulating metabolic pathways to improve cancer immunotherapy’s effectiveness in NSCLC.
Collapse
Affiliation(s)
- Lulu Lv
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiale Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
19
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
20
|
Pyruvate kinase M1 regulates butyrate metabolism in cancerous colonocytes. Sci Rep 2022; 12:8771. [PMID: 35610475 PMCID: PMC9130307 DOI: 10.1038/s41598-022-12827-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Colorectal cancer (CRC) cells shift metabolism toward aerobic glycolysis and away from using oxidative substrates such as butyrate. Pyruvate kinase M1/2 (PKM) is an enzyme that catalyzes the last step in glycolysis, which converts phosphoenolpyruvate to pyruvate. M1 and M2 are alternatively spliced isoforms of the Pkm gene. The PKM1 isoform promotes oxidative metabolism, whereas PKM2 enhances aerobic glycolysis. We hypothesize that the PKM isoforms are involved in the shift away from butyrate oxidation towards glycolysis in CRC cells. Here, we find that PKM2 is increased and PKM1 is decreased in human colorectal carcinomas as compared to non-cancerous tissue. To test whether PKM1/2 alter colonocyte metabolism, we created a knockdown of PKM2 and PKM1 in CRC cells to analyze how butyrate oxidation and glycolysis would be impacted. We report that butyrate oxidation in CRC cells is regulated by PKM1 levels, not PKM2. Decreased butyrate oxidation observed through knockdown of PKM1 and PKM2 is rescued through re-addition of PKM1. Diminished PKM1 lowered mitochondrial basal respiration and decreased mitochondrial spare capacity. We demonstrate that PKM1 suppresses glycolysis and inhibits hypoxia-inducible factor-1 alpha. These data suggest that reduced PKM1 is, in part, responsible for increased glycolysis and diminished butyrate oxidation in CRC cells.
Collapse
|
21
|
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2. J Med Chem 2022; 65:1171-1205. [PMID: 34726055 DOI: 10.1021/acs.jmedchem.1c00981] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer-tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248171, India
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Santoshkumar Patil
- Discovery Services, Syngene International Ltd., Biocon Park, SEZ, Bommasandra Industrial Area-Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
22
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
23
|
Pandey A, Yadav P, Shukla S. Unfolding the role of autophagy in the cancer metabolism. Biochem Biophys Rep 2021; 28:101158. [PMID: 34754952 PMCID: PMC8564564 DOI: 10.1016/j.bbrep.2021.101158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
24
|
Blum JE, Gheller BJ, Benvie A, Field MS, Panizza E, Vacanti NM, Berry D, Thalacker-Mercer A. Pyruvate Kinase M2 Supports Muscle Progenitor Cell Proliferation but Is Dispensable for Skeletal Muscle Regeneration after Injury. J Nutr 2021; 151:3313-3328. [PMID: 34383048 PMCID: PMC8562082 DOI: 10.1093/jn/nxab251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skeletal muscle progenitor cells (MPCs) repair damaged muscle postinjury. Pyruvate kinase M2 (PKM2) is a glycolytic enzyme (canonical activity) that can also interact with other proteins (noncanonical activity) to modify diverse cellular processes. Recent evidence links PKM2 to MPC proliferation. OBJECTIVES This study aimed to understand cellular roles for PKM2 in MPCs and the necessity of PKM2 in MPCs for muscle regeneration postinjury. METHODS Cultured, proliferating MPCs (C2C12 cells) were treated with a short hairpin RNA targeting PKM2 or small molecules that selectively affect canonical and noncanonical PKM2 activity (shikonin and TEPP-46). Cell number was measured, and RNA-sequencing and metabolic assays were used in follow-up experiments. Immunoprecipitation coupled to proteomics was used to identify binding partners of PKM2. Lastly, an MPC-specific PKM2 knockout mouse was generated and challenged with a muscle injury to determine the impact of PKM2 on regeneration. RESULTS When the noncanonical activity of PKM2 was blocked or impaired, there was an increase in reactive oxygen species concentrations (1.6-2.0-fold, P < 0.01). Blocking noncanonical PKM2 activity also increased lactate excretion (1.2-1.6-fold, P < 0.05) and suppressed mitochondrial oxygen consumption (1.3-1.6-fold, P < 0.01). Glutamate dehydrogenase 1 (GLUD1) was identified as a PKM2 binding partner and blocking noncanonical PKM2 activity increased GLUD activity (1.5-1.6-fold, P < 0.05). Mice with an MPC-specific PKM2 deletion did not demonstrate impaired muscle regeneration. CONCLUSIONS The results suggest that the noncanonical activity of PKM2 is important for MPC proliferation in vitro and demonstrate GLUD1 as a PKM2 binding partner. Because no impairments in muscle regeneration were detected in a mouse model, the endogenous environment may compensate for loss of PKM2.
