1
|
Wang S, Wang Y, Gan M, Wan L, Liu Y, Xu Y, Hou Z, Deng Y, Wu X. Bioinformatics analysis of oxidative phosphorylation-related differentially expressed genes in osteoporosis. Eur J Med Res 2025; 30:294. [PMID: 40241169 PMCID: PMC12001448 DOI: 10.1186/s40001-025-02568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common metabolic bone disease characterized by decreased bone mass and increased fracture risk. Recent studies suggest that oxidative phosphorylation (OXPHOS) plays a crucial role in the pathogenesis of OP. This study aims to investigate the differential expression and potential functional roles of OXPHOS-related genes in OP. METHODS We downloaded gene expression data from two OP-related datasets, GSE56815 and GSE7429, using the GEOquery package. We also collected OXPHOS-related genes from the GeneCards and MsigDB databases. The limma package was used for differential expression analysis of GSE56815, and differentially expressed genes (DEGs) were identified. We intersected these DEGs with OXPHOS-related genes to identify OXPHOS-related differentially expressed genes. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were conducted using the clusterProfiler package. Additionally, we performed gene set enrichment analysis (GSEA). The Mann-Whitney U test analyzed differences in the expression of OXPHOSRDEGs, and their diagnostic potential was assessed by Receiver Operating Characteristic (ROC) curves. Correlation analysis, Protein-Protein Interaction (PPI) network construction, mRNA-miRNA, mRNA-TF interaction network construction, and immune infiltration analysis using CIBERSORT were also conducted. RAW264.7 cells were induced in vitro for 3 days to differentiate towards osteoblasts, and RT-PCR assay was used to verify the differentiation and detect the differential expression of target genes. RESULTS Our results identified 31 DEGs in GSE56815, with 26 upregulated and 5 downregulated genes. Among these, we identified 10 OXPHOSRDEGs: VPS35, TBC1D2, UBQLN2, SH3GLB2, WWP1, NFKBIA, MFSD10, SLC2 A3, RP2, and ZNF91. GO and KEGG enrichment analyses revealed significant involvement of these genes in mechanisms such as the positive regulation of the protein catabolic process and the endocytosis pathway. ROC analysis demonstrated high diagnostic accuracy for VPS35 (AUC = 0.832) and TBC1D2 (AUC = 0.751). Correlation analysis indicated strong relationships between certain OXPHOSRDEGs. The PPI network highlighted 8 hub genes with significant functional similarity among them. CONCLUSION This study systematically elucidates the differential expression and potential mechanisms of OXPHOS-related genes in OP through comprehensive bioinformatics analyses. The identified key genes offer valuable insights into the molecular underpinnings of OP and present potential diagnostic biomarkers and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Songmao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yaling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lei Wan
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yapu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yonghui Xu
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Zhenxing Hou
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yongkang Deng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Martinez ML, Nan K, Bao Z, Bacchetti R, Yuan S, Tyler J, Guezennec XL, Bard FA, Rainero E. Novel kinase regulators of extracellular matrix internalisation identified by high-content screening modulate invasive carcinoma cell migration. PLoS Biol 2024; 22:e3002930. [PMID: 39666682 PMCID: PMC11637276 DOI: 10.1371/journal.pbio.3002930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
The interaction between cancer cells and the extracellular matrix (ECM) plays a pivotal role in tumour progression. While the extracellular degradation of ECM proteins has been well characterised, ECM endocytosis and its impact on cancer cell progression, migration, and metastasis is poorly understood. ECM internalisation is increased in invasive breast cancer cells, suggesting it may support invasiveness. However, current high-throughput approaches mainly focus on cells grown on plastic in 2D, making it difficult to apply these to the study of ECM dynamics. Here, we developed a high-content screening assay to study ECM uptake, based on the of use automated ECM coating for the generation of highly homogeneous ECM a pH-sensitive dye to image ECM trafficking in live cells. We identified that mitogen-activated protein kinase (MAPK) family members, MAP3K1 and MAPK11 (p38β), and the protein phosphatase 2 (PP2) subunit PPP2R1A were required for the internalisation of ECM-bound α2β1 integrin. Mechanistically, we show that down-regulation of the sodium/proton exchanger 1 (NHE1), an established macropinocytosis regulator and a target of p38, mediated ECM macropinocytosis. Moreover, disruption of α2 integrin, MAP3K1, MAPK11, PPP2R1A, and NHE1-mediated ECM internalisation significantly impaired cancer cell migration and invasion in 2D and 3D culture systems. Of note, integrin-bound ECM was targeted for lysosomal degradation, which was required for cell migration on cell-derived matrices. Finally, α2β1 integrin and MAP3K1 expression were significantly up-regulated in pancreatic tumours and correlated with poor prognosis in pancreatic cancer patients. Strikingly, MAP3K1, MAPK11, PPP2R1A, and α2 integrin expression were higher in chemotherapy-resistant tumours in breast cancer patients. Our results identified the α2β1 integrin/p38 signalling axis as a novel regulator of ECM endocytosis, which drives invasive migration and tumour progression, demonstrating that our high-content screening approach has the capability of identifying novel regulators of cancer cell invasion.
