1
|
Dhokia V, Macip S. A master of all trades - linking retinoids to different signalling pathways through the multi-purpose receptor STRA6. Cell Death Discov 2021; 7:358. [PMID: 34785649 PMCID: PMC8595884 DOI: 10.1038/s41420-021-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoids are a group of vitamin A-related chemicals that are essential to chordate mammals. They regulate a number of basic processes, including embryogenesis and vision. From ingestion to metabolism and the subsequent cellular effects, retinoid levels are tightly regulated in the organism to prevent toxicity. One component of this network, the membrane receptor STRA6, has been shown to be essential in facilitating the cellular entry and exit of retinol. However, recent data suggests that STRA6 may not function merely as a retinoid transporter but also act as a complex signalling hub in its own right, being able to affect cell fate through the integration of retinoid signalling with other key pathways, such as those involving p53, JAK/STAT, Wnt/β catenin and calcium. This may open new therapeutic strategies in diseases like cancer, where these pathways are often compromised. Here, we look at the growing evidence regarding the novel roles of STRA6 beyond its well characterized classic functions.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
2
|
Itoh Y, Itoh S, Naruse H, Kagioka T, Hue MT, Abe M, Hayashi M. Intracellular density is a novel indicator of differentiation stages of murine osteoblast lineage cells. J Cell Biochem 2021; 122:1805-1816. [PMID: 34427353 DOI: 10.1002/jcb.30135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Osteoblasts are primary bone-making cells originating from mesenchymal stem cells (MSCs) in the bone marrow. The differentiation of MSCs to mature osteoblasts involves an intermediate stage called preosteoblasts, but the details of this process remain unclear. This study focused on the intracellular density of immature osteoblast lineage cells and hypothesized that the density might vary during differentiation and might be associated with the differentiation stages of osteoblast lineage cells. This study aimed to clarify the relationship between intracellular density and differentiation stages using density gradient centrifugation. Primary murine bone marrow stromal cell cultures were prepared in an osteogenic induction medium, and cells were separated into three fractions (low, intermediate, and high-density). The high-density fraction showed elevated expression of osteoblast differentiation markers (Sp7, Col1a1, Spp1, and Bglap) and low expression of MSC surface markers (Sca-1, CD73, CD105, and CD106). In contrast, the low-density fraction showed a high expression of MSC surface markers. These results indicated that intracellular density increased during differentiation from preosteoblasts to committed osteoblasts. Intracellular density may be a novel indicator for osteoblast differentiation stages. Density gradient centrifugation is a novel technique to study the process by which preosteoblasts transform into bone-forming cells.
Collapse
Affiliation(s)
- Yuki Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Haruna Naruse
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takumi Kagioka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mai Thi Hue
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
3
|
Guo F, Seldin M, Péterfy M, Charugundla S, Zhou Z, Lee SD, Mouton A, Rajbhandari P, Zhang W, Pellegrini M, Tontonoz P, Lusis AJ, Shih DM. NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Sci Rep 2021; 11:16409. [PMID: 34385484 PMCID: PMC8361163 DOI: 10.1038/s41598-021-95720-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A β3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C–C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A’s effects on upregulation of TGF-β signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
Collapse
Affiliation(s)
- Fangfei Guo
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Marcus Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Sarada Charugundla
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine Mount Sinai, New York, NY, 10029, USA
| | - Wenchao Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Diana M Shih
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
4
|
Muñiz-Hernández S, Velázquez-Fernández JB, Díaz-Chávez J, Mondragón-Fonseca O, Mayén-Lobo Y, Ortega A, López-López M, Arrieta O. STRA6 Polymorphisms Are Associated With EGFR Mutations in Locally-Advanced and Metastatic Non-Small Cell Lung Cancer Patients. Front Oncol 2020; 10:579561. [PMID: 33324556 PMCID: PMC7723324 DOI: 10.3389/fonc.2020.579561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Retinol plays a significant role in several physiological processes through their nuclear receptors, whose expression depends on retinol cytoplasmic concentration. Loss of expression of nuclear receptors and low retinol levels have been correlated with lung cancer development. Stimulated by retinoic acid 6 (STRA6) is the only described cell membrane receptor for retinol uptake. Some chronic diseases have been linked with specific polymorphisms in STRA6. This study aimed to evaluate four STRA6 single nucleotide polymorphisms (SNPs) (rs4886578, rs736118, rs351224, and rs97445) among 196 patients with locally-advanced and metastatic non-small cell lung cancer (NSCLC) patients. Genotyping, through a validated SNP assay and determined using real time-PCR, was correlated with clinical features and outcomes. NSCLC patients with a TT SNP rs4886578 and rs736118 genotype were more likely to be >60 years, non-smokers, and harboring EGFR mutations. Patients with a TT genotype compared with a CC/CT SNP rs974456 genotype had a median progression-free survival (PFS) of 3.2 vs. 4.8 months, p = 0.044, under a platinum-based regimen in the first-line. Furthermore, patients with a TT rs351224 genotype showed a prolonged overall survival (OS), 47.5 months vs. 32.0 months, p = 0.156. This study showed a correlation between clinical characteristics, such as age, non-smoking history, and EGFR mutational status and oncological outcomes depending on STRA6 SNPs. The STRA6 TT genotype SNP rs4886578 and rs736118 might be potential biomarkers in locally-advanced and metastatic NSCLC patients.
Collapse
Affiliation(s)
- Saé Muñiz-Hernández
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | | | - José Díaz-Chávez
- Laboratorio de Carcinogénesis, Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Omar Mondragón-Fonseca
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yerye Mayén-Lobo
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Alberto Ortega
- Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Marisol López-López
- Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Oscar Arrieta
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Unidad de Oncología Torácica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
5
|
Mencucci MV, Lapyckyj L, Rosso M, Besso MJ, Belgorosky D, Isola M, Vanzulli S, Lodillinsky C, Eiján AM, Tejerizo JC, Gonzalez MI, Zubieta ME, Vazquez-Levin MH. Ephrin-B1 Is a Novel Biomarker of Bladder Cancer Aggressiveness. Studies in Murine Models and in Human Samples. Front Oncol 2020; 10:283. [PMID: 32292715 PMCID: PMC7119101 DOI: 10.3389/fonc.2020.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and β-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and β-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher β-catenin nuclear signal and lower cytoplasmic p-Ser33-β-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear β-catenin, lower pSer33-β-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.
