1
|
Duan M, Zhong X, Qin J, Lin GQ, He QL, Zhao Q. Biocatalytic Synthesis of Corticosteroid Derivatives by Toad-Derived Steroid C21-Hydroxylase. Org Lett 2025; 27:4574-4579. [PMID: 40243427 DOI: 10.1021/acs.orglett.5c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
CsCYP21A, a steroid 21-hydroxylase from Bufo bufo gargarizans, exhibits unprecedented sequential oxidations. Optimizing Pichia pastoris biotransformation conditions enhanced C21-hydroxylation selectivity, converting 14 substrates to 21-hydroxylated products, with 10 conversions of >80% and 4 yields of >80%. Hydrocortisone production reached 1.5 g L-1 day-1 with 100 g/L wet biomass. CsCYP21A's versatility enables integration into the synthesis of over 10 steroidal drugs, offering a sustainable biocatalytic platform for green pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Meiling Duan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xueqing Zhong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jiaxu Qin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Li He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qunfei Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
2
|
Yang M, White PC. Genetics and Pathophysiology of Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. J Clin Endocrinol Metab 2025; 110:S1-S12. [PMID: 39836621 PMCID: PMC11749890 DOI: 10.1210/clinem/dgae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 01/23/2025]
Abstract
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease that manifests clinically in varying forms depending on the degree of enzyme deficiency. CAH is most commonly caused by 21-hydroxylase deficiency (21OHD) due to mutations in the CYP21A2 gene. Whereas there is a spectrum of disease severity, 21OHD is generally categorized into 3 forms. The classic form encompasses salt-wasting and simple virilizing CAH and the least affected form is termed nonclassic CAH. The classic form of 21OHD occurs in ∼1 in 16 000 births with the most severe salt-wasting cases presenting in the neonatal period with cortisol and aldosterone deficiencies and virilization of external female genitalia. Cortisol deficiency removes normal feedback on the hypothalamic-pituitary-adrenal axis leading to elevations in ACTH and adrenal androgen levels, which often accelerate skeletal maturation, leading to premature epiphyseal growth plate closure. Additionally, supraphysiologic doses of glucocorticoids are necessary to suppress androgen levels, adversely affecting final adult height. This paper highlights a brief history of 21OHD and provides an overview of the genetic basis and pathophysiology of 21OHD.
Collapse
Affiliation(s)
- Ming Yang
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Perrin C White
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Watson A, Syme H, Brown M. Somatic GNAQ, CTNNB1, and CACNA1C Mutations in Cat Aldosterone-Secreting Tumors. Hypertension 2024; 81:2489-2500. [PMID: 39429164 DOI: 10.1161/hypertensionaha.124.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Primary aldosteronism (PA) is a common cause of human hypertension. Somatic mutations in KCNJ5, CACNA1D, ATP1A1, and ATP2B3 are found in at least 80% of aldosterone-producing adenomas, which cause unilateral PA in humans. Somatic mutations have been identified infrequently in 7 other genes; few of these were known to play a role in aldosterone secretion before the discovery of their mutations. Interrogating somatic mutations in the domestic cat, in which spontaneous PA is also known to occur, might improve the understanding of normal adrenal gland physiology and the pathophysiology of PA. METHODS DNA and RNA extracted from tissue from 13 cats with unilateral aldosterone-secreting tumors, including 8 carcinomas and 5 adenomas, underwent whole genome sequencing, targeted Sanger sequencing, and RNA sequencing. Single-nucleotide substitution variants were filtered to select those with a predicted deleterious effect on protein function and a suspected role in aldosterone secretion. RESULTS Probable functional somatic single-nucleotide polymorphisms (n=8) were found in 3 adenomas and 2 carcinomas. Mutations with predicted significant effects were identified in 2 genes also mutated in human PA; GNAQ and CTNNB1, and in a residue of CACNA1C analogous to a common CACNA1D mutation. In contrast to humans, CACNA1C expression was much greater than CACNA1D in both feline tumor and nontumor adrenal tissue. No mutations were identified in KCNJ5, CACNA1D, ATP1A1, or ATP2B3. CONCLUSIONS Similar mutations were identified in cats to those found in humans. It is, therefore, likely that both species have shared underlying selection pressures for mutations that increase aldosterone secretion.
Collapse
Affiliation(s)
- Alice Watson
- Clinical Science and Services, Royal Veterinary College, London, United Kingdom (A.W., H.S.)