Collapse
Affiliation(s)
- Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Brandon J Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Abby Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Daniel Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Hoene M, Kappler L, Kollipara L, Hu C, Irmler M, Bleher D, Hoffmann C, Beckers J, Hrabě de Angelis M, Häring HU, Birkenfeld AL, Peter A, Sickmann A, Xu G, Lehmann R, Weigert C. Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability. Mol Metab 2021; 54:101359. [PMID: 34695608 PMCID: PMC8671118 DOI: 10.1016/j.molmet.2021.101359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Liver mitochondria adapt to high-calorie intake. We investigated how exercise alters the early compensatory response of mitochondria, thus preventing fatty liver disease as a long-term consequence of overnutrition. Methods We compared the effects of a steatogenic high-energy diet (HED) for six weeks on mitochondrial metabolism of sedentary and treadmill-trained C57BL/6N mice. We applied multi-OMICs analyses to study the alterations in the proteome, transcriptome, and lipids in isolated mitochondria of liver and skeletal muscle as well as in whole tissue and examined the functional consequences by high-resolution respirometry. Results HED increased the respiratory capacity of isolated liver mitochondria, both in sedentary and in trained mice. However, proteomics analysis of the mitochondria and transcriptomics indicated that training modified the adaptation of the hepatic metabolism to HED on the level of respiratory complex I, glucose oxidation, pyruvate and acetyl-CoA metabolism, and lipogenesis. Training also counteracted the HED-induced glucose intolerance, the increase in fasting insulin, and in liver fat by lowering diacylglycerol species and c-Jun N-terminal kinase (JNK) phosphorylation in the livers of trained HED-fed mice, two mechanisms that can reverse hepatic insulin resistance. In skeletal muscle, the combination of HED and training improved the oxidative capacity to a greater extent than training alone by increasing respiration of isolated mitochondria and total mitochondrial protein content. Conclusion We provide a comprehensive insight into the early adaptations of mitochondria in the liver and skeletal muscle to HED and endurance training. Our results suggest that exercise disconnects the HED-induced increase in mitochondrial substrate oxidation from pyruvate and acetyl-CoA-driven lipid synthesis. This could contribute to the prevention of deleterious long-term effects of high fat and sugar intake on hepatic mitochondrial function and insulin sensitivity. High-energy diet promotes mitochondrial respiration in liver independent of training. High-energy diet combined with training disconnects substrate oxidation from lipid synthesis. High-energy diet combined with training reduces complex I formation in the liver. Trained skeletal muscle unburdens the liver from substrate overload. Comprehensive resource of mitochondrial adaptations to high-energy diet and training.
Collapse
Affiliation(s)
- Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Martin Irmler
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Daniel Bleher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Hoffmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Johannes Beckers
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany; Technische Universität München, Chair of Experimental Genetics, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Germany
| | - Martin Hrabě de Angelis
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany; Technische Universität München, Chair of Experimental Genetics, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany; Department of Internal Medicine IV, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
26
|
Liu H, Zhang Q, Song Y, Hao Y, Cui Y, Zhang X, Zhang X, Qin Y, Zhu G, Wang F, Dang J, Ma S, Zhang Y, Guo W, Li S, Guan F, Fan T. Long non-coding RNA SLC2A1-AS1 induced by GLI3 promotes aerobic glycolysis and progression in esophageal squamous cell carcinoma by sponging miR-378a-3p to enhance Glut1 expression. J Exp Clin Cancer Res 2021; 40:287. [PMID: 34517880 PMCID: PMC8436487 DOI: 10.1186/s13046-021-02081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that lncRNAs play pivotal roles in tumor energy metabolism; however, the detailed mechanisms of lncRNAs in the regulation of tumor glycolysis remain largely unknown. METHODS The expression of SLC2A1-AS1 was investigated by TCGA, GEO dataset and qRT-PCR. The binding of GLI3 to SLC2A1-AS1 promoter was detected by Luciferase Reporter Assay System and Ago2-RIP assay. FISH was performed to determine the localization of SLC2A1-AS1 in ESCC cells. Double Luciferase Report assay was used to investigate the interaction of miR-378a-3p with SLC2A1-AS1 and Glut1. Gain-of-function and Loss-of-function assay were performed to dissect the function of SLC2A1-AS1/miR-378a-3p/Glut1 axis in ESCC progression in vitro and in vivo. RESULTS We identified a novel lncRNA SLC2A1-AS1 in ESCC. SLC2A1-AS1 was frequently overexpressed in ESCC tissues and cells, and its overexpression was associated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Importantly, GLI3 and SLC2A1-AS1 formed a regulatory feedback loop in ESCC cells. SLC2A1-AS1 promoted cell growth in vitro and in vivo, migration and invasion, and suppressed apoptosis, leading to EMT progression and increased glycolysis in ESCC cells. SLC2A1-AS1 functioned as ceRNA for sponging miR-378a-3p, resulting in Glut1 overexpression in ESCC cells. MiR-378a-3p inhibited cell proliferation and invasion as well as induced apoptosis, resulting in reduced glycolysis, which was partly reversed by SLC2A1-AS1 or Glut1 overexpression in ESCC cells. CONCLUSION SLC2A1-AS1 plays important roles in ESCC development and progression by regulating glycolysis, and SLC2A1-AS1/miR-378a-3p/Glut1 regulatory axis may be a novel therapeutic target in terms of metabolic remodeling of ESCC patients.
