1
|
Bednarek A, Kabut A, Rapala-Kozik M, Satala D. Exploring the effects of culture conditions on Yapsin ( YPS) gene expression in Nakaseomyces glabratus. Open Life Sci 2024; 19:20220995. [PMID: 39655190 PMCID: PMC11627043 DOI: 10.1515/biol-2022-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Kabut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Mo X, Yu X, Cui H, Xiong K, Yang S, Su C, Lu Y. In vivo RNA sequencing reveals a crucial role of Fus3-Kss1 MAPK pathway in Candida glabrata pathogenicity. mSphere 2024; 9:e0071524. [PMID: 39475321 PMCID: PMC11580445 DOI: 10.1128/msphere.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Candida glabrata is an important and increasingly common pathogen of humans, particularly in immunocompromised hosts. Despite this, little is known about how this fungus causes disease. Here, we applied RNA sequencing and an in vivo invasive infection model to identify the attributes that allow this organism to infect hosts. Fungal transcriptomes show a dramatic increase in the expression of Fus3 and Kss1, two mitogen-activated protein kinases (MAPKs), during invasive infection. We further demonstrate that they are both highly induced under a combination of serum and high CO2 conditions. Deletion of both FUS3 and KSS1, but neither gene alone, results in a reduced fungal burden in organs, as well as in the gastrointestinal tract in the DSS (Dextran Sulfate Sodium)-induced colitis model. Similarly, the defect in persistence in macrophages and attenuated adhesion to epithelial cells are observed when FUS3 and KSS1 are both disrupted. The fus3 kss1 double mutant also displays defects in the induction of virulence attributes such as genes required for iron acquisition and adhesion and in the anti-fungal drug tolerance. The putative downstream transcription factors Ste12 (1), Ste12 (2), Tec1, and Tec2 are found to be involved in the regulation of these virulence attributes. Collectively, our study indicates that an evolutionary conserved MAPK pathway, which regulates mating and filamentous growth in Saccharomyces cerevisiae, is critical for C. glabrata pathogenicity. IMPORTANCE The MAPK signaling pathway, mediated by closely related kinases Fus3 and Kss1, is crucial for controlling mating and filamentous growth in Saccharomyces cerevisiae, but this pathway does not significantly impact hyphal development and pathogenicity in Candida albicans, a commensal-pathogenic fungus of humans. Furthermore, deletion of Cpk1, the ortholog of Fus3 in pathogenic fungus Cryptococcus neoformans, has no effect on virulence. Here, we demonstrate that the MAPK pathway is crucial for the pathogenicity of Candida glabrata, a fungus that causes approximately one-third of cases of hematogenously disseminated candidiasis in the United States. This pathway regulates multiple virulence attributes including the induction of iron acquisition genes and adhesins, as well as persistence in macrophages and organs. Our work provides insights into C. glabrata pathogenesis and highlights an example in which regulatory rewiring of a conserved pathway confers a virulent phenotype in a pathogen.
Collapse
Affiliation(s)
- Xinreng Mo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangtai Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Gonçalves B, Pires DP, Fernandes L, Pacheco M, Ferreira T, Osório H, Soares AR, Henriques M, Silva S. Biofilm matrix regulation by Candida glabrata Zap1 under acidic conditions: transcriptomic and proteomic analyses. Microbiol Spectr 2024; 12:e0120124. [PMID: 39494883 PMCID: PMC11619577 DOI: 10.1128/spectrum.01201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/06/2024] [Indexed: 11/05/2024] Open
Abstract
The vaginal acidic environment potentiates the formation of Candida glabrata biofilms, leading to complicated and recurrent infections. Importantly, the production of matrix is known to contribute to the recalcitrant features of Candida biofilms. In this study, we reveal that Zap1 regulates the matrix of C. glabrata acidic biofilms and analyzed the modulation of their transcriptome (by microarrays) and matrix proteome (by LC-MS/MS) by Zap1. For that, the deletion mutant zap1Δ and its complemented strain zap1Δ::ZAP1 were constructed, and their biofilms were developed at pH 4 (adjusted with lactic acid). The results revealed that Zap1 is a negative regulator of the total amount of protein and carbohydrate in the biofilm matrix. Accordingly, various genes and matrix proteins with predicted functions in the regulation of carbohydrate metabolism, sugar binding, sugar transport, and adhesion (including Epa family) were repressed by Zap1. Nevertheless, the results also suggested that Zap1 is essential to the delivery and organization of some matrix components. Indeed, Zap1 was required for the secretion of 122 proteins to the matrix and induced the expression of 557 genes, including various targets involved in glucan metabolism. Additionally, Zap1 induced targets with roles in virulence, resistance to antifungals, and host immunity evasion, including yapsins, ERG family, and moonlighting proteins. Zap1 was also required for the secretion of acidic-specific matrix proteins, indicating a contribution to the response to the acidic environment. Overall, this study demonstrates that Zap1 is a relevant regulator of the biofilm matrix, contributing to a better understanding of C. glabrata acidic biofilms.IMPORTANCEThe rising prevalence of vulvovaginal candidiasis (VVC) and the increasing presence of Candida spp. with aggressive virulence features and low susceptibility to common antifungals, particularly Candida glabrata, have resulted in more severe, prolonged, and recurrent cases of VVC, with significant implications for patients. This research offers valuable insights into the molecular changes that contribute to the formation of C. glabrata biofilms in the acidic vaginal environment, representing a significant advancement in the understanding of C. glabrata's virulence. Notably, this study identified Zap1 as a critical regulator of C. glabrata biofilm matrix, with additional potential roles in adhesion, antifungal resistance, evasion of host immunity, and response to acidic conditions, making it a promising target for new therapeutic approaches. Importantly, Zap1 is the first regulator of the biofilm matrix to be identified in C. glabrata, and the elucidation of its targets (including genes and matrix proteins) lays a strong foundation for future research.
