1
|
Gottlieb S, Shang W, Ye D, Kubo S, Jiang PD, Shafer S, Xu L, Zheng L, Park AY, Song J, Chan W, Zeng Z, He T, Schwarz B, Häupl B, Oellerich T, Lenardo MJ, Yao Y. AMBRA1 controls the translation of immune-specific genes in T lymphocytes. Proc Natl Acad Sci U S A 2024; 121:e2416722121. [PMID: 39436665 PMCID: PMC11536168 DOI: 10.1073/pnas.2416722121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
T cell receptor (TCR) engagement causes a global cellular response that entrains signaling pathways, cell cycle regulation, and cell death. The molecular regulation of mRNA translation in these processes is poorly understood. Using a whole-genome CRISPR screen for regulators of CD95 (FAS/APO-1)-mediated T cell death, we identified AMBRA1, a protein previously studied for its roles in autophagy, E3 ubiquitin ligase activity, and cyclin regulation. T cells lacking AMBRA1 resisted FAS-mediated cell death by down-regulating FAS expression at the translational level. We show that AMBRA1 is a vital regulator of ribosome protein biosynthesis and ribosome loading on select mRNAs, whereby it plays a key role in balancing TCR signaling with cell cycle regulation pathways. We also found that AMBRA1 itself is translationally controlled by TCR stimulation via the CD28-PI3K-mTORC1-EIF4F pathway. Together, these findings shed light on the molecular control of translation after T cell activation and implicate AMBRA1 as a translational regulator governing TCR signaling, cell cycle progression, and T cell death.
Collapse
Affiliation(s)
- Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu807-8555, Japan
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Samantha Shafer
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Leilei Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Ann Y. Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Jian Song
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Zhiqin Zeng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Tingyan He
- Department of Rheumatology and Immunology, Shenzhen Children’s Hospital, Shenzhen518038, China
| | - Benjamin Schwarz
- Protein and Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT59840
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main60590, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main60590, Germany
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20814
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
2
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
3
|
Many OX PHOS and replication factor mRNAs target mitochondria through specific binding to the organelle surface, independent of co-translational protein import. J Genet 2023. [DOI: 10.1007/s12041-022-01414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Tang W, Arisha MH, Zhang Z, Yan H, Kou M, Song W, Li C, Gao R, Ma M, Wang X, Zhang Y, Li Z, Li Q. Comparative transcriptomic and proteomic analysis reveals common molecular factors responsive to heat and drought stresses in sweetpotaoto ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2023; 13:1081948. [PMID: 36743565 PMCID: PMC9892860 DOI: 10.3389/fpls.2022.1081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Crops are affected by various abiotic stresses, among which heat (HT) and drought (DR) stresses are the most common in summer. Many studies have been conducted on HT and DR, but relatively little is known about how drought and heat combination (DH) affects plants at molecular level. Methods Here, we investigated the responses of sweetpotato to HT, DR, and DH stresses by RNA-seq and data-independent acquisition (DIA) technologies, using controlled experiments and the quantification of both gene and protein levels in paired samples. Results Twelve cDNA libraries were created under HT, DR, and DH conditions and controls. We identified 536, 389, and 907 DEGs in response to HT, DR, and DH stresses, respectively. Of these, 147 genes were common and 447 were specifically associated with DH stress. Proteomic analysis identified 1609, 1168, and 1535 DEPs under HT, DR, and DH treatments, respectively, compared with the control, of which 656 were common and 358 were exclusive to DH stress. Further analysis revealed the DEGs/DEPs were associated with heat shock proteins, carbon metabolism, phenylalanine metabolism, starch and cellulose metabolism, and plant defense, amongst others. Correlation analysis identified 6465, 6607, and 6435 co-expressed genes and proteins under HT, DR, and DH stresses respectively. In addition, a combined analysis of the transcriptomic and proteomic data identified 59, 35, and 86 significantly co-expressed DEGs and DEPs under HT, DR, and DH stresses, respectively. Especially, top 5 up-regulated co-expressed DEGs and DEPs (At5g58770, C24B11.05, Os04g0679100, BACOVA_02659 and HSP70-5) and down-regulated co-expressed DEGs and DEPs (AN3, PMT2, TUBB5, FL and CYP98A3) were identified under DH stress. Discussion This is the first study of differential genes and proteins in sweetpotato under DH stress, and it is hoped that the findings will assist in clarifying the molecular mechanisms involved in sweetpotato resistance to heat and drought stress.