Collapse
Affiliation(s)
- Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Qing Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yinsen Song
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yibin Hao
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yunxia Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yue Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guangzhao Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinghan Dang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shenglei Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Penugurti V, Khumukcham SS, Padala C, Dwivedi A, Kamireddy KR, Mukta S, Bhopal T, Manavathi B. HPIP protooncogene differentially regulates metabolic adaptation and cell fate in breast cancer cells under glucose stress via AMPK and RNF2 dependent pathways. Cancer Lett 2021; 518:243-255. [PMID: 34302919 DOI: 10.1016/j.canlet.2021.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
While cancer cells rewire metabolic pathways to sustain growth and survival under metabolic stress in solid tumors, the molecular mechanisms underlying these processes remain largely unknown. In this study, cancer cells switched from survival to death during the early to late phases of metabolic stress by employing a novel signaling switch from AMP activated protein kinase (AMPK)-Forkhead box O3 (FOXO3a)-hematopoietic PBX1-interacting protein (HPIP) to the ring finger protein 2 (RNF2)-HPIP-ubiquitin (Ub) pathway. Acute metabolic stress induced proto-oncogene HPIP expression in an AMPK-FOXO3a-dependent manner in breast cancer (BC) cells. HPIP depletion reduced cell survival and tumor formation in mouse xenografts, which was accompanied by diminished intracellular ATP levels and increased apoptosis in BC cells in response to metabolic (glucose) stress. Glutamine flux (13C-labeled) analysis further suggested that HPIP rewired glutamine metabolism by controlling the expression of the solute carrier family 1 member 5 (SLC1A5) and glutaminase (GLS) genes by acting as a coactivator of MYC to ensure cell survival upon glucose deprivation. However, in response to chronic glucose stress, HPIP was ubiquitinated by the E3-Ub ligase, RNF2, and was concomitantly degraded by the proteasome-mediated pathway, ensuring apoptosis. In support of these data, clinical analyses further indicated that elevated levels of HPIP correlated with AMPK activation in BC. Taken together, these data suggest that HPIP is a signal coordinator during metabolic stress and thus serves as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Saratchandra Singh Khumukcham
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Chiranjeevi Padala
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anju Dwivedi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Karthik Reddy Kamireddy
- Molecular and Cellular Biology Laboratory, Baylor College of Medicine, Houston, TX, United States
| | - Srinivasulu Mukta
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Triveni Bhopal
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
28
|
Dierolf JG, Watson AJ, Betts DH. Differential localization patterns of pyruvate kinase isoforms in murine naïve, formative, and primed pluripotent states. Exp Cell Res 2021; 405:112714. [PMID: 34181938 DOI: 10.1016/j.yexcr.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada.
| |
Collapse
|
29
|
Park JH, Kundu A, Lee SH, Jiang C, Lee SH, Kim YS, Kyung SY, Park SH, Kim HS. Specific Pyruvate Kinase M2 Inhibitor, Compound 3K, Induces Autophagic Cell Death through Disruption of the Glycolysis Pathway in Ovarian Cancer Cells. Int J Biol Sci 2021; 17:1895-1908. [PMID: 34131394 PMCID: PMC8193271 DOI: 10.7150/ijbs.59855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is a common cause of death among gynecological cancers. Although ovarian cancer initially responds to chemotherapy, frequent recurrence in patients remains a therapeutic challenge. Pyruvate kinase M2 (PKM2) plays a pivotal role in regulating cancer cell survival. However, its therapeutic role remains unclear. Here, we investigated the anticancer effects of compound 3K, a specific PKM2 inhibitor, on the regulation of autophagic and apoptotic pathways in SK-OV-3 (PKM2-overexpressing human ovarian adenocarcinoma cell line). The anticancer effect of compound 3K was examined using MTT and colony formation assays in SK-OV-3 cells. PKM2 expression was positively correlated with the severity of the tumor, and expression of pro-apoptotic proteins increased in SK-OV-3 cells following compound 3K treatment. Compound 3K induced AMPK activation, which was accompanied by mTOR inhibition. Additionally, this compound inhibited glycolysis, resulting in reduced proliferation of SK-OV-3 cells. Compound 3K treatment suppressed tumor progression in an in vivo xenograft model. Our findings suggest that the inhibition of PKM2 by compound 3K affected the Warburg effect and induced autophagic cell death. Therefore, use of specific PKM2 inhibitors to block the glycolytic pathway and target cancer cell metabolism represents a promising therapeutic approach for treating PKM2-overexpressing ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Irokawa H, Numasaki S, Kato S, Iwai K, Inose-Maruyama A, Ohdate T, Hwang GW, Toyama T, Watanabe T, Kuge S. Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. Biochem J 2021; 478:1453-1470. [PMID: 33749780 DOI: 10.1042/bcj20200897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulfide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n ≧ 3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared with cells expressing wild-type PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.
Collapse
Affiliation(s)
- Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Satoshi Numasaki
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shin Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kenta Iwai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Atsushi Inose-Maruyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Takumi Ohdate
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Toshihiko Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| |
Collapse
|
31
|
Chen H, Blum JE, Thalacker-Mercer A, Gu Z. Impact of the Whole Genome Duplication Event on PYK Activity and Effects of a PYK1 Mutation on Metabolism in S. cerevisiae. Front Mol Biosci 2021; 8:656461. [PMID: 33796550 PMCID: PMC8007964 DOI: 10.3389/fmolb.2021.656461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Evolution of aerobic fermentation (crabtree effect) in yeast is associated with the whole genome duplication (WGD) event, suggesting that duplication of certain genes may have altered yeast metabolism. The pyruvate kinase (PYK) gene is associated with alterations in cell metabolism, and duplicated during the WGD, generating PYK1 and PYK2. Thus, the impact of WGD on PYK activity and role of PYK in yeast metabolism were explored. Methods: PYK activity in the presence or absence of fructose-1,6-bisphosphate (FBP) was compared between pre- and post-WGD yeast. Glucose consumption, ethanol production, and oxygen consumption were measured in wildtype yeast and yeast with a T403E point mutation, which alters FBP binding affinity. Results: FBP stimulated increased PYK activity in pre-WGD yeast and in the PYK1 isoforms of post-WGD yeast, but not in the PYK2 isoforms of post-WGD yeast. Compared to wildtype, T403E mutant yeast displayed reduced glucose consumption, reduced ethanol production, and increased mitochondrial metabolism. Conclusion: The WGD event impacted the sensitivity of PYK activity to FBP. Mutations in the FBP binding domain of PYK induce metabolic shifts that favor respiration and suppress fermentation.
