1
|
Atani ZR, Hosseini SS, Goudarzi H, Faghihloo E. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Glob Med Genet 2024; 11:285-296. [PMID: 39224462 PMCID: PMC11368560 DOI: 10.1055/s-0044-1790210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.
Collapse
Affiliation(s)
- Zahra Rafiei Atani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sareh Sadat Hosseini
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
3
|
Vrazas V, Moustafa S, Makridakis M, Karakasiliotis I, Vlahou A, Mavromara P, Katsani KR. A Proteomic Approach to Study the Biological Role of Hepatitis C Virus Protein Core+1/ARFP. Viruses 2022; 14:v14081694. [PMID: 36016316 PMCID: PMC9518822 DOI: 10.3390/v14081694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.
Collapse
Affiliation(s)
- Vasileios Vrazas
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Savvina Moustafa
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Hippokration General Hospital of Athens, 11527 Athens, Greece;
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Penelope Mavromara
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
- Correspondence:
| |
Collapse
|
4
|
Elsheikh MEA, McClure CP, Tarr AW, Irving WL. Sero-reactivity to three distinct regions within the hepatitis C virus alternative reading frame protein (ARFP/core+1) in patients with chronic HCV genotype-3 infection. J Gen Virol 2022; 103:001727. [PMID: 35230930 PMCID: PMC9176264 DOI: 10.1099/jgv.0.001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects more than 71 million people worldwide. The disease slowly progresses to chronic, long-term liver injury which leads to hepatocellular carcinoma (HCC) in 5 % of infections. The alternative reading frame protein (ARFP/core+1) is encoded by a sequence overlapping the HCV core gene in the +1 reading frame. Its role in hepatitis C pathogenesis and the viral life cycle is unclear, although some observers have related its production to disease progression and the development of HCC. The aim of this study was to determine whether ARFP is immunogenic in patients with chronic HCV genotype 3 infection and to assess whether sero-reactivity is associated with disease progression, particularly to HCC. Immunogenic epitopes within the protein were predicted by a bioinformatics tool, and three -20 aa length-peptides (ARFP-P1, ARFP-P2 and ARFP-P3) were synthesized and used in an avidin-biotin ARFP/core+1 peptide ELISA. Serum samples from 50 patients with chronic HCV genotype 3 infection, 50 genotype-1 patients, 50 HBV patients and 110 healthy controls were tested. Sero-reactivity to the ARFP peptides was also tested and compared in 114 chronic HCV genotype-3 patients subdivided on the basis of disease severity into non-cirrhotic, cirrhotic and HCC groups. Chronic HCV genotype-3 patients showed noticeable rates of reactivity to ARFP and core peptides. Seropositivity rates were 58% for ARFP-P1, 47 % for ARFP-P2, 5.9 % for ARFP-P3 and 100 % for C22 peptides. There was no significant difference between these seroreactivities between HCV genotype-3 patients with HCC, and HCV genotype-3 patients with and without liver cirrhosis. Patients with chronic HCV genotype-3 infection frequently produce antibodies against ARFP/core+1 protein. ARFP peptide reactivity was not associated with disease severity in patients with HCV genotype-3. These results support the conclusion that ARFP/core+1 is produced during HCV infection, but they do not confirm that antibodies to ARFP can indicate HCV disease progression.
Collapse
Affiliation(s)
- Mosaab E A Elsheikh
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Vassilaki N, Frakolaki E, Kalliampakou KI, Sakellariou P, Kotta-Loizou I, Bartenschlager R, Mavromara P. A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF. Int J Mol Sci 2020; 21:ijms21186974. [PMID: 32972019 PMCID: PMC7554737 DOI: 10.3390/ijms21186974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Correspondence: (N.V.); (P.M.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Katerina I. Kalliampakou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Panagiotis Sakellariou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Thrace, Greece
- Correspondence: (N.V.); (P.M.)
| |
Collapse
|
6
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
7
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
8
|
Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, Hosseini SY, Yaghoubi R, Gholami S, Dehyadegari MA, Merat S. Antibody Development to HCV Alternate Reading Frame Protein in Liver Transplant Candidate and its Computational Analysis. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164617666190822103329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background::
HCV Alternate Reading Frame Protein (ARFP) is a frameshift product of
HCV-core encoding. Here, we characterized specific anti-ARFP antibodies in Liver Transplant Candidate
(LTC) and chronic HCV-infected patients.
Methods::
The ARFP gene was cloned and the recombinant protein was purified using Nickel chromatography
and confirmed by western blotting. ELISA was developed using recombinant core-1a, core-
1b, ARFP-1a protein, and 99-residue synthetic ARFP 1b peptide. By several Bioinformatics tools,
general properties, immunogenic epitopes, and structures of these proteins were obtained.
Results::
The seroprevalence of anti-core and anti-ARFP antibodies was 100% in LTC patients, but only
75.2% and 94.3% of chronic patients had evidence of anti-ARFP and anti-core antibodies, respectively.
In-silico results demonstrated physicochemical features, antigen properties and potential interactors
that could describe progression toward advanced liver disease.
Conclusion::
As the first report, the prevalence of anti-ARFP antibodies in LTC patients is of the order
of 100% and titer of anti-ARFP antibody was significantly higher in LTC patients compared to chronic
individuals, suggesting the possible role of ARFP in the progression toward advanced liver disease. In
addition, docking analysis determined several interactor proteins such as prefoldin 2, cathepsin B, vitronectin,
and angiotensinogen that have an important role in progression to chronic infection and liver
disease development.
Collapse
Affiliation(s)
- Zahra Musavi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghassabi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hallaji
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghoubi
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Gholami
- Shiraz Organ Transplant Unit, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Dehyadegari
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mylopoulou T, Papadopoulos V, Kassela K, Karakasiliotis I, Souvalidou F, Mimidis P, Veletza S, Mavromara P, Mimidis K. Relationship between antibodies to hepatitis C virus core+1 protein and treatment outcome. Ann Gastroenterol 2018; 31:593-597. [PMID: 30174396 PMCID: PMC6102464 DOI: 10.20524/aog.2018.0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It has been suggested that hepatitis C virus (HCV) core+1 protein plays a crucial role in the viral life cycle, potentially affecting liver cirrhosis and the development of hepatocellular carcinoma. METHODS To investigate its relationship with the outcome of HCV standard combination therapy with peginterferon-α plus ribavirin, we screened 139 consecutive HCV patients (119 with chronic HCV infection and 20 who spontaneously cleared HCV) for the presence of anti-core+1 antibodies (Abs). In addition, liver fibrosis was determined by FibroScan in all but one patients. RESULTS Twenty-nine patients were cirrhotic (stiffness >12.5 kPa, F4 METAVIR), all of them with mild liver cirrhosis (Child-Pugh score A). Eighty-six of 139 patients were treatment-experienced with standard combination therapy. Fifty of them had achieved a sustained virological response, while 36 were non-responders. The prevalence of anti-core+1 Abs in patients with chronic HCV infection was 22.69% (27/119 patients): 18% (9/50 patients) in responders and 36.11% (13/36 patients) in non-responders (P=0.050). Five (17.24%) of the 29 cirrhotic patients and 22 (24.72%) of the 89 non-cirrhotic patients were positive for anti-core+1 Abs (P=0.405). Furthermore, the presence of anti-core+1 Abs correlated with the poor response interleukin (IL) 28B genotype TT (P=0.040). No correlation between spontaneous clearance and anti-core+1 Abs was observed (P=0.088). CONCLUSION The presence of anti-core+1 Abs might be correlated with the poor response IL28B TT genotype and may negatively affect the outcome of standard combination treatments in HCV patients, suggesting that core+1 may play a biological role in the course of HCV infection.