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, United Kingdom (A.W., M.B.)
| | - Harriet Syme
- Clinical Science and Services, Royal Veterinary College, London, United Kingdom (A.W., H.S.)
| | - Morris Brown
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, United Kingdom (A.W., M.B.)
| |
Collapse
|
4
|
Parikh SJ, Edara S, Deodhar S, Singh AK, Maekawa K, Zhang Q, Glass KC, Shah MB. Structural and biophysical analysis of cytochrome P450 2C9*14 and *27 variants in complex with losartan. J Inorg Biochem 2024; 258:112622. [PMID: 38852293 PMCID: PMC11285081 DOI: 10.1016/j.jinorgbio.2024.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
The human cytochrome P450 (CYP) 1, 2 and 3 families of enzymes are responsible for the biotransformation of a majority of the currently available pharmaceutical drugs. The highly polymorphic CYP2C9 predominantly metabolizes many drugs including anticoagulant S-warfarin, anti-hypertensive losartan, anti-diabetic tolbutamide, analgesic ibuprofen, etc. There are >80 single nucleotide changes identified in CYP2C9, many of which significantly alter the clearance of important drugs. Here we report the structural and biophysical analysis of two polymorphic variants, CYP2C9*14 (Arg125His) and CYP2C9*27 (Arg150Leu) complexed with losartan. The X-ray crystal structures of the CYP2C9*14 and *27 illustrate the binding of two losartan molecules, one in the active site near heme and another on the periphery. Both losartan molecules are bound in an identical conformation to that observed in the previously solved CYP2C9 wild-type complex, however, the number of losartan differs from the wild-type structure, which showed binding of three molecules. Additionally, isothermal titration calorimetry experiments reveal a lower binding affinity of losartan with *14 and *27 variants when compared to the wild-type. Overall, the results provide new insights into the effects of these genetic polymorphisms and suggests a possible mechanism contributing to reduced metabolic activity in patients carrying these alleles.
Collapse
Affiliation(s)
- Sonia J Parikh
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Sreeja Edara
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Shruti Deodhar
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Ajit K Singh
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Keiko Maekawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Manish B Shah
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
5
|
Ramírez RE, Buendia-Corona RE, Pérez-Xochipa I, Scior T. Computational Binding Study Hints at Ecdysone 20-Mono-Oxygenase as the Hitherto Unknown Target for Ring C-Seco Limonoid-Type Insecticides. Molecules 2024; 29:1628. [PMID: 38611907 PMCID: PMC11013123 DOI: 10.3390/molecules29071628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.
Collapse
Affiliation(s)
- Ramsés E. Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ricardo E. Buendia-Corona
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica Alimentos, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico;
| | - Thomas Scior
- Laboratorio de Simulaciones Moleculares Computacionales, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico
| |
Collapse
|
6
|
Zhao J, Zhang X, Wang Y, Huang H, Sharma S, Sharma SS, Wolf CA, Liu S, Wolber G, Sorensen EJ, Bureik M. Exploring the Chemical Space of Proluciferins as Probe Substrates for Human Cytochrome P450 Enzymes. Appl Biochem Biotechnol 2023; 195:1042-1058. [PMID: 36287330 DOI: 10.1007/s12010-022-04184-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
We report the synthesis of 21 new proluciferin compounds that bear a small aliphatic ether group connected to the 6' hydroxy function of firefly luciferin and either contain an acid or methyl ester function at the dihydrothiazole ring. Each of these compounds was found to be a substrate for some members of the human CYP1 and CYP3 families; a total of 92 new enzyme-substrate pairs were identified. In a screen of the whole human P450 complement (CYPome) with three selected proluciferin acid substrates, another 13 enzyme-substrate pairs were detected, which involve enzymes belonging to the CYP2, CYP4, CYP7, CYP21, and CYP27 families. All in all, we identified new probe substrates for members of seven out of 18 human CYP families.
Collapse
Affiliation(s)
- Jie Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yueyin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Huimin Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | | | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Guengerich FP. Drug Metabolism: A Half-Century Plus of Progress, Continued Needs, and New Opportunities. Drug Metab Dispos 2023; 51:99-104. [PMID: 35868640 PMCID: PMC11024512 DOI: 10.1124/dmd.121.000739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
The systematic study of drug metabolism began in the 19th Century, but most of what we know now has been learned in the last 50 years. Drug metabolism continues to play a critical role in pharmaceutical development and clinical practice, as well as contributing to toxicology, chemical carcinogenesis, endocrinology, and drug abuse. The importance of the field will continue, but its nature will continue to develop with changes in analytical chemistry, structural biology, and artificial intelligence. Challenges and opportunities include toxicology, defining roles of genetic variations, and application to clinical issues. Although the focus of this Minireview is cytochrome P450, the same principles apply to other enzymes and transporters involved in drug metabolism. SIGNIFICANCE STATEMENT: Progress in the field of drug metabolism over the past 50 years has helped make the pharmaceutical enterprise what it is today. Drug metabolism will continue to be important. Challenges and opportunities for the future are discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
9
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
10
|
Characterization of Mutations Causing CYP21A2 Deficiency in Brazilian and Portuguese Populations. Int J Mol Sci 2021; 23:ijms23010296. [PMID: 35008721 PMCID: PMC8745212 DOI: 10.3390/ijms23010296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022] Open
Abstract
Deficiency of 21-hydroxylase enzyme (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction and functional studies are often the only way to classify variants to understand the links to disease-causing effects. Here we investigated the pathogenicity of uncharacterized variants in the CYP21A2 gene reported in Brazilian and Portuguese populations. Physicochemical alterations, residue conservation, and effect on protein structure were accessed by computational analysis. The enzymatic performance was obtained by functional assay with the wild-type and mutant CYP21A2 proteins expressed in HEK293 cells. Computational analysis showed that p.W202R, p.E352V, and p.R484L have severely impaired the protein structure, while p.P35L, p.L199P, and p.P433L have moderate effects. The p.W202R, p.E352V, p.P433L, and p.R484L variants showed residual 21OH activity consistent with the simple virilizing phenotype. The p.P35L and p.L199P variants showed partial 21OH efficiency associated with the non-classical phenotype. Additionally, p.W202R, p.E352V, and p.R484L also modified the protein expression level. We have determined how the selected CYP21A2 gene mutations affect the 21OH activity through structural and activity alteration contributing to the future diagnosis and management of CYP21A2 deficiency.