Collapse
Affiliation(s)
- Montserrat Llanses Martinez
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Keqian Nan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Zhe Bao
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Rachele Bacchetti
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Shengnan Yuan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Joe Tyler
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | | | - Frederic A. Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, CRCM, Marseille, France
| | - Elena Rainero
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
3
|
Zhang B, Pei Z, Tian A, He W, Sun C, Hao T, Ariben J, Li S, Wu L, Yang X, Zhao Z, Wu L, Meng C, Xue F, Wang X, Ma X, Zheng F. Multi-omics Analysis to Identify Key Immune Genes for Osteoporosis based on Machine Learning and Single-cell Analysis. Orthop Surg 2024; 16:2803-2820. [PMID: 39238187 PMCID: PMC11541141 DOI: 10.1111/os.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Osteoporosis is a severe bone disease with a complex pathogenesis involving various immune processes. With the in-depth understanding of bone immune mechanisms, discovering new therapeutic targets is crucial for the prevention and treatment of osteoporosis. This study aims to explore novel bone immune markers related to osteoporosis based on single-cell and transcriptome data, utilizing bioinformatics and machine learning methods, in order to provide novel strategies for the diagnosis and treatment of the disease. METHODS Single cell and transcriptome data sets were acquired from Gene Expression Omnibus (GEO). The data was then subjected to cell communication analysis, pseudotime analysis, and high dimensional WGCNA (hdWGCNA) analysis to identify key immune cell subpopulations and module genes. Subsequently, ConsensusClusterPlus analysis was performed on the key module genes to identify different diseased subgroups in the osteoporosis (OP) training set samples. The immune characteristics between subgroups were evaluated using Cibersort, EPIC, and MCP counter algorithms. OP's hub genes were screened using 10 machine learning algorithms and 113 algorithm combinations. The relationship between hub genes and immunity and pathways was established by evaluating the immune and pathway scores of the training set samples through the ESTIMATE, MCP-counter, and ssGSEA algorithms. Real-time fluorescence quantitative PCR (RT-qPCR) testing was conducted on serum samples collected from osteoporosis patients and healthy adults. RESULTS In OP samples, the proportions of bone marrow-derived mesenchymal stem cells (BM-MSCs) and neutrophils increased significantly by 6.73% (from 24.01% to 30.74%) and 6.36% (from 26.82% to 33.18%), respectively. We found 16 intersection genes and four hub genes (DND1, HIRA, SH3GLB2, and F7). RT-qPCR results showed reduced expression levels of DND1, HIRA, and SH3GLB2 in clinical blood samples of OP patients. Moreover, the four hub genes showed positive correlations with neutrophils (0.65-0.90), immature B cells (0.76-0.92), and endothelial cells (0.79-0.87), while showing negative correlations with myeloid-derived suppressor cells (negative 0.54-0.73), T follicular helper cells (negative 0.71-0.86), and natural killer T cells (negative 0.75-0.85). CONCLUSION Neutrophils play a crucial role in the occurrence and development of osteoporosis. The four hub genes potentially inhibit metabolic activities and trigger inflammation by interacting with other immune cells, thereby significantly contributing to the onset and diagnosis of OP.
