1
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 PMCID: PMC12121306 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Willis JCW, Silva-Pinheiro P, Widdup L, Minczuk M, Liu DR. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022; 13:7204. [PMID: 36418298 PMCID: PMC9684478 DOI: 10.1038/s41467-022-34784-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) use programmable DNA-binding TALE repeat arrays, rather than CRISPR proteins, a split double-stranded DNA cytidine deaminase (DddA), and a uracil glycosylase inhibitor to mediate C•G-to-T•A editing in nuclear and organelle DNA. Here we report the development of zinc finger DdCBEs (ZF-DdCBEs) and the improvement of their editing performance through engineering their architectures, defining improved ZF scaffolds, and installing DddA activity-enhancing mutations. We engineer variants with improved DNA specificity by integrating four strategies to reduce off-target editing. We use optimized ZF-DdCBEs to install or correct disease-associated mutations in mitochondria and in the nucleus. Leveraging their small size, we use a single AAV9 to deliver into heart, liver, and skeletal muscle in post-natal mice ZF-DdCBEs that efficiently install disease-associated mutations. While off-target editing of ZF-DdCBEs is likely too high for therapeutic applications, these findings demonstrate a compact, all-protein base editing research tool for precise editing of organelle or nuclear DNA without double-strand DNA breaks.
Collapse
Affiliation(s)
- Julian C W Willis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | - Lily Widdup
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Pernaa N, Keskitalo S, Chowdhury I, Nissinen A, Glumoff V, Keski-Filppula R, Junttila J, Eklund KK, Santaniemi W, Siitonen S, Seppänen MRJ, Vähäsalo P, Varjosalo M, Åström P, Hautala T. Heterozygous premature termination in zinc-finger domain of Krüppel-like factor 2 gene associates with dysregulated immunity. Front Immunol 2022; 13:819929. [PMID: 36466816 PMCID: PMC9716311 DOI: 10.3389/fimmu.2022.819929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/21/2022] [Indexed: 08/23/2024] Open
Abstract
Krüppel-like factor 2 (KLF2) is a transcription factor with significant roles in development, maturation, differentiation, and proliferation of several cell types. In immune cells, KLF2 regulates maturation and trafficking of lymphocytes and monocytes. KLF2 participates in regulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Although pulmonary arterial hypertension (PAH) related to KLF2 genetic variant has been suggested, genetic role of KLF2 associated with immune dysregulation has not been described. We identified a family whose members suffered from lymphopenia, autoimmunity, and malignancy. Whole exome sequencing revealed a KLF2 p.(Glu318Argfs*87) mutation disrupting the highly conserved zinc finger domain. We show a reduced amount of KLF2 protein, defective nuclear localization and altered protein-protein interactome. The phenotypically variable positive cases presented with B and T cell lymphopenia and abnormalities in B and T cell maturation including low naive T cell counts and low CD27+IgD-IgM- switched memory B cells. KLF2 target gene (CD62L) expression was affected. Although the percentage of (CD25+FOXP3+, CD25+CD127-) regulatory T cells (Treg) was high, the naive Treg cells (CD45RA+) were absent. Serum IgG1 levels were low and findings in one case were consistent with common variable immunodeficiency (CVID). Transcription of NF-κβ pathway genes and p65/RelA phosphorylation were not significantly affected. Inflammasome activity, transcription of genes related with JAK/STAT pathway and interferon signature were also comparable to controls. Evidence of PAH was not found. In conclusion, KLF2 variant may be associated with familial immune dysregulation. Although the KLF2 deficient family members in our study suffered from lymphopenia, autoimmunity or malignancy, additional study cohorts are required to confirm our observations.
Collapse
Affiliation(s)
- Nora Pernaa
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti Nissinen
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kari K. Eklund
- Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital and Orton Orthopedic Hospital, Helsinki, Finland
| | - Wenny Santaniemi
- Oulun University Hospital and Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sanna Siitonen
- Department of Clinical Chemistry, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mikko RJ. Seppänen
- Rare Disease Center and Pediatric Research Center, Children and Adolescents; Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paula Vähäsalo
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Pediatrics, Oulu University Hospital, Oulu, Finland
| | - Markku Varjosalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Timo Hautala
- Infectious Diseases, Oulu University Hospital and Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
5
|
Cesaro E, Lupo A, Rapuano R, Pastore A, Grosso M, Costanzo P. ZNF224 Protein: Multifaceted Functions Based on Its Molecular Partners. Molecules 2021; 26:molecules26206296. [PMID: 34684876 PMCID: PMC8537547 DOI: 10.3390/molecules26206296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Roberta Rapuano
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| |
Collapse
|
6
|
Molecular Modeling for a Comparative Analysis of Interactions Between 2LTRZFP and 2-LTR-Circle Junctions. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Le NQK, Do DT, Nguyen TTD, Le QA. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features. Gene 2021; 787:145643. [PMID: 33848577 DOI: 10.1016/j.gene.2021.145643] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Krüppel-like factors (KLF) refer to a group of conserved zinc finger-containing transcription factors that are involved in various physiological and biological processes, including cell proliferation, differentiation, development, and apoptosis. Some bioinformatics methods such as sequence similarity searches, multiple sequence alignment, phylogenetic reconstruction, and gene synteny analysis have also been proposed to broaden our knowledge of KLF proteins. In this study, we proposed a novel computational approach by using machine learning on features calculated from primary sequences. To detail, our XGBoost-based model is efficient in identifying KLF proteins, with accuracy of 96.4% and MCC of 0.704. It also holds a promising performance when testing our model on an independent dataset. Therefore, our model could serve as an useful tool to identify new KLF proteins and provide necessary information for biologists and researchers in KLF proteins. Our machine learning source codes as well as datasets are freely available at https://github.com/khanhlee/KLF-XGB.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 106, Taiwan
| | | | - Quynh Anh Le
- Faculty of Applied Sciences, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street, Tan Hung Ward, District 7, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Lin CY, Lin LY. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. PLoS One 2018; 13:e0191971. [PMID: 29381770 PMCID: PMC5790263 DOI: 10.1371/journal.pone.0191971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.