Collapse
Affiliation(s)
- Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mohamed Hamed Arisha
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Zhenyi Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
5
|
Przygrodzka E, Plewes MR, Davis JS. Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. Int J Mol Sci 2021; 22:9972. [PMID: 34576135 PMCID: PMC8470545 DOI: 10.3390/ijms22189972] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
| | - Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
6
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
7
|
Bai B, van der Horst N, Cordewener JH, America AHP, Nijveen H, Bentsink L. Delayed Protein Changes During Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:735719. [PMID: 34603360 PMCID: PMC8480309 DOI: 10.3389/fpls.2021.735719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Over the past decade, ample transcriptome data have been generated at different stages during seed germination; however, far less is known about protein synthesis during this important physiological process. Generally, the correlation between transcript levels and protein abundance is low, which strongly limits the use of transcriptome data to accurately estimate protein expression. Polysomal profiling has emerged as a tool to identify mRNAs that are actively translated. The association of the mRNA to the polysome, also referred to as translatome, provides a proxy for mRNA translation. In this study, the correlation between the changes in total mRNA, polysome-associated mRNA, and protein levels across seed germination was investigated. The direct correlation between polysomal mRNA and protein abundance at a single time-point during seed germination is low. However, once the polysomal mRNA of a time-point is compared to the proteome of the next time-point, the correlation is much higher. 35% of the investigated proteome has delayed changes at the protein level. Genes have been classified based on their delayed protein changes, and specific motifs in these genes have been identified. Moreover, mRNA and protein stability and mRNA length have been found as important predictors for changes in protein abundance. In conclusion, polysome association and/or dissociation predicts future changes in protein abundance in germinating seeds.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Bing Bai,
| | | | - Jan H. Cordewener
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Antoine H. P. America
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Leónie Bentsink,
| |
Collapse
|
8
|
Translatome and Transcriptome Profiling of Hypoxic-Induced Rat Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1016-1024. [PMID: 33294289 PMCID: PMC7689039 DOI: 10.1016/j.omtn.2020.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023]
Abstract
Adult cardiac hypoxia as a crucial pathogenesis factor can induce detrimental effects on cardiac injury and dysfunction. The global transcriptome and translatome reflecting the cellular response to hypoxia have not yet been extensively studied in myocardium. In this study, we conducted RNA sequencing (RNA-seq) and ribosome profiling technique (polyribo-seq) in rat heart tissues and H9C2 cells exposed to different periods of hypoxia stress in vivo and in vitro. The temporal gene-expression profiling displayed the distinction of transcriptome and translatome, which were mainly concentrated in cell apoptosis, autophagy, DNA repair, angiogenesis, vascular process, and cardiac cell proliferation and differentiation. A large number of genes such as GNAI3, SEPT4, FANCL, BNIP3, TBX3, ESR2, PTGS2, KLF4, and ADRB2, whose transcript and translation levels are closely correlated, were identified to own a common RNA motif “5′-GAAGCUGCC-3′” in 5′ UTR. NCBP3 was further determined to recognize this RNA motif and facilitate translational process in myocardium under hypoxia stress. Taken together, our data show the close connection between alterations of transcriptome and translatome after hypoxia exposure, emphasizing the significance of translational regulation in related studies. The profiled molecular responses in current study may be valuable resources for advanced understanding of the mechanisms underlying hypoxia-induced effect on heart diseases.
Collapse
|
9
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
10
|
Stead ER, Castillo-Quan JI, Miguel VEM, Lujan C, Ketteler R, Kinghorn KJ, Bjedov I. Agephagy - Adapting Autophagy for Health During Aging. Front Cell Dev Biol 2019; 7:308. [PMID: 31850344 PMCID: PMC6892982 DOI: 10.3389/fcell.2019.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a major cellular recycling process that delivers cellular material and entire organelles to lysosomes for degradation, in a selective or non-selective manner. This process is essential for the maintenance of cellular energy levels, components, and metabolites, as well as the elimination of cellular molecular damage, thereby playing an important role in numerous cellular activities. An important function of autophagy is to enable survival under starvation conditions and other stresses. The majority of factors implicated in aging are modifiable through the process of autophagy, including the accumulation of oxidative damage and loss of proteostasis, genomic instability and epigenetic alteration. These primary causes of damage could lead to mitochondrial dysfunction, deregulation of nutrient sensing pathways and cellular senescence, finally causing a variety of aging phenotypes. Remarkably, advances in the biology of aging have revealed that aging is a malleable process: a mild decrease in signaling through nutrient-sensing pathways can improve health and extend lifespan in all model organisms tested. Consequently, autophagy is implicated in both aging and age-related disease. Enhancement of the autophagy process is a common characteristic of all principal, evolutionary conserved anti-aging interventions, including dietary restriction, as well as inhibition of target of rapamycin (TOR) and insulin/IGF-1 signaling (IIS). As an emerging and critical process in aging, this review will highlight how autophagy can be modulated for health improvement.
Collapse
Affiliation(s)
- Eleanor R Stead
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Jorge I Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Celia Lujan
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Translation of Human β-Actin mRNA is Regulated by mTOR Pathway. Genes (Basel) 2019; 10:genes10020096. [PMID: 30700035 PMCID: PMC6410274 DOI: 10.3390/genes10020096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is a well-known master regulator of growth-dependent gene expression in higher eukaryotes. Translation regulation is an important function of the mTORC1 pathway that controls the synthesis of many ribosomal proteins and translation factors. Housekeeping genes such as β-actin (ACTB) are widely used as negative control genes in studies of growth-dependent translation. Here we demonstrate that translation of both endogenous and reporter ACTB mRNA is inhibited in the presence of mTOR kinase inhibitor (Torin1) and under amino acid starvation. Notably, 5’UTR and promoter of ACTB are sufficient for the mTOR-dependent translational response, and the degree of mTOR-sensitivity of ACTB mRNA translation is cell type-dependent.
Collapse
|
12
|
Lima RT, Sousa D, Gomes AS, Mendes N, Matthiesen R, Pedro M, Marques F, Pinto MM, Sousa E, Vasconcelos MH. The Antitumor Activity of a Lead Thioxanthone is Associated with Alterations in Cholesterol Localization. Molecules 2018; 23:molecules23123301. [PMID: 30545153 PMCID: PMC6321308 DOI: 10.3390/molecules23123301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
The search for novel anticancer small molecules and strategies remains a challenge. Our previous studies have identified TXA1 (1-{[2-(diethylamino)ethyl]amino}-4-propoxy-9H- thioxanthen-9-one) as a hit compound, with in vitro antitumor potential by modulating autophagy and apoptosis in human tumor cell lines. In the present study, the mechanism of action and antitumor potential of the soluble salt of this molecule (TXA1.HCl) was further investigated using in vitro and mouse xenograft tumor models of NSCLC. Our results showed that TXA1.HCl affected steroid biosynthesis, increased RagD expression, and caused abnormal cellular cholesterol localization. In addition, TXA1.HCl treatment presented no toxicity to nude mice and significantly reduced the growth of human NSCLC cells xenografts in mice. Overall, this work provides new insights into the mechanism of action of TXA1, which may be relevant for the development of anticancer therapeutic strategies, which target cholesterol transport.