Collapse
|
11
|
Li Y, Luo B, Zhang J, Zhou X, Shao S, Xu W, Yang Y, Yuan G. Clinical relevance of serum immunoglobulin G4 in glucocorticoid therapy of Graves' ophthalmopathy. Clin Endocrinol (Oxf) 2021; 95:657-667. [PMID: 33938028 DOI: 10.1111/cen.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Previous study suggested IgG4 levels were associated with the development of Graves' ophthalmopathy (GO). The aims of the present study were to investigate the role of IgG4 levels in glucocorticoid (GC) treatment in GO patients. DESIGN 69 GO patients were enrolled. Serum thyroid hormones, thyroid antibodies, IgG, IgG4, ophthalmological examinations and orbital MRI were performed. Furthermore, the clinical outcomes (a composite response endpoint including the clinical activity score (CAS), proptosis, vision, intraocular pressure, diplopia and lid width) after high-dose intravenous GC treatment in 32 active moderate-to-severe GO patients were compared. PATIENTS 69 consecutive patients with GO were asked to participate in the study. 32 of 69 GO patients were treated with high-dose intravenous GCs. MEASUREMENTS Measurement of serum IgG and IgG4, serum thyroid hormones and thyroid autoantibodies. An overall ophthalmic assessment was performed pretherapy (week 0) and post-therapy (week 12). RESULTS 33.3% of GO patients (23/69) had elevated IgG4 levels. IgG4 levels were positively correlated with the severity and activity of GO. After GC therapy, IgG4, IgG4/IgG, vision and CAS were significantly improved in GO patients. Patients with high IgG4 levels had a significantly reduced extraocular muscle area (EOMs) and better clinical outcomes than patients with normal IgG4 levels. CONCLUSIONS Our results suggest a possible subgroup of elevated IgG4 GO patients, with more severe ophthalmopathy and better response to GCs treatment compare with normal IgG4 GO patients.
Collapse
Affiliation(s)
- Yaling Li
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese and Western Medical, Wuhan, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrong Zhou
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Shao
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Kim D, Kim V, McCarty KD, Guengerich FP. Tight binding of cytochrome b 5 to cytochrome P450 17A1 is a critical feature of stimulation of C21 steroid lyase activity and androgen synthesis. J Biol Chem 2021; 296:100571. [PMID: 33753170 PMCID: PMC8080067 DOI: 10.1016/j.jbc.2021.100571] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
It has been recognized for >50 years that cytochrome b5 (b5) stimulates some cytochrome P450 (P450)–catalyzed oxidations, but the basis of this function is still not understood well. The strongest stimulation of catalytic activity by b5 is in the P450 17A1 lyase reaction, an essential step in androgen synthesis from 21-carbon (C21) steroids, making this an excellent model system to interrogate b5 function. One of the issues in studying b5–P450 interactions has been the limited solution assay methods. We constructed a fluorescently labeled variant of human b5 that can be used in titrations. The labeled b5 bound to WT P450 17A1 with a Kd of 2.5 nM and rapid kinetics, on the order of 1 s−1. Only weak binding was observed with the clinical P450 17A1 variants E305G, R347H, and R358Q; these mutants are deficient in lyase activity, which has been hypothesized to be due to attenuated b5 binding. Kd values were not affected by the presence of P450 17A1 substrates. A peptide containing the P450 17A1 Arg-347/Arg-358 region attenuated Alexa 488-T70C-b5 fluorescence at higher concentrations. The addition of NADPH–P450 reductase (POR) to an Alexa 488-T70C-b5:P450 17A1 complex resulted in a concentration-dependent partial restoration of b5 fluorescence, indicative of a ternary P450:b5:POR complex, which was also supported by gel filtration experiments. Overall, these results are interpreted in the context of a dynamic and tight P450 17A1:b5 complex that also binds POR to form a catalytically competent ternary complex, and variants that disrupt this interaction have low catalytic activity.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
13
|
Zhang J, Yang M, Luan P, Jia W, Liu Q, Ma Z, Dang J, Lu H, Ma Q, Wang Y, Mu C, Huo Z. Associations Between Cytochrome P450 (CYP) Gene Single-Nucleotide Polymorphisms and Second-to-Fourth Digit Ratio in Chinese University Students. Med Sci Monit 2021; 27:e930591. [PMID: 33723203 PMCID: PMC7980499 DOI: 10.12659/msm.930591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) genes are necessary for the production or metabolism of fetal sex hormones during pregnancy. The second-to-fourth digit ratio (2D: 4D) is formed in the early stage of human fetal development and considered an indicator reflecting prenatal sex steroids levels. We explored the association between 2D: 4D and single-nucleotide polymorphisms (SNPs) of CYP. MATERIAL AND METHODS Correlation analysis between 2D: 4D and 8 SNPs, rs2687133 (CPY3A7), rs7173655 (CYP11A1), rs1004467, rs17115149, and rs2486758 (CYP17A1), and rs4646, rs2255192, rs4275794 (CYP19A1), was performed using data from 426 female and 412 male Chinese university students. SNP genotyping was conducted using PCR. Digit lengths were photographed and measured by image processing software. RESULTS