Collapse
Affiliation(s)
- María Victoria Mencucci
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Marina Rosso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Isola
- Departamento de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Tejerizo
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - María Ercilia Zubieta
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| |
Collapse
|
6
|
Sah JP, Hao NTT, Han X, Tran TTT, McCarthy S, Oh Y, Yoon JK. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling. Int J Biochem Cell Biol 2019; 118:105661. [PMID: 31805399 DOI: 10.1016/j.biocel.2019.105661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022]
Abstract
Ectonucleotide pyrophosphate phosphodiesterase type II (ENPP2), also known as Autotaxin (ATX), is an enzyme present in blood circulation that converts lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA). While LPA has been demonstrated to play diverse roles in skeletal myogenesis, mainly through in vitro studies, the role of ENPP2 in skeletal myogenesis has not been determined. We previously found that Enpp2 is induced by a positive WNT/β-Catenin signaling regulator, R-spondin2 (RSPO2), in C2C12 myoblast cells. As RSPO2 promotes myogenic differentiation via the WNT/β-Catenin signaling pathway, we hypothesized that ENPP2 may act as a key mediator for the crosstalk between WNT and LPA signaling during myogenic differentiation. Herein, we found that ENPP2 function is essential for myogenic differentiation in C2C12 cells. Pharmacological ENPP2 inhibitors or RNAi-mediated Enpp2 gene knockdown severely impaired the myogenic differentiation, including the cell fusion process, whereas administration of the recombinant ENPP2 protein enhanced myogenic differentiation. Consistent with the in vitro results, mice lacking the Enpp2 gene showed a disrupted muscle regeneration after acute muscle injury. The size of newly regenerated myofibers in Enpp2 mutant muscle was significantly reduced compared with wild-type regenerated muscle. Modified expression patterns of myogenic markers in Enpp2 mutant muscle further emphasized the impaired muscle regeneration process. Finally, we convincingly demonstrate that the Enpp2 gene is a direct transcriptional target for WNT/β-Catenin signaling. Functional TCF/LEF1 binding sites within the upstream region of Enpp2 gene were identified by chromatin immunoprecipitation using anti-β-Catenin antibodies and reporter assay. Our study reveals that ENPP2 is regulated by WNT/β-Catenin signaling and plays a key positive role in myogenic differentiation.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Nguyen Thi Thu Hao
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Xianghua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Trinh Thi Tuyet Tran
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Sarah McCarthy
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Younjeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea.
| |
Collapse
|
7
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Ono M, Lai KKY, Wu K, Nguyen C, Lin DP, Murali R, Kahn M. Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One 2018; 13:e0200714. [PMID: 30020971 PMCID: PMC6051640 DOI: 10.1371/journal.pone.0200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Over 400 million years ago, the evolution of vertebrates gave rise to a life cycle in which the organism began to live longer particularly as an adult. To accommodate such a longer lifespan, the organism underwent adaptation, developing a mechanism for long-lived cellular homeostasis. This adaptation required a population of long-lived relatively quiescent somatic stem cells (SSCs) along with a more proliferative differentiated daughter cell population, and was necessary to safeguard the genetic attributes with which SSCs were endowed. Intriguingly, cAMP response element binding protein (CREB)-binding protein (CBP) and E1A-binding protein, 300 kDa (p300), the highly homologous Kat3 coactivators had diverged, through duplication of ancestral Kat3, immediately preceding the evolution of vertebrates, given that both CBP and p300 have been detected in nearly all vertebrates versus non-vertebrates. We now demonstrate that a relatively small, highly evolutionarily conserved, amino terminal 9 amino acid deletion in CBP versus p300, plays a critical role in allowing for both robust maintenance of genomic integrity in stem cells and the initiation of a feed-forward differentiation mechanism by tightly controlling the interaction of the nuclear receptor family with the Wnt signaling cascade in either an antagonistic or synergistic manner.
Collapse
Affiliation(s)
- Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Keane K. Y. Lai
- Department of Pathology, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Department of Pathology and Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA, United States of America
| | - Kaijin Wu
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
| | - David P. Lin
- Department of Pathology and Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA, United States of America
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, United States of America
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
9
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
10
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
11
|
Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S, Gao Y. All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol 2016; 422:243-253. [PMID: 26747727 DOI: 10.1016/j.mce.2015.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Osteogenic differentiation of mesenchymal stem cells (MSCs) is a vital process for the maintenance of healthy bone tissue and is mediated by numerous factors. Canonical Wnt signalling is essential for MSC osteogenic differentiation, and it interacts with several nuclear receptors, including the retinoic acid receptor, vitamin D receptor, and glucocorticoid receptor. Here, we explored whether Wnt3A and all-trans-retinoic acid (ATRA) play synergistic roles in MSC osteogenic differentiation. We found that ATRA potentiated the Wnt3A-induced expression of early and late osteogenic markers as well as matrix mineralization and further confirmed the phenomena using foetal limb explant culture and MSC implantation experiments. Mechanistically, ATRA cooperated with Wnt3A to induce β-catenin translocation from cell-cell contacts into the cytosol and nucleus, thereby activating Wnt/β-catenin signalling. Additionally, Wnt3A attenuated ATRA-induced Cyp26a1 expression, inhibiting the degradation of ATRA into its oxidative forms. β-catenin silencing abolished the stimulatory effect of ATRA on Wnt3A-induced alkaline phosphatase (ALP) activity and reversed its inhibitory effect on Cyp26a1 expression. Furthermore, ATRA and Wnt3A synergistically promoted AKT phosphorylation, enhancing β-catenin-dependent transcription through GSK3β inhibition or direct β-catenin phosphorylation at Ser552. This event was largely abolished by LY294002 pre-treatment, suggesting that ATRA and Wnt3A at least partially promote osteogenic differentiation via activating the PI3K/AKT/GSK3β signalling pathway. Thus, crosstalk between the Wnt/β-catenin and retinoic acid signalling pathways may be an effective therapeutic target for bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoting Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
13
|
Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol 2015; 32:48. [PMID: 25636508 DOI: 10.1007/s12032-015-0492-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer may appear by frequent genetic or epigenetic changes in oncogenes, tumor suppressor or DNA mismatch repair genes. Molecular studies show the possibility of involvement of certain cancer pathways in gastric cancer. In this respect, DNA methylation is one of the most important epigenetic alterations in gastric cancer and identifying the signaling mechanism and also methylation of some genes that are involved in gastric cancer can help to improve treatment strategies. Relatively, there are many reported methylation alteration of genes in stem cells in all kinds of tumors with some of these genes having a key role in tumor development. Correspondingly, KLF5, CDX1/2, WNT1 and FEM1A are considerable genes in gastric cancer, although many researches and studies have illustrated that sonic hedgehog and expression of its signaling cascade proteins are related in gastric cancer. Relatively, modification in these genes causes many eclectic cancers such as rhabdomyosarcoma and diverse kinds of digestive system tumor development. Conspicuously, these master genes have a noticeable role in stem cell's growth regulation as well as other kinds of cancer such as breast cancer and leukemia. Hence, we concluded that research and studies on methylation and expression of these genes and also the investigation of molecular signaling in gastric cancer can acquire impressive conclusions in order to control and treat this common place and serious problem.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
14
|
Lin KY, Kwon EJ, Lo JH, Bhatia SN. Drug-induced amplification of nanoparticle targeting to tumors. NANO TODAY 2014; 9:550-559. [PMID: 29731806 PMCID: PMC5935498 DOI: 10.1016/j.nantod.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment in vivo. We first administer a vascular disrupting agent, ombrabulin, which selectively affects tumors and leads to locally elevated presentation of the stress-related protein, p32. This increase in p32 levels provides more binding sites for circulating p32-targeted nanoparticles, enhancing their delivery of diagnostic or therapeutic cargos to tumors. We show that this cooperative targeting system recruits over five times higher doses of nanoparticles to tumors and decreases tumor burden when compared with non-cooperative controls. These results suggest that using nanomedicine in conjunction with drugs that enhance the presentation of target antigens in the tumor environment may be an effective strategy for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Kevin Y Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ester J Kwon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Justin H Lo
- Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Electrical Engineering and Computer Science, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
15
|
Moreno-Moya JM, Vilella F, Martínez S, Pellicer A, Simón C. The transcriptomic and proteomic effects of ectopic overexpression of miR-30d in human endometrial epithelial cells. Mol Hum Reprod 2014; 20:550-66. [PMID: 24489115 DOI: 10.1093/molehr/gau010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
miR-30d is known to be up-regulated during the acquisition of receptivity in the endometrium. In order to determine the transcriptomic and proteomic changes which occur after transient overexpression of miR-30d in primary endometrial epithelial cells, in vitro cultured human endometrial epithelial cells (hEECs) were studied experimentally. Two different miRNAs (scramble versus mimic; n = 15) were transiently transfected into primary hEECs from four different patients and were evaluated for mRNA and protein expression using Agilent's gene expression microarray and iTRAQ analysis techniques, respectively. A set of differentially expressed mRNAs were validated by qPCR and several differentially expressed proteins were validated by western blot. Finally, methylation differential immunoprecipitation (MeDIP) was used to validate the epigenetic changes in the H19 gene. The results showed that transient transfection with miR-30d miRNA induced the differential mRNA-expression of 176 genes (75 up-regulated and 101 down-regulated). Several of them have been associated with reproductive and endocrine system disorders, tissue development, and are implicated in epithelial cell proliferation. Also, the down-regulation of some genes such as H19 and N-methyltransferase (NNMT) may suggest that epigenetic alterations are induced. Furthermore, upstream effects of genes regulated by the estrogen receptor alpha 1 (ESR1) transcription factor have been predicted. Proteomic analysis identified 2290 proteins, of which 108 were differentially expressed (47 up-regulated and 61 down-regulated). Among these differentially expressed proteins DNA methyl transferase (DNMT)1 was found to be up-regulated; this protein participates in the maintenance of DNA methylation, supporting an epigenetic role for miR-30d. Finally MeDIP showed an increase in methylation in the H19 DMR region. In conclusion transient in vitro overexpression of the receptivity-up-regulated miRNA miR-30d in hEECs seems to activate genes which are associated with hormonal response and the epigenetic status of these cells.
