1
|
Hara S, Matsuhisa F, Kitajima S, Yatsuki H, Kubiura-Ichimaru M, Higashimoto K, Soejima H. Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth. Commun Biol 2024; 7:1605. [PMID: 39623082 PMCID: PMC11612015 DOI: 10.1038/s42003-024-07323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice. Here, we report that a mutation in the SOX-OCT binding site (SOBS) causes partial H19-ICR GOM, which does not extend beyond CTCF binding site 3 (CTS3). Moreover, simultaneously mutating both SOBS and CTS3 causes complete GOM of the entire H19-ICR, leading to the misexpression of the imprinted genes, and frequent BWS-like overgrowth. In addition, CTS3 is critical for CTCF/cohesin-mediated chromatin conformation. These results indicate that SOBS and CTS3 are the sequences in which mutations cause H19-ICR GOM leading to BWS-like overgrowth and are essential for maintaining the unmethylated state of maternal H19-ICR.
Collapse
Affiliation(s)
- Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
2
|
Matsuzaki H, Kimura M, Morihashi M, Tanimoto K. Imprinted DNA methylation of the H19 ICR is established and maintained in vivo in the absence of Kaiso. Epigenetics Chromatin 2024; 17:20. [PMID: 38840164 PMCID: PMC11151560 DOI: 10.1186/s13072-024-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. RESULTS Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. CONCLUSIONS Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Minami Kimura
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mizuki Morihashi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
3
|
Involvement of PGC7 and UHRF1 in the regulation of DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:917-930. [PMID: 35866604 PMCID: PMC9828313 DOI: 10.3724/abbs.2022080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gene dosage at the imprinted Dlk1-Dio3 locus is critical for cell growth and development. A relatively high gene expression within the Dlk1-Dio3 region, especially the active expression of Gtl2, has been identified as the only reliable marker for cell pluripotency. The DNA methylation state of the IG-DNA methylated regions (DMR), which is located upstream of the Gtl2 gene, dominantly contributes to the control of gene expression in the Dlk1-Dio3 locus. However, the precise mechanism underlying the regulation of DNA methylation in the IG-DMR remains largely unknown. Here, we use the F9 embryonal carcinoma cell line, a low pluripotent cell model, to identify the mechanism responsible for DNA methylation in the IG-DMR, and find that the interaction of PGC7 with UHRF1 is involved in maintaining DNA methylation and inducing DNA hypermethylation in the IG-DMR region. PGC7 and UHRF1 cooperatively bind in the IG-DMR to regulate the methylation of DNA and histones in this imprinted region. PGC7 promotes the recruitment of DNMT1 by UHRF1 to maintain DNA methylation in the IG-DMR locus. The interaction between PGC7 and UHRF1 strengthens their binding to H3K9me3 and leads to further enrichment of H3K9me3 in the IG-DMR by recruiting the specific histone methyltransferase SETDB1. Consequently, the abundance of H3K9me3 promotes DNMT3A to bind to the IG-DMR and increases DNA methylation level in this region. In summary, we propose a new mechanism of DNA methylation regulation in the IG-DMR locus and provide further insight into the understanding of the difference in Gtl2 expression levels between high and low pluripotent cells.