Collapse
Affiliation(s)
- Theodora Mylopoulou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis (Theodora Mylopoulou, Konstantinos Mimidis), Greece
| | | | - Katerina Kassela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens (Katerina Kassela, Penelope Mavromara), Greece
| | - Ioannis Karakasiliotis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis (Ioannis Karakasiliotis, Stavroula Veletza), Greece
| | - Fani Souvalidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Panagiotis Mimidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Stavroula Veletza
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis (Ioannis Karakasiliotis, Stavroula Veletza), Greece
| | - Penelope Mavromara
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens (Katerina Kassela, Penelope Mavromara), Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis (Fani Souvalidou, Panagiotis Mimidis, Penelope Mavromara), Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis (Theodora Mylopoulou, Konstantinos Mimidis), Greece
| |
Collapse
|
10
|
Hepatitis C Virus core+1/ARF Protein Modulates the Cyclin D1/pRb Pathway and Promotes Carcinogenesis. J Virol 2018; 92:JVI.02036-17. [PMID: 29444947 DOI: 10.1128/jvi.02036-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein, initially designated ARFP, F, or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding region. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell, combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis.IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery, leading to acceleration of the cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties, leading to the development of hepatocellular carcinoma. In addition, given that immunological responses to core+1/ARFP have been correlated with liver disease severity in chronic HCV patients, we expect that the present work will assist in clarifying the pathophysiological relevance of this protein as a biomarker of disease progression.
Collapse
|
11
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
12
|
Kassela K, Karakasiliotis I, Charpantidis S, Koskinas J, Mylopoulou T, Mimidis K, Sarrazin C, Grammatikos G, Mavromara P. High prevalence of antibodies to core+1/ARF protein in HCV-infected patients with advanced cirrhosis. J Gen Virol 2017; 98:1713-1719. [PMID: 28708052 DOI: 10.1099/jgv.0.000851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) possesses a second open reading frame (ORF) within the core gene encoding an additional protein, known as the alternative reading frame protein (ARFP), F or core+1. The biological significance of the core+1/ARF protein remains elusive. However, several independent studies have shown the presence of core+1/ARFP antibodies in chronically HCV-infected patients. Furthermore, a higher prevalence of core+1/ARFP antibodies was detected in patients with HCV-associated hepatocellular carcinoma (HCC). Here, we investigated the incidence of core+1/ARFPantibodies in chronically HCV-infected patients at different stages of cirrhosis in comparison to chronically HCV-infected patients at earlier stages of disease. Using ELISA, we assessed the prevalence of anti-core+1 antibodies in 30 patients with advanced cirrhosis [model for end-stage liver disease (MELD) ≥15] in comparison with 50 patients with mild cirrhosis (MELD <15) and 164 chronic HCV patients without cirrhosis. 28.7 % of HCV patients with cirrhosis were positive for anti-core+1 antibodies, in contrast with 16.5 % of non-cirrhotic HCV patients. Moreover, there was significantly higher positivity for anti-core+1 antibodies in HCV patients with advanced cirrhosis (36.7 %) compared to those with early cirrhosis (24 %) (P<0.05). These findings, together with the high prevalence of anti-core+1 antibodies in HCV patients with HCC, suggest that core+1 protein may have a role in virus-associated pathogenesis, and provide evidence to suggest that the levels of anti-core+1 antibodies may serve as a marker for disease progression.
Collapse
Affiliation(s)
- Katerina Kassela
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Stefanos Charpantidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital Athens, Greece
| | - Theodora Mylopoulou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christoph Sarrazin
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Georgios Grammatikos
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Penelope Mavromara
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
13
|
Pei JP, Jiang LF, Ji XW, Xiao W, Deng XZ, Zhou ZX, Zhu DY, Ding WL, Zhang JH, Wang CJ, Jing K. The relevance of Tim-3 polymorphisms and F protein to the outcomes of HCV infection. Eur J Clin Microbiol Infect Dis 2016; 35:1377-86. [PMID: 27230511 DOI: 10.1007/s10096-016-2676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is one of the major causes of liver inflammation. The aim of this study was to investigate the associations of T-cell immunoglobulin and mucin domain-3 (Tim-3) polymorphisms and the alternate reading frame protein (F protein) with the outcomes of HCV infection. Three single-nucleotide polymorphisms (SNPs; rs10053538, rs12186731, and rs13170556) of Tim-3 were genotyped in this study, which included 203 healthy controls, 558 hepatitis C anti-F-positive patients, and 163 hepatitis C anti-F-negative patients. The results revealed that the rs12186731 CT and rs13170556 TC and CC genotypes were significantly less frequent in the anti-F-positive patients [odds ratio (OR) = 0.54, 95 % confidence interval (CI) = 0.35-0.83, p = 0.005; OR = 0.26, 95 % CI = 0.18-0.39, p < 0.001; and OR = 0.19, 95 % CI = 0.10-0.35, p < 0.001, respectively), and the rs13170556 TC genotype was more frequent in the chronic HCV (CHC) patients (OR = 1.70, 95 % CI = 1.20-2.40, p = 0.002). The combined analysis of the rs12186731 CT and rs13170556 TC/CC genotypes revealed a locus-dosage protective effect in the anti-F-positive patients (OR = 0.22, 95 % CI = 0.14-0.33, p trend < 0.001). Stratified analyses revealed that the frequencies of the rs12186731 (CT + TT) genotypes were significantly lower in the older (OR = 0.31, 95 % CI = 0.15-0.65, p = 0.002) and female (OR = 0.30, 95 % CI = 0.17-0.52, p < 0.001) subgroups, and rs13170556 (TC + CC) genotypes exhibited the same effect in all subgroups (all p < 0.001) in the anti-F antibody generations. Moreover, the rs13170556 (TC + CC) genotypes were significantly more frequent in the younger (OR = 1.86, 95 % CI = 1.18-2.94, p = 0.007) and female (OR = 2.38, 95 % CI = 1.48-3.83, p < 0.001) subgroups of CHC patients. These findings suggest that the rs12186731 CT and rs13170556 TC/CC genotypes of Tim-3 provide potential protective effects with the F protein in the outcomes of HCV infection and that these effects are related to sex and age.
