1
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
2
|
Li C, Han T, Zhong P, Zhang Y, Zhao T, Wang S, Wang X, Tian Y, Gong G, Liu Y, Huang L, Lu Y, Wang Z. α2,6-linked sialylated oligosaccharides riched in goat milk alleviate food allergy by regulating the gut flora and mucin O-glycosylation. Carbohydr Polym 2025; 350:123049. [PMID: 39647952 DOI: 10.1016/j.carbpol.2024.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The nutritious goat milk has low allergenicity. Oligosaccharides represent one of the crucial functional constituents in goat milk, which are structurally similar to human milk oligosaccharides (HMOs). Currently, the anti-allergic activity of GMOs has not been reported. In this study, GMOs were efficiently separated into neutral (NGMOs) and sialylated (SGMOs) fractions, following by qualitative and quantitative analysis at the isomer level using online LC-MS/MS. Fifteen NGMOs and 28 SGMOs were detected in goat milk, with 10 SGMOs reported for the first time. Distinctly, α2,6-linked SGMOs were 3.9 times more abundant in goat milk than in bovine milk, with the total relative content of 6'SL, 3'SLN and 6'NGL in SGMOs approach to 60%, which is more similar to HMOs. Orally administering GMOs, especially α2,6-linked sialylated oligosaccharides, significantly alleviated food allergy in ovalbumin-induced BALB/c mice. SGMOs restored the balance of Lachnospiraceae, Erysipelotrichaceae, and Bacteroidaceae, reconstructed the intestinal mucosal barrier, especially restored the levels of fucosylation, sialylation, and sulfation of mucin O-glycans, increased the expression of four core type 2 O-glycans (F1H2N2, F2H2N2, S1F2H2N2, and A1F1H2N2) significantly. This is the first comprehensive study of the anti-allergic activity of GMOs, and the results lay the foundation for the development of GMOs-based natural anti-allergic components.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Zhao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Chandna S, Povolotsky TL, Nie C, Schwartz S, Wedepohl S, Quaas E, Ludwig K, Boyakova Y, Bhatia S, Meyer K, Falkenhagen J, Haag R, Block S. Lignin-Based Mucus-Mimicking Antiviral Hydrogels with Enzyme Stability and Tunable Porosity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8962-8975. [PMID: 39876589 PMCID: PMC11826508 DOI: 10.1021/acsami.4c18519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability. The lignin-based inhibitors are equipped with sulfate moieties, which are known binding partners for many viruses, including SARS-CoV-2 and herpes viruses. In addition, cross-linking the synthesized inhibitors yielded hydrogels that mimicked native mucus concerning surface functionality and rheology. The degree of sulfation exhibits a very strong impact on the mesh size distribution of the hydrogels, which provides a new means to fine-tune the steric and electrostatic contributions of the virus-hydrogel interaction. This feature strongly impacts the sequestration capability of the lignin-based hydrogels, which is demonstrated by infection inhibition assays involving human herpes simplex virus 1, influenza A viruses, and the bacterium Escherichia coli (E. coli). These measurements showed a reduction in plaque-forming units (HSV-1) and colony-forming units (E. coli) by more than 4 orders of magnitude, indicating the potent inhibition by the lignin-based hydrogels.
Collapse
Affiliation(s)
- Sanjam Chandna
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Tatyana L. Povolotsky
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Chuanxiong Nie
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Sophia Schwartz
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Elisa Quaas
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Kai Ludwig
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Yulia Boyakova
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Sumati Bhatia
- Faculty
of
Science and Engineering, Department of Chemistry, Swansea University, Singleton Campus,
Swansea, Swansea SA28PP, U.K.