Collapse
Affiliation(s)
- Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Diana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ana Sara Gomes
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Nuno Mendes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- HEMS-Histology and Electron Microscopy-i3S, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
| | - Rune Matthiesen
- Computational and Experimental Biology Group, The Chronic Diseases Research Center (CEDOC), Nova Medical School, Faculdade de Ciencias Medicas Universidade Nova De Lisboa, Rua Câmara Pestana 61150-082 Lisboa, Portugal.
| | - Madalena Pedro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IUCS-Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| | - Franklim Marques
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Abstract
Isozymes are enzymes with similar sequences that catalyze the same reaction in a given species. In Saccharomyces cerevisiae, most isozymes have major isoforms with high expression levels and minor isoforms with little expression under normal growth conditions. In a proteomic study aimed at identifying yeast protein regulated by rapamycin, we found an interesting phenomenon, that, for several metabolic enzymes, the major isozymes are downregulated while the minor isozymes are upregulated. Through enzymological and biochemical studies, we demonstrate that a rapamycin-upregulated enolase isozyme (ENO1) favors gluconeogenesis and a rapamycin-upregulated alcohol dehydrogenase isozyme (ALD4) promotes the reduction of NAD+ to NADH (instead of NADP+ to NADPH). Gene deletion study in yeast showed that the ENO1 and ALD4 are important for yeast survival under less-favorable growth conditions. Therefore, our study highlights the different metabolic needs of cells under different conditions and how nature chooses different isozymes to fit the metabolic needs.
Collapse
Affiliation(s)
- Yugang Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zhewang Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Miao Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1. Viruses 2018. [PMID: 29518929 PMCID: PMC5869507 DOI: 10.3390/v10030114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT) and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC) protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out.
Collapse
|
15
|
Karim AF, Sande OJ, Tomechko SE, Ding X, Li M, Maxwell S, Ewing RM, Harding CV, Rojas RE, Chance MR, Boom WH. Proteomics and Network Analyses Reveal Inhibition of Akt-mTOR Signaling in CD4 + T Cells by Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan. Proteomics 2017; 17:1700233. [PMID: 28994205 PMCID: PMC5725663 DOI: 10.1002/pmic.201700233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose-capped lipoarabinomannan (ManLAM) inhibits CD4+ T-cell activation by inhibiting proximal T-cell receptor (TCR) signaling when activated by anti-CD3. To understand the impact of ManLAM on CD4+ T-cell function when both the TCR-CD3 complex and major costimulator CD28 are engaged, we performed label-free quantitative MS and network analysis. Mixed-effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti-CD3- and anti-CD28-activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF-κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x-Akt-mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T-cell proteome by affecting Akt-mTOR signaling, resulting in broad functional impairment of CD4+ T-cell activation beyond inhibition of proximal TCR-CD3 signaling.
Collapse
Affiliation(s)
- Ahmad F. Karim
- Department of MedicineUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Obondo J. Sande
- Department of MedicineUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Sara E. Tomechko
- Center for Proteomics & BioinformaticsCase Western Reserve UniversityClevelandOHUSA
| | - Xuedong Ding
- Department of MedicineUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Ming Li
- Center for Proteomics & BioinformaticsCase Western Reserve UniversityClevelandOHUSA
| | - Sean Maxwell
- Center for Proteomics & BioinformaticsCase Western Reserve UniversityClevelandOHUSA
| | - Rob M. Ewing
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Clifford V. Harding
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOHUSA
- Department of PathologyUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Roxana E. Rojas
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Mark R. Chance
- Center for Proteomics & BioinformaticsCase Western Reserve UniversityClevelandOHUSA
- Department of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - W. Henry Boom
- Department of MedicineUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
16
|
Reciprocal antagonism between the netrin-1 receptor uncoordinated-phenotype-5A (UNC5A) and the hepatitis C virus. Oncogene 2017; 36:6712-6724. [PMID: 28783179 DOI: 10.1038/onc.2017.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of hepatocellular carcinoma (HCC), mainly through cirrhosis induction, spurring research for a deeper understanding of HCV versus host interactions in cirrhosis. The present study investigated crosstalks between HCV infection and UNC5A, a netrin-1 dependence receptor that is inactivated in cancer. UNC5A and HCV parameters were monitored in patients samples (n=550) as well as in in vitro. In patients, UNC5A mRNA expression is significantly decreased in clinical HCV(+) specimens irrespective of the viral genotype, but not in (HBV)(+) liver biopsies, as compared to uninfected samples. UNC5A mRNA is downregulated in F2 (3-fold; P=0.009), in F3 (10-fold, P=0.0004) and more dramatically so in F4/cirrhosis (44-fold; P<0.0001) histological stages of HCV(+) hepatic lesions compared to histologically matched HCV(-) tissues. UNC5A transcript was found strongly downregulated in HCC samples (33-fold; P<0.0001) as compared with non-HCC samples. In vivo, association of UNC5A transcripts with polyribosomes is decreased by 50% in HCV(+) livers. Consistent results were obtained in vitro showing HCV-dependent depletion of UNC5A in HCV-infected hepatocyte-like cells and in primary human hepatocytes. Using luciferase reporter constructs, HCV cumulatively decreased UNC5A transcription from the UNC5 promoter and translation in a UNC5A 5'UTR-dependent manner. Proximity ligation assays, kinase assays, as well as knockdown and forced expression experiments identified UNC5A as capable of impeding autophagy and promoting HCV restriction through specific impact on virion infectivity, in a cell death-independent and DAPK-related manner. In conclusion, while the UNC5A dependence receptor counteracts HCV persistence through regulation of autophagy in a DAPK-dependent manner, it is dramatically decreased in all instances in HCC samples, and specifically by HCV in cirrhosis. Such data argue for the evaluation of the implication of UNC5A in liver carcinogenesis.