Collapse
Affiliation(s)
- Hong Chen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
32
|
Autophagy activation and photoreceptor survival in retinal detachment. Exp Eye Res 2021; 205:108492. [PMID: 33609513 DOI: 10.1016/j.exer.2021.108492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
We assess the effect of autophagy inhibition on photoreceptor (PR) survival during experimental retinal detachment (RD) and examine the and examine the relationship between autophagy and the expression of glycolytic enzymes HK2 and PKM2 in the retina. We find that inhibiting autophagy by genetic knock out of the autophagy activator Atg5 in rod PRs resulted in increased apoptotic and necroptotic cell death during RD, demonstrated by elevated terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, caspase 8 activity, transcript levels of Fas receptor and RIPK3 as compared to controls. The absence of autophagy in rods resulted in downregulation of hexokinase 2 and pyruvate kinase muscle isozyme 2 levels. More than 460 proteins were identified by mass spectroscopy in autophagosomes isolated from detached retinas compared with less than 150 proteins identified in autophagosomes from attached retinas. Among various cellular compartments, proteins from cytoskeleton, cytoplasm and intracellular organelles constituted a large portion of increased autophagosome contents. These proteins represent numerous biological processes, including phototransduction, cell-cell signaling, metabolism and inflammation. Our findings suggest that competent autophagy machinery is necessary for PR homeostasis and improving PR survival during periods of nutrient deprivation.
Collapse
|
33
|
Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 2021; 12:594. [PMID: 33500413 PMCID: PMC7838282 DOI: 10.1038/s41467-020-20711-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Collapse
Affiliation(s)
- Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiangyan Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
34
|
Patel MS, Mahmood S, Jung J, Rideout TC. Reprogramming of aerobic glycolysis in non-transformed mouse liver with pyruvate dehydrogenase complex deficiency. Physiol Rep 2021; 9:e14684. [PMID: 33400855 PMCID: PMC7785054 DOI: 10.14814/phy2.14684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
The Pyruvate Dehydrogenase Complex (PDC), a key enzyme in glucose metabolism, catalyzes an irreversible oxidative decarboxylation reaction of pyruvate to acetyl‐CoA, linking the cytosolic glycolytic pathway to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Earlier we reported a down‐regulation of several key hepatic lipogenic enzymes and their upstream regulators in liver‐specific PDC‐deficient mouse (L‐PDCKO model by deleting the Pdha1 gene). In this study we investigated gene expression profiles of key glycolytic enzymes and other proteins that respond to various metabolic stresses in liver from L‐PDCKO mice. Transcripts of several, such as hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase muscle‐type 2, and lactate dehydrogenase B as well as those for the nonglycolysis‐related proteins, CD‐36, C/EBP homologous protein, and peroxisome proliferator‐activated receptor γ, were up‐regulated in L‐PDCKO liver whereas hypoxia‐induced factor‐1α, pyruvate dehydrogenase kinase 1 and Sirtuin 1 transcripts were down‐regulated. The protein levels of pyruvate kinase muscle‐type 2 and lactate dehydrogenase B were increased whereas that of lactate dehydrogenase A was decreased in PDC‐deficient mouse liver. Analysis of endoplasmic reticulum and oxidative stress indicators suggests that the L‐PDCKO liver showed evidence of the former but not the latter. These findings indicate that (i) liver‐specific PDC deficiency is sufficient to induce “aerobic glycolysis characteristic” in mouse liver, and (ii) the mechanism(s) responsible for these changes appears distinct from that which induces the Warburg effect in some cancer cells.
Collapse
Affiliation(s)
- Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saleh Mahmood
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jiwon Jung
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
35
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
36
|
Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2020; 44:101131. [PMID: 33278637 PMCID: PMC7753952 DOI: 10.1016/j.molmet.2020.101131] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Live kinase B1 (LKB1) is a tumor suppressor that is mutated in Peutz-Jeghers syndrome (PJS) and a variety of cancers. Lkb1 encodes serine-threonine kinase (STK) 11 that activates AMP-activated protein kinase (AMPK) and its 13 superfamily members, regulating multiple biological processes, such as cell polarity, cell cycle arrest, embryo development, apoptosis, and bioenergetics metabolism. Increasing evidence has highlighted that deficiency of LKB1 in cancer cells induces extensive metabolic alterations that promote tumorigenesis and development. LKB1 also participates in the maintenance of phenotypes and functions of normal cells through metabolic regulation. Scope of review Given the important role of LKB1 in metabolic regulation, we provide an overview of the association of metabolic alterations in glycolysis, aerobic oxidation, the pentose phosphate pathway (PPP), gluconeogenesis, glutamine, lipid, and serine induced by aberrant LKB1 signals in tumor progression, non-neoplastic diseases, and functions of immune cells. Major conclusions In this review, we summarize layers of evidence demonstrating that disordered metabolisms in glucose, glutamine, lipid, and serine caused by LKB1 deficiency promote carcinogenesis and non-neoplastic diseases. The metabolic reprogramming resulting from the loss of LKB1 confers cancer cells with growth or survival advantages. Nevertheless, it also causes a metabolic frangibility for LKB1-deficient cancer cells. The metabolic regulation of LKB1 also plays a vital role in maintaining cellular phenotype in the progression of non-neoplastic diseases. In addition, lipid metabolic regulation of LKB1 plays an important role in controlling the function, activity, proliferation, and differentiation of several types of immune cells. We conclude that in-depth knowledge of metabolic pathways regulated by LKB1 is conducive to identifying therapeutic targets and developing drug combinations to treat cancers and metabolic diseases and achieve immunoregulation.