Collapse
Affiliation(s)
- Bruna Gonçalves
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Priscila Pires
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Liliana Fernandes
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Miguel Pacheco
- Informatics Department, University of Minho, Braga, Portugal
| | - Tiago Ferreira
- Informatics Department, University of Minho, Braga, Portugal
| | - Hugo Osório
- i3S—Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Silva
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| |
Collapse
|
4
|
Granada M, Cook E, Sherlock G, Rosenzweig F. Microbe Profile: Candida glabrata - a master of deception. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001518. [PMID: 39589236 PMCID: PMC11893362 DOI: 10.1099/mic.0.001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Candida glabrata is a fungal microbe associated with multiple vertebrate microbiomes and their terrestrial environments. In humans, the species has emerged as an opportunistic pathogen that now ranks as the second-leading cause of candidiasis in Europe and North America (Beardsley et al. Med Mycol 2024, 62). People at highest risk of infection include the elderly, immunocompromised individuals and/or long-term residents of hospital and assisted-living facilities. C. glabrata is intrinsically drug-resistant, metabolically versatile and able to avoid detection by the immune system. Analyses of its 12.3 Mb genome indicate a stable pangenome Marcet-Houben et al. (BMC Biol 2022, 20) and phylogenetic affinity with Saccharomyces cerevisiae. Recent phylogenetic analyses suggest reclassifying C. glabrata as Nakaseomyces glabratus Lakashima and Sugita (Med Mycol J 2022, 63: 119-132).
Collapse
Affiliation(s)
- Maria Granada
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Patra S, Kaur R. Aspartyl proteases target host actin nucleator complex protein to limit epithelial innate immunity. EMBO Rep 2024; 25:4846-4875. [PMID: 39349750 PMCID: PMC11549443 DOI: 10.1038/s44319-024-00270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 11/10/2024] Open
Abstract
Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.
Collapse
Affiliation(s)
- Sandip Patra
- Laboratory of Fungal Pathogenesis, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad-121001, Haryana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, Telangana, India.
| |
Collapse
|
6
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Raj K, Paul D, Rishi P, Shukla G, Dhotre D, YogeshSouche. Decoding the role of oxidative stress resistance and alternative carbon substrate assimilation in the mature biofilm growth mode of Candida glabrata. BMC Microbiol 2024; 24:128. [PMID: 38641593 PMCID: PMC11031924 DOI: 10.1186/s12866-024-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Dhiraj Paul
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Praveen Rishi
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Geeta Shukla
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - YogeshSouche
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| |
Collapse
|
9
|
Kumar K, Pareek A, Kaur R. SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 2024; 27:109607. [PMID: 38632999 PMCID: PMC11022050 DOI: 10.1016/j.isci.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune evasion is critical for fungal virulence. However, how the human opportunistic pathogen Candida glabrata (Cg) accomplishes this is unknown. Here, we present the first genome-wide nucleosome map of the macrophage-internalized Cg consisting of ∼12,000 dynamic and 70,000 total nucleosomes. We demonstrate that CgSnf2 (SWI/SNF chromatin remodeling complex-ATPase subunit)-mediated chromatin reorganization in macrophage-internalized Cg upregulates and downregulates the immunosuppressive seven-gene mannosyltransferase-cluster (CgMT-C) and immunostimulatory cell surface adhesin-encoding EPA1 gene, respectively. Consistently, EPA1 overexpression and CgMT-C deletion elevated IL-1β (pro-inflammatory cytokine) production and diminished Cg proliferation in macrophages. Further, Cgsnf2Δ had higher Epa1 surface expression, and evoked increased IL-1β secretion, and was killed in macrophages. Akt-, p38-, NF-κB- or NLRP3 inflammasome-inhibition partially reversed increased IL-1β secretion in Cgsnf2Δ-infected macrophages. Importantly, macrophages responded to multiple Candida pathogens via NF-κB-dependent IL-1β production, underscoring NF-κB signaling's role in fungal diseases. Altogether, our findings directly link the nucleosome positioning-based chromatin remodeling to fungal immunomodulatory molecule expression.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