Collapse
|
17
|
Sucularli C, Shehwana H, Kuscu C, Dungul DC, Ozdag H, Konu O. Functionally conserved effects of rapamycin exposure on zebrafish. Mol Med Rep 2016; 13:4421-30. [PMID: 27035657 DOI: 10.3892/mmr.2016.5059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Cem Kuscu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | | | - Hilal Ozdag
- Biotechnology Institute, Ankara University, Ankara 06010, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
18
|
Abstract
Type-I interferon (IFN)-induced activation of the mammalian target of rapamycin (mTOR) signaling pathway has been implicated in translational control of mRNAs encoding interferon-stimulated genes (ISGs). However, mTOR-sensitive translatomes commonly include mRNAs with a 5’ terminal oligopyrimidine tract (TOP), such as those encoding ribosomal proteins, but not ISGs. Because these translatomes were obtained under conditions when ISG expression is not induced, we examined the mTOR-sensitive translatome in human WISH cells stimulated with IFN β. The mTOR inhibitor Torin1 resulted in a repression of global protein synthesis, including that of ISG products, and translation of all but 3 ISG mRNAs (TLR3, NT5C3A, and RNF19B) was not selectively more sensitive to mTOR inhibition. Detailed studies of NT5C3A revealed an IFN-induced change in transcription start site resulting in a switch from a non-TOP to a TOP-like transcript variant and mTOR sensitive translation. Thus, we show that, in the cell model used, translation of the vast majority of ISG mRNAs is not selectively sensitive to mTOR activity and describe an uncharacterized mechanism wherein the 5’-UTR of an mRNA is altered in response to a cytokine, resulting in a shift from mTOR-insensitive to mTOR-sensitive translation.
Collapse
|
19
|
Basbouss-Serhal I, Soubigou-Taconnat L, Bailly C, Leymarie J. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. PLANT PHYSIOLOGY 2015; 168:1049-65. [PMID: 26019300 PMCID: PMC4741348 DOI: 10.1104/pp.15.00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25 °C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5' untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process.
Collapse
Affiliation(s)
- Isabelle Basbouss-Serhal
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Ludivine Soubigou-Taconnat
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Christophe Bailly
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Juliette Leymarie
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| |
Collapse
|
20
|
Bernabò P, Lunelli L, Quattrone A, Jousson O, Lencioni V, Viero G. Studying translational control in non-model stressed organisms by polysomal profiling. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:30-35. [PMID: 25796968 DOI: 10.1016/j.jinsphys.2015.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/30/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
In stressed organisms, strategic proteins are selectively translated even if the global process of protein synthesis is compromised. The determination of protein concentrations in tissues of non-model organisms (thus with limited genomic information) is challenging due to the absence of specific antibodies. Moreover, estimating protein levels quantifying transcriptional responses may be misleading, because translational control mechanisms uncouple protein and mRNAs abundances. Translational control is increasingly recognized as a hub where regulation of gene expression converges to shape proteomes, but it is almost completely overlooked in molecular ecology studies. An interesting approach to study translation and its control mechanisms is the analysis of variations of gene-specific translational efficiencies by quantifying mRNAs associated to ribosomes. In this paper, we propose a robust and streamlined pipeline for purifying ribosome-associated mRNAs and calculating global and gene-specific translation efficiencies from non-model insect's species. This method might found applications in molecular ecology to study responses to environmental stressors in non-model organisms.
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Italy; Centre for Integrative Biology, Mattarello, Trento, Italy; Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Trento, Italy
| | | | | | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | | |
Collapse
|
21
|
Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015; 75:250-63. [PMID: 25593033 DOI: 10.1158/0008-5472.can-14-2789] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| |
Collapse
|
22
|
Gaczynska M, Osmulski PA. Harnessing proteasome dynamics and allostery in drug design. Antioxid Redox Signal 2014; 21:2286-301. [PMID: 24410482 PMCID: PMC4241894 DOI: 10.1089/ars.2013.5816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. RECENT ADVANCES Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. CRITICAL ISSUES Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. FUTURE DIRECTIONS New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | |
Collapse
|
23
|
Rajasundaram D, Selbig J, Persson S, Klie S. Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells. ANNALS OF BOTANY 2014; 114:1109-23. [PMID: 25149544 PMCID: PMC4195562 DOI: 10.1093/aob/mcu151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS A key challenge in biology is to systematically investigate and integrate the different levels of information available at the global and single-cell level. Recent studies have elucidated spatiotemporal expression patterns of root cell types in Arabidopsis thaliana, and genome-wide quantification of polysome-associated mRNA levels, i.e. the translatome, has also been obtained for corresponding cell types. Translational control has been increasingly recognized as an important regulatory step in protein synthesis. The aim of this study was to investigate coupled transcription and translation by use of publicly available root datasets. METHODS Using cell-type-specific datasets of the root transcriptome and translatome of arabidopsis, a systematic assessment was made of the degree of co-ordination and divergence between these two levels of cellular organization. The computational analysis considered correlation and variation of expression across cell types at both system levels, and also provided insights into the degree of co-regulatory relationships that are preserved between the two processes. KEY RESULTS The overall correlation of expression and translation levels of genes resemble an almost bimodal distribution (mean/median value of 0·08/0·12), with a second, less strongly pronounced 'mode' for negative Pearson's correlation coefficient values. The analysis conducted also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels were identified. CONCLUSIONS In agreement with previous studies in animal cells, a large degree of uncoupling was found between the transcriptome and translatome. However, components and processes were also identified that are under co-ordinated transcriptional and translational control in plant root cells.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Staffan Persson
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Klie
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany Targenomix GmbH, Potsdam-Golm, 14476, Germany
| |
Collapse
|
24
|
Aramburu J, Ortells MC, Tejedor S, Buxadé M, López-Rodríguez C. Transcriptional regulation of the stress response by mTOR. Sci Signal 2014; 7:re2. [PMID: 24985347 DOI: 10.1126/scisignal.2005326] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.