rs2486758 (CYP17A1) correlated with left hand 2D: 4D in men (P=0.026), and rs1004467 (CYP17A1) correlated with right hand 2D: 4D in men (P=0.008) and the whole population (P=0.032). In men, allele G rs1004467 decreased right hand 2D: 4D, while allele C of rs2486758 increased left hand 2D: 4D. In women, left hand 2D: 4D was higher in genotypes with allele A of SNP rs4646 (CYP19A1) under the dominant genetic model; female DR-L was higher in genotypes with allele T of rs17115149 (CYP11A1). SNPs rs2687133 (CYP3A7) and rs1004467 (CYP17A1) were significantly correlated with right hand 2D: 4D (P=0.0107). CONCLUSIONS SNPs rs1004467 and rs2486758 of CYP17A1 are significant in the relationship between 2D: 4D and CYP gene polymorphisms under different conditions. SNP interactions between CYP genes probably impact 2D: 4D. The correlation between 2D: 4D and some sex hormone-related diseases may be due to the effect of CYP variants on the 2 phenotypes.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Mengyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Pengfei Luan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wei Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qiujun Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhanbing Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Jie Dang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Hong Lu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qian Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yanfeng Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Chunlan Mu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhenghao Huo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Department of Biology, Gansu Medical College, Pingliang, Gansu, P.R. China
| |
Collapse
|
14
|
Ilany J, Liu J, Welsch C, Reznik-Wolf H, Levy-Lahad E, Auchus RJ. Salt-Losing 21-Hydroxylase Deficiency Caused by Double Homozygosity for Two "Mild" Mutations. J Clin Endocrinol Metab 2021; 106:e680-e686. [PMID: 33245778 DOI: 10.1210/clinem/dgaa875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 02/13/2023]
Abstract
CONTEXT Congenital adrenal hyperplasia due to 21-hydroxylase deficiency presents with different severities that correlate with the genotype. The salt-losing phenotype requires 2 alleles with "severe" mutations. CASE DESCRIPTION We present a case of salt-losing 21-hydroxylase deficiency that was found to be homozygous for 2 "mild" pathogenic variants: V281L and S301Y. Both in silico and heterologous expression functional analysis demonstrated that co-occurrence of these 2 mutations in cis severely impairs the function of the 21-hydroxylase enzyme. CONCLUSIONS This case has important implications for genetic counseling. Regarding this combination of 2 "mild" variants as having mild phenotypic effects could lead to inappropriate counseling of heterozygote carriers.
Collapse
Affiliation(s)
- Jacob Ilany
- Institute of Endocrinology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jiayan Liu
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI USA
| | - Christoph Welsch
- Department of Internal Medicine I, Goethe University Hospital-Frankfurt, Frankfurt am Main, Germany
| | - Haike Reznik-Wolf
- Genetics laboratory, Danek Gartner Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
15
|
Cohen M, Pignatti E, Dines M, Mory A, Ekhilevitch N, Kolodny R, Flück CE, Tiosano D. In Silico Structural and Biochemical Functional Analysis of a Novel CYP21A2 Pathogenic Variant. Int J Mol Sci 2020; 21:ijms21165857. [PMID: 32824094 PMCID: PMC7461554 DOI: 10.3390/ijms21165857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Classical congenital adrenal hyperplasia (CAH) caused by pathogenic variants in the steroid 21-hydroxylase gene (CYP21A2) is a severe life-threatening condition. We present a detailed investigation of the molecular and functional characteristics of a novel pathogenic variant in this gene. The patient, 46 XX newborn, was diagnosed with classical salt wasting CAH in the neonatal period after initially presenting with ambiguous genitalia. Multiplex ligation-dependent probe analysis demonstrated a full deletion of the paternal CYP21A2 gene, and Sanger sequencing revealed a novel de novo CYP21A2 variant c.694–696del (E232del) in the other allele. This variant resulted in the deletion of a non-conserved single amino acid, and its functional relevance was initially undetermined. We used both in silico and in vitro methods to determine the mechanistic significance of this mutation. Computational analysis relied on the solved structure of the protein (Protein-data-bank ID 4Y8W), structure prediction of the mutated protein, evolutionary analysis, and manual inspection. We predicted impaired stability and functionality of the protein due to a rotatory disposition of amino acids in positions downstream of the deletion. In vitro biochemical evaluation of enzymatic activity supported these predictions, demonstrating reduced protein levels to 22% compared to the wild-type form and decreased hydroxylase activity to 1–4%. This case demonstrates the potential of combining in-silico analysis based on evolutionary information and structure prediction with biochemical studies. This approach can be used to investigate other genetic variants to understand their potential effects.