10
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Ni Q, Wu X, Su T, Jiang C, Dong D, Wang D, Chen W, Cui Y, Peng Y. The regulatory subunits of CK2 complex mediate DNA damage response and virulence in Candida Glabrata. BMC Microbiol 2023; 23:317. [PMID: 37891489 PMCID: PMC10612253 DOI: 10.1186/s12866-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Candida glabrata which belongs to normal microbiota, has caused significant concern worldwide due to its high prevalence and drug resistance in recent years. C. glabrata has developed many strategies to evade the clearance of the host immune system, thereby causing persistent infection. Although coping with the induced DNA damage is widely acknowledged to be important, the underlying mechanisms remain unclear. RESULTS The present study provides hitherto undocumented evidence of the importance of the regulatory subunits of CgCK2 (CgCkb1 and CgCkb2) in response to DNA damage. Deletion of CgCKB1 or CgCKB2 enhanced cellular apoptosis and DNA breaks and led to cell cycle delay. In addition, deficiencies in survival upon phagocytosis were observed in Δckb1 and Δckb2 strains. Consistently, disruption of CgCKB1 and CgCKB2 attenuated the virulence of C. glabrata in mouse models of invasive candidiasis. Furthermore, global transcriptional profiling analysis revealed that CgCkb1 and CgCkb2 participate in cell cycle resumption and genomic stability. CONCLUSIONS Overall, our findings suggest that the response to DNA damage stress is crucial for C. glabrata to survive in macrophages, leading to full virulence in vivo. The significance of this work lies in providing a better understanding of pathogenicity in C. glabrata-related candidiasis and expanding ideas for clinical therapies.
Collapse
Affiliation(s)
- Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
12
|
Chen KZ, Wang LL, Liu JY, Zhao JT, Huang SJ, Xiang MJ. P4-ATPase subunit Cdc50 plays a role in yeast budding and cell wall integrity in Candida glabrata. BMC Microbiol 2023; 23:99. [PMID: 37046215 PMCID: PMC10100066 DOI: 10.1186/s12866-023-02810-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND As highly-conserved types of lipid flippases among fungi, P4-ATPases play a significant role in various cellular processes. Cdc50 acts as the regulatory subunit of flippases, forming heterodimers with Drs2 to translocate aminophospholipids. Cdc50 homologs have been reported to be implicated in protein trafficking, drug susceptibility, and virulence in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans. It is likely that Cdc50 has an extensive influence on fungal cellular processes. The present study aimed to determine the function of Cdc50 in Candida glabrata by constructing a Δcdc50 null mutant and its complemented strain. RESULTS In Candida glabrata, the loss of Cdc50 led to difficulty in yeast budding, probably caused by actin depolarization. The Δcdc50 mutant also showed hypersensitivity to azoles, caspofungin, and cell wall stressors. Further experiments indicated hyperactivation of the cell wall integrity pathway in the Δcdc50 mutant, which elevated the major cell wall contents. An increase in exposure of β-(1,3)-glucan and chitin on the cell surface was also observed through flow cytometry. Interestingly, we observed a decrease in the phagocytosis rate when the Δcdc50 mutant was co-incubated with THP-1 macrophages. The Δcdc50 mutant also exhibited weakened virulence in nematode survival tests. CONCLUSION The results suggested that the lipid flippase subunit Cdc50 is implicated in yeast budding and cell wall integrity in C. glabrata, and thus have a broad influence on drug susceptibility and virulence. This work highlights the importance of lipid flippase, and offers potential targets for new drug research.