Collapse
Affiliation(s)
- Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qianhui Sun
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China; School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Honglan Zhou
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
37
|
Cao Y, Lu X, Li Y, Fu J, Li H, Li X, Chang Z, Liu S. Identification of a six-gene metabolic signature predicting overall survival for patients with lung adenocarcinoma. PeerJ 2020; 8:e10320. [PMID: 33344071 PMCID: PMC7718790 DOI: 10.7717/peerj.10320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinoma (LUAD) is one of the main subtypes of lung cancer. Hundreds of metabolic genes are altered consistently in LUAD; however, their prognostic role remains to be explored. This study aimed to establish a molecular signature that can predict the prognosis in patients with LUAD based on metabolic gene expression. Methods The transcriptome expression profiles and corresponding clinical information of LUAD were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The differentially expressed genes (DEGs) between LUAD and paired non-tumor samples were identified by the Wilcoxon rank sum test. Univariate Cox regression analysis and the lasso Cox regression model were used to construct the best-prognosis molecular signature. A nomogram was established comprising the prognostic model for predicting overall survival. To validate the prognostic ability of the molecular signature and the nomogram, the Kaplan-Meier survival analysis, Cox proportional hazards model, and receiver operating characteristic analysis were used. Results The six-gene molecular signature (PFKP, PKM, TPI1, LDHA, PTGES, and TYMS) from the DEGs was constructed to predict the prognosis. The molecular signature demonstrated a robust independent prognostic ability in the training and validation sets. The nomogram including the prognostic model had a greater predictive accuracy than previous systems. Furthermore, a gene set enrichment analysis revealed several significantly enriched metabolic pathways, which suggests a correlation of the molecular signature with metabolic systems and may help explain the underlying mechanisms. Conclusions Our study identified a novel six-gene metabolic signature for LUAD prognosis prediction. The molecular signature could reflect the dysregulated metabolic microenvironment, provide potential biomarkers for predicting prognosis, and indicate potential novel metabolic molecular-targeted therapies.
Collapse
Affiliation(s)
- Yubo Cao
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, China Medical University, Shenyang, China
| | - Yue Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Fu
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulin Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziyou Chang
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Sa Liu
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int 2020; 20:523. [PMID: 33292198 PMCID: PMC7597019 DOI: 10.1186/s12935-020-01612-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pyruvate kinase is a terminal enzyme in the glycolytic pathway, where it catalyzes the conversion of phosphoenolpyruvate to pyruvate and production of ATP via substrate level phosphorylation. PKM2 is one of four isoforms of pyruvate kinase and is widely expressed in many types of tumors and associated with tumorigenesis. In addition to pyruvate kinase activity involving the metabolic pathway, increasing evidence demonstrates that PKM2 exerts a non-metabolic function in cancers. PKM2 has been shown to be translocated into nucleus, where it serves as a protein kinase to phosphorylate various protein targets and contribute to multiple physiopathological processes. We discuss the nuclear localization of PKM2, its protein kinase function and association with cancers, and regulation of PKM2 activity.
Collapse
Affiliation(s)
- Xun Chen
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Dongsheng Yu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
39
|
Zhang X, Yang J, Shi D, Cao Z. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20:363. [PMID: 32774157 PMCID: PMC7397601 DOI: 10.1186/s12935-020-01456-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor. Ten-eleven translocation (TET) protein 2 (TET2), an evolutionarily conserved dioxygenases, is reported to be involved in various malignant tumor developments. Here, we aim to investigate the effect of TET2 on NPC progress in vitro and in vivo, and its detailed underlying mechanism. Methods Real-time PCR and western blotting were used to determine the expression levels of TET1/2/3 in NPC cell lines. The effects of TET2 on NPC progression were evaluated using CCK8 and invasion assays in vitro. Proteins interacted with TET2 in NPC cells were detected by immunoprecipitation and mass spectrometry. The effects of TET2 or pyruvate kinase, muscle (PKM) on glycolysis in NPC cells were examined by detecting glucose uptake and lactate production. The effects of TET2 on NPC progression were evaluated using xenograft tumor model in vivo. Results TET2 expression was decreased in NPC cells, and TET2 overexpression inhibited proliferation and invasion of NPC cells, which is independent on TET2’s catalytic activity. In mechanism, TET2 N-terminal domain interacts with PKM in cytoplasm to prevent PKM dimers from translocating into nucleus, suppressing glycolysis in NPC cells, thereby inhibiting proliferation and invasion of NPC cells. Moreover, using xenograft tumor model, we found that TET2 knockout promoted NPC progression and decreased survival rate. However, administration with the inhibitor of PKM, shikonin, decreased the tumor volume of TET2-cas9 group, and increased the survival rate. Conclusion TET2 suppresses NPC development through interacting with PKM to inhibit glycolysis.