Collapse
|
4
|
Hirakawa K, Matsuzaki H, Tanimoto K. Transient establishment of imprinted DNA methylation of transgenic human IC1 sequence in mouse during the preimplantation period. Hum Mol Genet 2020; 29:3646-3661. [PMID: 33258474 DOI: 10.1093/hmg/ddaa253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023] Open
Abstract
Monoallelic gene expression at the Igf2/H19 locus is controlled by paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) that is established during spermatogenesis. We demonstrated that the H19 ICR fragment in transgenic mice acquires allele-specific methylation only after fertilization, which is essential for maintaining its allelic methylation during early embryogenesis. We identified a DNA element required for establishing postfertilization methylation within a 118 bp (m118) region. A previously generated knock-in mouse whose endogenous H19 ICR was substituted with the human H19 ICR (hIC1; 4.8 kb) sequence revealed that the hIC1 sequence was partially methylated in sperm, although this methylation was lost by the blastocyst stage, which we assume is due to a lack of an m118-equivalent sequence in the hIC1 transgene. To identify a cis sequence involved in postfertilization methylation within the hIC1 region, we generated three transgenic mouse lines (TgM): one carrying an 8.8 kb hIC1 sequence joined to m118 (hIC1+m118), one with the 8.8 kb hIC1 and one with the 5.8 kb hIC1 sequence joined to m118 (hIC1-3'+m118). We found that the hIC1-3' region was resistant to de novo DNA methylation throughout development. In contrast, the 5' portion of the hIC1 (hIC1-5') in both hIC1+m118 and hIC1 TgM were preferentially methylated on the paternal allele only during preimplantation. As DNA methylation levels were higher in hIC1+m118, the m118 sequence could also induce imprinted methylation of the human sequence. Most importantly, the hIC1-5' sequence appears to possess an activity equivalent to that of m118.
Collapse
Affiliation(s)
- Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
5
|
Hori N, Kubo S, Sakasegawa T, Sakurai C, Hatsuzawa K. OCT3/4-binding sequence-dependent maintenance of the unmethylated state of CTCF-binding sequences with DNA demethylation and suppression of de novo DNA methylation in the H19 imprinted control region. Gene 2020; 743:144606. [DOI: 10.1016/j.gene.2020.144606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
|
6
|
Kubo S, Murata C, Okamura H, Sakasegawa T, Sakurai C, Hatsuzawa K, Hori N. Oct motif variants in Beckwith–Wiedemann syndrome patients disrupt maintenance of the hypomethylated state of the
H19/IGF2
imprinting control region. FEBS Lett 2020; 594:1517-1531. [DOI: 10.1002/1873-3468.13750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Shuichi Kubo
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Chihiro Murata
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Hanayo Okamura
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Taku Sakasegawa
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Chiye Sakurai
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| | - Naohiro Hori
- Division of Molecular Biology Faculty of Medicine School of Life Sciences Tottori University Yonago Japan
| |
Collapse
|
7
|
Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp Hematol 2019; 76:38-48.e2. [PMID: 31295506 PMCID: PMC7670548 DOI: 10.1016/j.exphem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.
Collapse
|
8
|
The extent of DNA methylation anticipation due to a genetic defect in ICR1 in Beckwith-Wiedemann syndrome. J Hum Genet 2019; 64:937-943. [DOI: 10.1038/s10038-019-0634-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/02/2019] [Accepted: 06/09/2019] [Indexed: 11/08/2022]
|
9
|
Oji A, Amano T, Maeta Y, Hori N, Hatsuzawa K, Sato K, Nakanishi T. Fate of methylated/unmethylated H19 imprinting control region after paternal and maternal pronuclear injection. Exp Anim 2017; 66:367-378. [PMID: 28674270 PMCID: PMC5682349 DOI: 10.1538/expanim.17-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The paternal-allele-specific methylation of the Igf2/H19 imprinting
control region (ICR) is established during gametogenesis and maintained throughout
development. To elucidate the requirement of the germline passage in the maintenance of
the imprinting methylation, we established a system introducing a methylated or
unmethylated ICR-containing DNA fragment (ICR-F) into the paternal or maternal genome by
microinjecting into the paternal or maternal pronucleus of fertilized eggs, and traced the
methylation pattern in the ICR-F. When the ICR-F was injected in a methylated form, it was
demethylated approximately to half degree at blastocyst stage but was almost completely
remethylated at 3 weeks of age. In the case of the unmethylated form, the ICR-F remained
unmethylated at the blastocyst stage, but was almost half-methylated at 3 weeks of age.