Collapse
Affiliation(s)
- Ke-Zhi Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Tao Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Jia Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
14
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
15
|
The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions. Microbiol Spectr 2023; 11:e0372422. [PMID: 36633405 PMCID: PMC9927409 DOI: 10.1128/spectrum.03724-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reference strains improve reproducibility by standardizing observations and methodology, which has ultimately led to important insights into fungal pathogenesis. However, recent investigations have highlighted significant genotypic and phenotypic heterogeneity across isolates that influence genetic circuitry and virulence within a species. Candida glabrata is the second leading cause of candidiasis, a life-threatening infection, and undergoes extensive karyotype and phenotypic changes in response to stress. Much of the work conducted on this pathogen has focused on two sequenced strains, CBS138 (ATCC 2001) and BG2. Few studies have compared these strains in detail, but key differences include mating type and altered patterns of expression of EPA adhesins. In fact, most C. glabrata isolates and BG2 are MATa, while CBS138 is MATα. However, it is not known if other phenotypic differences between these strains play a role in our understanding of C. glabrata pathogenesis. Thus, we set out to characterize metabolic, cell wall, and host-interaction attributes for CBS138 and BG2. We found that BG2 utilized a broader range of nitrogen sources and had reduced cell wall size and carbohydrate exposure than CBS138, which we hypothesized results in differences in innate immune interactions and virulence. We observed that, although both strains were phagocytosed to a similar extent, BG2 replicated to higher numbers in macrophages and was more virulent during Galleria mellonella infection than CBS138 in a dose-dependent manner. Interestingly, deletion of SNF3, a major nutrient sensor, did not affect virulence in G. mellonella for BG2, but significantly enhanced larval killing in the CBS138 background compared to the parent strain. Understanding these fundamental differences in metabolism and host interactions will allow more robust conclusions to be drawn in future studies of C. glabrata pathogenesis. IMPORTANCE Reference strains provide essential insights into the mechanisms underlying virulence in fungal pathogens. However, recent studies in Candida albicans and other species have revealed significant genotypic and phenotypic diversity within clinical isolates that are challenging paradigms regarding key virulence factors and their regulation. Candida glabrata is the second leading cause of candidiasis, and many studies use BG2 or CBS138 for their investigations. Therefore, we aimed to characterize important virulence-related phenotypes for both strains that might alter conclusions about C. glabrata pathogenesis. Our study provides context for metabolic and cell wall changes and how these may influence host interaction phenotypes. Understanding these differences is necessary to support robust conclusions about how virulence factors may function in these and other very different strain backgrounds.
Collapse
|
16
|
Hovhannisyan H, Rodríguez A, Saus E, Vaneechoutte M, Gabaldón T. Multiplexed target enrichment of coding and non-coding transcriptomes enables studying Candida spp. infections from human derived samples. Front Cell Infect Microbiol 2023; 13:1093178. [PMID: 36761895 PMCID: PMC9902369 DOI: 10.3389/fcimb.2023.1093178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The study of transcriptomic interactions between host and pathogens in in vivo conditions is challenged by the low relative amounts of the pathogen RNA. Yeast opportunistic pathogens of the genus Candida can cause life-threatening systemic infections in immunocompromised patients, and are of growing medical concern. Four phylogenetically diverse species account for over 90% of Candida infections, and their specific interactions with various human tissues are still poorly understood. To enable in vivo transcriptomic analysis in these species, we designed and validated pan-Candida target capture probes to enrich protein-coding and non-coding transcriptomes. The probe-based enrichment approach outperformed enrichment based on differential lysis of host cells, and showed similar enrichment performance as an existing capture design, yet achieving better fidelity of expression levels, enabling species multiplexing and capturing of lncRNAs. In addition, we show that our probe-based enrichment strategy allows robust genotype-based identification of the infecting strain present in the sample.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain,Department of Biomedicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain,*Correspondence: Toni Gabaldón,
| |
Collapse
|
17
|
Satala D, Bras G, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. More than Just Protein Degradation: The Regulatory Roles and Moonlighting Functions of Extracellular Proteases Produced by Fungi Pathogenic for Humans. J Fungi (Basel) 2023; 9:jof9010121. [PMID: 36675942 PMCID: PMC9865821 DOI: 10.3390/jof9010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Extracellular proteases belong to the main virulence factors of pathogenic fungi. Their proteolytic activities plays a crucial role in the acquisition of nutrients from the external environment, destroying host barriers and defenses, and disrupting homeostasis in the human body, e.g., by affecting the functions of plasma proteolytic cascades, and playing sophisticated regulatory roles in various processes. Interestingly, some proteases belong to the group of moonlighting proteins, i.e., they have additional functions that contribute to successful host colonization and infection development, but they are not directly related to proteolysis. In this review, we describe examples of such multitasking of extracellular proteases that have been reported for medically important pathogenic fungi of the Candida, Aspergillus, Penicillium, Cryptococcus, Rhizopus, and Pneumocystis genera, as well as dermatophytes and selected endemic species. Additional functions of proteinases include supporting binding to host proteins, and adhesion to host cells. They also mediate self-aggregation and biofilm formation. In addition, fungal proteases affect the host immune cells and allergenicity, understood as the ability to stimulate a non-standard immune response. Finally, they play a role in the proper maintenance of cellular homeostasis. Knowledge about the multifunctionality of proteases, in addition to their canonical roles, greatly contributes to an understanding of the mechanisms of fungal pathogenicity.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Correspondence:
| |
Collapse
|
18
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
19
|
Raj K, Rishi P, Shukla G, Rudramurhty SM, Mongad DS, Kaur A. Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of Candida glabrata. Indian J Microbiol 2022; 62:583-601. [PMID: 36458226 PMCID: PMC9705674 DOI: 10.1007/s12088-022-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Expression of genome-wide alternative transcript isoforms and differential transcript isoform usage in different biological conditions (isoform switching) are responsible for the varied proteomic functional diversity in higher eukaryotic organisms. However, these mechanisms have not been studied in Candida glabrata, which is a potent eukaryotic opportunistic pathogen. Biofilm formation is an important virulence factor of C. glabrata that withstands antifungal drug stress and overcomes the host-immune response. Here, we present the genome-wide differential transcript isoform expression (DTE) and differential transcript isoform usage (DTU) in a mature biofilm growth phase of C. glabrata (clinical isolate; NCCPF 100,037) using the RNA sequencing approach. The DTE analysis generated 7837 transcript isoforms from the C. glabrata genome (5293 genes in total), and revealed that transcript isoforms generated from 292 genes showed significant DTU in the mature biofilm cells. Gene ontology, pathway analysis and protein-protein interactions of significant transcript isoforms, further substantiated that their specific expression and differential usage is required for transitioning the planktonic cells to biofilm in C. glabrata. The present study reported the possible role of expression of alternative transcript isoforms and differential transcript isoform usage in the mature biofilms of C. glabrata. The observation derived from the study may prove to be beneficial for making future antifungal therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01036-7.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shivaprakash M. Rudramurhty
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dattatray S. Mongad
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| |
Collapse
|
20
|
Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14101989. [PMID: 36297425 PMCID: PMC9612021 DOI: 10.3390/pharmaceutics14101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome.