Collapse
Affiliation(s)
- J P Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - L F Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210002, China
| | - X W Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - W Xiao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - X Z Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China.
| | - Z X Zhou
- Department of Clinical Laboratory, Nanjing Second Hospital, Nanjing, China
| | - D Y Zhu
- Department of Infectious Diseases at Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, China
| | - W L Ding
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, 214200, China
| | - J H Zhang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - C J Wang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - K Jing
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Meicheng Road East, Huai'an, 223003, China
| |
Collapse
|
14
|
Bastos JCS, Padilla MA, Caserta LC, Miotto N, Vigani AG, Arns CW. Hepatitis C virus: Promising discoveries and new treatments. World J Gastroenterol 2016; 22:6393-6401. [PMID: 27605875 PMCID: PMC4968121 DOI: 10.3748/wjg.v22.i28.6393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Despite advances in therapy, hepatitis C virus (HCV) infection remains an important global health issue. It is estimated that a significant part of the world population is chronically infected with the virus, and many of those affected may develop cirrhosis or liver cancer. The virus shows considerable variability, a characteristic that directly interferes with disease treatment. The response to treatment varies according to HCV genotype and subtype. The continuous generation of variants (quasispecies) allows the virus to escape control by antivirals. Historically, the combination of ribavirin and interferon therapy has represented the only treatment option for the disease. Currently, several new treatment options are emerging and are available to a large part of the affected population. In addition, the search for new substances with antiviral activity against HCV continues, promising future improvements in treatment. Researchers should consider the mutation capacity of the virus and the other variables that affect treatment success.
Collapse
|
15
|
Elevated Concentration of Defensins in Hepatitis C Virus-Infected Patients. J Immunol Res 2016; 2016:8373819. [PMID: 27413763 PMCID: PMC4931052 DOI: 10.1155/2016/8373819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is the major etiological agent of human non-A and non-B hepatitis, affecting around 180 million people worldwide. Defensins, small cysteine-rich cationic peptides, are shown to have potent antibacterial, antiviral, and antifungal properties. Defensins can be found in both normal and microbial infected patients, at variable concentrations. Notably, viral infections are often associated with elevated concentrations of defensins. The current study aimed to estimate the concentrations of total, α-, and β-defensins in serum taken from normal and HCV-infected patients. 12 healthy (noninfected) and 34 HCV-infected patients were enrolled. Standardized immunoassay kits were used to obtain serum concentrations of defensins. The obtained results were calibrated against kit standard reagents. Total defensin concentrations in HCV-infected patients were significantly higher (2- to 105-fold) compared to healthy individuals. The concentrations of α-defensins were also significantly elevated in the HCV-infected patients (31–1398 ng/50 μL). However, concentrations of β-defensins ranged from 44.5 ng/50 μL to 1056 ng/50 μL. The results did not reveal differences in serum defensin concentration between male and female HCV-infected patients. A-defensin concentration of ≥250 ng/50 μL was found to contain more β-defensins than total defensins and α-defensins. This study concludes, for the first time, that serum defensin levels are elevated in HCV-infected patients.
Collapse
|
16
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
17
|
Comparative Immunogenicity in Rabbits of the Polypeptides Encoded by the 5' Terminus of Hepatitis C Virus RNA. J Immunol Res 2015; 2015:762426. [PMID: 26609538 PMCID: PMC4644844 DOI: 10.1155/2015/762426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies on the primate protection from HCV infection stressed the importance of immune response against structural viral proteins. Strong immune response against nucleocapsid (core) protein was difficult to achieve, requesting further experimentation in large animals. Here, we analyzed the immunogenicity of core aa 1–173, 1–152, and 147–191 and of its main alternative reading frame product F-protein in rabbits. Core aa 147–191 was synthesized; other polypeptides were obtained by expression in E. coli. Rabbits were immunized by polypeptide primes followed by multiple boosts and screened for specific anti-protein and anti-peptide antibodies. Antibody titers to core aa 147–191 reached 105; core aa 1–152, 5 × 105; core aa 1–173 and F-protein, 106. Strong immunogenicity of the last two proteins indicated that they may compete for the induction of immune response. The C-terminally truncated core was also weakly immunogenic on the T-cell level. To enhance core-specific cellular response, we immunized rabbits with the core aa 1–152 gene forbidding F-protein formation. Repeated DNA immunization induced a weak antibody and sustained proliferative response of broad specificity confirming a gain of cellular immunogenicity. Epitopes recognized in rabbits overlapped those in HCV infection. Our data promotes the use of rabbits for the immunogenicity tests of prototype HCV vaccines.
Collapse
|
18
|
Zhu DY, Deng XZ, Jiang LF, Xiao W, Pei JP, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, Ding WL, Xu XD, Yue M. Potential Role of Hepatitis C Virus Alternate Reading Frame Protein in Negative Regulation of T-Bet Gene Expression. Inflammation 2015; 38:1823-1834. [PMID: 25894282 DOI: 10.1007/s10753-015-0160-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease and has led to cirrhosis or hepatocellular carcinoma in a majority of infected individuals. We have previously demonstrated that the HCV alternate reading frame protein (F protein) is related to Th1/Th2 bias in chronic hepatitis C (CHC) patients, and we aimed to explore the relative molecular mechanisms here. A total of 104 cases including CHC patients and healthy donors were enrolled. T-bet and GATA-3 expression levels were analyzed in peripheral blood mononuclear cells (PBMCs). The levels of signal transducer and activator of transcription-1/-6(STAT1/6) and phosphorylated STAT1/6(pSTAT1/6) in PBMCs were measured by Western blotting. Our results showed that the levels of T-bet in PBMCs, as well as the levels of gamma interferon (IFN-γ) in sera, were decreased in anti-F protein antibody seropositive patients compared with anti-F protein antibody seronegative patients, whereas the levels of GATA-3 did not show difference between the two groups. Moreover, the decreased pSTAT1 and increased pSTAT6 were observed in PBMCs by HCV core/F protein stimulation with constant STAT1/6 expression. Taken together, it suggested that T-bet may be involved in Th1/Th2 bias induced by HCV F protein, and the disruption of STAT phosphorylation may participate in this mediation.