| | - Klas Meyer
- Federal
Institute for Materials Research and Testing (Bundesanstalt für
Materialforschung und -prüfung), Berlin 12489, Germany
| | - Jana Falkenhagen
- Federal
Institute for Materials Research and Testing (Bundesanstalt für
Materialforschung und -prüfung), Berlin 12489, Germany
| | - Rainer Haag
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Stephan Block
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| |
Collapse
|
4
|
Abo H, Muraki A, Harusato A, Imura T, Suzuki M, Takahashi K, Denning TL, Kawashima H. N-acetylglucosamine-6-O sulfation on intestinal mucins prevents obesity and intestinal inflammation by regulating gut microbiota. JCI Insight 2023; 8:e165944. [PMID: 37463055 PMCID: PMC10543739 DOI: 10.1172/jci.insight.165944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Intestinal mucins play an essential role in the defense against bacterial invasion and the maintenance of gut microbiota, which is instrumental in the regulation of host immune systems; hence, its dysregulation is a hallmark of metabolic disease and intestinal inflammation. However, the mechanism by which intestinal mucins control the gut microbiota as well as disease phenotypes remains nebulous. Herein, we report that N-acetylglucosamine (GlcNAc)-6-O sulfation of O-glycans on intestinal mucins performs a protective role against obesity and intestinal inflammation. Chst4-/- mice, lacking GlcNAc-6-O sulfation of the mucin O-glycans, showed significant weight gain and increased susceptibility to dextran sodium sulfate-induced colitis as well as colitis-associated cancer accompanied by significantly reduced immunoglobulin A (IgA) production caused by an impaired T follicular helper cell-mediated IgA response. Interestingly, the protective effects of GlcNAc-6-O sulfation against obesity and intestinal inflammation depend on the gut microbiota, evidenced by the modulation of the gut microbiota by cohousing or microbiota transplantation reversing disease phenotypes and IgA production. Collectively, our findings provide insight into the significance of host glycosylation, more specifically GlcNAc-6-O sulfation on intestinal mucins, in protecting against obesity and intestinal inflammation via regulation of the gut microbiota.
Collapse
Affiliation(s)
- Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Aoi Muraki
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | | | - Tetsuya Imura
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maki Suzuki
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Kohta Takahashi
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Timothy L. Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Krachler AM, Sirisaengtaksin N, Monteith P, Paine CET, Coates CJ, Lim J. Defective phagocyte association during infection of Galleria mellonella with Yersinia pseudotuberculosis is detrimental to both insect host and microbe. Virulence 2021; 12:638-653. [PMID: 33550901 PMCID: PMC7889024 DOI: 10.1080/21505594.2021.1878672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated howY. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe-phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Pauline Monteith
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - C. E. Timothy Paine
- School of Environmental and Rural Sciences, University of New England, Armidale, Australia
| | - Christopher J. Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales UK
| | - Jenson Lim
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
6
|
Parrish A, Boudaud M, Kuehn A, Ollert M, Desai MS. Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends Mol Med 2021; 28:36-50. [PMID: 34810087 DOI: 10.1016/j.molmed.2021.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of food allergies has reached epidemic levels but the cause remains largely unknown. We discuss the clinical relevance of the gut mucosal barrier as a site for allergic sensitization to food. In this context, we focus on an important but overlooked part of the mucosal barrier in pathogenesis, the glycoprotein-rich mucus layer, and call attention to both beneficial and detrimental aspects of mucus-gut microbiome interactions. Studying the intricate links between the mucus barrier, the associated bacteria, and the mucosal immune system may advance our understanding of the mechanisms and inform prevention and treatment strategies in food allergy.
Collapse
Affiliation(s)
- Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark.