Collapse
Affiliation(s)
- Juan Manuel Moreno-Moya
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Paterna, Spain
| | - Felipe Vilella
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Paterna, Spain
| | - Sebastián Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Paterna, Spain
| | - Antonio Pellicer
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Paterna, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Paterna, Spain Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Rolfe RA, Nowlan NC, Kenny EM, Cormican P, Morris DW, Prendergast PJ, Kelly D, Murphy P. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genomics 2014; 15:48. [PMID: 24443808 PMCID: PMC3905281 DOI: 10.1186/1471-2164-15-48] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022] Open
Abstract
Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. Conclusions This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death Differ 2013; 20:910-9. [PMID: 23449393 DOI: 10.1038/cdd.2013.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stra6 is the retinoic acid (RA)-inducible gene encoding the cellular receptor for holo-retinol binding protein. This transmembrane protein mediates the internalization of retinol, which then upregulates RA-responsive genes in target cells. Here, we show that Stra6 can be upregulated by DNA damage in a p53-dependent manner, and it has an important role in cell death responses. Stra6 expression induced significant amounts of apoptosis in normal and cancer cells, and it was also able to influence p53-mediated cell fate decisions by turning an initial arrest response into cell death. Moreover, inhibition of Stra6 severely compromised p53-induced apoptosis. We also found that Stra6 induced mitochondria depolarization and accumulation of reactive oxygen species, and that it was present not only at the cellular membrane but also in the cytosol. Finally, we show that these novel functions of Stra6 did not require downstream activation of RA signalling. Our results present a previously unknown link between the RA and p53 pathways and provide a rationale to use retinoids to upregulate Stra6, and thus enhance the tumour suppressor functions of p53. This may have implications for the role of vitamin A metabolites in cancer prevention and treatment.
Collapse
|
18
|
Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, Rodríguez Díaz E, Bacon BT, Aryal P, Graham TE. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem 2012; 288:1250-65. [PMID: 23105095 DOI: 10.1074/jbc.m112.369132] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.
Collapse
Affiliation(s)
- Philomena Alapatt
- Molecular Medicine Program and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kadekar S, Silins I, Korhonen A, Dreij K, Al-Anati L, Högberg J, Stenius U. Exocrine pancreatic carcinogenesis and autotaxin expression. PLoS One 2012; 7:e43209. [PMID: 22952646 PMCID: PMC3430650 DOI: 10.1371/journal.pone.0043209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 07/18/2012] [Indexed: 12/12/2022] Open
Abstract
Exocrine pancreatic cancer is an aggressive disease with an exceptionally high mortality rate. Genetic analysis suggests a causative role for environmental factors, but consistent epidemiological support is scarce and no biomarkers for monitoring the effects of chemical pancreatic carcinogens are available. With the objective to identify common traits for chemicals inducing pancreatic tumors we studied the National Toxicology Program (NTP) bioassay database. We found that male rats were affected more often than female rats and identified eight chemicals that induced exocrine pancreatic tumors in males only. For a hypothesis generating process we used a text mining tool to analyse published literature for suggested mode of actions (MOA). The resulting MOA analysis suggested inflammatory responses as common feature. In cell studies we found that all the chemicals increased protein levels of the inflammatory protein autotaxin (ATX) in Panc-1, MIA PaCa-2 or Capan-2 cells. Induction of MMP-9 and increased invasive migration were also frequent effects, consistent with ATX activation. Testosterone has previously been implicated in pancreatic carcinogenesis and we found that it increased ATX levels. Our data show that ATX is a target for chemicals inducing pancreatic tumors in rats. Several lines of evidence implicate ATX and its product lysophosphatidic acid in human pancreatic cancer. Mechanisms of action may include stimulated invasive growth and metastasis. ATX may interact with hormones or onco- or suppressor-genes often deregulated in exocrine pancreatic cancer. Our data suggest that ATX is a target for chemicals promoting pancreatic tumor development.
Collapse
Affiliation(s)
- Sandeep Kadekar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilona Silins
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Anna Korhonen
- Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lauy Al-Anati
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Lysophosphatidic acid (LPA; monoacyl-glycerol-3-phosphate) is a lipid mediator that functions as a mitogen and motility factor for many cell types. LPA signals through six specific G protein-coupled receptors, named LPA(1-6), which trigger both overlapping and distinct signaling pathways. LPA is produced from extracellular lysophosphatidylcholine by a secreted lysophospholipase D, named autotaxin (ATX), originally identified as an "autocrine motility factor" for tumor cells. ATX-LPA signaling is vital for embryonic development and promotes tumor formation, angiogenesis, and experimental metastasis in mice. Elevated expression of ATX and/or aberrant expression of LPA receptors are found in several human malignancies, while loss of LPA(6) function has been implicated in bladder cancer. In this review, we summarize our present understanding of ATX and LPA receptor signaling in cancer.
Collapse
Affiliation(s)
- Anna J S Houben
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Monks DC, Morrow BE. Identification of putative retinoic acid target genes downstream of mesenchymal Tbx1 during inner ear development. Dev Dyn 2012; 241:563-73. [PMID: 22275070 DOI: 10.1002/dvdy.23731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The T-box transcription factor Tbx1 is expressed in the otic vesicle and surrounding mesoderm of the periotic mesenchyme (POM) during inner ear development. Mesenchymal Tbx1 is essential for inner ear development, with conditional mutants displaying defects in both the auditory and vestibular systems. We have previously reported that mesodermal Tbx1 loss of function mutants (Mest-KO) have reduced expression of retinoic acid (RA) metabolic genes, Cyp26a1 and Cyp26c1, in the POM, consistent with other studies showing an increase in mesodermal RA reporter expression in Tbx1-/- embryos. However, putative RA effector genes whose expression is altered downstream of increased otic mesenchymal-epithelial RA signaling have remained elusive. RESULTS Here we report the identification of 18 retinoic acid responsive genes altered in Mest-KO conditional mutants by microarray gene profiling. Nine were chosen for biological validation including quantitative RT-PCR and in situ hybridization (Otor, Mia, Col2a1, Clu, Adm, Myt1, Dlx3, Itgb3, and Itga2b). CONCLUSION Here study provides a series of newly identified RA effector genes for inner ear development downstream of mesenchymal Tbx1 that may contribute to the inner ear phenotype observed in Tbx1 loss of function mouse models.