Collapse
|
21
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
22
|
Bagirova NS, Goremykina EA, Slukin PV, Khokhlova OE, Fursova NK, Petukhova IN, Grigorievskaya ZV. Candidemia in cancer patients: phenotypical and molecular-genetic characteristics of antifungal drug resistance, pathogenic factor genes of Candida spp. SIBERIAN JOURNAL OF ONCOLOGY 2022; 21:70-80. [DOI: 10.21294/1814-4861-2022-21-3-70-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Relevance. The global trend of rapid increase in resistance to antifungal drugs due to multiple factors, dictates the need for continuous monitoring of taxonomic structure and susceptibility of nosocomial pathogens, causing invasive fungal infections, for permanent correction of the optimal prevention and treatment strategies. Purpose: to determine antifungal susceptibility of the main yeast pathogens in candidemia in cancer patients, as well as to determine resistance genes and pathogenic factor genes. Material and Methods. Eighty-two strains of Candida spp. isolated from blood of cancer patients from 2015 to 2021 were analyzed. Minimum inhibitory concentrations of fuconazole, voriconazole, posaconazole, anidulafungin and micafungin were determined by a gradient method (E-test, BioMerieux, France). The EUCAST and CLSI criteria were used for MIC value assessment. The genes, associated with pathogenicity factors, and resistance to antifungal drugs were identifed. Results. Our study results based on EUCAST 2020, v.10.0 criteria showed that triazoles, especially fuconazole, were the least effective drugs in empirical therapy for invasive candidiasis (including candidemia). Resistance of Candida spp. fuconazole was superior to that of voriconazole (47.2 % vs 23.2 %, respectively, p<0.01) and posaconazole (47.2 % vs 30.4 %, respectively, p><0.05). The highest in vitro activity was observed in echinocandins, and anidulafungin was 2 times more active than micafungin (4.1 % of resistant strains vs 11.4 %, respectively), with no statistically signifcant difference (p>0.05). The ERG11 and FKS1 genes associated with resistance to antifungal drugs were detected in 28.6 % of Candida spp. strains. The ERG11 gene was detected in 8.6 % of cases, exclusively in Candida albicans strains. The FKS1 gene was identifed in 20.0 % of strains (85.7 % of them were C. parapsilosis, 7.1 % each were C. tropicalis and C. glabrata). Pathogenic factor genes were identifed in 78.6 % of C. albicans and in 79.1 % of C. parapsilosis strains. Conclusion. Molecular genetic methods for the detection of Candida spp strains carrying resistance genes to antifungal drugs, and the determination of pathogenicity factors are promising trends in searching for biomarkers. They facilitate interpretation of results of microbiological study to assess the ability of Candida spp. strains to develop invasive mycoses.