| |
Collapse
|
7
|
Thomsson KA, Vitiazeva V, Mateoiu C, Jin C, Liu J, Holgersson J, Weijdegård B, Sundfeldt K, Karlsson NG. Sulfation of O-glycans on Mucin-type Proteins From Serous Ovarian Epithelial Tumors. Mol Cell Proteomics 2021; 20:100150. [PMID: 34555499 PMCID: PMC8527052 DOI: 10.1016/j.mcpro.2021.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Despite sulfated O-linked glycans being abundant on ovarian cancer (OC) glycoproteins, their regulation during cancer development and involvement in cancer pathogenesis remain unexplored. We characterized O-glycans carrying sulfation on galactose residues and compared their expression with defined sulfotransferases regulated during OC development. Desialylated sulfated oligosaccharides were released from acidic glycoproteins in the cyst fluid from one patient with a benign serous cyst and one patient with serous OC. Oligosaccharides characterized by LC-MSn were identified as core 1 and core 2 O-glycans up to the size of decamers and with 1 to 4 sulfates linked to GlcNAc residues and to C-3 and/or C-6 of Gal. To study the specificity of the potential ovarian sulfotransferases involved, Gal3ST2 (Gal-3S)-, Gal3ST4 (Gal-3S)-, and CHST1 (Gal-6S)-encoding expression plasmids were transfected individually into CHO cells also expressing the P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b (PSGL-1/mIg G2b) fusion protein and the human core 2 transferase (GCNT1). Characterization of the PSGL-1/mIg G2b O-glycans showed that Gal3ST2 preferentially sulfated Gal on the C-6 branch of core 2 structures and Gal3ST4 preferred Gal on the C-3 branch independently if core-1 or -2. CHST1 sulfated Gal residues on both the C-3 (core 1/2) and C-6 branches of core 2 structures. Using serous ovarian tissue micro array, Gal3ST2 was found to be decreased in tissue classified as malignant compared with tissues classified as benign or borderline, with the lowest expression in poorly differentiated malignant tissue. Neither Gal3ST4 nor CHST1 was differentially expressed in benign, borderline, or malignant tissue, and there was no correlation between expression level and differentiation stage. The data displays a complex sulfation pattern of O-glycans on OC glycoproteins and that aggressiveness of the cancer is associated with a decreased expression of the Gal3ST2 transferase. Ovarian cancer tissue contains highly sulfated O-glycoproteins. Sulfation occurs on GlcNAc (6-position) and Gal (3- and 6-position). Sulfation of Gal can be mimicked recombinantly with selected sulfotransferase. The Gal3ST2 sulfotransferase level is lower in malignant cancer compared with benign.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Constantina Mateoiu
- Department of Clinical Pathology, Sahlgrenska University Hostpital, Gotenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jining Liu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Weijdegård
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
8
|
Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 2021; 37:176. [PMID: 34519941 DOI: 10.1007/s11274-021-03145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
All mucins are highly glycosylated and a key constituent of the mucus layer that is vigilant against pathogens in many organ systems of animals and humans. The viscous layer is organized in bilayers, i.e., an outer layer that is loosely arranged, variable in thickness, home to the commensal microbiota that grows in the complex environment, and an innermost layer that is stratified, non-aspirated, firmly adherent to the epithelial cells and devoid of any microorganisms. The O-glycosylation moiety represents the site of adhesion for pathogens and due to the increase of motility, mucolytic activity, and upregulation of virulence factors, some microorganisms can circumvent the component of the mucus layer and cause disruption in organ homeostasis. A dysbiotic microbiome, defective mucus barrier, and altered immune response often result in various diseases. In this review, paramount emphasis is given to the role played by the bacterial species directly or indirectly involved in mucin degradation, alteration in mucus secretion or its composition or mucin gene expression, which instigates many diseases in the digestive, respiratory, and other organ systems. A systematic view can help better understand the etiology of some complex disorders such as cystic fibrosis, ulcerative colitis and expand our knowledge about mucin degraders to develop new therapeutic approaches to correct ill effects caused by these mucin-dwelling pathogens.