Collapse
Affiliation(s)
- Michal Cohen
- Pediatric Endocrinology Unit, Ruth Rappaport Children’s Hospital, Rambam Healthcare Campus, Haifa 352540, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 352540, Israel
- Correspondence:
| | - Emanuele Pignatti
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; (E.P.); (C.E.F.)
- Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Monica Dines
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel, Haifa 31905, Israel;
| | - Adi Mory
- Genetics Institute, Rambam Health Care Campus, Haifa 3525408, Israel; (A.M.); (N.E.)
| | - Nina Ekhilevitch
- Genetics Institute, Rambam Health Care Campus, Haifa 3525408, Israel; (A.M.); (N.E.)
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; (E.P.); (C.E.F.)
- Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children’s Hospital, Rambam Healthcare Campus, Haifa 352540, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 352540, Israel
| |
Collapse
|
16
|
Fernández CS, Taboas M, Bruque CD, Benavides-Mori B, Belli S, Stivel M, Oneto A, Pasqualini T, Delea M, Espeche LD, Kolomenski JE, Alba L, Buzzalino N, Dain L. Genetic characterization of a large cohort of Argentine 21-hydroxylase Deficiency. Clin Endocrinol (Oxf) 2020; 93:19-27. [PMID: 32289882 DOI: 10.1111/cen.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023]
Abstract
CONTEXT 21-hydroxylase deficiency is the most common cause of Congenital Adrenal Hyperplasia. It presents as severe or classical forms-salt wasting and simple virilizing-and a mild or nonclassical (NC). Several studies have reported the frequency of pathogenic variants in different populations, although few of them included a large number of NC patients. OBJECTIVE To analyse the CYP21A2 gene defects in a large cohort of Argentine patients. DESIGN Molecular characterization of 628 patients (168 classical, 460 nonclassical, representing 1203 nonrelated alleles), 398 relatives, 126 partners. METHODS Genetic variants were assessed by allele-specific PCR, PCR-RFLP or direct sequencing. Deletions, duplications and large gene conversions (LGC) were studied by Southern blot/MLPA or long-range PCR. Biological implications of novel variants were analysed by structure-based in silico studies. RESULTS The most frequent pathogenic variants were p.V282L (58%) in NC alleles and c.293-13C>G (31.8%) and p.I173N (21.1%) in classical. Deletions and LGC were found at low frequency (6.2%), 57 alleles had rare pathogenic variants, and 3 had novel variants: p.(S166F); p.(P189R), p.(R436L). Genotype-phenotype correlation was observed in 98.6% of the cases, 11 asymptomatic first-degree relatives had pathogenic variants in both alleles, and 21/126 partners were carriers. CONCLUSIONS We conducted a comprehensive genetic characterization of the largest cohort of 21-hydroxylase patients from the region. In particular, we add to the molecular characterization of a large number of NC patients and to the estimation of the disease carrier's frequency in our population.
Collapse
Affiliation(s)
- Cecilia S Fernández
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Belén Benavides-Mori
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Susana Belli
- División Endocrinología, Hospital Durand, Buenos Aires, Argentina
| | - Mirta Stivel
- División Endocrinología, Hospital Durand, Buenos Aires, Argentina
| | - Adriana Oneto
- División Endocrinología, Hospital Durand, Buenos Aires, Argentina
| | - Titania Pasqualini
- Sección Endocrinología, Crecimiento y Desarrollo, Departamento de Pediatría, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Lucía D Espeche
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Jorge E Kolomenski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Liliana Alba
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Noemí Buzzalino
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
| | - Liliana Dain
- Centro Nacional de Genética Médica, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
17
|
Profiling of anabolic androgenic steroids and selective androgen receptor modulators for interference with adrenal steroidogenesis. Biochem Pharmacol 2020; 172:113781. [DOI: 10.1016/j.bcp.2019.113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
|
18
|
Arteaga E, Valenzuela F, Lagos CF, Lagos M, Martinez A, Baudrand R, Carvajal C, Fardella CE. Detection of a novel severe mutation affecting the CYP21A2 gene in a Chilean male with salt wasting congenital adrenal hyperplasia. Endocrine 2020; 67:258-263. [PMID: 31571129 DOI: 10.1007/s12020-019-02097-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE 21-hydroxylase deficiency (21-OHD) is a congenital adrenal disease with more than 200 mutations published to date. The aim of this report is to describe a severe novel mutation of the CYP21A2 gene. METHOD We describe a case of a 39-year-old male diagnosed with a salt wasting congenital adrenal hyperplasia (SWCAH) due to 21-OHD. The genetic testing was done using a combination of three methods (PCR XL, SALSA-MLPA, and bidirectional sequencing) and finally an in silico analysis. RESULTS The genetic testing demonstrated three severe mutations of the CYP21A2 gene (p.Gln318*; c.290-13C>G; and p.Trp86*), being the last one a novel mutation not previously reported. The in silico modeling of the p.Trp86* (c.258G>A) showed a truncated CYP21A2 protein that loses all the main structural features required for activity, such as the HEM binding domain and the hormone binding site. CONCLUSION We present an adult man with an SWCAH due to 21-OHD who carried three severe mutations of the CYP21A2 gene, one of them, p.Trp86* (c.258G>A) has not been previously described.