Interestingly, the paternally injected ICR-F was highly methylated compared with
maternally injected ICR-F at 3 weeks of age, partially mimicking the endogenous
methylation pattern. Moreover, introduction of mutations in the CTCF (CCCTC binding
factor) binding sites of the ICR-F, which are known to be important for the maintenance of
hypomethylated maternal ICR, induced hypermethylation of the mutated ICR-F in both
paternal and maternal pronuclear injected 3-week-old mice. Our results suggest the
presence of a protection-against-methylation activity of the CTCF binding site in
establishing the preferential paternal methylation during post-fertilization development
and the importance of germline passage in the maintenance of the parental specific
methylation at H19 ICR.
Collapse
Affiliation(s)
- Asami Oji
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Tomojiro Amano
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Yasuaki Maeta
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Naohiro Hori
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Kenzo Sato
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | - Tomoko Nakanishi
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.,Present address: Laboratory of Molecular Genetics, The Institute of Medical Science, Tokyo University, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Vázquez-Arreguín K, Tantin D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:792-804. [PMID: 26877236 PMCID: PMC4880489 DOI: 10.1016/j.bbagrm.2016.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/29/2023]
Abstract
The metazoan-specific POU domain transcription factor family comprises activities underpinning developmental processes such as embryonic pluripotency and neuronal specification. Some POU family proteins efficiently bind an 8-bp DNA element known as the octamer motif. These proteins are known as Oct transcription factors. Oct1/POU2F1 is the only widely expressed POU factor. Unlike other POU factors it controls no specific developmental or organ system. Oct1 was originally described to operate at target genes associated with proliferation and immune modulation, but more recent results additionally identify targets associated with oxidative and cytotoxic stress resistance, metabolic regulation, stem cell function and other unexpected processes. Oct1 is pro-oncogenic in multiple contexts, and several recent reports provide broad evidence that Oct1 has prognostic and therapeutic value in multiple epithelial tumor settings. This review focuses on established and emerging roles of Oct1 in epithelial tumors, with an emphasis on mechanisms of transcription regulation by Oct1 that may underpin these findings. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Shakya A, Goren A, Shalek A, German CN, Snook J, Kuchroo VK, Yosef N, Chan RC, Regev A, Williams MA, Tantin D. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J Exp Med 2015; 212:2115-31. [PMID: 26481684 PMCID: PMC4647264 DOI: 10.1084/jem.20150363] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Shakya et al. identify the transcription factor Oct1 and its cofactor OCA-B as central mediators for generating memory T cell responses in mice. Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alon Goren
- Broad Technology Labs, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alex Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Department of Physics, Harvard University, Cambridge, MA 02138 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jeremy Snook
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nir Yosef
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aviv Regev
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Matthew A Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
13
|
Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151:60-70. [PMID: 25708826 DOI: 10.1016/j.mad.2015.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
A complex interplay between multiple biological effects shapes the aging process. The advent of genome-wide quantitative approaches in the epigenetic field has highlighted the effective impact of epigenetic deregulation, particularly of DNA methylation, on aging. Age-associated alterations in DNA methylation are commonly grouped in the phenomenon known as "epigenetic drift" which is characterized by gradual extensive demethylation of genome and hypermethylation of a number of promoter-associated CpG islands. Surprisingly, specific DNA regions show directional epigenetic changes in aged individuals suggesting the importance of these events for the aging process. However, the epigenetic information obtained until now in aging needs a re-consideration due to the recent discovery of 5-hydroxymethylcytosine, a new DNA epigenetic mark present on genome. A recapitulation of the factors involved in the regulation of DNA methylation and the changes occurring in aging will be described in this review also considering the data available on 5 hmC.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Claudio Franceschi
- Department of Experimental Pathology, Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy.
| |
Collapse
|
14
|
Ideraabdullah FY, Thorvaldsen JL, Myers JA, Bartolomei MS. Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region. Hum Mol Genet 2014; 23:6246-59. [PMID: 24990148 DOI: 10.1093/hmg/ddu344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Jennifer A Myers
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| |
Collapse
|
15
|
Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, Le Jule M, Chantot-Bastaraud S, Keren B, Lyonnet S, Michot C, Rossi M, Pasquier L, Gicquel C, Rossignol S, Le Bouc Y, Netchine I. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 2014; 23:5763-73. [PMID: 24916376 DOI: 10.1093/hmg/ddu290] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.