Collapse
|
9
|
The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydr Polym 2021; 258:117651. [DOI: 10.1016/j.carbpol.2021.117651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
|
10
|
Metzler-Zebeli BU, Lucke A, Doupovec B, Zebeli Q, Böhm J. A multicomponent mycotoxin deactivator modifies the response of the jejunal mucosal and cecal bacterial community to deoxynivalenol contaminated feed and oral lipopolysaccharide challenge in chickens1. J Anim Sci 2020; 98:5707485. [PMID: 31944242 DOI: 10.1093/jas/skz377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxin deactivators are a widely used strategy to abrogate negative effects of mycotoxin-contaminated feed. It has not been adequately evaluated whether these deactivators may detoxify bacterial toxins in the intestinal lumen and subsequently lower the inflammatory response in chickens. The present objective was to study the effect of a multicomponent mycotoxin deactivator (B), containing a bentonite and a bacterial strain capable to enzymatically biotransform trichothecenes especially deoxynivalenol (DON), when supplemented to a DON-contaminated feed in combination with an oral lipopolysaccharide challenge on visceral organ size, expression of innate immune genes and mucosal permeability in the small intestine as well as on the cecal bacterial composition and metabolites in broiler chickens. Eighty 1-d-old male chickens were randomly allotted to four treatment groups in two replicate batches (n = 10/treatment/replicate): 1) basal diet without DON (CON), 2) CON diet supplemented with B (2.5 mg B/kg feed) (CON-B), 3) CON diet contaminated with 10 mg DON/kg feed (DON), and 4) DON diet supplemented with 2.5 mg B/kg feed (DON-B). In half of the chickens per treatment, effects were assessed under nonchallenge conditions, whereas in the other half of birds, to increase their intestinal bacterial toxin load, effects were tested after an oral challenge with 1 mg LPS/kg BW from Escherichia coli O55:B5 on the day before sampling. DON reduced (P < 0.05) the weight of bursa fabricii and thymus. DON increased the expression level of intestinal alkaline phosphatase at the duodenal mucosa (P = 0.027) but did not modify jejunal gene expression and mucosal permeability. The LPS challenge decreased the jejunal MUC2 expression but increased ZO1 and IL6 expression compared to the unchallenged animals (P < 0.05). DON × B interactions indicated lower expression of IL10 in duodenum and NFKB in jejunum with the B diet but higher expression with the DON-B diet (P = 0.050). Furthermore, the B lowered jejunal expression of NFKB and IL6 but only in LPS-challenged chickens (P < 0.05). Alterations in the cecal microbiota composition and VFA profile were likely associated with alterations in host physiology in the small intestine caused by DON, B, and LPS. According to the present data, B appeared to have potential to detoxify antigens other than DON in the intestinal lumen of chickens, whereby the toxin load may limit the efficacy of B to modify the intestinal and systemic response as indicated by interactions of DON, B, and LPS.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annegret Lucke
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Josef Böhm
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mikhalchik E, Balabushevich N, Vakhrusheva T, Sokolov A, Baykova J, Rakitina D, Scherbakov P, Gusev S, Gusev A, Kharaeva Z, Bukato O, Pobeguts O. Mucin adsorbed by E. coli can affect neutrophil activation in vitro. FEBS Open Bio 2019; 10:180-196. [PMID: 31785127 PMCID: PMC6996330 DOI: 10.1002/2211-5463.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D‐PAGE, fluorescent mucin binding on a blot and HPLC‐MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu‐1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
12
|
Liu B, Liu QM, Li GL, Sun LC, Gao YY, Zhang YF, Liu H, Cao MJ, Liu GM. The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Adv 2019; 9:2360-2370. [PMID: 35520502 PMCID: PMC9059870 DOI: 10.1039/c8ra09247h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Polysaccharides from red algae Porphyra haitanensis and Gracilaria lemaneiformis possess various bioactive functions, however, their anti-diarrhea activity remains incompletely defined. In the current study, sulphated polysaccharides were extracted by high pressure treatment plus ethanol precipitation from these two algae, and named PHSP(hp) and GLSP(hp), respectively. PHSP(hp) and GLSP(hp) showed decreased viscosity and molecular weight. Meanwhile, they have a certain immunomodulatory effect on wound healing and migration of RAW264.7 cells. Moreover, they significantly increased the secretion of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). A BALB/c model infected by enterotoxigenic Escherichia coli (ETEC)-K88 was also established to evaluate the anti-diarrhea activity of PHSP(hp) and GLSP(hp). The results showed that PHSP(hp) and GLSP(hp) were able to alleviate mice diarrhea symptoms. Meanwhile, they inhibited the release of pro-inflammatory cytokines and suppressed the secretion of immunoglobulin A via reducing the population of B cells. In addition, the nitroblue tetrazolium levels of mouse serum were decreased. Taken together, PHSP(hp) and GLSP(hp) alleviated the inflammatory response of ETEC-K88-induced diarrhea through both specific and non-specific immunity. Sulphated polysaccharides from red algae may be used as functional food components for remitting diarrhea. Polysaccharides from red algae Porphyra haitanensis and Gracilaria lemaneiformis possess various bioactive functions, however, their anti-diarrhea activity remains incompletely defined.![]()