Collapse
Affiliation(s)
- N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| | - E. A. Goremykina
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - P. V. Slukin
- State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - O. E. Khokhlova
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - N. K. Fursova
- Pushchino State Institute of Natural Sciences; State Research Center for Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| | - Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
| |
Collapse
|
23
|
Yu S, Paderu P, Lee A, Eirekat S, Healey K, Chen L, Perlin DS, Zhao Y. Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of Candida glabrata. Microbiol Spectr 2022; 10:e0096322. [PMID: 35658596 PMCID: PMC9241792 DOI: 10.1128/spectrum.00963-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
Candida glabrata is poised to adapt to drug pressure rapidly and acquire antifungal resistance leading to therapeutic failure. Given the limited antifungal armamentarium, there is an unmet need to explore new targets or therapeutic strategies for antifungal treatment. The lysine acetyltransferase Gcn5 has been implicated in the pathogenesis of C. albicans. Yet how Gcn5 functions and impacts antifungal resistance in C. glabrata is unknown. Disrupting GCN5 rendered C. glabrata cells more sensitive to various stressors, partially reverted resistance in drug-resistant mutants, and attenuated the emergence of resistance compared to wild-type cells. RNA sequencing (RNA-seq) analysis revealed transcriptomic changes involving multiple biological processes and different transcriptional responses to antifungal drugs in gcn5Δ cells compared to wild-type cells. GCN5 deletion also resulted in reduced intracellular survival within THP-1 macrophages. In summary, Gcn5 plays a critical role in modulating the virulence of C. glabrata and regulating its response to antifungal pressure and host defense. IMPORTANCE As an important and successful human pathogen, Candida glabrata is known for its swift adaptation and rapid acquisition of resistance to the most commonly used antifungal agents, resulting in therapeutic failure in clinical settings. Here, we describe that the histone acetyltransferase Gcn5 is a key factor in adapting to antifungal pressure and developing resistance in C. glabrata. The results provide new insights into epigenetic control over the drug response in C. glabrata and may be useful for drug target discovery and the development of new therapeutic strategies to combat fungal infections.
Collapse
Affiliation(s)
- Shuying Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People’s Republic of China
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Annie Lee
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sami Eirekat
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Kelley Healey
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
24
|
Gupta H, Gupta P, Kairamkonda M, Poluri KM. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv 2022; 12:17570-17584. [PMID: 35765448 PMCID: PMC9194923 DOI: 10.1039/d2ra02092k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of drug resistant C. glabrata strains in hospitalized immune-compromised patients with invasive fungal infections has increased at an unexpected pace. This has greatly pushed researchers in identification of mutations/variations in clinical isolates for better assessment of the prevailing drug resistance trends and also for updating of antifungal therapy regime. In the present investigation, the clinical isolates of C. glabrata were comprehensively characterized at a molecular level using metabolic profiling and transcriptional expression analysis approaches in combination with biochemical, morphological and chemical profiling methods. Biochemically, significant variations in azole susceptibility, surface hydrophobicity, and oxidative stress generation were observed among the isolates as compared to wild-type. The 1H NMR profiling identified 18 differential metabolites in clinical strains compared to wild-type and were classified into five categories, that include: sugars (7), amino acids and their derivatives (7), nitrogen bases (3) and coenzymes (1). Transcriptional analysis of selective metabolic and regulatory enzymes established that the major differences were found in cell membrane stress, carbohydrate metabolism, amino acid biosynthesis, ergosterol pathway and turnover of nitrogen bases. This detailed molecular level/metabolic fingerprint study is a useful approach for differentiating pathogenic/clinical isolates to that of wild-type. This study comprehensively delineated the differential cellular pathways at a molecular level that have been re-wired by the pathogenic clinical isolates for enhanced pathogenicity and virulence traits.
Collapse
Affiliation(s)
- Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| |
Collapse
|
25
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
26
|
Askari F, Rasheed M, Kaur R. The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata. J Biol Chem 2022; 298:101593. [PMID: 35051415 PMCID: PMC8844688 DOI: 10.1016/j.jbc.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
27
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Investigating Candida glabrata Urinary Tract Infections (UTIs) in Mice Using Bioluminescence Imaging. J Fungi (Basel) 2021; 7:jof7100844. [PMID: 34682265 PMCID: PMC8538756 DOI: 10.3390/jof7100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTIs) are quite common and mainly caused by bacteria such as Escherichia coli. However, when patients have urinary catheters, fungal infections comprise up to 15% of these types of infections. Moreover, fungal UTIs have a high mortality, due to rapid spreading of the fungi to the kidneys. Most fungal UTIs are caused by Candida species, among which Candida albicans and Candida glabrata are the most common. C. glabrata is an opportunistic pathogenic yeast, phylogenetically quite close to Saccharomyces cerevisiae. Even though it is commonly isolated from the urinary tract and rapidly acquires resistance to antifungals, its pathogenesis has not been studied extensively in vivo. In vivo studies require high numbers of animals, which can be overcome by the use of non-invasive imaging tools. One such tool, bioluminescence imaging, has been used successfully to study different types of C. albicans infections. For C. glabrata, only biofilms on subcutaneously implanted catheters have been imaged using this tool. In this work, we investigated the progression of C. glabrata UTIs from the bladder to the kidneys and the spleen. Furthermore, we optimized expression of a red-shifted firefly luciferase in C. glabrata for in vivo use. We propose the first animal model using bioluminescence imaging to visualize C. glabrata in mouse tissues. Additionally, this UTI model can be used to monitor antifungal activity in vivo over time.