Collapse
Affiliation(s)
- Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
9
|
Laitman BM, Mariani JN, Zhang C, Sawai S, John GR. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation. PLoS One 2017; 12:e0170477. [PMID: 28107514 PMCID: PMC5249183 DOI: 10.1371/journal.pone.0170477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL) differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna) proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1) display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
- * E-mail:
| | - John N. Mariani
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Chi Zhang
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Setsu Sawai
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Gareth R. John
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| |
Collapse
|
10
|
Qiu J, Tang Z, Yuan M, Wu W, Yang K. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication. Virus Res 2016; 228:79-89. [PMID: 27894868 DOI: 10.1016/j.virusres.2016.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
Abstract
During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.
Collapse
Affiliation(s)
- Jianxiang Qiu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhimin Tang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Hossain MA, Shen Y, Knudson I, Thakur S, Stees JR, Qiu Y, Pace BS, Peterson KR, Bungert J. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e378. [PMID: 27754490 DOI: 10.1038/mtna.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Abstract
Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs) targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.
Collapse
Affiliation(s)
- Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Isaac Knudson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shaleen Thakur
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jared R Stees
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, Georgia, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Aguilar A, Wagstaff KM, Suárez-Sánchez R, Zinker S, Jans DA, Cisneros B. Nuclear localization of the dystrophin-associated protein α-dystrobrevin through importin α2/β1 is critical for interaction with the nuclear lamina/maintenance of nuclear integrity. FASEB J 2015; 29:1842-58. [PMID: 25636738 DOI: 10.1096/fj.14-257147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023]
Abstract
Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina.
Collapse
Affiliation(s)
- Areli Aguilar
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Kylie M Wagstaff
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Rocío Suárez-Sánchez
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Samuel Zinker
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - David A Jans
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Bulmaro Cisneros
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| |
Collapse
|
13
|
Yien YY, Gnanapragasam MN, Gupta R, Rivella S, Bieker JJ. Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues. Exp Hematol 2015; 43:65-70. [PMID: 25283745 PMCID: PMC4268327 DOI: 10.1016/j.exphem.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/16/2022]
Abstract
Alternative splicing has emerged as a vital way to expand the functional repertoire of a set number of mammalian genes. For example, such changes can dramatically alter the function and cellular localization of transcription factors. With this in mind, we addressed whether EKLF/KLF1 mRNA, coding for a transcription factor that plays a critical role in erythropoietic gene regulation, is alternatively spliced. We find that EKLF mRNA undergoes exon skipping only in primary tissues and that this splice variant (SV) remains at a very low level in both embryonic and adult erythroid cells, as well as during terminal differentiation. The resultant protein is truncated and partially encodes a non-erythroid Krüppel-like factor amino acid sequence. Its overexpression can alter full-length erythroid Krüppel-like factor function at selected promoters. We discuss these results in the context of stress and with respect to recent global studies on the role of alternative splicing during terminal erythroid differentiation.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Merlin Nithya Gnanapragasam
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Ritama Gupta
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Stefano Rivella
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - James J Bieker
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States; Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
14
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Cowan J, Tariq M, Ware SM. Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 2014; 35:66-75. [PMID: 24123890 DOI: 10.1002/humu.22457] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Mutations in zinc-finger in cerebellum 3 (ZIC3) result in heterotaxy or isolated congenital heart disease (CHD). The majority of reported mutations cluster in zinc-finger domains. We previously demonstrated that many of these lead to aberrant ZIC3 subcellular trafficking. A relative paucity of N- and C-terminal mutations has, however, prevented similar analyses in these regions. Notably, an N-terminal polyalanine expansion was recently identified in a patient with VACTERL, suggesting a potentially distinct function for this domain. Here we report ZIC3 sequencing results from 440 unrelated patients with heterotaxy and CHD, the largest cohort yet examined. Variants were identified in 5.2% of sporadic male cases. This rate exceeds previous estimates of 1% and has important clinical implications for genetic testing and risk-based counseling. Eight of 11 were novel, including 5 N-terminal variants. Subsequent functional analyses included four additional reported but untested variants. Aberrant cytoplasmic localization and decreased luciferase transactivation were observed for all zinc-finger variants, but not for downstream or in-frame upstream variants, including both analyzed polyalanine expansions. Collectively, these results expand the ZIC3 mutational spectrum, support a higher than expected prevalence in sporadic cases, and suggest alternative functions for terminal mutations, highlighting a need for further study of these domains.
Collapse
|
16
|
Suárez-Sánchez R, Aguilar A, Wagstaff KM, Velez G, Azuara-Medina PM, Gomez P, Vásquez-Limeta A, Hernández-Hernández O, Lieu KG, Jans DA, Cisneros B. Nucleocytoplasmic shuttling of the Duchenne muscular dystrophy gene product dystrophin Dp71d is dependent on the importin α/β and CRM1 nuclear transporters and microtubule motor dynein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:985-1001. [PMID: 24486332 DOI: 10.1016/j.bbamcr.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/17/2013] [Accepted: 01/24/2014] [Indexed: 01/08/2023]
Abstract
Even though the Duchenne muscular dystrophy (DMD) gene product Dystrophin Dp71d is involved in various key cellular processes through its role as a scaffold for structural and signalling proteins at the plasma membrane as well as the nuclear envelope, its subcellular trafficking is poorly understood. Here we map the nuclear import and export signals of Dp71d by truncation and point mutant analysis, showing for the first time that Dp71d shuttles between the nucleus and cytoplasm mediated by the conventional nuclear transporters, importin (IMP) α/β and the exportin CRM1. Binding was confirmed in cells using pull-downs, while in vitro binding assays showed direct, high affinity (apparent dissociation coefficient of c. 0.25nM) binding of Dp71d to IMPα/β. Interestingly, treatment of cells with the microtubule depolymerizing reagent nocodazole or the dynein inhibitor EHNA both decreased Dp71d nuclear localization, implying that Dp71d nuclear import may be facilitated by microtubules and the motor protein dynein. The role of Dp71d in the nucleus appears to relate in part to interaction with the nuclear envelope protein emerin, and maintenance of the integrity of the nuclear architecture. The clear implication is that Dp71d's previously unrecognised nuclear transport properties likely contribute to various, important physiological roles.