Collapse
Affiliation(s)
- Dennis C Monks
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
22
|
Baljinnyam B, Klauzinska M, Saffo S, Callahan R, Rubin JS. Recombinant R-spondin2 and Wnt3a up- and down-regulate novel target genes in C57MG mouse mammary epithelial cells. PLoS One 2012; 7:e29455. [PMID: 22238613 PMCID: PMC3251591 DOI: 10.1371/journal.pone.0029455] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/29/2011] [Indexed: 01/05/2023] Open
Abstract
R-spondins (Rspos) comprise a family of four secreted proteins that have important roles in cell proliferation, cell fate determination and organogenesis. Rspos typically exert their effects by potentiating the Wnt/β-catenin signaling pathway. To systematically investigate the impact of Rspo/Wnt on gene expression, we performed a microarray analysis using C57MG mouse mammary epithelial cells treated with recombinant Rspo2 and/or Wnt3a. We observed the up- and down-regulation of several previously unidentified target genes, including ones that encode proteins involved in immune responses, effectors of other growth factor signaling pathways and transcription factors. Dozens of these changes were validated by quantitative real time RT-PCR. Time course experiments showed that Rspo2 typically had little or no effect on Wnt-dependent gene expression at 3 or 6 h, but enhanced expression at 24 h, consistent with biochemical data indicating that Rspo2 acts primarily to sustain rather than acutely increase Wnt pathway activation. Up-regulation of gene expression was inhibited by pre-treatment with Dickkopf1, a Wnt/β-catenin pathway antagonist, and by siRNA knockdown of β-catenin expression. While Dickkopf1 blocked Rspo2/Wnt3a-dependent down-regulation, a number of down-regulated genes were not affected by β-catenin knockdown, suggesting that in these instances down-regulation was mediated by a β-catenin-independent mechanism.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Malgorzata Klauzinska
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Saad Saffo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Callahan
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zhang M, Huang K, Zhang Z, Ji B, Zhu H, Zhou K, Li Y, Yang J, Sun L, Wei Z, He G, Gao L, He L, Wan C. Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion. J Nutr Biochem 2011; 22:1003-8. [DOI: 10.1016/j.jnutbio.2010.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 08/11/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
|
24
|
Liu SM, Lee DH, Sullivan JM, Chung D, Jäger A, Shum BOV, Sarvetnick NE, Anderson AC, Kuchroo VK. Differential IL-21 signaling in APCs leads to disparate Th17 differentiation in diabetes-susceptible NOD and diabetes-resistant NOD.Idd3 mice. J Clin Invest 2011; 121:4303-10. [PMID: 22019586 DOI: 10.1172/jci46187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/21/2011] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated. Here we show that T cells from NOD mice produce more Il21 and less Il2 and exhibit enhanced Th17 cell generation compared with T cells from NOD.Idd3 congenic mice, which carry the protective Idd3 allele from a diabetes-resistant mouse strain. Further, APCs from NOD and NOD.Idd3 mice played a central role in this differential Th17 cell development, and IL-21 signaling in APCs was pivotal to this process. Specifically, NOD-derived APCs showed increased production of pro-Th17 mediators and dysregulation of the retinoic acid (RA) signaling pathway compared with APCs from NOD.Idd3 and NOD.Il21r-deficient mice. These data suggest that the protective effect of the Idd3 locus is due, in part, to differential RA signaling in APCs and that IL-21 likely plays a role in this process. Thus, we believe APCs provide a new candidate for therapeutic intervention in autoimmune diseases.
Collapse
Affiliation(s)
- Sue M Liu
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
26
|
Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H, Yoshida N, Miki H. Nucleoredoxin Sustains Wnt/β-Catenin Signaling by Retaining a Pool of Inactive Dishevelled Protein. Curr Biol 2010; 20:1945-52. [DOI: 10.1016/j.cub.2010.09.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/10/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
27
|
Phospholipase Cgamma activation drives increased production of autotaxin in endothelial cells and lysophosphatidic acid-dependent regression. Mol Cell Biol 2010; 30:2401-10. [PMID: 20231358 DOI: 10.1128/mcb.01275-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that vascular endothelial growth factor (VEGF)-dependent activation of phospholipase Cgamma1 (PLCgamma) regulated tube stability by competing with phosphoinositide 3-kinase (PI3K) for their common substrate. Here we describe an additional mechanism by which PLCgamma promoted regression of tubes and blood vessels. Namely, it increased the level of autotaxin (ATX), which is a secreted form of lysophospholipase D that produces lysophosphatidic acid (LPA). LPA promoted motility of endothelial cells, leading to disorganization/regression of tubes in vitro. Furthermore, mice that under- or overexpressed members of this intrinsic destabilization pathway showed either delayed or accelerated, respectively, regression of blood vessels. We conclude that endothelial cells can be instructed to engage a PLCgamma-dependent intrinsic destabilization pathway that results in the production of soluble regression factors such as ATX and LPA. These findings are likely to potentiate ongoing efforts to prevent, manage, and eradicate numerous angiogenesis-based diseases such as proliferative diabetic retinopathy and solid tumors.
Collapse
|
28
|
Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 2010; 316:1763-72. [PMID: 20138864 DOI: 10.1016/j.yexcr.2010.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022]
Abstract
Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.
Collapse
Affiliation(s)
- Marcy E Beildeck
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
29
|
Gage PJ, Zacharias AL. Signaling "cross-talk" is integrated by transcription factors in the development of the anterior segment in the eye. Dev Dyn 2009; 238:2149-62. [PMID: 19623614 DOI: 10.1002/dvdy.22033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Extracellular signaling "cross-talk" between tissues is an important requirement for development of many organs yet the underlying mechanisms generally remain poorly understood. The anterior segment of the eye, which is constructed from four embryonic lineages, provides a unique opportunity to genetically dissect developmental processes such as signaling "cross-talk" without fear of inducing lethality. In the current review, we summarize recent data showing that PITX2, a homeodomain transcription factor, integrates retinoic acid and canonical Wnt/beta-catenin signaling during anterior segment development. Because the requirements for retinoic acid signaling, canonical Wnt/beta-catenin signaling, and PITX2 are not unique to the eye, this newly identified pathway may have relevance elsewhere during development and in tissue homeostasis.
Collapse
Affiliation(s)
- Philip J Gage
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
30
|
Kennedy KAM, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SAL, Skerjanc IS. Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 2009; 7:67. [PMID: 19814781 PMCID: PMC2764571 DOI: 10.1186/1741-7007-7-67] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/08/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.