Collapse
Affiliation(s)
- Jose Aramburu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - M Carmen Ortells
- Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Sonia Tejedor
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Maria Buxadé
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina López-Rodríguez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
25
|
Eyre TA, Collins GP, Goldstone AH, Cwynarski K. Time now to TORC the TORC? New developments in mTOR pathway inhibition in lymphoid malignancies. Br J Haematol 2014; 166:336-51. [DOI: 10.1111/bjh.12945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Toby A. Eyre
- Department of Haematology; Oxford University Hospitals NHS Trust; Oxford UK
| | - Graham P. Collins
- Department of Haematology; Oxford University Hospitals NHS Trust; Oxford UK
| | | | - Kate Cwynarski
- Department of Haematology; Royal Free Hospital; London UK
| |
Collapse
|
26
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|
27
|
Rapamycin induces apoptosis when autophagy is inhibited in T-47D mammary cells and both processes are regulated by Phlda1. Cell Biochem Biophys 2014; 66:567-87. [PMID: 23300026 DOI: 10.1007/s12013-012-9504-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.
Collapse
|
28
|
Zhou J, Zhu Z, Bai C, Sun H, Wang X. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer. J Transl Med 2014; 12:6. [PMID: 24397796 PMCID: PMC3895788 DOI: 10.1186/1479-5876-12-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/04/2014] [Indexed: 11/10/2022] Open
Abstract
Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Sun
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China.
| | | |
Collapse
|
29
|
Chen L, Dumelie JG, Li X, Cheng MH, Yang Z, Laver JD, Siddiqui NU, Westwood JT, Morris Q, Lipshitz HD, Smibert CA. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome Biol 2014; 15:R4. [PMID: 24393533 PMCID: PMC4053848 DOI: 10.1186/gb-2014-15-1-r4] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.
Collapse
|
30
|
Hebron M, Chen W, Miessau MJ, Lonskaya I, Moussa CEH. Parkin reverses TDP-43-induced cell death and failure of amino acid homeostasis. J Neurochem 2013; 129:350-61. [PMID: 24298989 DOI: 10.1111/jnc.12630] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
Abstract
The E3 ubiquitin ligase Parkin plays a central role in the pathogenesis of many neurodegenerative diseases. Parkin promotes specific ubiquitination and affects the localization of transactivation response DNA-binding protein 43 (TDP-43), which controls the translation of thousands of mRNAs. Here we tested the effects of lentiviral Parkin and TDP-43 expression on amino acid metabolism in the rat motor cortex using high frequency ¹³C NMR spectroscopy. TDP-43 expression increased glutamate levels, decreased the levels of other amino acids, including glutamine, aspartate, leucine and isoleucine, and impaired mitochondrial tricarboxylic acid cycle. TDP-43 induced lactate accumulation and altered the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters. Parkin restored amino acid levels, neurotransmitter balance and tricarboxylic acid cycle metabolism, rescuing neurons from TDP-43-induced apoptotic death. Furthermore, TDP-43 expression led to an increase in 4E-BP levels, perhaps altering translational control and deregulating amino acid synthesis; while Parkin reversed the effects of TDP-43 on the 4E-BP signaling pathway. Taken together, these data suggest that Parkin may affect TDP-43 localization and mitigate its effects on 4E-BP signaling and loss of amino acid homeostasis.
Collapse
Affiliation(s)
- Michaeline Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
31
|
Clemens MJ, Elia A, Morley SJ. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition. PLoS One 2013; 8:e71138. [PMID: 23940704 PMCID: PMC3733773 DOI: 10.1371/journal.pone.0071138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.
Collapse
Affiliation(s)
- Michael J. Clemens
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton United Kingdom
| | - Androulla Elia
- Division of Biomedical Sciences, St George’s, University of London, Cranmer Terrace, London, United Kingdom
- * E-mail:
| | - Simon J. Morley
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton United Kingdom
| |
Collapse
|
32
|
Bjur E, Larsson O, Yurchenko E, Zheng L, Gandin V, Topisirovic I, Li S, Wagner CR, Sonenberg N, Piccirillo CA. Distinct translational control in CD4+ T cell subsets. PLoS Genet 2013; 9:e1003494. [PMID: 23658533 PMCID: PMC3642068 DOI: 10.1371/journal.pgen.1003494] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells expressing the transcription factor Foxp3 play indispensable roles for the induction and maintenance of immunological self-tolerance and immune homeostasis. Genome-wide mRNA expression studies have defined canonical signatures of T cell subsets. Changes in steady-state mRNA levels, however, often do not reflect those of corresponding proteins due to post-transcriptional mechanisms including mRNA translation. Here, we unveil a unique translational signature, contrasting CD4(+)Foxp3(+) regulatory T (T(Foxp3+)) and CD4(+)Foxp3(-) non-regulatory T (TFoxp3-) cells, which imprints subset-specific protein expression. We further show that translation of eukaryotic translation initiation factor 4E (eIF4E) is induced during T cell activation and, in turn, regulates translation of cell cycle related mRNAs and proliferation in both T(Foxp3)- and T(Foxp3+) cells. Unexpectedly, eIF4E also affects Foxp3 expression and thereby lineage identity. Thus, mRNA-specific translational control directs both common and distinct cellular processes in CD4(+) T cell subsets.