Collapse
|
29
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
30
|
Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochem J 2021; 478:961-974. [PMID: 33555340 DOI: 10.1042/bcj20200844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Candida glabrata is a clinically relevant human pathogen with the ability to form high recalcitrant biofilms that contribute to the establishment and persistence of infection. A defining trait of biofilms is the auto-produced matrix, which is suggested to have structural, virulent and protective roles. Thus, elucidation of matrix components, their function and modulation by the host environment is crucial to disclose their role in C. glabrata pathogenesis. As a major step toward this end, this study aimed to reveal, for the first time, the matrix proteome of C. glabrata biofilms, to characterize it with bioinformatic tools and to study its modulation by the environmental pH (acidic and neutral). The results showed the presence of several pH-specific matrix proteins (51 acidic- and 206 neutral-specific) and also proteins commonly found at both pH conditions (236). Of note, several proteins related to mannan and β-glucan metabolism, which have a potential role in the delivery/organization of carbohydrates in the matrix, were found in both pH conditions but in much higher quantity under the neutral environment. Additionally, several virulence-related proteins, including epithelial adhesins, yapsins and moonlighting enzymes, were found among matrix proteins. Importantly, several proteins seem to have a non-canonical secretion pathway and Pdr1 was found to be a potential regulator of matrix proteome. Overall, this study indicates a relevant impact of environmental cues in the matrix proteome and provides a unique resource for further functional investigation of matrix proteins, contributing to the identification of potential targets for the development of new therapies against C. glabrata biofilms.
Collapse
|
31
|
Battu A, Purushotham R, Dey P, Vamshi SS, Kaur R. An aspartyl protease-mediated cleavage regulates structure and function of a flavodoxin-like protein and aids oxidative stress survival. PLoS Pathog 2021; 17:e1009355. [PMID: 33630938 PMCID: PMC7943015 DOI: 10.1371/journal.ppat.1009355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/09/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
A family of eleven glycosylphosphatidylinositol-anchored aspartyl proteases, commonly referred to as CgYapsins, regulate a myriad of cellular processes in the pathogenic yeast Candida glabrata, but their protein targets are largely unknown. Here, using the immunoprecipitation-mass spectrometry approach, we identify the flavodoxin-like protein (Fld-LP), CgPst2, to be an interactor of one of the aspartyl protease CgYps1. We also report the presence of four Fld-LPs in C. glabrata, which are required for survival in kidneys in the murine model of systemic candidiasis. We further demonstrated that of four Fld-LPs, CgPst2 was solely required for menadione detoxification. CgPst2 was found to form homo-oligomers, and contribute to cellular NADH:quinone oxidoreductase activity. CgYps1 cleaved CgPst2 at the C-terminus, and this cleavage was pivotal to oligomerization, activity and function of CgPst2. The arginine-174 residue in CgPst2 was essential for CgYps1-mediated cleavage, with alanine substitution of the arginine-174 residue also leading to elevated activity and oligomerization of CgPst2. Finally, we demonstrate that menadione treatment led to increased CgPst2 and CgYps1 protein levels, diminished CgYps1-CgPst2 interaction, and enhanced CgPst2 cleavage and activity, thereby implicating CgYps1 in activating CgPst2. Altogether, our findings of proteolytic cleavage as a key regulatory determinant of CgPst2, which belongs to the family of highly conserved, electron-carrier flavodoxin-fold-containing proteins, constituting cellular oxidative stress defense system in diverse organisms, unveil a hidden regulatory layer of environmental stress response mechanisms.
Collapse
Affiliation(s)
- Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Partha Dey
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - S. Surya Vamshi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
32
|
Rasheed M, Battu A, Kaur R. Host-pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Rev Anti Infect Ther 2020; 18:1093-1103. [PMID: 32668993 DOI: 10.1080/14787210.2020.1792773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The opportunistic fungal pathogen Candida glabrata poses a clinical challenge in the successful treatment of invasive Candida infections, owing to its low inherent susceptibility toward azole antifungals and the recent acquisition of coresistance toward azole and echinocandin drugs. Compared to other prevalent Candida bloodstream pathogens, C. glabrata neither exhibits secreted proteolytic activity nor invokes a strong immune response in a variety of host cells and is less virulent. It also does not form true hyphae, and the success of C. glabrata, therefore, as a prevalent human fungal pathogen, appears to be built upon a distinct set of virulence attributes. AREAS COVERED The focus of this review is to outline, in brief, the interaction of C. glabrata with the host, deduced from the knowledge gained from different in vitro, ex vivo, and in vivo model systems. In addition, we briefly discuss the current antifungals, antifungal resistance mechanisms, and the development of new antifungal therapies, along with the available information on the host response. EXPERT OPINION A detailed understanding of stresses, selection pressures and differential immune responses in the presence and absence of antifungals that C. glabrata encounters in varied niches of the host, is required to design effective antifungal therapy.
Collapse
Affiliation(s)
- Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| | - Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education , Manipal, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| |
Collapse
|
33
|
Abstract
![]()
Secretory proteins are key modulators of host–pathogen interaction.