Collapse
Affiliation(s)
- Karen AM Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Tammy Porter
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott D Ryan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Feodor Price
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Karamboulas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Josée Savage
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas A Drysdale
- Department of Pediatrics and Physiology and Pharmacology, The University of Western Ontario, Children's Health Research Institute, London, Ontario, Canada
| | - Shun-Cheng Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Steffany AL Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Abstract
Autotaxin is a protein of approximately 900 amino acids discovered in the early 1990s. Over the past 15 years, a strong association between cancer cells and autotaxin production has been observed. Recent publications indicate that autotaxin and the capacity of cancer to metastasise are intimately linked. The discovery of new molecular targets in pharmacology is a mixture of pure luck, hard work and industrial strategy. Despite a crucial and desperate need for new therapeutic tools, many targets are approached in oncology, but only a few are validated and end up at the patient bed. Outside the busy domain of kinases, few targets have been discovered that can be useful in treating cancer, particularly metastatic processes. The fortuitous relationship between autotaxin and lysophosphatidic acid renders the results of observations made in the diabetes/obesity context considerably important. The literature provides observations that may aid in redesigning experiments to validate autotaxin as a potential oncology target.
Collapse
Affiliation(s)
- Jean A Boutin
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, Croissy-sur-Seine, France.
| | | |
Collapse
|
32
|
Railo A, Pajunen A, Itäranta P, Naillat F, Vuoristo J, Kilpeläinen P, Vainio S. Genomic response to Wnt signalling is highly context-dependent--evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 2009; 315:2690-704. [PMID: 19563800 DOI: 10.1016/j.yexcr.2009.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/15/2009] [Accepted: 06/22/2009] [Indexed: 11/27/2022]
Abstract
Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-beta-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of beta-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.
Collapse
Affiliation(s)
- Antti Railo
- Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Koçer SS, Djurić PM, Bugallo MF, Simon SR, Matic M. Transcriptional profiling of putative human epithelial stem cells. BMC Genomics 2008; 9:359. [PMID: 18667080 PMCID: PMC2536675 DOI: 10.1186/1471-2164-9-359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 07/30/2008] [Indexed: 12/30/2022] Open
Abstract
Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.
Collapse
Affiliation(s)
- Salih S Koçer
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | | | | | | | | |
Collapse
|
34
|
Gage PJ, Qian M, Wu D, Rosenberg KI. The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol 2008; 317:310-24. [PMID: 18367164 PMCID: PMC2387126 DOI: 10.1016/j.ydbio.2008.02.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
Local control of cell signaling activity and integration of inputs from multiple signaling pathways are central for normal development but the underlying mechanisms remain poorly understood. Here we show that Dkk2, encoding an antagonist of canonical Wnt signaling, is an essential downstream target of the PITX2 homeodomain transcription factor in neural crest during eye development. Canonical Wnt signaling is ectopically activated in central ocular surface ectoderm and underlying mesenchyme in Pitx2- and Dkk2-deficient mice. General ocular surface ectoderm identity is maintained during development in Dkk2-deficient mice but peripheral fates, including conjunctival goblet cells and eyelash follicles, are ectopically permitted within more central structures and eyelids are hypomorphic. Loss of DKK2 results in ectopic blood vessels within the periocular mesenchyme and PITX2 expression remains persistently high, providing evidence for a negative feedback loop. Collectively, these data suggest that activation of Dkk2 by PITX2 provides a mechanism to locally suppress canonical Wnt signaling activity during eye development, a paradigm that may be a model for achieving local or transient inhibition of pathway activity elsewhere during embryogenesis. We further propose a model placing PITX2 as an essential integration node between retinoic acid and canonical Wnt signaling during eye development.
Collapse
Affiliation(s)
- Philip J Gage
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
35
|
Ohuchi H, Hayashibara Y, Hayashibaral Y, Matsuda H, Onoi M, Mitsumori M, Tanaka M, Aoki J, Arai H, Noji S. Diversified expression patterns of autotaxin, a gene for phospholipid-generating enzyme during mouse and chicken development. Dev Dyn 2007; 236:1134-43. [PMID: 17366625 DOI: 10.1002/dvdy.21119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that generates bioactive phospholipids that act on G protein-coupled receptors. Here we show the expression patterns of the ATX gene in mouse and chicken embryos. ATX has a dynamic spatial and temporal expression pattern in both species and the expression domains during neural development are quite distinct from each other. Murine ATX (mATX) is expressed immediately rostral to the midbrain-hindbrain boundary, whereas chicken ATX (cATX) is expressed in the diencephalon and later in the parencephalon-synencephalon boundary. In the neural tube, cATX is expressed in the alar plate in contrast to mATX in the floor plate. ATX is also expressed in the hindbrain and various organ primordia such as face anlagen and skin appendages of the mouse and chicken. These results suggest conserved and non-conserved roles for ATX during neural development and organogenesis in these species.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, University of Tokushima, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang L, Tang Y, Rubin DC, Levin MS. Chronically administered retinoic acid has trophic effects in the rat small intestine and promotes adaptation in a resection model of short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1559-69. [PMID: 17307727 DOI: 10.1152/ajpgi.00567.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Following the loss of functional small bowel surface area, the intestine undergoes a compensatory adaptive response. The observation that adaptation is inhibited in vitamin A-deficient rats following submassive intestinal resection suggested that vitamin A is required for this response and raised the possibility that exogenous vitamin A could augment adaptation. Therefore, to directly assess whether chronically administered retinoic acid could stimulate gut adaptation in a model of short bowel syndrome and to address the mechanisms of any such effects, Sprague-Dawley rats were implanted with controlled release retinoic acid or control pellets and then subjected to mid-small bowel or sham resections. At 2 wk postoperation, changes in gut morphology, crypt cell proliferation and apoptosis, enterocyte migration, the extracellular matrix, and gene expression were assessed. Retinoic acid had significant trophic effects in resected and sham-resected rats. Retinoic acid markedly inhibited apoptosis and stimulated crypt cell proliferation and enterocyte migration postresection. Data presented indicate that these proadaptive effects of retinoic acid may be mediated via changes in the extracellular matrix (e.g., by increasing collagen IV synthesis, decreasing E-cadherin expression, and reducing integrin beta(3) levels), via affects on Hedgehog signaling (e.g., by reducing expression of the Hedgehog receptors Ptch and Ptch2 and the Gli1 transcription factor), by increasing expression of Reg1 and Pap1, and by modulation of retinoid and peroxisome proliferator-activated receptor signaling pathways. These studies are the first to demonstrate that retinoic acid can significantly enhance intestinal adaptation and suggest it may be beneficial in patients with short bowel syndrome.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Animals
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drug Implants
- Enterocytes/drug effects
- Enterocytes/pathology
- Extracellular Matrix Proteins/metabolism
- Gene Expression/drug effects
- Hedgehog Proteins/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Intestine, Small/physiopathology
- Intestine, Small/surgery
- Male
- Pancreatitis-Associated Proteins
- Peroxisome Proliferator-Activated Receptors/drug effects
- Peroxisome Proliferator-Activated Receptors/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Short Bowel Syndrome/drug therapy
- Short Bowel Syndrome/genetics
- Short Bowel Syndrome/metabolism
- Short Bowel Syndrome/pathology
- Short Bowel Syndrome/physiopathology
- Signal Transduction/drug effects
- Time Factors
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Lihua Wang
- Washington Univ. School of Medicine, Campus Box 8124, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
37
|
Memezawa A, Takada I, Takeyama K, Igarashi M, Ito S, Aiba S, Kato S, Kouzmenko AP. Id2 gene-targeted crosstalk between Wnt and retinoid signaling regulates proliferation in human keratinocytes. Oncogene 2007; 26:5038-45. [PMID: 17310985 DOI: 10.1038/sj.onc.1210320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the effect of all-trans-retinoic acid (atRA) on proliferation in several human skin cell lines and found that antiproliferative potency of atRA correlated with the endogenous activity of canonical Wnt signaling. In HaCaT keratinocytes, we found that atRA significantly suppressed the expression of Id2, a member of the inhibitor of differentiation family of transcription factors that regulate cell growth and differentiation. However, no apparent change in the expression of other Wnt targets, like c-Myc or cyclin D1, was observed. Retinoid-induced Id2 gene suppression was associated with decreased levels of histone H3 and H4 acetylation and histone H3 Lys-4 methylation, and with recruitment of the LSD1 demethylase at the Wnt-response element (WRE) (TCF/LEF-binding site), in the Id2 gene promoter. None of such changes was detected at the WRE of c-Myc and cyclin D1 gene promoters. Inhibition of Id2 by short interfering RNA (siRNA) had a similar effect on the proliferation of HaCaT cells as exposure to atRA, whereas anti-beta-catenin siRNA significantly inhibited its antiproliferative effect. These data suggest that downregulation of Id2 gene expression through transcriptional convergence between Wnt and retinoid signaling pathways underlies the antiproliferative effect of retinoids in keratinocytes, and provide evidence of gene-targeted crosstalk between signaling pathways.