Collapse
Affiliation(s)
- R Suárez-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico; Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - A Aguilar
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - K M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - G Velez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P M Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P Gomez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - A Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - O Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - K G Lieu
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - D A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - B Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico.
| |
Collapse
|
17
|
Wang W, Cai J, Lin Y, Liu Z, Ren Q, Hu L, Huang Z, Guo M, Li W. Zinc fingers function cooperatively with KRAB domain for nuclear localization of KRAB-containing zinc finger proteins. PLoS One 2014; 9:e92155. [PMID: 24647005 PMCID: PMC3960175 DOI: 10.1371/journal.pone.0092155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Multiple nuclear localization domains have been identified in nuclear proteins, and they finely control nuclear import and functions of those proteins. ZNF268 is a typical KRAB-containing zinc finger protein (KRAB-ZFP), and previous studies have shown that the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. In this study, we find that some of 24 zinc fingers of ZNF268 also possess nuclear localization activity. Results of mutagenesis studies suggest that KRAB and zinc fingers are both necessary, and they function both independently and cooperatively for the nuclear localization of ZNF268. However, the subnuclear targeting activities of KRAB and zinc fingers are different. KRAB targets proteins in nucleoplasm, but not in the nucleolus, which is mediated by interaction with KAP1, while zinc fingers target proteins in the whole nucleus uniformly. The cooperative activities of KAP1-KRAB-zinc fingers result in the precise nucleoplasmic, but not nucleolar localization of KRAB-ZFPs. Our studies reveal a novel mechanism for the subcellular localization of KRAB-ZFPs and may help us to further explore their biological functions.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinyang Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Lin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zikou Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qihao Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingxiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (MG); (WL)
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (MG); (WL)
| |
Collapse
|
18
|
Choi S, Yamashita E, Yasuhara N, Song J, Son SY, Won YH, Hong HR, Shin YS, Sekimoto T, Park IY, Yoneda Y, Lee SJ. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. ACTA ACUST UNITED AC 2014; 70:1050-60. [PMID: 24699649 DOI: 10.1107/s1399004714000972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin β directly and as a DNA-binding domain. Here, a 2.5 Å resolution structure of four ZF domains of Snail1 complexed with importin β is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin β in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin β is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Noriko Yasuhara
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jinsue Song
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Se-Young Son
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Young Han Won
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hye Rim Hong
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoon Sik Shin
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
19
|
Li JZ, Chen X, Gong XL, Hu HY, Shi D, Lu YM, Qiu L, Lu F, Hu ZL, Zhang JP. Identification of a functional nuclear localization signal mediating nuclear import of the zinc finger transcription factor ZNF24. PLoS One 2013; 8:e79910. [PMID: 24224020 PMCID: PMC3815127 DOI: 10.1371/journal.pone.0079910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
ZNF24 is a member of the SCAN domain family of Krüppel-like zinc finger (ZF) transcription factors, which plays a critical role in cell proliferation and differentiation. However, how ZNF24 enters the nucleus in order to exert its function remains unclear since its nuclear localization signal(s) (NLS) has not been identified. Here, we generated a series of GFP-tagged deletion and point mutants and assessed their subcellular localization. Our results delimit the NLS to ZF1-2. Deletion of ZF1-2 caused cytoplasmic accumulation of ZNF24. Fusion of the ZF1-2 to green fluorescent protein (GFP) targeted GFP to the nucleus, demonstrating that the ZF1-2 is both necessary and sufficient for nuclear localization. ZNF24 containing histidine to leucine mutations that disrupt the structure of ZF1 or/and ZF2 retains appropriate nuclear localization, indicating that neither the tertiary structure of the zinc fingers nor specific DNA binding are necessary for nuclear localization. K286A and R290A mutation led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that ZNF24 interacted with importin-β and this interaction required the ZF motifs. The β-Catenin (CTNNB1) luciferase assays showed that the ZNF24 mutants defective in nuclear localization could not promote CTNNB1promoter activation as the wild-type ZNF24 did. Taken together, these results suggest that consecutive ZF1-2 is critical for the regulation of ZNF24 nuclear localization and its transactivation function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| | - Xia Chen
- Cancer Institute, Second Military Medical University, Shanghai, China
| | - Xue-Lian Gong
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- Department of Health Toxicology, Second Military Medical University, Shanghai, China
| | - Hong-Yuan Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Duo Shi
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi-Ming Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Fa Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen-Lin Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun-Ping Zhang
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| |
Collapse
|
20
|
Wang W, Cai J, Wu Y, Hu L, Chen Z, Hu J, Chen Z, Li W, Guo M, Huang Z. Novel activity of KRAB domain that functions to reinforce nuclear localization of KRAB-containing zinc finger proteins by interacting with KAP1. Cell Mol Life Sci 2013; 70:3947-58. [PMID: 23665872 PMCID: PMC11113806 DOI: 10.1007/s00018-013-1359-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023]
Abstract
Previously, we found that two isoforms of the ZNF268 gene (ZNF268a and ZNF268b2, with and without the KRAB domain, respectively) might play distinct roles in normal epithelia and in cervical cancer. Here we further investigated that KRAB domain defined the function disparity in part by reinforcing nuclear localization of ZNF268a. We found that the A-box of KRAB alone retained major specific nuclear localization activity. In contrast, the B-box alone did not have nuclear localization activity but enhanced it significantly. Consistent with the critical function of the A-box, each mutation of six conserved residues (V9, V11, F13, E16, E17 and W18) in the A-box dramatically impaired nuclear localization activity. Furthermore, the unique nuclear localization activity of KRAB was verified in seven additional KRAB-containing zinc finger proteins (KRAB-ZFPs), suggesting that it is a universal feature of KRAB-ZFPs. Finally, KRAB exerted its unique nuclear localization activity by interacting with the RBCC domain of its corepressor KAP1. Our results have revealed a novel mechanism by which the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. Our study also suggests that loss of the KRAB domain in KRAB-ZFPs due to aberrant alternative splicing might contribute to carcinogenesis.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Jinyang Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Li Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Jun Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Ze Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Mingxiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| | - Zan Huang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People’s Republic of China
| |
Collapse
|
21
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