Collapse
Affiliation(s)
- Eva Bjur
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- FOCIS Centre of Excellence, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Ola Larsson
- Department of Biochemistry, and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Ekaterina Yurchenko
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- FOCIS Centre of Excellence, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Lei Zheng
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- FOCIS Centre of Excellence, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Valentina Gandin
- Department of Biochemistry, and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Shui Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carston R. Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nahum Sonenberg
- Department of Biochemistry, and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- FOCIS Centre of Excellence, Research Institute of the McGill University Health Centre, Montreal, Canada
- * E-mail:
| |
Collapse
|
33
|
Abstract
Serum and plasma from which serum is derived represent a substantial challenge for proteomics due to their complexity. A landmark plasma proteome study was initiated a decade ago by the Human Proteome Organization (HUPO) that had as an objective to examine the capabilities of existing technologies. Given the advances in proteomics and the continued interest in the plasma proteome, it would timely reassess the depth and breadth of analysis of plasma that can be achieved with current methodology and instrumentation. A collaborative project to define the plasma proteome and its variation, with a plan to build a plasma proteome database would be timely.
Collapse
Affiliation(s)
- Samir Hanash
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
34
|
Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease. J Neurochem 2013; 124:880-93. [PMID: 23121022 PMCID: PMC6762020 DOI: 10.1111/jnc.12080] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023]
Abstract
Rapamycin, an inhibitor of target-of-rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)-like deficits, reduces amyloid-beta (Aβ) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control- and rapamycin-treated PDAPP mice. Proteins with reported chaperone-like activity were overrepresented among proteins up-regulated in rapamycin-fed PDAPP mice and the master regulator of the heat-shock response, heat-shock factor 1, was activated. This was accompanied by the up-regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin-fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B-crystallin, however, was unchanged, and the cap-dependent translation inhibitor 4E-BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre-existing mRNAs as a consequence of inhibition of cap-dependent translation. The effects of rapamycin on the reduction of Aβ, up-regulation of chaperones, and amelioration of AD-like cognitive deficits were recapitulated by transgenic over-expression of heat-shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target-of-rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098.
Collapse
Affiliation(s)
- Anson Pierce
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natalia Podlutskaya
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jonathan J. Halloran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A. Hussong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pei-Yi Lin
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Raquel Burbank
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew J. Hart
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
35
|
Chu ZQ, Ji Q. Sirolimus Did Not Affect CD4+CD25high Forkhead Box p3+T Cells of Peripheral Blood in Renal Transplant Recipients. Transplant Proc 2013; 45:153-6. [DOI: 10.1016/j.transproceed.2012.07.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/11/2012] [Indexed: 01/16/2023]
|
36
|
He K, Pan X, Zhou HR, Pestka JJ. Modulation of inflammatory gene expression by the ribotoxin deoxynivalenol involves coordinate regulation of the transcriptome and translatome. Toxicol Sci 2012; 131:153-63. [PMID: 22968694 DOI: 10.1093/toxsci/kfs266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The trichothecene deoxynivalenol (DON), a common contaminant of cereal-based foods, is a ribotoxic mycotoxin known to activate innate immune cells in vivo and in vitro. Although it is recognized that DON induces transcription and mRNA stabilization of inflammation-associated mRNAs in mononuclear phagocytes, it is not known if this toxin affects translation of selected mRNA species in the cellular pool. To address this question, we employed a focused inflammation/autoimmunity PCR array to compare DON-induced changes in profiles of polysome-associated mRNA transcripts (translatome) to total cellular mRNA transcripts (transcriptome) in the RAW 264.7 murine macrophage model. Exposure to DON at 250 ng/ml (0.84 µM) for 6 h induced robust expression changes in inflammatory response genes including cytokines, cytokine receptors, chemokines, chemokine receptors, and transcription factors, with 73% of the changes being highly comparable within transcriptome and translatome populations. When expression changes of selected representative inflammatory response genes in the polysome and cellular mRNA pools were quantified in a follow-up study by real-time PCR, closely coordinated regulation of the translatome and transcriptome was confirmed; however, modest but significant differences in the relative expression of some genes within the two pools were also detectable. Taken together, DON's capacity to alter translation expression of inflammation-associated genes appears to be driven predominantly by selective transcription and mRNA stabilization that have been reported previously; however, a small subset of these genes appear to be further regulated at the translational level.
Collapse
Affiliation(s)
- Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
37
|
Algarzae N, Hebron M, Miessau M, Moussa CEH. Parkin prevents cortical atrophy and Aβ-induced alterations of brain metabolism: ¹³C NMR and magnetic resonance imaging studies in AD models. Neuroscience 2012; 225:22-34. [PMID: 22960314 DOI: 10.1016/j.neuroscience.2012.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative aging disorder characterized by extracellular Aβ plaques and intraneuronal neurofibrillary tangles. We conducted longitudinal studies to examine the effects of Aβ on brain amino acid metabolism in lentiviral Aβ(1-42) gene transfer animals and transgenic AD mice. We also performed lentiviral parkin gene delivery to determine the effects of Aβ clearance in AD models. Aβ(1-42) activated mTOR signaling, and increased 4E-BP phosphorylation. Aβ(1-42) increased the synthesis of glutamate and aspartate, but not glutamine, leucine and isoleucine, but an increase in leucine and isoleucine levels was concurrent with diminution of neurotransmitters. Additionally, Aβ(1-42) attenuated mitochondrial tricarboxylic acid (TCA) cycle activity and decreased synthesis of its by-products. Glutamate levels increased prior to lactate accumulation, suggesting oxidative stress. Importantly, parkin reversed the effects of Aβ(1-42) on amino acid levels, prevented TCA cycle impairment and protected against glutamate toxicity. Cortical atrophy was observed in aged 3xTg-AD mice, while parkin expression was associated with reduced atrophy. Similarly, Aβ(1-42) resulted in significant cell loss, pronounced astrogliosis and cortical atrophy and parkin reduced astrogliosis and reversed Aβ(1-42) effects on cell loss and cortical atrophy. Taken together these data suggest that parkin prevents amyloid-induced alteration of brain metabolism and may be used as a therapeutic target to limit neuronal loss in AD.