Collapse
Affiliation(s)
- Baoxin Zhang
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
- Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhiwei Pei
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Aixian Tian
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Wanxiong He
- Sanya People's HospitalSanyaPeople's Republic of China
| | - Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | | | - Siqin Li
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Lina Wu
- Aier Eye HospitalTianjin UniversityTianjinPeople's Republic of China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Lina Wu
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Fei Xue
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Xing Wang
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Xinlong Ma
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Feng Zheng
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
| |
Collapse
|
4
|
Sulpiana, Amalia R, Atik N. The Roles of Endocytosis and Autophagy at the Cellular Level During Influenza Virus Infection: A Mini-Review. Infect Drug Resist 2024; 17:3199-3208. [PMID: 39070720 PMCID: PMC11283801 DOI: 10.2147/idr.s471204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host's machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were "Endocytosis" OR "Autophagy" AND "Influenza Virus". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.
Collapse
Affiliation(s)
- Sulpiana
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 54211, Indonesia
- Faculty of Medicine, IPB University, Bogor, 16680, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
5
|
Ren Y, Sun J, Mao X. Quality changes in gazami crab (Portunus trituberculatus) during refrigeration. Food Chem 2024; 437:137942. [PMID: 37951080 DOI: 10.1016/j.foodchem.2023.137942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Gazami crab (Portunus trituberculatus) is prone to spoilage during storage and transportation. More research is needed to determine how to reliably show its freshness and explain the mechanism of quality deterioration. We hypothesized that proteins extracted from crabs can be biomarkers to detect crab muscle quality changes. This work used physicochemical and proteomic approaches to investigate protein biomarkers and molecular mechanisms driving changes in gazami crab muscle quality after long-term refrigeration. It was shown that 66 differentially abundant proteins (DAPs) were closely associated with pH and texture and can be used as biomarkers to assess crab muscle freshness. According to bioinformatics studies, ribosomes and autophagy were significant mechanisms in crab rotting. These findings provided new concepts and a theoretical foundation for evaluating the freshness of refrigerated gazami crab and help uncover the molecular mechanism of its quality deterioration.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
6
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
7
|
Zhang R, Chen Y, He J, Gou HY, Zhu YL, Zhu YM. WGCNA combined with GSVA to explore biomarkers of refractory neocortical epilepsy. IBRO Neurosci Rep 2022; 13:314-321. [PMID: 36247523 PMCID: PMC9561751 DOI: 10.1016/j.ibneur.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
About two-thirds of epilepsy patients relapse within five years after surgery. It is significant to note that the limitations of current treatments stem from a lack of understanding of molecular mechanisms. In this study, Weighted Gene Co-expression Network Analysis (WGCNA) and Gene set variation analysis (GSVA) methods were used to analyze the total RNA data from 20 surgical removal samples (epileptogenic zone and irritative zone, EZ and IZ) of 10 Chinese patients with refractory neocortical epilepsy downloaded from the original microarray dataset (GSE31718) of the National Center for Biological Information -Gene Expression Omnibus database (NCBI-GEO). The late stages of the estrogen response pathway, the IL6-JAK-STAT3-signal pathway and G2 checkpoints are correlated with the EZ, whereas the early stages of the estrogen response pathway and TGF-β signal are more strongly expressed in the IZ. The allogeneic rejection, apical surface and the TGF-β signal are relevant to the high seizure frequency, the unfolded protein response and MYC-target are mostly expressed in patients with low-frequency seizures. Genes with high gene significance(GS) values that were correlated with seizure frequency include OSR2, CABP4, CAPSL, CYP4F8, and FRK in the pink module, and SH3GLB2, CHAC1 and DDX23 in the yellow module. The occurrence of EZ and IZ act on different biological mechanisms. The upregulated genes associated with seizure frequency include OSR2, CABP4, CAPSL, CYP4F8, and FRK, and the downregulated genes include SH3GLB2, CHAC1 and DDX23. The evidence of key genes and differential pathways obtained by WGCNA and GSVA may be biomarkers for novel preventive and pharmacological interventions in clinical practice.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yan Chen