Collapse
Affiliation(s)
- Dan Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu DY, Jiang LF, Deng XZ, Xiao W, Pei JP, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, Ding WL, Xu XD, Yue M. TBX21 polymorphisms are associated with virus persistence in hepatitis C virus infection patients from a high-risk Chinese population. Eur J Clin Microbiol Infect Dis 2015; 34:1309-1318. [PMID: 25759111 DOI: 10.1007/s10096-015-2337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/22/2015] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and the varied outcomes of the infection depend on both viral and host factors. We have demonstrated that the HCV alternate reading frame protein (F protein) is related to Th1/Th2 bias which is involved in virus persistence in chronic hepatitis C (CHC) patients. The purpose of this study was to test the hypothesis that genetic variants of TBX21 (T cell specific T-box transcription factor) were associated with the outcomes of HCV infection and F protein generation. Three single nucleotide polymorphisms (SNPs) (rs17250932, rs2074190, rs4794067) in the TBX21 gene were genotyped in a case-control study in a cohort of a high-risk group, including 354 healthy controls and 747 CHC patients (190 anti-F protein antibody seronegative patients and 557 anti-F protein antibody seropositive patients). Results showed that the rs4794067 C allele in the TBX21 promoter was significantly more common in CHC patients (OR = 1.335, 95% CI = 1.058-1.684, P = 0.015), exceptionally in anti-F protein seropositive patients (OR = 1.547, 95% CI = 1.140-2.101, P = 0.005), compared with healthy controls. And the risk effect was also significantly high in patients with HCV 1b genotype and mild fibrosis (P = 0.021, P = 0.010, respectively). Compared with the most frequent haplotype TAT, haplotype analysis showed that the distribution of TAC was significantly different between the chronic HCV carrier group and the healthy group, and so was the anti-F antibody seronegativity group and the anti-F antibody seronegativity group (all P < 0.001). Our results suggested that TBX21 variants may be involved in the etiology of this disease.
Collapse
Affiliation(s)
- D Y Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection. Viral Immunol 2015; 28:309-24. [DOI: 10.1089/vim.2015.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Shehat MG, Bahey-El-Din M, Kassem MA, Farghaly FA, Abdul-Rahman MH, Fanaki NH. Recombinant expression of the alternate reading frame protein (ARFP) of hepatitis C virus genotype 4a (HCV-4a) and detection of ARFP and anti-ARFP antibodies in HCV-infected patients. Arch Virol 2015; 160:1939-52. [PMID: 26036563 DOI: 10.1007/s00705-015-2465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.
Collapse
Affiliation(s)
- Michael G Shehat
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
22
|
Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J Hepatol 2015; 7:831-845. [PMID: 25937861 PMCID: PMC4411526 DOI: 10.4254/wjh.v7.i6.831] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a single-stranded, positive sense, RNA virus, member of the Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and the pressure exerted by the host immune system, has driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. HCV evolves by means of different mechanisms of genetic variation. On the one hand, its high mutation rates generate the production of a large number of different but closely related viral variants during infection, usually referred to as a quasispecies. The great quasispecies variability of HCV has also therapeutic implications since the continuous generation and selection of resistant or fitter variants within the quasispecies spectrum might allow viruses to escape control by antiviral drugs. On the other hand HCV exploits recombination to ensure its survival. This enormous viral diversity together with some host factors has made it difficult to control viral dispersal. Current treatment options involve pegylated interferon-α and ribavirin as dual therapy or in combination with a direct-acting antiviral drug, depending on the country. Despite all the efforts put into antiviral therapy studies, eradication of the virus or the development of a preventive vaccine has been unsuccessful so far. This review focuses on current available data reported to date on the genetic mechanisms driving the molecular evolution of HCV populations and its relation with the antiviral therapies designed to control HCV infection.
Collapse
|
23
|
Expression of the novel hepatitis C virus core+1/ARF protein in the context of JFH1-based replicons. J Virol 2015; 89:5164-70. [PMID: 25694591 DOI: 10.1128/jvi.02351-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus contains a second open reading frame within the core gene, designated core+1/ARF. Here we demonstrate for the first time expression of core+1/ARF protein in the context of a bicistronic JFH1-based replicon and report the production of two isoforms, core+1/L (long) and core+1/S (short), with different kinetics.
Collapse
|
24
|
Ren Q, Au HHT, Wang QS, Lee S, Jan E. Structural determinants of an internal ribosome entry site that direct translational reading frame selection. Nucleic Acids Res 2014; 42:9366-82. [PMID: 25038250 PMCID: PMC4132737 DOI: 10.1093/nar/gku622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dicistrovirus intergenic internal ribosome entry site (IGR IRES) directly recruits the ribosome and initiates translation using a non-AUG codon. A subset of IGR IRESs initiates translation in either of two overlapping open reading frames (ORFs), resulting in expression of the 0 frame viral structural polyprotein and an overlapping +1 frame ORFx. A U–G base pair adjacent to the anticodon-like pseudoknot of the IRES directs +1 frame translation. Here, we show that the U-G base pair is not absolutely required for +1 frame translation. Extensive mutagenesis demonstrates that 0 and +1 frame translation can be uncoupled. Ribonucleic acid (RNA) structural probing analyses reveal that the mutant IRESs adopt distinct conformations. Toeprinting analysis suggests that the reading frame is selected at a step downstream of ribosome assembly. We propose a model whereby the IRES adopts conformations to occlude the 0 frame aminoacyl-tRNA thereby allowing delivery of the +1 frame aminoacyl-tRNA to the A site to initiate translation of ORFx. This study provides a new paradigm for programmed recoding mechanisms that increase the coding capacity of a viral genome.