Collapse
Affiliation(s)
- A Memezawa
- Department of Nuclear Signaling, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zirn B, Samans B, Wittmann S, Pietsch T, Leuschner I, Graf N, Gessler M. Target genes of the WNT/β-catenin pathway in Wilms tumors. Genes Chromosomes Cancer 2006; 45:565-74. [PMID: 16575872 DOI: 10.1002/gcc.20319] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The WNT/beta-catenin pathway is involved in numerous human cancers. Mutations of the CTNNB1 (beta-catenin) gene have also been detected in a subset of pediatric Wilms tumors, but the target genes of the deregulated WNT/beta-catenin pathway in these tumors have yet to be identified. To compare gene expression profiles of Wilms tumors with and without mutations of CTNNB1, we used 11.5-k cDNA microarrays. Most of the tumors (86%) had received preoperative chemotherapy as mandated by the European SIOP protocol. The comparison between Wilms tumors with and without CTNNB1 mutations revealed several target genes specifically deregulated in CTNNB1-mutated Wilms tumors. Among these, PITX2, APCDD1, and two members of the endothelin axis (EDN3 and EDNRA) are directly activated downstream targets of the WNT/beta-catenin pathway that may enhance proliferation of these tumor cells. In addition, several upstream inhibitors of WNT/beta-catenin signaling like WIF1 and PRDC were also strongly up-regulated in the CTNNB1-mutated Wilms tumors. This overexpression may be a negative feedback mechanism in tumors with uncontrolled WNT signaling. Moreover, we identified deregulated genes in both the retinoic acid and the RAS pathways, such as ATX/ENPP2 and RIS1, suggesting an association between these two pathways with that of WNT. In addition, the strong representation of muscle-related genes in the expression profile of CTNNB1-mutated Wilms tumors corresponded to histologically detectable areas of myomatous cells in these tumors that displayed intense and preferential nuclear beta-catenin antibody staining. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Birgit Zirn
- Physiological Chemistry I, Biozentrum, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Stefan C, Jansen S, Bollen M. Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2006; 2:361-70. [PMID: 18404476 PMCID: PMC2254485 DOI: 10.1007/s11302-005-5303-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility.
Collapse
Affiliation(s)
- Cristiana Stefan
- Division of Biochemistry, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, B-3000, Leuven, Belgium,
| | | | | |
Collapse
|
40
|
Zirn B, Hartmann O, Samans B, Krause M, Wittmann S, Mertens F, Graf N, Eilers M, Gessler M. Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. Int J Cancer 2006; 118:1954-62. [PMID: 16287080 DOI: 10.1002/ijc.21564] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Wilms tumor is the most frequent renal neoplasm in children, but our understanding of its genetic basis is still limited. We performed cDNA microarray experiments using 63 primary Wilms tumors with the aim of detecting new candidate genes associated with malignancy grade and tumor progression. All tumors had received preoperative chemotherapy as mandated by the SIOP protocol, which sets this study apart from related approaches in the Unites States that are based on untreated samples. The stratification of expression data according to clinical criteria allowed a rather clear distinction between different subsets of Wilms tumors. Clear-cut differences in expression patterns were discovered between relapse-free as opposed to relapsed tumors and tumors with intermediate risk as opposed to high risk histology. Several differentially expressed genes, e.g.TRIM22, CENPF, MYCN, CTGF, RARRES3 and EZH2, were associated with Wilms tumor progression. For a subset of differentially expressed genes, microarray data were confirmed by real-time RT-PCR on the original set of tumors. Interestingly, we found the retinoic acid pathway to be deregulated at different levels in advanced tumors suggesting that treatment of these tumors with retinoic acid may represent a promising novel therapeutic approach.
Collapse
Affiliation(s)
- B Zirn
- Physiological Chemistry I, Biozentrum, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rubinfeld B, Upadhyay A, Clark SL, Fong SE, Smith V, Koeppen H, Ross S, Polakis P. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat Biotechnol 2006; 24:205-9. [PMID: 16444269 DOI: 10.1038/nbt1185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 12/05/2005] [Indexed: 11/08/2022]
Abstract
Cancer cells differ from normal cells in their response to chemotherapy. We exploited this dissimilarity by identifying and targeting tumor-specific, cell-surface proteins whose expression is induced by the chemotherapeutic irinotecan (CPT-11; Camptosar). A cytotoxin-armed antibody reactive with one of these drug-induced surface proteins, the LY6D/E48 antigen, originally identified as the target of a monoclonal antibody reactive with squamous cell carcinomas, caused complete regression of colorectal tumor xenografts in mice treated with CPT-11, whereas either agent alone was less effective. These results suggest that a positive therapeutic index may be generated for other drug combinations by immunotherapeutic targeting of chemotherapy-induced antigens.
Collapse
Affiliation(s)
- Bonnee Rubinfeld
- Departments of Molecular Oncology, Pathology and Translational Oncology, Genentech, Inc., 1 DNA Way, S. San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 2005; 26:898-915. [PMID: 16126938 DOI: 10.1210/er.2003-0034] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cross-regulation of Wnt/beta-catenin/Tcf ligands, kinases, and transcription factors with members of the nuclear receptor (NR) family has emerged as a clinically and developmentally important area of endocrine cell biology. Interactions between these signaling pathways result in a diverse array of cellular effects including altered cellular adhesion, tissue morphogenesis, and oncogenesis. Analyses of NR interactions with canonical Wnt signaling reveal two broad themes: Wnt/beta-catenin modulation of NRs (theme I), and ligand-dependent NR inhibition of the Wnt/beta-catenin/Tcf cascade (theme II). Beta-catenin, a promiscuous Wnt signaling member, has been studied intensively in relation to the androgen receptor (AR). Beta-catenin acts as a coactivator of AR transcription and is also involved in co-trafficking, increasing cell proliferation, and prostate pathogenesis. T cell factor, a transcriptional mediator of beta-catenin and AR, engages in a dynamic reciprocity of nuclear beta-catenin, p300/CREB binding protein, and transcriptional initiation factor 2/GC receptor-interaction protein, thereby facilitating hormone-dependent coactivation and transrepression. Beta-catenin responds in an equally dynamic manner with other NRs, including the retinoic acid (RA) receptor (RAR), vitamin D receptor (VDR), glucocorticoid receptor (GR), progesterone receptor, thyroid receptor (TR), estrogen receptor (ER), and peroxisome proliferator-activated receptor (PPAR). The NR ligands, vitamin D(3), trans/cis RA, glucocorticoids, and thiazolidines, induce dramatic changes in the physiology of cells harboring high Wnt/beta-catenin/Tcf activity. Wnt signaling regulates, directly or indirectly, developmental processes such as ductal branching and adipogenesis, two processes dependent on NR function. Beta-catenin has been intensively studied in colorectal cancer; however, it is now evident that beta-catenin may be important in cancers of the breast, prostate, and thyroid. This review will focus on the cross-regulation of AR and Wnt/beta-catenin/Tcf but will also consider the dynamic manner in which RAR/RXR, GR, TR, VDR, ER, and PPAR modulate canonical Wnt signaling. Although many commonalities exist by which NRs interact with the Wnt/beta-catenin signaling pathway, striking cell line and tissue-specific differences require deciphering and application to endocrine pathology.