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Jia He
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Hai-yan Gou
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yu-lan Zhu
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yan-mei Zhu
- Department of Epilepsy and Sleep Disorder, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| |
Collapse
|
8
|
Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, Rahman S, Voinchet R, Bonaroti J, Li S, Darby JL, Kar UK, Neal MD, Sperry J, Das J, Billiar TR. Multi-Omic Admission-Based Prognostic Biomarkers Identified by Machine Learning Algorithms Predict Patient Recovery and 30-Day Survival in Trauma Patients. Metabolites 2022; 12:774. [PMID: 36144179 PMCID: PMC9500723 DOI: 10.3390/metabo12090774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Admission-based circulating biomarkers for the prediction of outcomes in trauma patients could be useful for clinical decision support. It is unknown which molecular classes of biomolecules can contribute biomarkers to predictive modeling. Here, we analyzed a large multi-omic database of over 8500 markers (proteomics, metabolomics, and lipidomics) to identify prognostic biomarkers in the circulating compartment for adverse outcomes, including mortality and slow recovery, in severely injured trauma patients. Admission plasma samples from patients (n = 129) enrolled in the Prehospital Air Medical Plasma (PAMPer) trial were analyzed using mass spectrometry (metabolomics and lipidomics) and aptamer-based (proteomics) assays. Biomarkers were selected via Least Absolute Shrinkage and Selection Operator (LASSO) regression modeling and machine learning analysis. A combination of five proteins from the proteomic layer was best at discriminating resolvers from non-resolvers from critical illness with an Area Under the Receiver Operating Characteristic curve (AUC) of 0.74, while 26 multi-omic features predicted 30-day survival with an AUC of 0.77. Patients with traumatic brain injury as part of their injury complex had a unique subset of features that predicted 30-day survival. Our findings indicate that multi-omic analyses can identify novel admission-based prognostic biomarkers for outcomes in trauma patients. Unique biomarker discovery also has the potential to provide biologic insights.
Collapse
Affiliation(s)
- Sultan S. Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacob Scioscia
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Eight-Year Program of Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Anna Rosengart
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eunseo Sung
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Syed Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert Voinchet
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shimena Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L. Darby
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
10
|
Díaz-Velasco S, Delgado J, Peña FJ, Estévez M. Protein oxidation marker, α-amino adipic acid, impairs proteome of differentiated human enterocytes: Underlying toxicological mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140797. [PMID: 35691541 DOI: 10.1016/j.bbapap.2022.140797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022]
Abstract
Protein oxidation and oxidative stress are involved in a variety of health disorders such as colorectal adenomas, inflammatory bowel's disease, neurological disorders and aging, among others. In particular, the specific final oxidation product from lysine, the α-amino adipic acid (α-AA), has been found in processed meat products and emphasized as a reliable marker of type II diabetes and obesity. Currently, the underlying mechanisms of the biological impairments caused by α-AA are unknown. To elucidate the molecular basis of the toxicological effect of α-AA, differentiated human enterocytes were exposed to dietary concentrations of α-AA (200 μM) and analyzed by flow cytometry, protein oxidation and proteomics using a Nanoliquid Chromatography-Orbitrap MS/MS. Cell viability was significantly affected by α-AA (p < 0.05). The proteomic study revealed that α-AA was able to alter cell homeostasis through impairment of the Na+/K+-ATPase pump, energetic metabolism, and antioxidant response, among other biological processes. These results show the importance of dietary oxidized amino acids in intestinal cell physiology and open the door to further studies to reveal the impact of protein oxidation products in pathological conditions.
Collapse
Affiliation(s)
- S Díaz-Velasco
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, Universidad de Extremadura, Cáceres, Spain
| | - Mario Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain.