Collapse
Affiliation(s)
- Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Frédéric Brioude
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Nathalie Thibaud
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Marilyne Le Jule
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Sandra Chantot-Bastaraud
- INSERM U933, Service de Génétique et D'Embryologie Médicales, Paris 75571, France, AP-HP, Hôpital Trousseau, Service de Génétique et D'Embryologie Médicales, Paris 75571, France
| | - Boris Keren
- Département de Génétique, CRICM UPMC INSERM UMR_S975/CNRS UMR 7225, GH Pitié-Salpêtrière, APHP, Paris, France
| | - Stanislas Lyonnet
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Michot
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies du Développement Centre-Est, Hospices Civils de Lyon, Bron, France, INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, Lyon, France
| | - Laurent Pasquier
- Service de Génétique Médicale-CLAD Ouest, Hôpital Sud, CHU Rennes, Rennes, France and
| | - Christine Gicquel
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France,
| |
Collapse
|
16
|
Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66. [PMID: 24613343 PMCID: PMC4058095 DOI: 10.1016/j.molcel.2014.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cornelia E Zorca
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Niels J Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
18
|
Higashimoto K, Jozaki K, Kosho T, Matsubara K, Fuke T, Yamada D, Yatsuki H, Maeda T, Ohtsuka Y, Nishioka K, Joh K, Koseki H, Ogata T, Soejima H. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient. Clin Genet 2013; 86:539-44. [PMID: 24299031 DOI: 10.1111/cge.12318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
The IGF2/H19-imprinting control region (ICR1) functions as an insulator to methylation-sensitive binding of CTCF protein, and regulates imprinted expression of IGF2 and H19 in a parental origin-specific manner. ICR1 methylation defects cause abnormal expression of imprinted genes, leading to Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Not only ICR1 microdeletions involving the CTCF-binding site, but also point mutations and a small deletion of the OCT-binding site have been shown to trigger methylation defects in BWS. Here, mutational analysis of ICR1 in 11 BWS and 12 SRS patients with ICR1 methylation defects revealed a novel de novo point mutation of the OCT-binding site on the maternal allele in one BWS patient. In BWS, all reported mutations and the small deletion of the OCT-binding site, including our case, have occurred within repeat A2. These findings indicate that the OCT-binding site is important for maintaining an unmethylated status of maternal ICR1 in early embryogenesis.
Collapse
Affiliation(s)
- K Higashimoto
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zimmerman DL, Boddy CS, Schoenherr CS. Aberrant methylation of the H19 imprinting control region may increase the risk of spontaneous abortion. Epigenomics 2013; 8:e81962. [PMID: 24324735 PMCID: PMC3855764 DOI: 10.1371/journal.pone.0081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022] Open
Abstract
A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.