Collapse
Affiliation(s)
- Qian Ren
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Qing S Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Seonghoon Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
25
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
26
|
Romero-López C, Berzal-Herranz A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J Med Genet 2014; 4:6-18. [DOI: 10.5496/wjmg.v4.i2.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus (HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5’-untranslatable regions (5’UTRs) and 3’UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5’ terminus of the viral genome and regulated by distal functional RNA domains placed at the 3’ end. Subsequent RNA replication strongly depends on the 3’UTR folding and is also influenced by the 5’ end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNA-RNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
Collapse
|
27
|
Samrat SK, Li W, Singh S, Kumar R, Agrawal B. Alternate reading frame protein (F protein) of hepatitis C virus: paradoxical effects of activation and apoptosis on human dendritic cells lead to stimulation of T cells. PLoS One 2014; 9:e86567. [PMID: 24475147 PMCID: PMC3903568 DOI: 10.1371/journal.pone.0086567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved. The generation of cellular immunity is highly dependent upon how antigen presenting cells (APCs) process and present various viral antigens. Various structural and non-structural HCV proteins derived from the open reading frame (ORF) have been implicated in modulation of dendritic cells (DCs) and APCs. Besides the major ORF proteins, the HCV core region also encodes an alternate reading frame protein (ARFP or F), whose function in viral pathogenesis is not clear. In the current studies, we sought to determine the role of HCV-derived ARFP in modulating dendritic cells and stimulation of T cell responses. Recombinant adenovirus vectors containing F or core protein derived from HCV (genotype 1a) were prepared and used to endogenously express these proteins in dendritic cells. We made an intriguing observation that endogenous expression of F protein in human DCs leads to contrasting effects on activation and apoptosis of DCs, allowing activated DCs to efficiently internalize apoptotic DCs. These in turn result in efficient ability of DCs to process and present antigen and to prime and stimulate F protein derived peptide-specific T cells from HCV-naive individuals. Taken together, our findings suggest important aspects of F protein in modulating DC function and stimulating T cell responses in humans.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shakti Singh
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Huang M, Deshpande M. Hepatitis C drug discovery: in vitro and in vivo systems and drugs in the pipeline. Expert Rev Anti Infect Ther 2014; 2:375-88. [PMID: 15482203 DOI: 10.1586/14787210.2.3.375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combination therapy of ribavirin and pegylated interferon-alpha for hepatitis C has significant side effects, is often poorly tolerated and is ineffective in many patients, despite causing impressive improvement in the sustained virological response. Discovery and development of more effective and well-tolerated antihepatitis C virus drugs are clearly in great demand. During the past few years, remarkable advances have been made in the establishment of in vitro and in vivo systems. Armed with these systems, a wave of specific antihepatitis C virus compounds have been discovered and are moving into the clinical phase. More effective combination therapies with specific antivirals are predicted to emerge in the near future for the treatment of hepatitis C.
Collapse
Affiliation(s)
- Mingjun Huang
- Antiviral Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, USA.
| | | |
Collapse
|
29
|
Positive ratio of specific antibodies to F protein in serum samples from chronic HCV-infected patients using an enzyme-linked immunosorbent assay: systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2013; 25:1152-8. [PMID: 23603785 DOI: 10.1097/meg.0b013e328360fa2e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
AIMS AND BACKGROUND Although some studies have reported a positive ratio of specific antibodies to the alternative reading frame protein in an enzyme-linked immunosorbent assay test, our data from meta-analysis provide evidence supporting the presence of circulating anti-F protein antibodies. METHODS We collected studies focused on hepatitis C virus (HCV) and F protein. From an initial identification of 460 articles, we selected 16 studies that were randomized-controlled trials (RCTs). RESULTS The results of the Mantel-Haenszel test showed that a statistically significant number of studies reported an effective value in chronic HCV-infected individuals (P<0.00001). We concluded that compared with healthy individuals, the positive ratio of F protein detection was higher in chronic HCV-infected individuals; the odds ratio was 63.61 [95% confidence interval (CI)=28.69, 141.06]. The values for chronic HCV-infected individuals were significantly different from those for non-HCV-infected individuals; the odds ratio was 53.43 (95% CI=23.33, 122.35). The positive ratio of the core protein was higher than that of F protein (rate difference=-38%, 95% CI=-42, -35%). CONCLUSION We concluded that F protein elicits specific antibodies in most chronic HCV-infected individuals. Further, we confirmed the results of previous reports. The relationship between anti-F protein antibody and HCV coinfection still needs to be confirmed with further studies. Considering the high polymorphism rate of HCV, further studies are still needed for the selection of synthetic peptides from F protein that can coat the wells on microplates and serve as a commercial reagent.
Collapse
|
30
|
Hepatitis C virus core+1/ARF protein decreases hepcidin transcription through an AP1 binding site. J Gen Virol 2013; 94:1528-1534. [DOI: 10.1099/vir.0.050328-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic viral hepatitis C is characterized by iron accumulation in the liver, and hepcidin regulates iron absorption. Hepatitis C virus (HCV) core+1/ARFP is a novel protein produced by a second functional ORF within the core gene. Here, using reporter assays and HCV bicistronic replicons, we show that, similarly to core, core+1/ARFP decreases hepcidin expression in hepatoma cells. The activator protein 1 (AP1) binding site of the human hepcidin promoter, shown here to be relevant to basal promoter activity and to the repression by core, is essential for the downregulation by core+1/ARFP while the previously described C/EBP (CCAAT/enhancer binding protein) and STAT (signal transducer and activator of transcription) sites are not. Consistently, expression of the AP1 components c-jun and c-fos obliterated the repressive effect of core and core+1/ARFP. In conclusion, we provide evidence that core+1/ARFP downregulates AP1-mediated transcription, providing new insights into the biological role of core+1/ARFP, as well as the transcriptional modulation of hepcidin, the main regulator of iron metabolism.
Collapse
|
31
|
Yue M, Deng X, Zhai X, Xu K, Kong J, Zhang J, Zhou Z, Yu X, Xu X, Liu Y, Zhu D, Zhang Y. Th1 and Th2 cytokine profiles induced by hepatitis C virus F protein in peripheral blood mononuclear cells from chronic hepatitis C patients. Immunol Lett 2013; 152:89-95. [PMID: 23680070 DOI: 10.1016/j.imlet.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/04/2013] [Accepted: 05/05/2013] [Indexed: 12/28/2022]
Abstract
Th1 and Th2 cytokine response has been confirmed to be correlated with the pathogenesis of HCV infection. The aim of the study is to investigate the Th1 and Th2 cytokine profiles induced by HCV alternate reading frame protein (F protein) in chronic hepatitis C patients. We assessed the immune responses specific to HCV F protein in 55 chronic HCV patients. IFN-γ, IL-2, IL-4 and IL-5 secretion by peripheral blood mononuclear cells (PBMC) post F protein stimulation were compared among HCV patients and healthy donors. Finally, the associations between HCV F protein and HLA class II alleles were explored. We found that the seroprevalence of anti-F antibodies in HCV-related hepatocellular carcinoma (HCC) patients was significantly higher than that of patients without HCC, but such a significant difference in humoral immune responses to F protein was not observed in HCV 1b-infected- and non-HCV 1b-infected-patients. Additionally, the PBMC proliferation of HCC patients was significantly lower than that of patients without HCC. Furthermore, F protein stimulation of PBMCs from F-seropositive patients resulted in Th2 biased cytokine responses (significantly decreased IFN-γ and/or IL-2 and significantly increased IL-4 and/or IL-5 levels) that reportedly may contribute to HCC progression and pathogenesis. However, no significant difference in the association between HCV F protein and HLA-DRB1*0201, 0301, 0405, 1001 and HLA-DQB1*0201, 0401, 0502, 0602 was observed in this study. These findings suggest that F protein may contribute to the HCV-associated bias in Th1/Th2 responses of chronic hepatitis C patients including the progress of HCC pathogenesis.