| |
Collapse
|
11
|
Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I, Montecinos-Oliva C, Swerts J, Kuenen S, Verstreken P, Soukup SF. Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 2021; 163:105595. [PMID: 34933093 DOI: 10.1016/j.nbd.2021.105595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Synapses are critical for neuronal communication and brain function. To maintain neuronal homeostasis, synapses rely on autophagy. Autophagic alterations cause neurodegeneration and synaptic dysfunction is a feature in neurodegenerative diseases. In Parkinson's disease (PD), where the loss of synapses precedes dopaminergic neuron loss, various PD-causative proteins are involved in the regulation of autophagy. So far only a few factors regulating autophagy at the synapse have been identified and the molecular mechanisms underlying autophagy at the synapse is only partially understood. Here, we describe Endophilin-B (EndoB) as a novel player in the regulation of synaptic autophagy in health and disease. We demonstrate that EndoB is required for autophagosome biogenesis at the synapse, whereas the loss of EndoB blocks the autophagy induction promoted by the PD mutation LRRK2G2019S. We show that EndoB is required to prevent neuronal loss. Moreover, loss of EndoB in the Drosophila visual system leads to an increase in synaptic contacts between photoreceptor terminals and their post-synaptic synapses. These data confirm the role of autophagy in synaptic contact formation and neuronal survival.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Jef Swerts
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
12
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Huang CS, Liu CY, Lu TP, Huang CJ, Chiu JH, Tseng LM, Huang CC. Targeted Sequencing of Taiwanese Breast Cancer with Risk Stratification by the Concurrent Genes Signature: A Feasibility Study. J Pers Med 2021; 11:jpm11070613. [PMID: 34203389 PMCID: PMC8306786 DOI: 10.3390/jpm11070613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common female malignancy in Taiwan, while conventional clinical and pathological factors fail to provide full explanation for prognostic heterogeneity. The aim of the study was to evaluate the feasibility of targeted sequencing combined with concurrent genes signature to identify somatic mutations with clinical significance. The extended concurrent genes signature was based on the coherent patterns between genomic and transcriptional alterations. Targeted sequencing of 61 Taiwanese breast cancers revealed 1036 variants, including 76 pathogenic and 545 likely pathogenic variants based on the ACMG classification. The most frequently mutated genes were NOTCH, BRCA1, AR, ERBB2, FANCA, ATM, and BRCA2 and the most common pathogenic deletions were FGFR1, ATM, and WT1, while BRCA1 (rs1799965), FGFR2 (missense), and BRCA1 (rs1799949) were recurrent pathogenic SNPs. In addition, 38 breast cancers were predicted into 12 high-risk and 26 low-risk cases based on the extended concurrent genes signature, while the pathogenic PIK3CA variant (rs121913279) was significantly mutated between groups. Two deleterious SH3GLB2 mutations were further revealed by multivariate Cox’s regression (hazard ratios: 29.4 and 16.1). In addition, we identified several significantly mutated or pathogenic variants associated with differentially expressed signature genes. The feasibility of targeted sequencing in combination with concurrent genes risk stratification was ascertained. Future study to validate clinical applicability and evaluate potential actionability for Taiwanese breast cancers should be initiated.
Collapse
Affiliation(s)
- Ching-Shui Huang
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Yi Liu
- Department of Pathology, Cathay General Hospital Sijhih, New Taipei 221, Taiwan;
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 110, Taiwan;
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan;
- National Defense Medical Center, Department of Biochemistry, Taipei 114, Taiwan
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ling-Ming Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 1121, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 1121, Taiwan
- School of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
15
|
Robustelli J, Baumgart T. Membrane partitioning and lipid selectivity of the N-terminal amphipathic H0 helices of endophilin isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183660. [PMID: 34090873 DOI: 10.1016/j.bbamem.2021.183660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Endophilin is an N-BAR protein, which is characterized by a crescent-shaped BAR domain and an amphipathic helix that contributes to the membrane binding of these proteins. The exact function of that H0 helix has been a topic of debate. In mammals, there are five different endophilin isoforms, grouped into A (three members) and B (two members) subclasses, which have been described to differ in their subcellular localization and function. We asked to what extent molecular properties of the H0 helices of these members affect their membrane targeting behavior. We found that all H0 helices of the endophilin isoforms display a two-state equilibrium between disordered and α-helical states in which the helical secondary structure can be stabilized through trifluoroethanol. The helicities in high TFE were strikingly different among the H0 peptides. We investigated H0-membrane partitioning by the monitoring of secondary structure changes via CD spectroscopy. We found that the presence of anionic phospholipids is critical for all H0 helices partitioning into membranes. Membrane partitioning is found to be sensitive to variations in membrane complexity. Overall, the H0 B subfamily displays stronger membrane partitioning than the H0 A subfamily. The H0 A peptide-membrane binding occurs predominantly through electrostatic interactions. Variation among the H0 A subfamily may be attributed to slight alterations in the amino acid sequence. Meanwhile, the H0 B subfamily displays greater specificity for certain membrane compositions, and this may link H0 B peptide binding to endophilin B's cellular function.