Collapse
Affiliation(s)
- Eugenio Arteaga
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile.
| | - Felipe Valenzuela
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile
| | - Carlos F Lagos
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, 7510157, Santiago, Chile
| | - Marcela Lagos
- Departamento de Laboratorios Clínicos, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Piso 3, Macul, 7820436, Santiago, Chile
| | - Alejandra Martinez
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile
| | - Rene Baudrand
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile
- Instituto Milenio en Inmunología e Inmunoterapia IMII, Portugal 49, Santiago Centro, 8330075, Santiago, Chile
| | - Cristian Carvajal
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile
| | - Carlos E Fardella
- Departamento de Endocrinología and Centro Traslacional en Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 4, Santiago Centro, 8330077, Santiago, Chile
- Instituto Milenio en Inmunología e Inmunoterapia IMII, Portugal 49, Santiago Centro, 8330075, Santiago, Chile
| |
Collapse
|
19
|
Lin B, Zhang H, Zheng Q. How do mutations affect the structural characteristics and substrate binding of CYP21A2? An investigation by molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:8870-8877. [DOI: 10.1039/d0cp00763c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CYP21A2 mutations affect the activity of the protein leading to CAH disease.
Collapse
Affiliation(s)
- Baihui Lin
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| |
Collapse
|
20
|
König L, Brixius‐Anderko S, Milhim M, Tavouli‐Abbas D, Hutter MC, Hannemann F, Bernhardt R. Identification and circumvention of bottlenecks in CYP21A2‐mediated premedrol production using recombinantEscherichia coli. Biotechnol Bioeng 2019; 117:901-911. [DOI: 10.1002/bit.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa König
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | - Mohammed Milhim
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | | | - Frank Hannemann
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
21
|
Rieck C, Geiger D, Munkert J, Messerschmidt K, Petersen J, Strasser J, Meitinger N, Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiologyopen 2019; 8:e925. [PMID: 31436030 PMCID: PMC6925150 DOI: 10.1002/mbo3.925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5‐3β‐hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5‐isomerase gene from Comamonas testosteronii, (c) a mutated steroid‐5β‐reductase gene from Arabidopsis thaliana, and (d) a steroid 21‐hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed “CARD II yeast”, was capable of producing 5β‐pregnane‐3β,21‐diol‐20‐one, a central intermediate in 5β‐cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.
Collapse
Affiliation(s)
- Christoph Rieck
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Geiger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Munkert
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Jan Petersen
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Juliane Strasser
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Meitinger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
22
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
23
|
Xu J, Li P. Identification of novel and rare CYP21A2 variants in Chinese patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin Biochem 2019; 68:44-49. [PMID: 30995443 DOI: 10.1016/j.clinbiochem.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE 21-hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia due to CYP21A2 gene mutation. The aim of study is to expand CYP21A2 mutational spectrum in the Chinese population and to provide novel genetic information in terms of ethnic diversity. DESIGN AND METHODS 95 Chinese suspected 21-OHD patients with phenotypes varying from salt-wasting (SW) to nonclassic symptoms were recruited. The clinical characteristics were retrospectively analyzed. Sanger sequencing and multiplex ligation-dependent probe amplification were used to detect point mutations and large gene deletions, respectively. RESULTS 20 different mutant alleles were detected in 35 patients with 21-OHD. The most common variant was c.293-13A/C>G (30.0%), followed by p.I173N (20.0%), large gene conversions (14.3%), large gene deletions (11.4%), and p.R484Pfs*58 (4.3%). Remarkably, we identified a novel F450L variant, in silico predicted to be associated with the salt-wasting form. Two variants including p.R409C and p.R427H, previously considered as conserved in specific ethnicities due to a founder effect, were detected in our cohort. Further, a rare p.H63L + p.V70L variant, hitherto only observed in the Chinese population, in trans with different variants corresponding to the salt-wasting form resulted in diverse phenotypes. CONCLUSIONS One novel and four rare variants of CYP21A2 gene corresponding to severe phenotypes were identified in our cohort. Two variants including p.R409C and p.R427H have wider ethnic distributions. Therefore, the sequence of CYP21A2 gene must be analyzed carefully in case rare or novel deleterious variants exist. Our findings improve the understanding of CYP21A2 mutational spectrum in 21-OHD patients and contribute to the precise diagnosis and prenatal counseling.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.