Collapse
Affiliation(s)
- Ming Yue
- School of Life Science and Technology, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shahid I, Gull S, Ijaz B, Ahmad W, Ansar M, Asad S, Kausar H, Sarwar MT, Khan MK, Hassan S. Stable Huh-7 cell lines expressing non-structural proteins of genotype 1a of hepatitis C virus. J Virol Methods 2013; 189:65-9. [PMID: 23352716 DOI: 10.1016/j.jviromet.2013.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/25/2012] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) infection has infected approximately 3% of the world population. HCV genotype 1a is distributed throughout the world, and along with genotype 1b, is relatively resistant to current standards of therapy compared to other HCV genotypes. The present study was designed to produce stable Huh-7 cell lines expressing non-structural proteins of HCV genotype la, representing an in vitro system to facilitate the development of new antiviral drugs against chronic HCV infection. The non-structural genes of HCV genotype 1a were amplified and cloned in a mammalian expression vector pCR 3.1/FIagTag. Huh-7 cells were transfected with one of two expression plasmids, the first containing the NS2, NS3, and NS4a cassette, and second containing the NS5a and NS5b genes. Stable cell lines were produced under the selection of gentamycin (G418). mRNA and protein expression analysis was performed by RT-PCR and Western blotting. The RT-PCR and Western blot results confirmed the stable expression of each of the gene products. Stable Huh-7 cell lines with HCV la non-structural proteins may be helpful for evaluating the role of HCV proteins in molecular pathogenesis, and could facilitate the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Imran Shahid
- Applied and Functional Genomics Laboratory, Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, 53700 Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Kaukinen P, Sillanpää M, Nousiainen L, Melén K, Julkunen I. Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKε and TBK1 functions. J Med Virol 2012; 85:71-82. [PMID: 23096996 DOI: 10.1002/jmv.23442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/10/2022]
Abstract
Hepatitis C virus (HCV) encodes for several proteins that can interfere with host cell signaling and antiviral response. Previously, serine protease NS3/4A was shown to block host cell interferon (IFN) production by proteolytic cleavage of MAVS and TRIF, the adaptor molecules of the RIG-I and TLR3 signaling pathways, respectively. This study shows that another HCV protease, NS2 can interfere efficiently with cytokine gene expression. NS2 and its proteolytically inactive mutant forms were able to inhibit type I and type III IFN, CCL5 and CXCL10 gene promoters activated by Sendai virus infection. However, the CXCL8 gene promoter was not inhibited by NS2. In addition, constitutively active RIG-I (ΔRIG-I), MAVS, TRIF, IKKε, and TBK1-induced activation of IFN-β promoter was inhibited by NS2. Cotransfection experiments with IKKε or TBK1 together with interferon regulatory factor 3 (IRF3) and HCV expression constructs revealed that NS2 in a dose-dependent manner inhibited IKKε and especially TBK1-induced IRF3 phosphorylation. GST pull-down experiments with GST-NS2 and in vitro-translated and cell-expressed IKKε and TBK1 demonstrated direct physical interactions of the kinases with NS2. Further evidence that the IKKε/TBK1 kinase complex is the target for NS2 was obtained from the observation that the constitutively active form of IRF3 (IRF3-5D) activated readily IFN-β promoter in the presence of NS2. The present study identified HCV NS2 as a potent interferon antagonist, and describes an explanation of how NS2 downregulates the major signaling pathways involved in the development of host innate antiviral responses.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | |
Collapse
|
35
|
Baghbani-arani F, Roohvandv F, Aghasadeghi MR, Eidi A, Amini S, Motevalli F, Sadat SM, Memarnejadian A, Khalili G. Expression and characterization of Escherichia coli derived hepatitis C virus ARFP/F protein. Mol Biol 2012. [DOI: 10.1134/s0026893312020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J Virol 2012; 1:44-50. [PMID: 24175210 PMCID: PMC3782266 DOI: 10.5501/wjv.v1.i2.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The development of a HCV cell culture system enabled us to investigate its whole HCV life cycle and develop a better understanding of the pathogenesis of this virus. Post-translational modification plays a crucial role in HCV replication and in the maturation of viral particles. There is growing evidence also suggesting that the ubiquitin-proteasome pathway and the ubiquitin-independent proteasome pathway are involved in the stability control of HCV proteins. Many viruses are known to manipulate the proteasome pathways to modulate the cell cycle, inhibit apoptosis, evade the immune system, and activate cell signaling, thereby contributing to persistent infection and viral carcinogenesis. The identification of functional interactions between HCV and the proteasome pathways will therefore shed new light on the life cycle and pathogenesis of HCV. This review summarizes the current knowledge on the involvement of the ubiquitin-dependent and -independent proteasome pathways in HCV infection and discusses the roles of these two distinct mechanisms in HCV pathogenesis.
Collapse
Affiliation(s)
- Ikuo Shoji
- Ikuo Shoji, Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
37
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
38
|
Effect of Hepatitis C F Protein and Core Secondary Structure on Viral Replication and Infection*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Karamitros T, Kakkanas A, Katsoulidou A, Sypsa V, Dalagiorgou G, Mavromara P, Hatzakis A. Detection of specific antibodies to HCV-ARF/CORE+1 protein in patients treated with pegylated interferon plus ribavirin. J Viral Hepat 2012; 19:182-8. [PMID: 22329372 DOI: 10.1111/j.1365-2893.2011.01502.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause for chronic liver disease and hepatocellular carcinoma. The HCV-ARF/core+1 protein is an alternative product of HCV core-encoding sequence of unknown biological function. Highly purified HCV core and ARF/core+1 recombinant proteins from HCV genotype 1a and HCV-ARF/core+1 recombinant protein from HCV genotype 3a were expressed in Escherichia coli. Using an enzyme-linked immunosorbent assay, we assessed the prevalence of anti-ARF/core+1 antibodies in 90 chronic hepatitis C patients infected with HCV genotypes 1a/1b or 3a, treated with pegylated interferon (Peg-IFN-a-2a) plus ribavirin. Samples derived from 92 healthy blood donors were used as negative controls. All HCV-RNA-positive serum samples reacted with core 1a antigen, while 15 (37.5%) of 40 and 14 (28%) of 50 patients infected with HCV-1a/1b and HCV-3a, respectively, were found to have anti-ARF/core+1 antibodies into their serum before treatment initiation. These antibodies were persistently present during treatment follow-up and linked to elevated levels of HCV-RNA at baseline.