Collapse
Affiliation(s)
- Xixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Dong Shi
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| |
Collapse
|
40
|
Iqbal MA, Chattopadhyay S, Siddiqui FA, Ur Rehman A, Siddiqui S, Prakasam G, Khan A, Sultana S, Bamezai RN. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating EGFR-MYC-TXNIP axis: potential therapeutic implications. FEBS J 2020; 288:471-485. [PMID: 32356386 DOI: 10.1111/febs.15353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with limited treatment modalities and poor prognosis. Metabolic reprogramming in cancer is considered a hallmark of therapeutic relevance. Here, we report disruption of metabolic reprogramming in TNBC cells by silibinin via modulation of EGFR-MYC-TXNIP signaling. Metabolic assays combined with LC-MS-based metabolomics revealed inhibition of glycolysis and other key biosynthetic pathways by silibinin, to induce metabolic catastrophe in TNBC cells. Silibinin-induced metabolic suppression resulted in decreased cell biomass, proliferation, and stem cell properties. Mechanistically, we identify EGFR-MYC-TXNIP as an important regulator of TNBC metabolism and mediator of inhibitory effects of silibinin. Highlighting the clinical relevance of our observations, the analysis of METABRIC dataset revealed deregulation of EGFR-MYC-TXNIP axis in TNBC and association of EGFRhigh -MYChigh -TXNIPlow signature with aggressive glycolytic metabolism and poor disease-specific and metastasis-free survival. Importantly, combination treatment of silibinin or 2-deoxyglucose (glycolysis inhibitor) with paclitaxel synergistically inhibited proliferation of TNBC cells. Together, our results highlight the importance of EGFR-MYC-TXNIP axis in regulating TNBC metabolism, demonstrate the anti-TNBC activity of silibinin, and argue in favor of targeting metabolic vulnerabilities of TNBC, at least in combination with mainstay chemotherapeutic drugs, to effectively treat TNBC patients.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shilpi Chattopadhyay
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), New Delhi, India
| | - Farid Ahmad Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Turku Centre for Biotechnology, University of Turku and Abo Akademi, Biocity, Finland
| | - Asad Ur Rehman
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sarwat Sultana
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), New Delhi, India
| | | |
Collapse
|
41
|
Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin. Int J Mol Sci 2020; 21:ijms21051661. [PMID: 32121279 PMCID: PMC7084320 DOI: 10.3390/ijms21051661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023] Open
Abstract
In order to support uncontrolled proliferation, cancer cells need to adapt to increased energetic and biosynthetic requirements. One such adjustment is aerobic glycolysis or the Warburg effect. It is characterized by increased glucose uptake and lactate production. Curcumin, a natural compound, has been shown to interact with multiple molecules and signaling pathways in cancer cells, including those relevant for cell metabolism. The effect of curcumin and its solvent, ethanol, was explored on four different cancer cell lines, in which the Warburg effect varied. Vital cellular parameters (proliferation, viability) were measured along with the glucose consumption and lactate production. The transcripts of pyruvate kinase 1 and 2 (PKM1, PKM2), serine hydroxymethyltransferase 2 (SHMT2) and phosphoglycerate dehydrogenase (PHGDH) were quantified with RT-qPCR. The amount and intracellular localization of PKM1, PKM2 and signal transducer and activator of transcription 3 (STAT3) proteins were analyzed by Western blot. The response to ethanol and curcumin seemed to be cell-type specific, with respect to all parameters analyzed. High sensitivity to curcumin was present in the cell lines originating from head and neck squamous cell carcinomas: FaDu, Detroit 562 and, especially, Cal27. Very low sensitivity was observed in the colon adenocarcinoma-originating HT-29 cell line, which retained, after exposure to curcumin, a higher levels of lactate production despite decreased glucose consumption. The effects of ethanol were significant.
Collapse
|
42
|
Xu Q, Wu N, Li X, Guo C, Li C, Jiang B, Wang H, Shi D. Inhibition of PTP1B blocks pancreatic cancer progression by targeting the PKM2/AMPK/mTOC1 pathway. Cell Death Dis 2019; 10:874. [PMID: 31745071 PMCID: PMC6864061 DOI: 10.1038/s41419-019-2073-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer and lacks effective therapeutic targets. Protein-tyrosine phosphatase 1B (PTP1B), a validated therapeutic target for diabetes and obesity, also plays a critical positive or negative role in tumorigenesis. However, the role of PTP1B in pancreatic cancer remains elusive. Here, we initially demonstrated that PTP1B was highly expressed in pancreatic tumors, and was positively correlated with distant metastasis and tumor staging, and indicated poor survival. Then, inhibition of PTP1B either by shRNA or by a specific small-molecule inhibitor significantly suppressed pancreatic cancer cell growth, migration and colony formation with cell cycle arrest in vitro and inhibited pancreatic cancer progression in vivo. Mechanism studies revealed that PTP1B targeted the PKM2/AMPK/mTOC1 signaling pathway to regulate cell growth. PTP1B inhibition directly increased PKM2 Tyr-105 phosphorylation to further result in significant activation of AMPK, which decreased mTOC1 activity and led to inhibition of p70S6K. Meanwhile, the decreased phosphorylation of PRAS40 caused by decreased PKM2 activity also helped to inhibit mTOC1. Collectively, these findings support the notion of PTP1B as an oncogene and a promising therapeutic target for PDAC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Disease Progression
- Female
- Humans
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Random Allocation
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- Thyroid Hormones/metabolism
- Xenograft Model Antitumor Assays
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Sun X, Yao L, Liang H, Wang D, He Y, Wei Y, Ye L, Wang K, Li L, Chen J, Zhang CY, Xu G, Wang F, Zen K. Intestinal epithelial PKM2 serves as a safeguard against experimental colitis via activating β-catenin signaling. Mucosal Immunol 2019; 12:1280-1290. [PMID: 31462699 DOI: 10.1038/s41385-019-0197-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023]
Abstract
The pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis has been shown to play a critical role in promoting cell survival and proliferation. However, little is known about the function of intestinal epithelial PKM2 in intestine homeostasis. Here we investigate whether and how intestinal epithelial PKM2 modulates the morphology and function of the adult intestine in experimental colitis. Analyzing colonoscopic biopsies from Crohn's disease and ulcerative colitis patients, we found significantly decreased level of intestinal epithelial PKM2 in patients compared to that in non-inflamed tissues. Similar reduction of intestinal epithelial PKM2 was observed in mice with dextran sulfate sodium-induced colitis. Moreover, intestinal epithelial-specific PKM2-knockout (Pkm2-/-) mice displayed more severe intestinal inflammation, as evidenced by a shortened colon, disruption of epithelial tight junctions, an increase in inflammatory cytokine levels, and immune cell infiltration, when compared to wild-type mice. Gene profiling, western blot, and function analyses indicated that cell survival signals, particularly the Wnt/β-catenin pathways, were associated with PKM2 activity. Increasing mouse intestinal epithelial PKM2 expression via delivery of a PKM2-expressing plasmid attenuated experimental colitis. In conclusion, our studies demonstrate that intestinal epithelial PKM2 increases cell survival and wound healing under the colitic condition via activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Li Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Dong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yueqin He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Lei Ye
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210093, China
| | - Kai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, No. 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Guifang Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210093, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
44
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
45
|
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T, Yang X. The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 2019; 18:5663-5672. [PMID: 31788038 PMCID: PMC6865080 DOI: 10.3892/ol.2019.10948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
Collapse
Affiliation(s)
- Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shengping Luo
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Tao
- Department of Pharmacy, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
46
|
Liu B, Jin J, Zhang Z, Zuo L, Jiang M, Xie C. Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway. Biochem Cell Biol 2019; 97:397-405. [PMID: 30475643 DOI: 10.1139/bcb-2018-0310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Shikonin, a naphthoquinone derivative isolated from the root of Lithospermum erythrorhizon, exhibits broad-spectrum antitumor activity via different molecular mechanisms. In this study, we investigated the effect of shikonin on mitochondrial dysfunction in hepatocellular carcinoma (HCC). Our results showed that shikonin inhibited the proliferation, migration, and invasiveness of HCCLM3 cells, and promoted cell apoptosis in a dose-dependent manner. More importantly, shikonin affected mitochondrial function by disrupting mitochondrial membrane potential and oxidative stress (OS) status. Furthermore, shikonin decreased the oxygen consumption rate of HCCLM3 cells, as well as the levels of ATP and metabolites involved in the tricarboxylic acid cycle (TCA cycle). We also investigated the molecular mechanisms underlying the regulation of mitochondrial function by shikonin as an inhibitor of PKM2. Shikonin decreased the expression of PKM2 in the mitochondria and affected other metabolic pathways (AMPK and PGC1α pathways), which aggravated the oxidative stress and nutrient deficiency. Our results indicate a novel role of shikonin in triggering mitochondria dysfunction via the PKM2-AMPK-PGC1α signaling pathway and provide a promising therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Bing Liu
- a School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, P. R. China
- b Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jiangbo Jin
- b Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ziyu Zhang
- c Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
| | - Li Zuo
- b Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Meixiu Jiang
- b Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Caifeng Xie
- a School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
47
|
Niinivirta M, Enblad G, Lindskog C, Pontén F, Dragomir A, Ullenhag GJ. Tumoral Pyruvate Kinase L/R as a Predictive Marker for the Treatment of Renal Cancer Patients with Sunitinib and Sorafenib. J Cancer 2019; 10:3224-3231. [PMID: 31289593 PMCID: PMC6603390 DOI: 10.7150/jca.30130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Background and aims: Treatment with tyrosine kinase inhibitors (TKI) like sunitinib and sorafenib has improved the prognosis of patients with metastatic renal cell cancer (mRCC). No predictive marker is available to select patients who will gain from these treatments. Tumoral pyruvate kinase L/R (PKLR) is a membrane protein with highly specific expression in the renal tubule. We have previously shown that the tumoral expression of cubilin (CUBN) is associated with progression free survival (PFS) in mRCC patients treated with sunitinib and sorafenib. The aim of the present study was to investigate if PKLR can predict response in these patients, alone and/or in combination with CUBN. Methods: A tissue microarray (TMA) was constructed of tumor samples from 139 mRCC patients. One hundred and thirty-six of these patients had been treated with sunitinib or sorafenib in the first or second-line setting. Thirty patients suffered from early severe toxicity leading to the termination of treatment. The remaining patients (n=106) were selected for the current study. Results: Fifty-five (52%) of the tumors expressed membranous PKLR. Patients with PKLR tumor expression experienced a significantly longer PFS compared to patients with no expression (eight versus five months, p = 0.019). Overall survival (OS) was also significantly better for patients with PKLR expression. In addition, the combined expression of PKLR and CUBN resulted in a higher predictive value than either marker alone. Conclusions: In this real world study we show that tumoral PKLR membrane expression is a positive predictive biomarker for sunitinib and sorafenib treatment in patients suffering from mRCC. Our results also indicate that the combined expression with cubilin more accurately than PKLR alone can select patients with no benefit from treatment.