Collapse
Affiliation(s)
- Jaclyn Robustelli
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Ning X, Sun L. Systematic Identification and Analysis of Circular RNAs of Japanese Flounder ( Paralichthys olivaceus) in Response to Vibrio anguillarum Infection. Genes (Basel) 2021; 12:genes12010100. [PMID: 33467444 PMCID: PMC7830906 DOI: 10.3390/genes12010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82898829
| |
Collapse
|
17
|
Ye Y, Tyndall ER, Bui V, Tang Z, Shen Y, Jiang X, Flanagan JM, Wang HG, Tian F. An N-terminal conserved region in human Atg3 couples membrane curvature sensitivity to conjugase activity during autophagy. Nat Commun 2021; 12:374. [PMID: 33446636 PMCID: PMC7809043 DOI: 10.1038/s41467-020-20607-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
During autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3-PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3-PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.
Collapse
Affiliation(s)
- Yansheng Ye
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Erin R Tyndall
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Van Bui
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yan Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Flanagan
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
| | - Fang Tian
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
18
|
Functional Analyses of Bovine Foamy Virus-Encoded miRNAs Reveal the Importance of a Defined miRNA for Virus Replication and Host-Virus Interaction. Viruses 2020; 12:v12111250. [PMID: 33147813 PMCID: PMC7693620 DOI: 10.3390/v12111250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus–host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.
Collapse
|
19
|
Stifter K, Dekhtiarenko I, Krieger J, Tissot AC, Seufferlein T, Wagner M, Schirmbeck R. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8 + T-cell responses by DNA vaccination. Vaccine 2020; 38:3711-3719. [PMID: 32278524 DOI: 10.1016/j.vaccine.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Iryna Dekhtiarenko
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Alain Charles Tissot
- Roche Pharma Research and Early Development, Therapeutic Modalities, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH; Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
20
|
Murakami K, Tenge VR, Karandikar UC, Lin SC, Ramani S, Ettayebi K, Crawford SE, Zeng XL, Neill FH, Ayyar BV, Katayama K, Graham DY, Bieberich E, Atmar RL, Estes MK. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc Natl Acad Sci U S A 2020; 117:1700-1710. [PMID: 31896578 PMCID: PMC6983410 DOI: 10.1073/pnas.1910138117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.
Collapse
Affiliation(s)
- Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo 208-0011, Japan
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo 208-0011, Japan
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - David Y Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY 40506
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
21
|
Takahashi Y, Liang X, Hattori T, Tang Z, He H, Chen H, Liu X, Abraham T, Imamura-Kawasawa Y, Buchkovich NJ, Young MM, Wang HG. VPS37A directs ESCRT recruitment for phagophore closure. J Cell Biol 2019; 218:3336-3354. [PMID: 31519728 PMCID: PMC6781443 DOI: 10.1083/jcb.201902170] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Takahashi et al. perform a genome-wide CRISPR screen using the HaloTag-LC3 assay to gain insight into the mechanisms of phagophore closure. They identify a role for VPS37A in coordinating the ESCRT assembly on the phagophore for membrane closure. The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.
Collapse
Affiliation(s)
| | - Xinwen Liang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Tatsuya Hattori
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Zhenyuan Tang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA
| | - Haiyan He
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Han Chen
- Microscopy Imaging Facility, Penn State College of Medicine, Hershey, PA
| | - Xiaoming Liu
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Thomas Abraham
- Department of Neural and Behavioral Science, Penn State College of Medicine, Hershey, PA.,Microscopy Imaging Facility, Penn State College of Medicine, Hershey, PA
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA.,Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA
| | - Nicholas J Buchkovich
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA
| | - Megan M Young
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA .,Department of Pharmacology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
22
|
Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM, Serfass JM, Chen L, Gebru M, Chen C, Wills CA, Atkinson JM, Chen H, Abraham T, Wang HG. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 2018; 9:2855. [PMID: 30030437 PMCID: PMC6054611 DOI: 10.1038/s41467-018-05254-w] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/23/2018] [Indexed: 01/21/2023] Open
Abstract
The mechanism of phagophore closure remains unclear due to technical limitations in distinguishing unclosed and closed autophagosomal membranes. Here, we report the HaloTag-LC3 autophagosome completion assay that specifically detects phagophores, nascent autophagosomes, and mature autophagic structures. Using this assay, we identify the endosomal sorting complexes required for transport (ESCRT)-III component CHMP2A as a critical regulator of phagophore closure. During autophagy, CHMP2A translocates to the phagophore and regulates the separation of the inner and outer autophagosomal membranes to form double-membrane autophagosomes. Consistently, inhibition of the AAA-ATPase VPS4 activity impairs autophagosome completion. The ESCRT-mediated membrane abscission appears to be a critical step in forming functional autolysosomes by preventing mislocalization of lysosome-associated membrane glycoprotein 1 to the inner autophagosomal membrane. Collectively, our work reveals a function for the ESCRT machinery in the final step of autophagosome formation and provides a useful tool for quantitative analysis of autophagosome biogenesis and maturation.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Haiyan He
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Tatsuya Hattori
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Ying Liu
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Megan M Young
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Jacob M Serfass
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Longgui Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Melat Gebru
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Chong Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Jennifer M Atkinson
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Han Chen
- Microscopy Imaging Facility, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Thomas Abraham
- Microscopy Imaging Facility, Penn State College of Medicine, Hershey, PA, 17033, USA
- Department of Neural and Behavioral Science, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
23
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
24
|
Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:199-214. [PMID: 29499933 PMCID: PMC5862129 DOI: 10.1016/j.omtn.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 01/16/2023]
Abstract
Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment) approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies.