Collapse
Affiliation(s)
- T Karamitros
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
40
|
Fan ZC, Bird RC. An alternative -1/+2 open reading frame exists within viral N(pro)(1-19) region of bovine viral diarrhea virus SD-1. Virus Res 2011; 163:341-51. [PMID: 22079882 PMCID: PMC7172404 DOI: 10.1016/j.virusres.2011.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 12/26/2022]
Abstract
We previously reported the engineering of an N(pro)-disrupted bovine viral diarrhea virus (BVDV), BSD1-N(pro)/eGFP2A (Fan and Bird, 2008a). Here, we report that BSD1-N(pro)/eGFP2A survives a single nucleotide missing in its C-terminal eGFP region. By using our established reverse genetics system for BVDV, we confirm that the viral mutant is rescued through a -1/+2 ORF initiated in the N(pro)(1-19)/eGFP region of the mutant viral genome. We furthermore uncover that this event occurs in the N(pro)(1-19) region of BVDV strain SD-1. The rescued viral mutant showed dramatic reductions in levels of both viral RNA and viral protein in host cells. Although the mutant is similar to the native strain in viral kinetics, the peak yield of the mutant is decreased dramatically. These findings reveal the existence of an alternative -1/+2 ORF in the N(pro)(1-19) region during the replication of BVDV and open a new avenue to understand the life cycle and pathogenesis of pestiviruses.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA.
| | | |
Collapse
|
41
|
Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9:171. [PMID: 21985599 PMCID: PMC3213217 DOI: 10.1186/1479-5876-9-171] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV). Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase. The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients. The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
Collapse
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ignazio M Sordelli
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Monica Lamberti
- Departement of Experimental Medicine, Sezione di Medicina del lavoro, Igiene e Tossicologia Industriale, Second University of Naples, Naples, Italy
| | - Luciano Tarantino
- Interventional US Unit, Department of Medicine, S. Giovanni di Dio Hospital, 80059 Torre del Greco (Naples), Italy
| | - Aldo Giudice
- Animal Facility Unit, National Institute of Tumours "Fondazione G. Pascale" of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Rossella Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Marina Accardo
- Department of Morphopathology, II University Naples, Napoli, Italy
| | - Massimo Agresti
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Pasquale Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|
42
|
Dalagiorgou G, Vassilaki N, Foka P, Boumlic A, Kakkanas A, Kochlios E, Khalili S, Aslanoglou E, Veletza S, Orfanoudakis G, Vassilopoulos D, Hadziyannis SJ, Koskinas J, Mavromara P. High levels of HCV core+1 antibodies in HCV patients with hepatocellular carcinoma. J Gen Virol 2011; 92:1343-1351. [DOI: 10.1099/vir.0.023010-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core region of the hepatitis C virus (HCV) genome possesses an overlapping ORF that has been shown to encode a protein, known as the alternate reading frame protein (ARFP), F or core+1. The biological role of this protein remains elusive, as it appears to be non-essential for virus replication. However, a number of independent studies have shown that the ARFP/F/core+1 protein elicits humoral and cellular immune responses in HCV-infected individuals and interacts with important cellular proteins. To assess the significance of the core+1 humoral response in HCV-infected patients, we examined the prevalence of anti-core+1 antibodies in sera from patients with hepatocellular carcinoma (HCC) in comparison with chronically HCV-infected individuals without HCC. We produced two HCV core+1 histidine-tagged recombinant proteins for genotypes 1a (aa 11–160) and 1b (aa 11–144), as well as a non-tagged highly purified recombinant core+1/S protein (aa 85–144) of HCV-1b. Using an in-house ELISA, we tested the prevalence of core+1 antibodies in 45 patients with HCC in comparison with 47 chronically HCV-infected patients without HCC and 77 negative-control sera. More than 50 % of the serum samples from HCC patients reacted with all core+1 antigens, whereas <26 % of the sera from the non-HCC HCV-infected individuals tested positive. No core+1-specific reactivity was detected in any of the control samples. In conclusion, the high occurrence of anti-core+1 antibodies in the serum of HCC patients suggests a role for the ARFP/F/core+1 protein in the pathogenesis of HCC.
Collapse
Affiliation(s)
- G. Dalagiorgou
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - N. Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - P. Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Boumlic
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Kakkanas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Kochlios
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Khalili
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Aslanoglou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Veletza
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - G. Orfanoudakis
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
| | - D. Vassilopoulos
- Academic Department of Medicine, Athens University School of Medicine, Hippokration General Hospital, Athens, Greece
| | - S. J. Hadziyannis
- Department of Medicine and Hepatology, Henry Dunant Hospital, Athens, Greece
| | - J. Koskinas
- Second Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, Athens, Greece
| | - P. Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
43
|
Qureshi H, Qazi R, Hamid S, Qureshi SA. Identification of immunogenic regions within the alternative reading frame protein of hepatitis C virus (genotype 3). Eur J Clin Microbiol Infect Dis 2011; 30:1075-83. [DOI: 10.1007/s10096-011-1194-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 01/29/2023]
|
44
|
Synonymous mutations in the core gene are linked to unusual serological profile in hepatitis C virus infection. PLoS One 2011; 6:e15871. [PMID: 21283512 PMCID: PMC3017048 DOI: 10.1371/journal.pone.0015871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023] Open
Abstract
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Collapse
|
45
|
Internal translation initiation stimulates expression of the ARF/core+1 open reading frame of HCV genotype 1b. Virus Res 2010; 155:213-20. [PMID: 20959129 DOI: 10.1016/j.virusres.2010.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 01/02/2023]
Abstract
The hepatitis C virus possesses an alternative open reading frame overlapping the Core gene, whose products are referred to as Core+1 or alternative reading frame (ARF) or F protein(s). Extensive studies on genotype HCV-1a demonstrated that ribosomal frameshifting supports the synthesis of core+1 protein, when ten consecutive As are present within core codons 9-11 whereas, in the absence of this motif, expression of the core+1 ORF is mediated mainly by internal translation initiation. However, in HCV-1b, no Core+1 isoforms produced by internal translation initiation have been described. Using constructs which contain the Core/Core+1(342-770) region from previously described HCV-1b clinical isolates from liver biopsies, we provide evidence for the synthesis of Core+1 proteins by internal translation initiation in transiently transfected mammalian cells using nuclear or cytoplasmic expression systems. Site directed mutagenesis analyses revealed that (a) the synthesis of Core+1 proteins is independent from the polyprotein expression, as we observed an increase of Core+1 protein expression from constructs lacking the polyprotein translation initiator, (b) the main Core+1 product is expressed from AUG(85), similarly to the Core+1/S protein of HCV-1a, (c) synthesis of Core+1 isoforms is also mediated from GUG(58) or under certain conditions GUG(26) internal codons, albeit at lower efficiency. Finally, comparable to HCV-1a Core+1 proteins, the HCV-1b Core+1 products are negatively regulated by core expression and the proteaosomal pathway. The expression of Core+1 ORF from HCV-1b clinical isolates and the preservation of translation initiation mechanism that stimulates its expression encourage investigating the role of these proteins in HCV pathogenesis.
Collapse
|
46
|
Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010; 2:2108-2133. [PMID: 21994721 PMCID: PMC3185750 DOI: 10.3390/v2092108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.