Collapse
Affiliation(s)
- Bo Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Qing-Mei Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Gui-Ling Li
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Le-Chang Sun
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Ya-Fen Zhang
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Hong Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Min-Jie Cao
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Guang-Ming Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| |
Collapse
|
13
|
Issa SMA, Vitiazeva V, Hayes CA, Karlsson NG. Higher Energy Collisional Dissociation Mass Spectrometry of Sulfated O-Linked Oligosaccharides. J Proteome Res 2018; 17:3259-3267. [DOI: 10.1021/acs.jproteome.8b00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samah M. A. Issa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Catherine A. Hayes
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Metzler-Zebeli BU, Lawlor PG, Magowan E, Zebeli Q. Interactions between metabolically active bacteria and host gene expression at the cecal mucosa in pigs of diverging feed efficiency. J Anim Sci 2018; 96:2249-2264. [PMID: 29746643 PMCID: PMC6095344 DOI: 10.1093/jas/sky118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of the gut mucosal microbiota and microbe-host signaling in the variation of pig's feed efficiency (FE). This study therefore aimed to investigate the FE-related differences in the metabolically active mucosal bacterial microbiota and expression of genes for innate immune response, barrier function, nutrient uptake, and incretins in the cecum of finishing pigs. Pigs (n = 72) were ranked for their residual feed intake (RFI; metric for FE) between days 42 and 91 postweaning and were stratified within litter and sex into high (HRFI; n = 8) and low RFI (LRFI; n = 8). Cecal mucosa and digesta were collected on day 137-141 of life. After isolating total RNA from the mucosa, the RNA was transcribed into cDNA which was used for gene expression analysis, total bacterial quantification, and high-throughput sequencing (Illumina MiSeq) of the hypervariable V3-V4 region of the 16S rRNA gene. The RFI differed by 2.1 kg between low RFI (LRFI; good FE) and high RFI (HRFI; poor FE) pigs (P < 0.001). The cecal mucosa was mainly colonized by Helicobacteraceae, Campylobacteraceae, Veillonellaceae, Lachnospiraceae, and Prevotellaceae. Despite the lack of differences in microbial diversity and absolute abundance, RFI-associated compositional differences were found. The predominant genus Campylobacter tended (P < 0.10) to be 0.4-fold more abundant in LRFI pigs, whereas low abundant Escherichia/Shigella (P < 0.05), Ruminobacter (P < 0.05), and Veillonella (P < 0.10) were 3.4-, 6.6-, and 4.4-fold less abundant at the cecal mucosa of LRFI compared to HRFI pigs. Moreover, mucin 2 and zona occludens-1 were less expressed (P < 0.05) in the cecal mucosa of LRFI compared to HRFI pigs. Cecal mucosal expression of monocarboxylate transporter-1, glucagon-like peptide-1, and peptide YY further tended (P < 0.10) to be downregulated in LRFI compared to HRFI pigs, indicating an enhanced VFA uptake and signaling in HRFI pigs. Sparse partial least square regression and relevance networking support the hypothesis that certain mucosal bacteria and luminal microbial metabolites were more associated than others with differences in RFI and cecal gene expression. However, present results do not allow the determination of whether mucosal bacterial changes contributed to variation in FE or were rather a consequence of FE-related changes in the pig's physiology or feeding behavior.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz, Vienna, Austria
| | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Elizabeth Magowan
- Agri-Food and Biosciences Institute, Agriculture Branch, Large Park, Co. Down BT26 6DR, Hillsborough, Northern Ireland, UK
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz, Vienna, Austria
| |
Collapse
|
15
|
Liu M, Yang S, Zheng C, Luo X, Bei W, Cai P. Binding to type I collagen is essential for the infectivity of Vibrio parahaemolyticus to host cells. Cell Microbiol 2018; 20:e12856. [PMID: 29763968 DOI: 10.1111/cmi.12856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for V. parahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of V. parahaemolyticus to host cells but is also involved in T3SS1-dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable V. parahaemolyticus to interact with type I collagen and mediate T3SS2-dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3-kinase (PI3K) are responsible for V. parahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C-terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|