| |
Collapse
|
24
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
25
|
Abstract
In honor of the 100th birthday of Dr. Herbert Tabor, JBC's Editor-in-Chief for 40 years, I will review here JBC's extensive coverage of the field of cytochrome P450 (P450) research. Research on the reactions catalyzed by these enzymes was published in JBC before it was even realized that they were P450s, i.e. they have a "pigment" with an absorption maximum at 450 nm. After the P450 pigment discovery, reported in JBC in 1962, the journal proceeded to publish the methods for measuring P450 activities and many seminal findings. Since then, the P450 field has grown extensively, with significant progress in characterizing these enzymes, including structural features, catalytic mechanisms, regulation, and many other aspects of P450 biochemistry. JBC has been the most influential journal in the P450 field. As with many other research areas, Dr. Tabor deserves a great deal of the credit for significantly advancing this burgeoning and important topic of research.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
26
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
27
|
Tan Z, Yi X, Carruthers NJ, Stemmer PM, Lubman DM. Single Amino Acid Variant Discovery in Small Numbers of Cells. J Proteome Res 2018; 18:417-425. [PMID: 30404448 DOI: 10.1021/acs.jproteome.8b00694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have performed deep proteomic profiling down to as few as 9 Panc-1 cells using sample fractionation, TMT multiplexing, and a carrier/reference strategy. Off line fractionation of the TMT-labeled sample pooled with TMT-labeled carrier Panc-1 whole cell proteome was achieved using alkaline reversed phase spin columns. The fractionation in conjunction with the carrier/reference (C/R) proteome allowed us to detect 47 414 unique peptides derived from 6261 proteins, which provided a sufficient coverage to search for single amino acid variants (SAAVs) related to cancer. This high sample coverage is essential in order to detect a significant number of SAAVs. In order to verify genuine SAAVs versus false SAAVs, we used the SAVControl pipeline and found a total of 79 SAAVs from the 9-cell Panc-1 sample and 174 SAAVs from the 5000-cell Panc-1 C/R proteome. The SAAVs as sorted into high confidence and low confidence SAAVs were checked manually. All the high confidence SAAVs were found to be genuine SAAVs, while half of the low confidence SAAVs were found to be false SAAVs mainly related to PTMs. We identified several cancer-related SAAVs including KRAS, which is an important oncoprotein in pancreatic cancer. In addition, we were able to detect sites involved in loss or gain of glycosylation due to the enhanced coverage available in these experiments where we can detect both sites of loss and gain of glycosylation.
Collapse
Affiliation(s)
- Zhijing Tan
- Department of Surgery , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xinpei Yi
- NCMIS, RCSDS, Academy of Mathematics and Systems Science , Chinese Academy of Sciences , Beijing 100190 , China.,School of Mathematical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences , Wayne State University , Detroit , Michigan 48202 , United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences , Wayne State University , Detroit , Michigan 48202 , United States
| | - David M Lubman
- Department of Surgery , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
28
|
Kor Y, Zou M, Al-Rijjal RA, Monies D, Meyer BF, Shi Y. Phenotype heterogeneity of congenital adrenal hyperplasia due to genetic mosaicism and concomitant nephrogenic diabetes insipidus in a sibling. BMC MEDICAL GENETICS 2018; 19:115. [PMID: 29996815 PMCID: PMC6042323 DOI: 10.1186/s12881-018-0629-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/20/2018] [Indexed: 12/26/2022]
Abstract
Background Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is an autosomal recessive disorder caused by mutations in the CYP21A2. Congenital nephrogenic diabetes insipidus (NDI) is a rare X-linked recessive or autosomal recessive disorder caused by mutations in either AVPR2 or AQP2. Genotype-phenotype discordance caused by genetic mosaicism in CAH patients has not been reported, nor the concomitant CAH and NDI. Case presentation We investigated a patient with concomitant CAH and NDI from a consanguineous family. She (S-1) presented with clitoromegaly at 3 month of age, and polydipsia and polyuria at 13 month of age. Her parents and two elder sisters (S-2 and S-3) were clinically normal, but elevated levels of serum 17-hydroxyprogesterone (17-OHP) were observed in the mother and S-2. The coding region of CYP21A2 and AQP2 were analyzed by PCR-sequencing analysis to identify genetic defects. Two homozygous CYP21A2 mutations (p.R357W and p.P454S) were identified in the proband and her mother and S-2. The apparent genotype-phenotype discordance was due to presence of small amount of wild-type CYP21A2 alleles in S-1, S-2, and their mother’s genome, thus protecting them from development of classic form of 21OHD (C21OHD). A homozygous AQP2 mutation (p.A147T) was also found in the patient. The patient was treated with hydrocortisone and hydrochlorothiazide. Her symptoms were improved with normal laboratory findings. The clitoromegaly is persisted. Conclusions Genetic mosaicism is a novel mechanism contributing to the genotype-phenotype discordance in 21OHD and small percentage of wild-type CYP21A2 alleles may be sufficient to prevent phenotype development. This is a first report of concurrent 21OHD and NDI caused by simultaneous homozygous CYP21A2 and AQP2 mutations.