Collapse
Affiliation(s)
- David J Mulholland
- Department of Molecular and Medical Pharmacology, 650 Charles E. Young Drive, Center for Health Sciences 23-234, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
43
|
Huang S, Li Y, Chen Y, Podsypanina K, Chamorro M, Olshen AB, Desai KV, Tann A, Petersen D, Green JE, Varmus HE. Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biol 2005; 6:R84. [PMID: 16207355 PMCID: PMC1257467 DOI: 10.1186/gb-2005-6-10-r84] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/20/2005] [Accepted: 08/30/2005] [Indexed: 11/10/2022] Open
Abstract
cDNA microarray-derived expression profiles of MMTV-Wnt-1 and MMTV-Neu transgenic mice reveal several hundred genes to be differentially expressed at each stage of breast tumor development. Background In human breast cancer normal mammary cells typically develop into hyperplasia, ductal carcinoma in situ, invasive cancer, and metastasis. The changes in gene expression associated with this stepwise progression are unclear. Mice transgenic for mouse mammary tumor virus (MMTV)-Wnt-1 exhibit discrete steps of mammary tumorigenesis, including hyperplasia, invasive ductal carcinoma, and distant metastasis. These mice might therefore be useful models for discovering changes in gene expression during cancer development. Results We used cDNA microarrays to determine the expression profiles of five normal mammary glands, seven hyperplastic mammary glands and 23 mammary tumors from MMTV-Wnt-1 transgenic mice, and 12 mammary tumors from MMTV-Neu transgenic mice. Adipose tissues were used to control for fat cells in the vicinity of the mammary glands. In these analyses, we found that the progression of normal virgin mammary glands to hyperplastic tissues and to mammary tumors is accompanied by differences in the expression of several hundred genes at each step. Some of these differences appear to be unique to the effects of Wnt signaling; others seem to be common to tumors induced by both Neu and Wnt-1 oncogenes. Conclusion We described gene-expression patterns associated with breast-cancer development in mice, and identified genes that may be significant targets for oncogenic events. The expression data developed provide a resource for illuminating the molecular mechanisms involved in breast cancer development, especially through the identification of genes that are critical in cancer initiation and progression.
Collapse
Affiliation(s)
- Shixia Huang
- Program in Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10021, USA
- Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Li
- Program in Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10021, USA
- Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yidong Chen
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrina Podsypanina
- Program in Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Mario Chamorro
- Program in Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Adam B Olshen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Kartiki V Desai
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Johns Hopkins in Singapore Ltd, The Nanos, Singapore 138669, Republic of Singapore
| | - Anne Tann
- Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Petersen
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey E Green
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E Varmus
- Program in Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10021, USA
| |
Collapse
|
44
|
Abstract
The Wnt signalling pathway plays a role in the direction of embryological development and maintenance of stem cell populations. Heritable alterations in genes encoding molecules of the Wnt pathway, including mutation and epigenetic events, have been demonstrated in a variety of cancers. It has been proposed that disruption of this pathway is a significant step in the development of many tumours. Interactions between beta-catenin--the effector molecule of the Wnt pathway--and the androgen receptor highlight the pathway's relevance to urological malignancy. Mutation or altered expression of Wnt genes in tumours may give prognostic information and treatments are being developed which target this pathway.
Collapse
Affiliation(s)
- G W Yardy
- Cancer & Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
45
|
Kenny PA, Enver T, Ashworth A. Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC Cancer 2005; 5:3. [PMID: 15642117 PMCID: PMC545969 DOI: 10.1186/1471-2407-5-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 01/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deregulation of the Wnt/ beta-catenin signal transduction pathway has been implicated in the pathogenesis of tumours in the mammary gland, colon and other tissues. Mutations in components of this pathway result in beta-catenin stabilization and accumulation, and the aberrant modulation of beta-catenin/TCF target genes. Such alterations in the cellular transcriptional profile are believed to underlie the pathogenesis of these cancers. We have sought to identify novel target genes of this pathway in mouse mammary epithelial cells. METHODS Gene expression microarray analysis of mouse mammary epithelial cells inducibly expressing a constitutively active mutant of beta-catenin was used to identify target genes of this pathway. RESULTS The differential expression in response to DeltaNbeta-catenin for five putative target genes, Autotaxin, Extracellular Matrix Protein 1 (Ecm1), CD14, Hypoxia-inducible gene 2 (Hig2) and Receptor Activity Modifying Protein 3 (RAMP3), was independently validated by northern blotting. Each of these genes encodes either a receptor or a secreted protein, modulation of which may underlie the interactions between Wnt/beta-catenin tumour cells and between the tumour and its microenvironment. One of these genes, Hig2, previously shown to be induced by both hypoxia and glucose deprivation in human cervical carcinoma cells, was strongly repressed upon DeltaNbeta-catenin induction. The predicted N-terminus of Hig2 contains a putative signal peptide suggesting it might be secreted. Consistent with this, a Hig2-EGFP fusion protein was able to enter the secretory pathway and was detected in conditioned medium. Mutation of critical residues in the putative signal sequence abolished its secretion. The expression of human HIG2 was examined in a panel of human tumours and was found to be significantly downregulated in kidney tumours compared to normal adjacent tissue. CONCLUSIONS HIG2 represents a novel non-cell autonomous target of the Wnt pathway which is potentially involved in human cancer.
Collapse
Affiliation(s)
- Paraic A Kenny
- Section of Gene Function and Regulation, Institute of Cancer Research, Fulham Rd., London, SW3 6JB, UK
- Current Address Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 83-101, Berkeley, CA 94720, USA
| | - Tariq Enver
- Section of Gene Function and Regulation, Institute of Cancer Research, Fulham Rd., London, SW3 6JB, UK
- Current Address Molecular Haematology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Rd, London, SW3 6JB, UK
| |
Collapse
|
46
|
Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J, Schoonjans K. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell 2004; 15:499-509. [PMID: 15327767 DOI: 10.1016/j.molcel.2004.07.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/27/2004] [Accepted: 06/09/2004] [Indexed: 12/29/2022]
Abstract
LRH-1 is an orphan nuclear receptor predominantly expressed in tissues of endodermal origin, where it controls development and cholesterol homeostasis. We show here that LRH-1 induces cell proliferation through the concomitant induction of cyclin D1 and E1, an effect that is potentiated by its interaction with beta-catenin. Whereas beta-catenin coactivates LRH-1 on the cyclin E1 promoter, LRH-1 acts as a potent tissue-restricted coactivator of beta-catenin on the cyclin D1 promoter. The implication of LRH-1 in cell proliferation highlights an unanticipated crosstalk between LRH-1 and the beta-catenin/Tcf4 signaling pathway, which is relevant for the renewal of intestinal crypt cells.