22
|
Yien YY, Bieker JJ. Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2Cβ. J Biol Chem 2012; 287:15193-204. [PMID: 22393050 DOI: 10.1074/jbc.m112.350496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF; KLF1) is an erythroid-specific transcription factor required for the transcription of genes that regulate erythropoiesis. In this paper, we describe the identification of a novel EKLF interactor, Ppm1b, a serine-threonine protein phosphatase that has been implicated in the attenuation of NFκB signaling and the regulation of Cdk9 phosphorylation status. We show that Ppm1b interacts with EKLF via its PEST1 sequence. However, its genetic regulatory role is complex. Using a promoter-reporter assay in an erythroid cell line, we show that Ppm1b superactivates EKLF at the β-globin and BKLF promoters, dependent on intact Ppm1b phosphatase activity. Conversely, depletion of Ppm1b in CD34(+) cells leads to a higher level of endogenous β-globin gene activation after differentiation. We also observe that Ppm1b likely has an indirect role in regulating EKLF turnover via its zinc finger domain. Together, these studies show that Ppm1b plays a multilayered role in regulating the availability and optimal activity of the EKLF protein in erythroid cells.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental and Regenerative Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
23
|
Belacortu Y, Weiss R, Kadener S, Paricio N. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG) proteins. PLoS One 2012; 7:e32004. [PMID: 22359651 PMCID: PMC3281117 DOI: 10.1371/journal.pone.0032004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/17/2012] [Indexed: 01/26/2023] Open
Abstract
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | - Ron Weiss
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Sebastian Kadener
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
- * E-mail:
| |
Collapse
|
24
|
Chang LK, Huang PH, Shen WT, Yang SH, Liu WJ, Lo CF. Role of Penaeus monodon Kruppel-like factor (PmKLF) in infection by white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:121-129. [PMID: 21740926 DOI: 10.1016/j.dci.2011.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Sp1-like proteins and Kruppel-like factors (KLFs) are highly related zinc-finger proteins that have crucial roles in transcription. One expressed sequence tag (EST, HPA-N-S01-EST0038) from shrimps is homologous to Sp1. This study reports the cloning and characteristics of a KLF from shrimp, Penaeus monodon (PmKLF). The full-length PmKLF cDNA is 1702 bp, encoding a polypeptide of 360 amino acids. Sequence analysis revealed that the sequence of PmKLF is similar to that of KLF11 in humans, mice and zebrafish. RT-PCR analysis indicated that PmKLF mRNA is expressed in all examined tissues. Additionally, immunofluorescence analysis revealed that GFP-KLF fusion protein is located in the nucleus as dots in an insect cell line, Sf9. Localization of PmKLF in the nucleus is also observed in the hemolymph from white spot syndrome virus (WSSV)-infected and WSSV-uninfected Litopenaeus vannamei. Knockdown of the expression of PmKLF transcript in WSSV-infected shrimp resulted in delayed cumulative mortalities, suggesting that PmKLF is important to WSSV infection. Moreover, inhibition of PmKLF expression reduced the copy number of WSSV and ie1 expression, revealing that PmKLF affects WSSV infection via interfering with ie1 expression.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
25
|
He S, Huang K, Zhang X, Yu X, Huang P, An C. The LSD1-type zinc finger motifs of Pisum sativa LSD1 are a novel nuclear localization signal and interact with importin alpha. PLoS One 2011; 6:e22131. [PMID: 21811563 PMCID: PMC3139611 DOI: 10.1371/journal.pone.0022131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog of AtLSD1. Subcellular localization analysis of green fluorescent protein (GFP)-tagged PsLSD1 indicates that PsLSD1 is localized in the nucleus. Using a series of GFP-tagged PsLSD1 deletion mutants, we found that the three LSD1-type zinc finger motifs of PsLSD1 alone can target GFP to the nucleus, whereas deletion of the three zinc finger motifs or any individual zinc finger motif causes PsLSD1 to lose its nuclear localization, indicating that the three zinc finger motifs are necessary and sufficient for its nuclear localization. Moreover, site-directed mutagenesis analysis of GFP-tagged PsLSD1 indicates that tertiary structure and basic amino acids of each zinc finger motif are necessary for PsLSD1 nuclear localization. In addition, yeast two-hybrid, pull-down, and BiFC assays demonstrate that the three zinc finger motifs of PsLSD1 directly bind to importin α in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that the LSD1-type zinc finger motifs of PsLSD1 are a novel nuclear localization signal and directly bind to importin α, and suggest that the nuclear import of LSD1 may rely on the interaction between its zinc finger motifs and importin α. Moreover, the nuclear localization of PsLSD1 suggests that LSD1 may function as a transcription regulator involved in negatively regulating PCD.
Collapse
Affiliation(s)
- Shanping He
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Kuowei Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xiangchun Yu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ping Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
27
|
Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One 2010; 5. [PMID: 20844588 PMCID: PMC2936564 DOI: 10.1371/journal.pone.0012639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background The tumor suppressor KLF6 and its oncogenic cytoplasmic splice variant KLF6-SV1 represent a paradigm in cancer biology in that their antagonistic cancer functions are encoded within the same gene. As a consequence of splicing, KLF6-SV1 loses both the C-terminus C2H2 three zinc finger (ZF) domain, which characterizes all KLF proteins, as well as the adjacent 5′ basic region (5BR), a putative nuclear localization signal (NLS). It has been hypothesized that this NLS is a functional domain critical to direct the distinct subcellular localization of the tumor suppressor and its splice variant. Methodology/Principal Findings In this study, we demonstrate using EGFP fusion constructs that KLF6/KLF6-SV1 nucleo-cytoplasmic transport is not regulated by the 5′ basic region but activated by a novel NLS encoded within the ZF domain, and a nuclear export signal (NES) located in the first 16 amino acids of the shared N-terminus sequence. We demonstrate KLF6 nuclear export to be Crm1-dependent. The dysregulation of nucleo-cytoplasmic transport when disrupting the KLF6 NLS using site-directed mutagenesis showed that its integrity is necessary for appropriate protein stability. Moreover, these mutations impaired transcriptional induction of two KLF6 well-characterized target genes, E-cadherin and p21, as shown by RT-PCR and luciferase promoter assays. The addition of the ZF domain to KLF6-SV1 results in its nuclear localization and a markedly decreased half-life similar to wild type KLF6. Conclusions/Significance We describe the domains that control KLF6 nucleo-cytoplasmic shuttling and how these domains play a role in KLF6 protein half-life and tumor suppressor function. The results begin to mechanistically explain, at least in part, the opposing functions of KLF6 and KLF6-SV1 in cancer.
Collapse
|
28
|
Mehta TS, Monzur F, Zhao J. Determination of nuclear localization signal sequences for Krüppel-like factor 8. Methods Mol Biol 2010; 647:171-86. [PMID: 20694667 DOI: 10.1007/978-1-60761-738-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factor proteins function in the nucleus to regulate gene expression. Many transcription factors are critical regulators of tumor progression. Conversely, many oncogenic and tumor suppressor proteins are transcription factors or other types of nuclear proteins. Because of their critical physiological and pathological roles, these tumor regulators are tightly regulated not only in the protein expression but also in their subcellular localization. This chapter is focused on experimental strategies and method details for the identification and characterization of nuclear localization signal sequences for nuclear proteins using the Krüppel-like transcription factor 8 as an example.