Collapse
|
25
|
Duran A, Valero N, Mosquera J, Fuenmayor E, Alvarez-Mon M. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures. Life Sci 2017; 191:180-185. [PMID: 29055802 DOI: 10.1016/j.lfs.2017.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. MAIN METHODS GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. KEY FINDINGS Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. SIGNIFICANCE The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis.
Collapse
Affiliation(s)
- Anyelo Duran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Cátedra de Bioquímica General, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología, Venezuela
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Edgard Fuenmayor
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Melchor Alvarez-Mon
- Servicio de Enfermedades del Sistema Inmune y Oncología, Hospital Universitario "Príncipe de Asturias", Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
26
|
Fino KK, Yang L, Silveyra P, Hu S, Umstead TM, DiAngelo S, Halstead ES, Cooper TK, Abraham T, Takahashi Y, Zhou Z, Wang HG, Chroneos ZC. SH3GLB2/endophilin B2 regulates lung homeostasis and recovery from severe influenza A virus infection. Sci Rep 2017; 7:7262. [PMID: 28779131 PMCID: PMC5544693 DOI: 10.1038/s41598-017-07724-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
New influenza A viruses that emerge frequently elicit composite inflammatory responses to both infection and structural damage of alveolar-capillary barrier cells that hinders regeneration of respiratory function. The host factors that relinquish restoration of lung health to enduring lung injury are insufficiently understood. Here, we investigated the role of endophilin B2 (B2) in susceptibility to severe influenza infection. WT and B2-deficient mice were infected with H1N1 PR8 by intranasal administration and course of influenza pneumonia, inflammatory, and tissue responses were monitored over time. Disruption of B2 enhanced recovery from severe influenza infection as indicated by swift body weight recovery and significantly better survival of endophilin B2-deficient mice compared to WT mice. Compared to WT mice, the B2-deficient lungs exhibited induction of genes that express surfactant proteins, ABCA3, GM-CSF, podoplanin, and caveolin mRNA after 7 days, temporal induction of CCAAT/enhancer binding protein CEBPα, β, and δ mRNAs 3-14 days after infection, and differences in alveolar extracellular matrix integrity and respiratory mechanics. Flow cytometry and gene expression studies demonstrated robust recovery of alveolar macrophages and recruitment of CD4+ lymphocytes in B2-deficient lungs. Targeting of endophilin B2 alleviates adverse effects of IAV infection on respiratory and immune cells enabling restoration of alveolar homeostasis.
Collapse
Affiliation(s)
- Kristin K Fino
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Linlin Yang
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Patricia Silveyra
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Sanmei Hu
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Todd M Umstead
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Susan DiAngelo
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - E Scott Halstead
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department of Pediatrics, Critical Care Medicine, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Children's Hospital, Penn State Health Milton S. Hershey Medical Center, Pennsylvania, USA
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Pennsylvania, USA
- Department Pathology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences, and the Microscopy Imaging Facility, Pennsylvania, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Hematology Oncology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Zhixiang Zhou
- The College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hong Gang Wang
- Department of Pediatrics, Hematology Oncology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
| | - Zissis C Chroneos
- Department of Pediatrics, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania, USA.
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Pennsylvania, USA.
| |
Collapse
|