Collapse
Affiliation(s)
- Yılmaz Kor
- Pediatric Endocrinology Division, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana, Turkey
| | - Minjing Zou
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Dorota Monies
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Yufei Shi
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
29
|
White PC. Update on diagnosis and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Curr Opin Endocrinol Diabetes Obes 2018; 25:178-184. [PMID: 29718004 DOI: 10.1097/med.0000000000000402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is a relatively common inherited disorder of cortisol biosynthesis that can be fatal if untreated. RECENT FINDINGS The basic biochemistry and genetics of CAH have been known for decades but continue to be refined by the discoveries of an alternative 'backdoor' metabolic pathway for adrenal androgen synthesis and the secretion of 11-hydroxy and 11-keto analogs of known androgens, by the elucidation of hundreds of new mutations, and by the application of high-throughput sequencing techniques to noninvasive prenatal diagnosis. Although hydrocortisone is a mainstay of treatment, overtreatment may have adverse effects on growth, risk of obesity, and cardiovascular disease; conversely, undertreatment may increase risk of testicular adrenal rest tumors in affected men. SUMMARY Refinements to screening techniques may improve the positive predictive value of newborn screening programs. Alternative dosing forms of hydrocortisone and additional therapeutic modalities are under study. Although surgical treatment of virilized female genitalia is widely accepted by families and patients, it is not without complications or controversy, and some families choose to defer it.
Collapse
Affiliation(s)
- Perrin C White
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Gonzalez E, Johnson KM, Pallan PS, Phan TTN, Zhang W, Lei L, Wawrzak Z, Yoshimoto FK, Egli M, Guengerich FP. Inherent steroid 17α,20-lyase activity in defunct cytochrome P450 17A enzymes. J Biol Chem 2017; 293:541-556. [PMID: 29212707 DOI: 10.1074/jbc.ra117.000504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/11/2017] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 (P450) 17A1 catalyzes the oxidations of progesterone and pregnenolone and is the major source of androgens. The enzyme catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction, and several mechanisms have been proposed for the latter step. Zebrafish P450 17A2 catalyzes only the 17α-hydroxylations. We previously reported high similarity of the crystal structures of zebrafish P450 17A1 and 17A2 and human P450 17A1. Five residues near the heme, which differed, were changed. We also crystallized this five-residue zebrafish P450 17A1 mutant, and the active site still resembled the structure in the other proteins, with some important differences. These P450 17A1 and 17A2 mutants had catalytic profiles more similar to each other than did the wildtype proteins. Docking with these structures can explain several minor products, which require multiple enzyme conformations. The 17α-hydroperoxy (OOH) derivatives of the steroids were used as oxygen surrogates. Human P450 17A1 and zebrafish P450s 17A1 and P450 17A2 readily converted these to the lyase products in the absence of other proteins or cofactors (with catalytically competent kinetics) plus hydroxylated 17α-hydroxysteroids. The 17α-OOH results indicate that a "Compound I" (FeO3+) intermediate is capable of formation and can be used to rationalize the products. We conclude that zebrafish P450 17A2 is capable of lyase activity with the 17α-OOH steroids because it can achieve an appropriate conformation for lyase catalysis in this system that is precluded in the conventional reaction.
Collapse
Affiliation(s)
- Eric Gonzalez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pradeep S Pallan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Wei Zhang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Lei
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Zdzislaw Wawrzak
- the Life Sciences Collaborative Access Team, Sector 21, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, and
| | | | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146,
| |
Collapse
|
31
|
Abstract
Cytochrome P450 (P450, CYP) research provides many opportunities for the application of kinetic isotope effect (KIE) strategies. P450s collectively catalyze oxidations of more substrates than any other group of enzymes, and CH bond cleavage is a major feature in a large fraction of these reactions. The presence of a significant primary deuterium KIE is evidence that hydrogen abstraction is at least partially rate-limiting in the reactions, and this appears to be the case in many P450 reactions. The first report of a KIE in (P450-linked) drug metabolism appeared in 1961 (for morphine N-demethylation), and in a number of cases, it has been possible to modulate the in vivo metabolism or toxicity of chemicals by deuterium substitution. A number of efforts are in progress to utilize deuterium substitution to alter the metabolism of drugs in an advantageous manner.
Collapse
|