Collapse
Affiliation(s)
- Tina S Mehta
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | |
Collapse
|
29
|
The Krüppel traffic report: cooperative signals direct KLF8 nuclear transport. Cell Res 2009; 19:1041-3. [PMID: 19727130 DOI: 10.1038/cr.2009.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
30
|
Mingot JM, Vega S, Maestro B, Sanz JM, Nieto MA. Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J Cell Sci 2009; 122:1452-60. [PMID: 19386897 DOI: 10.1242/jcs.041749] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Snail proteins are C(2)H(2) class zinc finger transcription factors involved in different processes during embryonic development, as well as in several adult pathologies including cancer and organ fibrosis. The expression of Snail transcription factors is tightly regulated at the transcriptional level and their activity is modulated by their subcellular localization. Given the importance of this gene family in physiology and pathology, it is essential to understand the mechanisms by which Snail proteins are imported into or exported out of the nucleus. Here we show that several importins mediate the nuclear import of the human Snail proteins and we identify a unique nuclear localization signal (NLS), recognized by all the importins, that has been conserved during the evolution of the Snail family. This NLS is characterized by the presence of basic residues at defined positions in at least three consecutive zinc fingers. Interestingly, the consensus residues for importin-binding are also involved in DNA binding, suggesting that importins could prevent non-specific binding of these transcription factors to cytoplasmic polyanions. Importantly, the identified basic residues are also conserved in other families of C(2)H(2) transcription factors whose nuclear localization requires the zinc finger region.
Collapse
Affiliation(s)
- José-Manuel Mingot
- Instituto de Neurociencias, CSIC-UMH, Avda. Ramón y Cajal s/n, San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
31
|
A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Res 2009; 19:1098-109. [PMID: 19488069 DOI: 10.1038/cr.2009.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) transcription factor plays a critical role in cell cycle progression, oncogenic transformation, epithelial to mesenchymal transition and invasion. However, its nuclear localization signal(s) (NLS) has not been identified. KLF8 shares with other KLFs monopartite NLSs (mNLS) and C(2)H(2) zinc fingers (ZFs), both of which have been shown to be the NLSs for some other KLFs. In this report, using PCR-directed mutagenesis and immunofluorescent microscopy, we show that disruption of the mNLSs, deletion of any single ZF, or mutation of the Zn(2+)-binding or DNA-contacting motifs did not affect the nuclear localization of KLF8. Deletion of >1.5 ZFs from C-terminus, however, caused cytoplasmic accumulation of KLF8. Surprisingly, deletion of amino acid (aa) 151-200 region almost eliminated KLF8 from the nucleus. S165A, K171E or K171R mutation, or treatment with PKC inhibitor led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that KLF8 interacted with importin-beta and this interaction required the ZF motif. Deletion of aa 1-150 or 201-261 region alone did not alter the nuclear localization. BrdU incorporation and cyclin D1 promoter luciferase assays showed that the KLF8 mutants defective in nuclear localization could not promote DNA synthesis or cyclin D1 promoter activation as the wild-type KLF8 did. Taken together, these results suggest that KLF8 has two NLSs, one surrounding S165 and K171 and the other being two tandem ZFs, which are critical for the regulation of KLF8 nuclear localization and its cellular functions.
Collapse
|
32
|
Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J. Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 2009; 380:28-32. [DOI: 10.1016/j.bbrc.2008.12.165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022]
|
33
|
Hatayama M, Tomizawa T, Sakai-Kato K, Bouvagnet P, Kose S, Imamoto N, Yokoyama S, Utsunomiya-Tate N, Mikoshiba K, Kigawa T, Aruga J. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 2008; 17:3459-73. [PMID: 18716025 PMCID: PMC2572694 DOI: 10.1093/hmg/ddn239] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left–right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1–4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin α1/α6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS.
Collapse
Affiliation(s)
- Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol 2008; 28:6160-70. [PMID: 18710946 DOI: 10.1128/mcb.00919-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of transcription factors provide alternate protein interaction platforms that lead to varied downstream effects. We have investigated how the acetylation of EKLF plays a role in its ability to alter the beta-like globin locus chromatin structure and activate transcription of the adult beta-globin gene. By establishing an EKLF-null erythroid line whose closed beta-locus chromatin structure and silent beta-globin gene status can be rescued by retroviral infection of EKLF, we demonstrate the importance of EKLF acetylation at lysine 288 in the recruitment of CBP to the locus, modification of histone H3, occupancy by EKLF, opening of the chromatin structure, and transcription of adult beta-globin. We also find that EKLF helps to coordinate this process by the specific association of its zinc finger domain with the histone H3 amino terminus. Although EKLF interacts equally well with H3.1 and H3.3, we find that only H3.3 is enriched at the adult beta-globin promoter. These data emphasize the critical nature of lysine acetylation in transcription factor activity and enable us to propose a model of how modified EKLF integrates coactivators, chromatin remodelers, and nucleosomal components to alter epigenetic chromatin structure and stimulate transcription.
Collapse
|
35
|
Quadrini KJ, Gruzglin E, Bieker JJ. Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 PMCID: PMC2358985 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
Affiliation(s)
- Karen J Quadrini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
36
|
Beak JY, Kang HS, Kim YS, Jetten AM. Functional analysis of the zinc finger and activation domains of Glis3 and mutant Glis3(NDH1). Nucleic Acids Res 2008; 36:1690-702. [PMID: 18263616 PMCID: PMC2275160 DOI: 10.1093/nar/gkn009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Krüppel-like zinc finger protein Gli-similar 3 (Glis3) plays a critical role in pancreatic development and has been implicated in a syndrome with neonatal diabetes and hypothyroidism (NDH). In this study, we examine three steps critical in the mechanism of the transcriptional regulation by Glis3: its translocation to the nucleus, DNA binding and transcriptional activity. We demonstrate that the putative bipartite nuclear localization signal is not required, but the tetrahedral configuration of the fourth zinc finger is essential for the nuclear localization of Glis3. We identify (G/C)TGGGGGGT(A/C) as the consensus sequence of the optimal, high-affinity Glis3 DNA-binding site (Glis-BS). All five zinc finger motifs are critical for efficient binding of Glis3 to Glis-BS. We show that Glis3 functions as a potent inducer of (Glis-BS)-dependent transcription and contains a transactivation function at its C-terminus. A mutation in Glis3 observed in NDH1 patients results in a frameshift mutation and a C-terminal truncated Glis3. We demonstrate that this truncation does not effect the nuclear localization but results in the loss of Glis3 transactivating activity. The loss in Glis3 transactivating function may be responsible for the abnormalities observed in NDH1.