Collapse
Affiliation(s)
- Marjut Niinivirta
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Oncology, Uppsala University Hospital, Entrance 78, 751 85 Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Oncology, Uppsala University Hospital, Entrance 78, 751 85 Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Anca Dragomir
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden.,Department of Surgical Pathology, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Gustav J Ullenhag
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Oncology, Uppsala University Hospital, Entrance 78, 751 85 Uppsala, Sweden
| |
Collapse
|
48
|
Matteoni S, Abbruzzese C, Matarrese P, De Luca G, Mileo AM, Miccadei S, Schenone S, Musumeci F, Haas TL, Sette G, Carapella CM, Amato R, Perrotti N, Signore M, Paggi MG. The kinase inhibitor SI113 induces autophagy and synergizes with quinacrine in hindering the growth of human glioblastoma multiforme cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:202. [PMID: 31101126 PMCID: PMC6525441 DOI: 10.1186/s13046-019-1212-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Background Glioblastoma multiforme (GBM), due to its location, aggressiveness, heterogeneity and infiltrative growth, is characterized by an exceptionally dismal clinical outcome. The small molecule SI113, recently identified as a SGK1 inhibitor, has proven to be effective in restraining GBM growth in vitro and in vivo, showing also encouraging results when employed in combination with other antineoplastic drugs or radiotherapy. Our aim was to explore the pharmacological features of SI113 in GBM cells in order to elucidate the pivotal molecular pathways affected by the drug. Such knowledge would be of invaluable help in conceiving a rational offensive toward GBM. Methods We employed GBM cell lines, either established or primary (neurospheres), and used a Reverse-Phase Protein Arrays (RPPA) platform to assess the effect of SI113 upon 114 protein factors whose post-translational modifications are associated with activation or repression of specific signal transduction cascades. Results SI113 strongly affected the PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. These results suggested the use of SI113 coupled, for maximum efficiency, with autophagy inhibitors. Indeed, the association of SI113 with an autophagy inhibitor, the antimalarial drug quinacrine, induced a strong synergistic effect in inhibiting GBM growth properties in all the cells tested, including neurospheres. Conclusions RPPA clearly identified the molecular pathways influenced by SI113 in GBM cells, highlighting their vulnerability when the drug was administered in association with autophagy inhibitors, providing a strong molecular rationale for testing SI113 in clinical trials in associative GBM therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1212-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Matteoni
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudia Abbruzzese
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna M Mileo
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Miccadei
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Tobias L Haas
- Department of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carmine M Carapella
- Division of Neurosurgery, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00162, Rome, Italy.
| | - Marco G Paggi
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
49
|
Liu B, Yuan X, Xu B, Zhang H, Li R, Wang X, Ge Z, Li R. Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur J Med Chem 2019; 170:1-15. [PMID: 30878825 DOI: 10.1016/j.ejmech.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Multiple lines of evidence have indicated that pyruvate kinase M2 (PKM2) is upregulated in most cancer cells and it is increasingly recognized as a potential therapeutic target in oncology. In a continuation of our discovery of lead compound 5 and SAR study, the 7-azaindole moiety in compound 5 was systematically optimized. The results showed that compound 6f, which has a difluoroethyl substitution on the 7-azaindole ring, exhibited high PKM2 activation potency and anti-proliferation activities on A375 cell lines. In a xenograft mouse model, oral administration of compound 6f led to significant tumor regression without obvious toxicity. Further mechanistic studies revealed that 6f could influence the translocation of PKM2 into nucleus, as well as induction of apoptosis and autophagy of A375 cells. More importantly, compound 6f significantly inhibited migration of A375 cells in a concentration-dependent manner. Collectively, 6f may serve as a lead compound in the development of potent PKM2 activators for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ridong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
50
|
Wang SQ, Yang XY, Cui SX, Gao ZH, Qu XJ. Heterozygous knockout insulin-like growth factor-1 receptor (IGF-1R) regulates mitochondrial functions and prevents colitis and colorectal cancer. Free Radic Biol Med 2019; 134:87-98. [PMID: 30611867 DOI: 10.1016/j.freeradbiomed.2018.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/06/2023]
Abstract
Although insulin-like growth factor-1 receptor (IGF-1R) has been accepted as a major determinant of cancers, its biological roles and corresponding mechanisms in tumorigenesis have remained elusive. Herein, we demonstrate that IGF-1R plays pivotal roles in the regulation of mitochondrial respiratory chain and functions during colitis and tumorigenesis. Heterozygous knockout IGF-1R attenuated azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and colitis associated cancer (CAC) in Igf1r+/- mice. Heterozygous knockout IGF-1R confers resistance to oxidative stress-induced damage on colorectal epithelial cells by protecting mitochondrial dynamics and structures. IGF-1R low expression improves the biological function of mitochondrial fusion under oxidative stress. Mechanically, an increase in respiratory coupling index (RCI) and oxidative phosphorylation index (ADP/O) was seen in colorectal epithelial cells of Igf1r+/- mice. Seahorse XFe-24 analyzer analysis of mitochondrial bioenergetics demonstrated an increase in oxygen consumption rate (OCR) and a decrease of extracellular acidification rate (ECAR) in Igf1r+/- cells. Further analysis suggests the protection mechanisms of Igf1r+/- cells from oxidative stress through the activation of the mitochondrial respiratory chain and LKB1/AMPK pathways. These results highlight the biological roles of IGF-1R at the nexus between oxidative damage and mitochondrial function and a connection between colitis and colorectal cancer.
Collapse
Affiliation(s)
- Shu Qing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiang Yu Yang
- Department of Stomatology, Aerospace Center Hospital, Haidian Distrct, Beijing, China
| | - Shu Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| | - Zu Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|