Collapse
Affiliation(s)
- Oronza A Botrugno
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
French DM, Kaul RJ, D'Souza AL, Crowley CW, Bao M, Frantz GD, Filvaroff EH, Desnoyers L. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:855-67. [PMID: 15331410 PMCID: PMC1618601 DOI: 10.1016/s0002-9440(10)63348-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Experimental evidence suggests that CCN family members are involved in skeletogenesis and bone healing. To investigate the role of WISP-1 in osteogenic processes, we characterized its tissue and cellular expression and evaluated its activity in osteoblastic and chondrocytic cell culture models. During embryonic development, WISP-1 expression was restricted to osteoblasts and to osteoblastic progenitor cells of the perichondral mesenchyme. In vitro, we showed that WISP-1 expression in differentiating osteoblasts promotes BMP-2-induced osteoblastic differentiation. Using in situ and cell binding analysis, we demonstrated WISP-1 interaction with perichondral mesenchyme and undifferentiated chondrocytes. We evaluated the effect of WISP-1 on chondrocytes by generating stably transfected mouse chondrocytic cell lines. In these cells, WISP-1 increased proliferation and saturation density but repressed chondrocytic differentiation. Because of the similarity between skeletogenesis and bone healing, we also analyzed WISP-1 spatiotemporal expression in a fracture repair model. We found that WISP-1 expression recapitulates the pattern observed during skeletal development. Our data demonstrate that WISP-1 is an osteogenic potentiating factor promoting mesenchymal cell proliferation and osteoblastic differentiation while repressing chondrocytic differentiation. Therefore, we propose that WISP-1 plays an important regulatory role during bone development and fracture repair.
Collapse
Affiliation(s)
- Dorothy M French
- Department of Pathology, Genentech Incorporated, South San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jette C, Peterson PW, Sandoval IT, Manos EJ, Hadley E, Ireland CM, Jones DA. The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. J Biol Chem 2004; 279:34397-405. [PMID: 15190067 DOI: 10.1074/jbc.m314021200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Development of normal colon epithelial cells proceeds through a systematic differentiation of cells that emerge from stem cells within the base of colon crypts. Genetic mutations in the adenomatous polyposis coli (APC) gene are thought to cause colon adenoma and carcinoma formation by enhancing colonocyte proliferation and impairing differentiation. We currently have a limited understanding of the cellular mechanisms that promote colonocyte differentiation. Herein, we present evidence supporting a lack of retinoic acid biosynthesis as a mechanism contributing to the development of colon adenomas and carcinomas. Microarray and reverse transcriptase-PCR analyses revealed reduced expression of two retinoid biosynthesis genes: retinol dehydrogenase 5 (RDH5) and retinol dehydrogenase L (RDHL) in colon adenomas and carcinomas as compared with normal colon. Consistent with the adenoma and carcinomas samples, seven colon carcinoma cell lines also lacked expression of RDH5 and RDHL. Assessment of RDH enzymatic activity within these seven cell lines showed poor conversion of retinol into retinoic acid when compared with normal cells such as normal human mammary epithelial cells. Reintroduction of wild type APC into an APC-deficient colon carcinoma cell line (HT29) resulted in increased expression of RDHL without affecting RDH5. APC-mediated induction of RDHL was paralleled by increased production of retinoic acid. Investigations into the mechanism responsible for APC induction of RDHL indicated that beta-catenin fails to repress RDHL. The colon-specific transcription factor CDX2, however, activated an RDHL promoter construct and induced endogenous RDHL. Finally, the induction of RDHL by APC appears dependent on the presence of CDX2. We propose a novel role for APC and CDX2 in controlling retinoic acid biosynthesis and in promoting a retinoid-induced program of colonocyte differentiation.
Collapse
Affiliation(s)
- Cicely Jette
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
de Melker AA, Desban N, Duband JL. Cellular localization and signaling activity of ?-catenin in migrating neural crest cells. Dev Dyn 2004; 230:708-26. [PMID: 15254905 DOI: 10.1002/dvdy.20091] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the vertebrate embryo, development of the neural crest is accompanied by sequential changes in cellular adhesiveness, allowing cells to delaminate from the neural epithelium, to undergo migration through extracellular matrix material, and to coalesce into ganglia of the peripheral nervous system. Because of its dual role in cell adhesion, as a link between cadherins and the actin cytoskeleton, and in cell signaling, as a key mediator of the Wnt-signaling pathway, beta-catenin is a good candidate to play a central role in the control of neural crest cell development. In the present study, we analyzed, by using an in vitro culture system, whether the cellular localization and the signaling activity of beta-catenin are regulated in conjunction with cell migration during ontogeny of trunk neural crest cells in the avian embryo. beta-Catenin molecules were found primarily in association with N-cadherin in the regions of intercellular contacts in most migrating neural crest cells, and only early-migrating cells situated in proximity with the dorsal side of the neural tube showed detectable beta-catenin in their nuclei. This finding indicates that beta-catenin may be recruited for signaling in neural crest cells only transiently at the onset of migration and that sustained beta-catenin signals are not necessary for the progression of migration. The nuclear distribution of beta-catenin within crest cells was not affected upon modification of the N-cadherin-mediated cell-cell contacts, revealing that recruitment of beta-catenin for signaling is not driven by changes in intercellular cohesion during migration. Overstimulation of beta-catenin signals in neural crest cells at the time of their migration, using LiCl treatment or coculture with Wnt-1-producing cells, induced nuclear translocation of beta-catenin and Lef-1 up-regulation in neural crest cells and provoked a marked inhibition of cell delamination and migration. The effect of LiCl and exogenous Wnt-1 on neural crest cells could be essentially attributed to a dramatic decrease in integrin-mediated cell-matrix adhesion as well as a massive reduction of cell proliferation. In addition, although it apparently did not affect expression of neural crest markers, Wnt-1 exposure dramatically affected signaling events involving Notch-Delta, presumably also accounting for the strong reduction in cell delamination. In conclusion, our data indicate that beta-catenin functions primarily in cell adhesion events during migration and may be recruited transiently for signaling during delamination possibly to regulate the balance between cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Annemieke A de Melker
- Laboratoire de Biologie du Développement, CNRS et Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
50
|
Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y, Nakamura Y, Nakamura T, Tashiro K, Kuhara S, Ohwada S, Akiyama T. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem 2003; 279:6840-6. [PMID: 14660579 DOI: 10.1074/jbc.m310876200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway is activated in most human colorectal tumors. Mutational inactivation in the tumor suppressor adenomatous polyposis coli (APC), as well as activation of beta-catenin, causes the accumulation of beta-catenin, which in turn associates with the T cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors and activates transcription of their target genes. Here we show that beta-catenin activates transcription of the BMP and activin membrane-bound inhibitor (BAMBI)/NMA gene. The expression level of BAMBI was found to be aberrantly elevated in most colorectal and hepatocellular carcinomas relative to the corresponding non-cancerous tissues. Expression of BAMBI in colorectal tumor cell lines was repressed by a dominant-negative mutant of TCF-4 or by an inhibitor of beta-catenin-TCF interaction, suggesting that beta-catenin is responsible for the aberrant expression of BAMBI in colorectal tumor cells. Furthermore, overexpression of BAMBI inhibited the response of tumor cells to transforming growth factor-beta signaling. These results suggest that beta-catenin interferes with transforming growth factor-beta-mediated growth arrest by inducing the expression of BAMBI, and this may contribute to colorectal and hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Takashi Sekiya
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|