Collapse
Affiliation(s)
- Ju Youn Beak
- Cell Biology Section, LRB, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
37
|
Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ. A Role for Basic Transcription Element-binding Protein 1 (BTEB1) in the Autoinduction of Thyroid Hormone Receptor β. J Biol Chem 2008; 283:2275-85. [DOI: 10.1074/jbc.m709306200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Saijou E, Itoh T, Kim KW, Iemura SI, Natsume T, Miyajima A. Nucleocytoplasmic Shuttling of the Zinc Finger Protein EZI Is Mediated by Importin-7-dependent Nuclear Import and CRM1-independent Export Mechanisms. J Biol Chem 2007; 282:32327-37. [PMID: 17848547 DOI: 10.1074/jbc.m706793200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleocytoplasmic translocation constitutes a foundation for nuclear proteins to exert their proper functions and hence for various biological reactions to occur normally in eukaryotic cells. We reported previously that EZI/Zfp467, a 12 zinc finger motif-containing protein, localizes predominantly in the nucleus, yet the underlying mechanism still remains elusive. Here we constructed a series of mutant forms of EZI and examined their subcellular localization. The results delineated a non-canonical nuclear localization signal in the region covering the 9th to the 12th zinc fingers, which was necessary for nuclear accumulation of EZI as well as sufficient to confer nuclear localizing ability to a heterologous protein. We also found that the N-terminal domain of EZI is necessary for its nuclear export, the process of which was not sensitive to the CRM1 inhibitor leptomycin B. An interaction proteomics approach and the following co-immunoprecipitation experiments identified the nuclear import receptor importin-7 as a molecule that associated with EZI and, importantly, short interfering RNA-mediated knockdown of importin-7 expression completely abrogated nuclear accumulation of EZI. Taken together, these results identify EZI as a novel cargo protein for importin-7 and demonstrate a nucleocytoplasmic shuttling mechanism that is mediated by importin-7-dependent nuclear localization and CRM1-independent nuclear export.
Collapse
Affiliation(s)
- Eiko Saijou
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Donaldson NS, Daniel Y, Kelly KF, Graham M, Daniel JM. Nuclear trafficking of the POZ-ZF protein Znf131. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:546-55. [PMID: 17306895 DOI: 10.1016/j.bbamcr.2006.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/06/2006] [Accepted: 12/08/2006] [Indexed: 01/21/2023]
Abstract
Znf131 is a member of the BTB/POZ family of transcription factors with roles in development and carcinogenesis. Like many members of this protein family, Znf131 displays robust nuclear localization in cultured cells, but the mechanism(s) of Znf131 nuclear trafficking is unknown. Here, we report the mechanism of Znf131 nuclear localization. Visual inspection of the Znf131 amino acid sequence revealed three basic regions (BR-1, -2 and -3) with the potential to serve as nuclear localization signals (NLS). Of the three basic regions, only BR-1 functioned independently to efficiently target heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. However, a Znf131 truncation mutant containing BR-2 and BR-3 efficiently targeted heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. Mutational analysis of full-length GFP-tagged Znf131 revealed that loss of any one BR alone did not prevent Znf131 nuclear localization. This apparent redundancy in NLS activity was due to the fact that intact BR-1 or BR-2 alone could target full-length Znf131 to nuclei. Consequently, simultaneous mutation of BR-1 and BR-2 abolished full-length Znf131 nuclear localization. Therefore, BR-1 and BR-2 are functional NLSs for Znf131 and as such are designated NLS-1 and NLS-2. Finally, wild type Znf131, and not a Znf131 NLS-defective mutant (NLS-1m/NLS-2m) interacted preferentially with the nuclear import receptor Importin-alpha3 in vitro.
Collapse
Affiliation(s)
- Nickett S Donaldson
- Department of Biology, LSB-331 McMaster University, 1280 Main Street West Hamilton, Canada ON L8S 4K1
| | | | | | | | | |
Collapse
|
40
|
Tsuji T, Sheehy N, Gautier VW, Hayakawa H, Sawa H, Hall WW. The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent. J Biol Chem 2007; 282:13875-83. [PMID: 17344183 DOI: 10.1074/jbc.m611629200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
41
|
Huang SM, Huang SP, Wang SL, Liu PY. Importin alpha1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1. Biochem J 2007; 402:359-66. [PMID: 17109628 PMCID: PMC1798434 DOI: 10.1042/bj20061295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zac1, a novel seven-zinc-finger transcription factor, preferentially binds GC-rich DNA elements and has intrinsic transactivation activity. To date, the NLS (nuclear localization signal) of Zac1 has not been empirically determined. We generated a series of EGFP (enhanced green fluorescence protein)-tagged deletion mutants of Zac1 and examined their subcellular localization, from which we defined two NLSs within the DNA-binding (or zinc-finger) domain. Fusion proteins consisting of the two EGFP-tagged zinc-finger clusters (zinc finger motifs 1-3 and 4-7) were located exclusively in the nucleus, demonstrating that each of the zinc-finger clusters is sufficient for nuclear localization. Physical interactions between these two zinc-finger clusters and importin alpha1 were demonstrated using an in vitro glutathione S-transferase pull-down assay. Finally, our results indicate that the association of Zac1 with importin alpha1 is also involved in regulating the transactivation activity of Zac1 on the p21WAF1/CIP1 gene and protein expression.