Collapse
Affiliation(s)
- Norah Algarzae
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
38
|
Zimmermann M, Arachchige-Don AS, Donaldson MS, Dallapiazza RF, Cowan CE, Horne MC. Elevated cyclin G2 expression intersects with DNA damage checkpoint signaling and is required for a potent G2/M checkpoint arrest response to doxorubicin. J Biol Chem 2012; 287:22838-53. [PMID: 22589537 DOI: 10.1074/jbc.m112.376855] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
39
|
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012; 485:109-13. [PMID: 22552098 PMCID: PMC3347774 DOI: 10.1038/nature11083] [Citation(s) in RCA: 1127] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
The mTOR Complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses1. mTORC1 regulates mRNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in cells acutely treated with the mTOR inhibitor Torin1, which, unlike rapamycin, fully inhibits mTORC12. These data reveal a surprisingly simple view of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5′ terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5′ UTR length or complexity3. mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown4. Remarkably, loss of just the well-characterized mTORC1 substrates, the 4E-BP family of translational repressors, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.
Collapse
Affiliation(s)
- Carson C Thoreen
- Department of Cancer Biology, Dana Farber Cancer Institute, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485:55-61. [PMID: 22367541 DOI: 10.1038/nature10912] [Citation(s) in RCA: 1015] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 02/03/2012] [Indexed: 12/11/2022]
Abstract
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.
Collapse
|
41
|
Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C, Aramburu J. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res 2012; 40:4368-84. [PMID: 22287635 PMCID: PMC3378878 DOI: 10.1093/nar/gks038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.
Collapse
Affiliation(s)
- M Carmen Ortells
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Bonzon-Kulichenko E, Martínez-Martínez S, Trevisan-Herraz M, Navarro P, Redondo JM, Vázquez J. Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. J Proteomics 2011; 75:561-71. [PMID: 21920478 DOI: 10.1016/j.jprot.2011.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/22/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
43
|
Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:602408. [PMID: 22190865 PMCID: PMC3235422 DOI: 10.1155/2011/602408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022]
Abstract
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.
Collapse
|
44
|
Jiménez-López S, Mancera-Martínez E, Donayre-Torres A, Rangel C, Uribe L, March S, Jiménez-Sánchez G, Sánchez de Jiménez E. Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs. PLANT & CELL PHYSIOLOGY 2011; 52:1719-33. [PMID: 21880676 DOI: 10.1093/pcp/pcr114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Seed germination is a critical developmental period for plant propagation. Information regarding gene expression within this important period is relevant for understanding the main biochemical processes required for successful germination, particularly in maize, one of the most important cereals in the world. The present research focuses on the global microarray analysis of differential gene expression between quiescent and germinated maize embryo stages. This analysis revealed that a large number of mRNAs stored in the quiescent embryonic axes (QEAs) were differentially regulated during germination in the 24 h germinated embryonic axes (GEAs). These genes belong to 14 different functional categories and most of them correspond to metabolic processes, followed by transport, transcription and translation. Interestingly, the expression of mRNAs encoding ribosomal proteins [(r)-proteins], required for new ribosome formation during this fast-growing period, remains mostly unchanged throughout the germination process, suggesting that these genes are not regulated at the transcriptional level during this developmental period. To investigate this issue further, comparative microarray analyses on polysomal mRNAs from growth-stimulated and non-stimulated GEAs were performed. The results revealed that (r)-protein mRNAs accumulate to high levels in polysomes of the growth-stimulated tissues, indicating a translational control mechanism to account for the rapid (r)-protein synthesis observed within this period. Bioinformatic analysis of (r)-protein mRNAs showed that 5' TOP (tract of pyrimidines)-like sequences are present only in the 5'-untranslated region set of up-regulated (r)-protein mRNAs. This overall approach to the germination process allows an in-depth view of molecular changes, enabling a broader understanding of the regulatory mechanisms that occur during this process.
Collapse
Affiliation(s)
- Sara Jiménez-López
- Biochemistry Department, Faculty of Chemistry, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad Universitaria, 04510 Mexico, D.F. México
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Caron E, Vincent K, Fortier MH, Laverdure JP, Bramoullé A, Hardy MP, Voisin G, Roux PP, Lemieux S, Thibault P, Perreault C. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol Syst Biol 2011; 7:533. [PMID: 21952136 PMCID: PMC3202804 DOI: 10.1038/msb.2011.68] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023] Open
Abstract
Self/non-self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. From a systems-level perspective, very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we show that the immunopeptidome, and therefore the nature of the immune self, is plastic and moulded by cellular metabolic activity. By using a quantitative high-throughput mass spectrometry-based approach, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin results in dynamic changes in the cell surface MIPs landscape. Moreover, we provide systems-level evidence that the immunopeptidome projects at the cell surface a representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our findings open up new perspectives in systems immunology and predictive biology. Indeed, predicting variations in the immunopeptidome in response to cell-intrinsic and -extrinsic factors could be relevant to the rational design of immunotherapeutic interventions.