The human opportunistic fungal pathogen Candida glabrata lacks secreted proteolytic activity but possesses 11 glycosylphosphatidylinositol-anchored
aspartyl proteases, also referred to as Yapsins (CgYps1–11),
that are essential for its virulence. To delineate the role of CgYapsins
in interaction with host cells, we have profiled, through liquid chromatography-tandem
mass spectrometry (LC-MS/MS) approach, the total secretome of wild-type and Cgyps1-11Δ mutant.
The wild-type secretome consisted of 119 proteins
which were primarily involved in cell wall organization, carbohydrate
metabolism, proteolysis, and translation processes. Of eight CgYapsins
identified in the secretome, the release of two major CgYapsins, CgYps1
and CgYps7, to the medium was confirmed by Western analysis. Further,
comparative analysis revealed 20 common proteins, probably signifying
the core fungal secretome, among C. glabrata, Saccharomyces cerevisiae, and Candida albicans secretomes. Strikingly, the Cgyps1-11Δ secretome was 4.6-fold larger, and contained
65 differentially abundant proteins, as revealed by label-free quantitative
profiling, with 49 and 16 being high- and low-abundant proteins, respectively,
compared to the wild-type secretome. Importantly,
the CgMsb2 mucin, a putative CgYapsins’ substrate, was six-fold
underrepresented in the mutant secretome. Altogether, we demonstrate
for the first time that CgYapsins are both bona fide constituents
and key modulators of the C. glabrata secretome.
Collapse
Affiliation(s)
- Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500039 , India
| | - Naveen Kumar
- Laboratory of Fungal Pathogenesis , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500039 , India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500039 , India
| |
Collapse
|
34
|
Abstract
Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion. Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade. IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.
Collapse
|
35
|
Candida glabrata: A Lot More Than Meets the Eye. Microorganisms 2019; 7:microorganisms7020039. [PMID: 30704135 PMCID: PMC6407134 DOI: 10.3390/microorganisms7020039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in individuals with a compromised immune system. Evolutionarily, it is closer to the non-pathogenic yeast Saccharomyces cerevisiae than to the most prevalent Candida bloodstream pathogen, C. albicans. C. glabrata is a haploid budding yeast that predominantly reproduces clonally. In this review, we summarize interactions of C. glabrata with the host immune, epithelial and endothelial cells, and the ingenious strategies it deploys to acquire iron and phosphate from the external environment. We outline various attributes including cell surface-associated adhesins and aspartyl proteases, biofilm formation and stress response mechanisms, that contribute to the virulence of C. glabrata. We further discuss how, C. glabrata, despite lacking morphological switching and secreted proteolytic activity, is able to disarm macrophage, dampen the host inflammatory immune response and replicate intracellularly.
Collapse
|
36
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
37
|
Medrano-Díaz CL, Vega-González A, Ruiz-Baca E, Moreno A, Cuéllar-Cruz M. Moonlighting proteins induce protection in a mouse model against Candida species. Microb Pathog 2018; 124:21-29. [PMID: 30118801 DOI: 10.1016/j.micpath.2018.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
In recent years, C. albicans and C. glabrata have been identified as the main cause of candidemia and invasive candidiasis in hospitalized and immunocompromised patients. In order to colonize the human host, these fungi express several virulence factors such as the response to oxidative stress and the formation of biofilms. In the expression of these virulence factors, the cell wall of C. albicans and C. glabrata is of fundamental importance. As the outermost structure of the yeast, the cell wall is the first to come in contact with the reactive oxygen species (ROS) generated during the respiratory outbreak, and in the formation of biofilms, it is the first to adhere to organs or medical devices implanted in the human host. In both processes, several cell wall proteins (CWP) are required, since they promote attachment to human cells or abiotic surfaces, as well as to detoxify ROS. In our working group we have identified moonlighting CWP in response to oxidative stress as well as in the formation of biofilms. Having identified moonlighting CWP in Candida species in response to two virulence factors indicates that these proteins may possibly be immunodominant. The aim of the present work was to evaluate whether proteins of this type such as fructose-bisphosphate aldolase (Fba1), phosphoglycerate kinase (Pgk) and pyruvate kinase (Pk), could confer protection in a mouse model against C. albicans and C. glabrata. For this, recombinant proteins His6-Fba1, His6-Pgk and His6-Pk were constructed and used to immunize several groups of mice. The immunized mice were infected with C. albicans or C. glabrata, and subsequently the liver, spleen and kidney were extracted and the number of CFU was determined. Our results showed that Pk confers immunity to mice against C. albicans, while Fba1 to C. glabrata. This data allows us to conclude that the moonlighting CWP, Fba1 and Pk confer in vivo protection in a specific way against each species of Candida. This makes them promising candidates for developing specific vaccines against these pathogens.
Collapse
Affiliation(s)
- César Luis Medrano-Díaz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Arturo Vega-González
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|