Collapse
Affiliation(s)
- Shih-Ming Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
- To whom correspondence should be addressed (email )
| | - Sheng-Ping Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Sung-Ling Wang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Pei-Yao Liu
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| |
Collapse
|
42
|
Shyu YC, Lee TL, Wen SC, Chen H, Hsiao WY, Chen X, Hwang J, Shen CKJ. Subcellular transport of EKLF and switch-on of murine adult beta maj globin gene transcription. Mol Cell Biol 2007; 27:2309-23. [PMID: 17242208 PMCID: PMC1820495 DOI: 10.1128/mcb.01875-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an essential transcription factor for mammalian beta-like globin gene switching, and it specifically activates transcription of the adult beta globin gene through binding of its zinc fingers to the promoter. It has been a puzzle that in the mouse, despite its expression throughout the erythroid development, EKLF activates the adult beta(maj) globin promoter only in erythroid cells beyond the stage of embryonic day 10.5 (E10.5) but not before. We show here that expression of the mouse beta(maj) globin gene in the aorta-gonad-mesonephros region of E10.5 embryos and in the E14.5 fetal liver is accompanied by predominantly nuclear localization of EKLF. In contrast, EKLF is mainly cytoplasmic in the erythroid cells of E9.5 blood islands in which beta(maj) is silenced. Remarkably, in a cultured mouse adult erythroleukemic (MEL) cell line, the activation of the beta(maj) globin gene by dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) induction is also paralleled by a shift of the subcellular location of EKLF from the cytoplasm to the nucleus. Blockage of the nuclear import of EKLF in DMSO-induced MEL cells with a nuclear export inhibitor repressed the transcription of the beta(maj) globin gene. Transient transfection experiments further indicated that the full-sequence context of EKLF was required for the regulation of its subcellular locations in MEL cells during DMSO induction. Finally, in both the E14.5 fetal liver cells and induced MEL cells, the beta-like globin locus is colocalized the PML oncogene domain nuclear body, and concentrated with EKLF, RNA polymerase II, and the splicing factor SC35. These data together provide the first evidence that developmental stage- and differentiation state-specific regulation of the nuclear transport of EKLF might be one of the steps necessary for the switch-on of the mammalian adult beta globin gene transcription.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Spittau B, Wang Z, Boinska D, Krieglstein K. Functional domains of the TGF-β-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain. J Cell Biochem 2007; 101:712-22. [PMID: 17252542 DOI: 10.1002/jcb.21228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recently identified TGF-beta-inducible early gene 3 (Tieg3) belongs to the gene family of Sp1/Klf-like transcription factors and is upregulated immediately after TGF-beta treatment. To explore the molecular mechanisms of Tieg3-mediated transcriptional control, GAL4-based luciferase assays were performed in order to determine regulatory domains within the Tieg3 protein. Using EGFP-fusion proteins, we monitored the intracellular localization and mapped putative nuclear localization signals (NLS). We provide evidence that the amino-terminus of Tieg3 is essential to repress the transcription and that the loss of the mSin3A interacting domain (SID) disrupts the repressive effects of Tieg3 in the oligodendroglial cell line OLI-neu. Herein we also demonstrate that the zinc finger containing DNA-binding domain (DBD) alone is able to activate the transcription of a reporter gene. Sequence analysis of the zinc finger region revealed no similarities to known activation domains. Analysis of the subcellular localization disclosed Tieg3 as a nuclear protein. Further, we identified the DBD as being essential for the nuclear localization of Tieg3. We detected two closely located putative bipartite NLS within the second and third zinc finger, which are conserved among the members of the Tieg family of proteins. Together these results may help to increase the understanding of Tieg3-mediated transcriptional control and to characterize this TGF-beta-induced Sp1/Klf-like transcription factor.
Collapse
Affiliation(s)
- Björn Spittau
- Center of Anatomy, Department of Neuroanatomy, University of Göttingen, Kreuzbergring, Germany.
| | | | | | | |
Collapse
|
44
|
Shyu YC, Wen SC, Lee TL, Chen X, Hsu CT, Chen H, Chen RL, Hwang JL, Shen CKJ. Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci. Cell Res 2006; 16:347-55. [PMID: 16617330 DOI: 10.1038/sj.cr.7310045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
EKLF is an erythroid-specific, zinc finger-containing transcription factor essential for the activation of the mammalian beta globin gene in erythroid cells of definitive lineage. We have prepared a polyclonal anti-mouse EKLF antibody suitable for Western blotting and immunoprecipitation (IP) qualities, and used it to define the expression patterns of the EKLF protein during mouse erythroid development. We have also used this antibody for the chromatin-immunoprecipitation (ChIP) assay. EKLF was found to bind in vivo at both the mouse beta-major-globin promoter and the HS2 site of beta-LCR in the mouse erythroleukemia cells (MEL) in a DMSO-inducible manner. The DMSO-induced bindings of EKLF as well as three other proteins, namely, RNA polymerase II, acetylated histone H3, and methylated histone H3, were not abolished but significantly lowered in CB3, a MEL-derived cell line with null-expression of p45/NF-E2, an erythroid-enriched factor needed for activation of the mammalian globin loci. Interestingly, binding of EKLF in vivo was also detected in the mouse alpha-like globin locus, at the adult alpha globin promoter and its far upstream regulatory element alpha-MRE (HS26). This study provides direct evidence for EKLF-binding in vivo at the major regulatory elements of the mouse beta-like globin gene clusters the data also have interesting implications with respect to the role of EKLF-chromatin interaction in mammalian globin gene regulation.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Triantis V, Trancikova DE, Looman MWG, Hartgers FC, Janssen RAJ, Adema GJ. Identification and characterization of DC-SCRIPT, a novel dendritic cell-expressed member of the zinc finger family of transcriptional regulators. THE JOURNAL OF IMMUNOLOGY 2006; 176:1081-9. [PMID: 16393996 DOI: 10.4049/jimmunol.176.2.1081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) compose a heterogeneous population of cells that hold a leading role in initiating and directing immune responses. Although their function in recognizing, capturing, and presenting Ags is well defined, the molecular mechanisms that control their differentiation and immune functions are still largely unknown. In this study, we report the isolation and characterization of DC-SCRIPT, a novel protein encoded by an 8-kb mRNA that is preferentially expressed in DC. DC-SCRIPT is expressed in multiple DC subsets in vivo, including myeloid DC, plasmacytoid DC, and Langerhans cells. At the protein level, DC-SCRIPT consists of a proline-rich region, 11 C2H2-type zinc fingers, and an acidic region. Localization studies reveal that DC-SCRIPT resides in the nucleus and that nuclear localization is critically dependent on the zinc fingers. The protein displays no transcriptional activation properties according to assorted transactivation assays, but interacts with the corepressor C-terminal binding protein 1. Taken together, our results show that we have isolated a novel DC marker that could be involved in transcriptional repression. In contrast to other DC molecules, DC-SCRIPT identifies all DC subsets tested to date.