Collapse
Affiliation(s)
- Etienne Caron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Deregulated translation initiation is implicated extensively in cancer initiation and progression. Several translation initiation factors cooperate with known oncogenes, are elevated in human tumors and have been implicated in drug resistance. Consequently, there is a great deal of interest in targeting this process to develop new chemotherapeutics, especially since clinical trial results have been mixed when targeting upstream pathways, such as the mammalian target of rapamycin. Several inhibitors have been characterized over the last 5 years that target the ribosome recruitment phase (eukaryotic initiation factor [eIF]4E [antisense oligonucleotides and 4EGI-1] or eIF4A [pateamine A, hippuristanol and silvestrol]), some of which demonstrate activity in preclinical cancer models. The promise of these inhibitors as chemotherapeutics highlights the importance of targeting this pathway and supports efforts aimed at identifying the most susceptible targets. In addition, the framework in which translation inhibitors would be best employed (i.e., as single agents or as adjuvant therapy) in the clinic remains to be explored systematically. Small-molecule inhibitors of translation initiation are validating the idea that protein synthesis is a legitimate target for curtailing tumor growth.
Collapse
|
47
|
Influence of immunosuppressive drugs on the development of CD4(+)CD25(high) Foxp3(+) T cells in liver transplant recipients. Transplant Proc 2011; 42:2599-601. [PMID: 20832552 DOI: 10.1016/j.transproceed.2010.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/06/2009] [Accepted: 04/16/2010] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Many studies suggest that CD4(+)CD25(high) T regulatory cells (Tregs) have a crucial role in downregulating the immune response to alloantigens. In this study, we investigated the possible influence of immunosuppressive therapy, including rapamycin and calcineurin inhibitors (CNIs; tacrolimus), on level of Tregs in liver allograft recipients. MATERIALS AND METHODS We assessed 47 liver transplant recipients with stable liver function for ≥2 years, dividing them into 2 groups: Patients receiving rapamycin (n = 15), and those receiving tacrolimus (n=32). Thirty-eight, age-matched healthy subjects were used as normal controls. We examined the expression of CD4, CD25, and Foxp3 in peripheral blood T cells. Flow cytometry was performed with a FACSCalibur instrument with data analysis using Cell Quest software. RESULTS Rapamycin significantly increased the prevalence of Tregs, including the percentage of CD4(+)CD25(high) T cells in total lymphocytes and among total CD4(+) T cells, compared with the healthy subjects and the CNI group. The prevalence of Tregs in the CNIs group was significantly lower than that of controls. Foxp3 was expressed in >95% of CD4(+)CD25(high)T cells, whereas it was in <20% of CD4(+)CD25(low) T cells and not expressed among CD4(+)CD25(-) T cells. CONCLUSIONS Immunosuppressive therapy (rapamycin or CNIs) may have a different roles in tolerance induction among liver transplant recipients. Namely, rapamycin promoted the induction of a profile consistent with alloantigen tolerance; CNIs hampered this progression.
Collapse
|
48
|
Bellizzi AM, Bloomston M, Zhou XP, Iwenofu OH, Frankel WL. The mTOR Pathway is Frequently Activated in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. Appl Immunohistochem Mol Morphol 2010; 18:442-7. [DOI: 10.1097/pai.0b013e3181de115b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Genolet R, Rahim G, Gubler-Jaquier P, Curran J. The translational response of the human mdm2 gene in HEK293T cells exposed to rapamycin: a role for the 5'-UTRs. Nucleic Acids Res 2010; 39:989-1003. [PMID: 20876686 PMCID: PMC3035446 DOI: 10.1093/nar/gkq805] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polysomal messenger RNA (mRNA) populations change rapidly in response to alterations in the physiological status of the cell. For this reason, translational regulation, mediated principally at the level of initiation, plays a key role in the maintenance of cellular homeostasis. In an earlier translational profiling study, we followed the impact of rapamycin on polysome re-seeding. Despite the overall negative effect on transcript recruitment, we nonetheless observed that some mRNAs were significantly less affected. Consequently, their relative polysomal occupancy increased in the rapamycin-treated cells. The behaviour of one of these genes, mdm2, has been further analysed. Despite the absence of internal ribosome entry site activity we demonstrate, using a dual reporter assay, that both the reported mdm2 5′-UTRs confer resistance to rapamycin relative to the 5′-UTR of β-actin. This relative resistance is responsive to the downstream targets mTORC1 but did not respond to changes in the La protein, a reported factor acting positively on MDM2 translational expression. Furthermore, extended exposure to rapamycin in the presence of serum increased the steady-state level of the endogenous MDM2 protein. However, this response was effectively reversed when serum levels were reduced. Taken globally, these studies suggest that experimental conditions can dramatically modulate the expressional output during rapamycin exposure.
Collapse
Affiliation(s)
- Raphael Genolet
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School (CMU) 1, rue Michel Servet, CH-1205 Geneva, Switzerland
| | | | | | | |
Collapse
|
50
|
Pradet-Balade B, Leberbauer C, Schweifer N, Boulmé F. Massive translational repression of gene expression during mouse erythroid differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:630-41. [PMID: 20804875 DOI: 10.1016/j.bbagrm.2010.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/06/2010] [Accepted: 08/18/2010] [Indexed: 12/15/2022]
Abstract
We took advantage of a mouse erythroid differentiation system to determine the relative contribution of transcriptional and translational control during this process. Comparison of expression data obtained with total cytoplasmic mRNAs or polysome-bound mRNAs (actively translated mRNAs) on Affymetrix high-density oligonucleotide microarrays revealed different characteristics of the two regulatory mechanisms. Indeed, mRNA expression from a vast majority of genes was affected, albeit most changes were relatively small and occurred at a low pace. Translational control, however, affected a smaller fraction of genes but was effective at earlier time-points. This analysis unravels six clusters of genes showing no significant variation in mRNA expression levels whereas they are submitted to translational regulation. Their involvement in terminal mouse erythropoiesis may prove to be highly relevant. Furthermore, the data from specific and functional categories of genes emphasize that translational control, not only reinforces the transcriptional effect, but allows the cell to increase the complexity in gene expression regulation patterns.
Collapse
Affiliation(s)
- Bérengère Pradet-Balade
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia CNB-CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|