Collapse
Affiliation(s)
- Arup Banerjee
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ratna B. Ray
- Department of Pathology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 2nd Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ranjit Ray
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
- Molecular Microbiology & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-314- 977-9034; Fax: 1-314-771-3816
| |
Collapse
|
47
|
Tews BA, Popescu CI, Dubuisson J. Last stop before exit - hepatitis C assembly and release as antiviral drug targets. Viruses 2010; 2:1782-1803. [PMID: 21994707 PMCID: PMC3185729 DOI: 10.3390/v2081782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/16/2010] [Accepted: 08/04/2010] [Indexed: 12/15/2022] Open
Abstract
Chronic Hepatitis C infection is a global health problem. While primary infection is often inapparent, it becomes chronic in most cases. Chronic infection with Hepatitis C virus (HCV) frequently leads to liver cirrhosis or liver cancer. Consequently, HCV infection is one of the leading causes for liver transplantation in industrialized countries. Current treatment is not HCV specific and is only effective in about half of the infected patients. This situation underlines the need for new antivirals against HCV. To develop new and more efficient drugs, it is essential to specifically target the different steps of the viral life cycle. Of those steps, the targeting of HCV assembly has the potential to abolish virus production. This review summarizes the advances in our understanding of HCV particle assembly and the identification of new antiviral targets of potential interest in this late step of the HCV life cycle.
Collapse
Affiliation(s)
- Birke Andrea Tews
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-320-87-1162; Fax: +33-320-87-1201
| | - Costin-Ioan Popescu
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031, Bucharest, Romania
| | - Jean Dubuisson
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
| |
Collapse
|
48
|
Boumlic A, Nominé Y, Charbonnier S, Dalagiorgou G, Vassilaki N, Kieffer B, Travé G, Mavromara P, Orfanoudakis G. Prevalence of intrinsic disorder in the hepatitis C virus ARFP/Core+1/S protein. FEBS J 2010; 277:774-89. [PMID: 20067524 DOI: 10.1111/j.1742-4658.2009.07527.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) Core+1/S polypeptide, also known as alternative reading frame protein (ARFP)/S, is an ARFP expressed from the Core coding region of the viral genome. Core+1/S is expressed as a result of internal initiation at AUG codons (85-87) located downstream of the polyprotein initiator codon, and corresponds to the C-terminal part of most ARFPs. Core+1/S is a highly basic polypeptide, and its function still remains unclear. In this work, untagged recombinant Core+1/S was expressed and purified from Escherichia coli in native conditions, and was shown to react with sera of HCV-positive patients. We subsequently undertook the biochemical and biophysical characterization of Core+1/S. The conformation and oligomeric state of Core+1/S were investigated using size exclusion chromatography, dynamic light scattering, fluorescence, CD, and NMR. Consistent with sequence-based disorder predictions, Core+1/S lacks significant secondary structure in vitro, which might be relevant for the recognition of diverse molecular partners and/or for the assembly of Core+1/S. This study is the first reported structural characterization of an HCV ARFP/Core+1 protein, and provides evidence that ARFP/Core+1/S is highly disordered under native conditions, with a tendency for self-association.
Collapse
Affiliation(s)
- Anissa Boumlic
- Université de Strasbourg, CNRS FRE 3211, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vassilaki N, Mavromara P. The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 2009; 61:739-52. [PMID: 19548320 DOI: 10.1002/iub.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus of the Flaviviridae family. It has a genome of about 9,600 nucleotides encoding a large polyprotein (about 3,000 amino acids) that is processed by cellular and viral proteases into at least 10 structural and nonstructural viral proteins. A novel HCV protein has also been identified by our laboratory and others. This protein--known as ARFP (alternative reading frame protein), F (for frameshift) or core+1 (to indicate the position) protein--is synthesized by an open reading frame overlapping the core gene at nucleotide +1 (core+1 ORF). However, almost 10 years after its discovery, we still know little of the biological role of the ARFP/F/core+1 protein. Abolishing core+1 protein production has no affect on HCV replication in cell culture or uPA-SCID mice, suggesting that core+1 protein is probably not important for the HCV reproductive cycle. However, the detection of specific anti-core+1 antibodies and T-cell responses in HCV-infected patients, as reported by many independent laboratories, provides strong evidence that this protein is produced in vivo. Furthermore, analyses of the HCV sequences isolated from patients with hepatocellular carcinoma and in vitro studies have provided strong preliminary evidence to suggest that core+1 protein plays a role in advanced liver disease and liver cancer. The available in vitro data also suggest that certain core function proteins may depend on production of the core+1 protein. We describe here the discovery of the various forms of the core+1 protein and what is currently known about the mechanisms of their production and their biochemical and functional properties. We also provide a detailed summary of the results of patient-based research.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
50
|
Morice Y, Ratinier M, Miladi A, Chevaliez S, Germanidis G, Wedemeyer H, Laperche S, Lavergne JP, Pawlotsky JM. Seroconversion to hepatitis C virus alternate reading frame protein during acute infection. Hepatology 2009; 49:1449-59. [PMID: 19350656 PMCID: PMC2956746 DOI: 10.1002/hep.22821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED The existence of hepatitis C virus (HCV) proteins encoded by alternate reading frames overlapping the core-encoding region has been suggested. Several mechanisms of production have been postulated, and the functions of these proteins in the HCV life cycle remain unknown. We analyzed cases of seroconversion to an alternate reading frame protein in a group of 17 patients infected by one of the two HCV genotype 1b strains during an outbreak in a hemodialysis unit. Three patients seroconverted, and antibodies were transiently detected in another patient. Three of these patients were infected by one of the two HCV strains, whereas the strain infecting the remaining patient could not be identified. Quasispecies sequence analysis of the core-coding region showed no differences in the core or +1 reading frame sequences that could explain alternate reading frame protein seroconversion in some but not all of the patients infected by one of the HCV strains, and no such difference was found between the two strains. Because differences in the structure of RNA elements could play a role in frameshift events, we conducted a predictive analysis of RNA folding. No difference was found between the patients who did and did not seroconvert to alternate reading frame protein. CONCLUSION Our findings prove that alternate reading frame proteins can be produced during acute HCV infection. However, seroconversion does not occur in all patients for unknown reasons. Alternate reading frame protein could be generated by minority quasispecies variants or variants that occur transiently.
Collapse
Affiliation(s)
- Yoann Morice
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Maxime Ratinier
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Ahmed Miladi
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Stéphane Chevaliez
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology
Medical School HannoverHannover,DE
| | - Syria Laperche
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR
| | - Jean-Pierre Lavergne
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Jean-Michel Pawlotsky
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,* Correspondence should be adressed to: Jean-Michel Pawlotsky
| |
Collapse
|