Collapse
Affiliation(s)
- Vassilis Triantis
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Natesampillai S, Fernandez-Zapico ME, Urrutia R, Veldhuis JD. A novel functional interaction between the Sp1-like protein KLF13 and SREBP-Sp1 activation complex underlies regulation of low density lipoprotein receptor promoter function. J Biol Chem 2006; 281:3040-7. [PMID: 16303770 DOI: 10.1074/jbc.m509417200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol homeostasis is regulated by a family of transcription factors designated sterol regulatory element-binding proteins (SREBPs). Precise control of SREBP-targeted genes requires additional interactions with co-regulatory transcription factors. In the case of the low density lipoprotein receptor (LDLR), SREBP cooperates with the specificity protein Sp1 to activate the promoter. In this report, we describe a novel pathway in LDLR transcriptional regulation distinct from the SREBP-Sp1 activation complex involving the Sp1-like protein Krueppel-like factor 13 (KLF13). Using a combination of RNA interference, electrophoretic mobility shift, chromatin immunoprecipitation, and reporter assays, deletion, and site-directed mutagenesis, we demonstrated that KLF13 mediates repression in a DNA context-selective manner. KLF13 repression of LDLR promoter activity appears to be needed to keep the receptor silent, a state that can be antagonized by Sp1, SREBP, and inhibitors of histone deacetylase activity. Chromatin immunoprecipitation assay confirmed that KLF13 binds proximal LDLR DNA sequences in vivo and that exogenous oxysterol up-regulates such binding. Together these studies identify a novel regulatory pathway in which gene repression by KLF13 must be overcome by the Sp1-SREBP complex to activate the LDLR promoter. Therefore, these data should replace a pre-existent and more simple paradigm that takes into consideration only the induction of the activator proteins Sp1-SREBP as necessary for LDLR promoter drive without including default repression, such as that by KLF13, of the LDLR gene.
Collapse
Affiliation(s)
- Sekar Natesampillai
- Endocrine Research Unit and Gastroenterology Research Unit, Department of Internal Medicine, Mayo School of Graduate Medical Education, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
47
|
Ladame S, Schouten JA, Roldan J, Redman JE, Neidle S, Balasubramanian S. Exploring the recognition of quadruplex DNA by an engineered Cys2-His2 zinc finger protein. Biochemistry 2006; 45:1393-9. [PMID: 16445281 PMCID: PMC2196205 DOI: 10.1021/bi050229x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition.
Collapse
Affiliation(s)
- Sylvain Ladame
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB21EW, U.K
| | - James A. Schouten
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB21EW, U.K
| | - Jose Roldan
- Cancer Research U.K. Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - James E. Redman
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB21EW, U.K
| | - Stephen Neidle
- Cancer Research U.K. Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Shankar Balasubramanian
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB21EW, U.K
| |
Collapse
|
48
|
van Vliet J, Crofts LA, Quinlan KGR, Czolij R, Perkins AC, Crossley M. Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 2006; 87:474-82. [PMID: 16460907 DOI: 10.1016/j.ygeno.2005.12.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 12/26/2022]
Abstract
The Sp/KLF transcription factors perform a variety of biological functions, but are related in that they bind GC-box and CACCC-box sequences in DNA via a highly conserved DNA-binding domain. A database homology search, using the zinc finger DNA-binding domain characteristic of the family, has identified human KLF17 as a new family member that is most closely related to KLFs 1-8 and 12. KLF17 appears to be the human orthologue of the previously reported mouse gene, zinc finger protein 393 (Zfp393), although it has diverged significantly. The DNA-binding domain is the most conserved region, suggesting that both the murine and the human forms recognize the same binding sites in DNA and may retain similar functions. We show that human KLF17 can bind G/C-rich sites via its zinc fingers and is able to activate transcription from CACCC-box elements. This is the first report of the DNA-binding characteristics and transactivation activity of human KLF17, which, together with the homology it displays to other KLF proteins, put it in the Sp/KLF family.
Collapse
Affiliation(s)
- Jane van Vliet
- School of Molecular and Microbial Biosciences, G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J 2005; 392:1-11. [PMID: 16266294 PMCID: PMC1317658 DOI: 10.1042/bj20051234] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/10/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.
Collapse
Key Words
- co-repressor
- gene regulation
- krüppel-like factor (klf)
- sp1
- transcription factor
- zinc-finger domain
- ap-2α, activator protein-2α
- bklf, basic klf
- bte, basic transcription element
- bteb, bte-binding protein
- cbp, creb (camp-response-element-binding protein)-binding protein
- ctbp, c-terminal-binding protein
- cyp1a1, cytochrome p4501a1
- egf, epidermal growth factor
- fhl, four and half lim domain family
- hdac, histone deacteylase
- klf, krüppel-like factor
- msin3, mammalian sin3
- nls, nuclear localization signal
- pah, paired amphipathic helix
- sap18 and sap30, sin3-associated polypeptides 18 and 30
- sid, sin3-interacting domain
- sv40, simian virus 40
- tgf-β, transforming growth factor-β
- tieg, tgf-β-inducible early gene
Collapse
Affiliation(s)
- Gwen Lomberk
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
| | - Raul Urrutia
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
- †Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, U.S.A
- ‡Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, U.S.A
| |
Collapse
|
50
|
Yamasaki H, Sekimoto T, Ohkubo T, Douchi T, Nagata Y, Ozawa M, Yoneda Y. Zinc finger domain of Snail functions as a nuclear localization signal for importin β-mediated nuclear import pathway. Genes Cells 2005; 10:455-64. [PMID: 15836774 DOI: 10.1111/j.1365-2443.2005.00850.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Snail, a DNA-binding zinc finger protein, functions as a transcriptional repressor for genes including E-cadherin during development and the acquisition of tumor cell invasiveness. Human Snail is a 264-amino acid nuclear protein with an amino-terminal basic amino acid-rich domain (SNAG domain) and a carboxyl-terminal DNA-binding domain (zinc finger domain). A series of fusion proteins composed of green fluorescent protein (GFP) and portions of the Snail protein were generated, and their subcellular localization was examined. Fusion of the four zinc fingers to GFP led to the targeting of GFP to the nucleus, demonstrating that the zinc finger domain is sufficient for nuclear localization. Using an in vitro transport system, the nuclear import of Snail was reconstituted by importin (karyopherin) beta in the presence of Ran and NTF2. We further demonstrated that Snail binds directly to importin beta in a zinc finger domain-dependent manner. These results indicate that zinc finger domain of Snail functions as a nuclear localization signal and Snail can be transported into the nucleus in an importin beta-mediated manner.
Collapse
Affiliation(s)
- Hideki Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|