Collapse
Affiliation(s)
- David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Biology Department, College of the Ozarks, Point Lookout, Missouri, United States of America
- * E-mail:
| | - Craig S. Boddy
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Division of Medical Education, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher S. Schoenherr
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
20
|
Sakaguchi R, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K. Sox-Oct motifs contribute to maintenance of the unmethylated H19 ICR in YAC transgenic mice. Hum Mol Genet 2013; 22:4627-37. [DOI: 10.1093/hmg/ddt311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Epigenetic and genetic alterations of the imprinting disorder Beckwith–Wiedemann syndrome and related disorders. J Hum Genet 2013; 58:402-9. [DOI: 10.1038/jhg.2013.51] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
|
22
|
Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith-Wiedemann syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:131-40. [PMID: 23592339 DOI: 10.1002/ajmg.c.31363] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of Beckwith-Wiedemann syndrome (BWS) has recently been enhanced by advances in its molecular characterization. These advances have further delineated intricate (epi)genetic regulation of the imprinted gene cluster on chromosome 11p15.5 and the role of these genes in normal growth and development. Studies of the molecular changes associated with the BWS phenotype have been instrumental in elucidating critical molecular elements in this imprinted region. This review will provide updated information on the multiple new regulatory elements that have been recently found to contribute to in cis or in trans control of imprinted gene expression in the chromosome 11p15.5 region and the clinical expression of the BWS phenotype.
Collapse
Affiliation(s)
- Sanaa Choufani
- Research Institute of the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
23
|
Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2013; 21:1344-8. [PMID: 23572028 PMCID: PMC3831082 DOI: 10.1038/ejhg.2013.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/02/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022] Open
Abstract
Classical Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children's mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Collapse
|
24
|
Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, Rademacher K, Guala A, Enklaar T, Anichini C, Cirillo Silengo M, Graf N, Prawitt D, Cubellis MV, Horsthemke B, Buiting K, Riccio A. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 2013; 22:544-57. [PMID: 23118352 PMCID: PMC3542864 DOI: 10.1093/hmg/dds465] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
At chromosome 11p15.5, the imprinting centre 1 (IC1) controls the parent of origin-specific expression of the IGF2 and H19 genes. The 5 kb IC1 region contains multiple target sites (CTS) for the zinc-finger protein CTCF, whose binding on the maternal chromosome prevents the activation of IGF2 and allows that of H19 by common enhancers. CTCF binding helps maintaining the maternal IC1 methylation-free, whereas on the paternal chromosome gamete-inherited DNA methylation inhibits CTCF interaction and enhancer-blocking activity resulting in IGF2 activation and H19 silencing. Maternally inherited 1.4-2.2 kb deletions are associated with methylation of the residual CTSs and Beckwith-Wiedemann syndrome, although with different penetrance and expressivity. We explored the relationship between IC1 microdeletions and phenotype by analysing a number of previously described and novel mutant alleles. We used a highly quantitative assay based on next generation sequencing to measure DNA methylation in affected families and analysed enhancer-blocking activity and CTCF binding in cultured cells. We demonstrate that the microdeletions mostly affect IC1 function and CTCF binding by changing CTS spacing. Thus, the extent of IC1 inactivation and the clinical phenotype are influenced by the arrangement of the residual CTSs. A CTS spacing similar to the wild-type allele results in moderate IC1 inactivation and is associated with stochastic DNA methylation of the maternal IC1 and incomplete penetrance. Microdeletions with different CTS spacing display severe IC1 inactivation and are associated with IC1 hypermethylation and complete penetrance. Careful characterization of the IC1 microdeletions is therefore needed to predict recurrence risks and phenotypical outcomes.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany,
| | - Valentina Citro
- Department of Structural and Functional Biology, University of Naples ‘Federico II’, 80126 Naples, Italy,
- Department of Environmental Science, Second University of Naples, 81100 Caserta, Italy,
| | - Angela Sparago
- Department of Environmental Science, Second University of Naples, 81100 Caserta, Italy,
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, 80131 Naples, Italy,
| | - Agostina De Crescenzo
- Department of Environmental Science, Second University of Naples, 81100 Caserta, Italy,
| | - Flavia Cerrato
- Department of Environmental Science, Second University of Naples, 81100 Caserta, Italy,
| | - Melanie Heitmann
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany,
| | - Katrin Rademacher
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany,
| | - Andrea Guala
- SOC Pediatria, Ospedale Castelli, Verbania (VCO), Italy,
| | - Thorsten Enklaar
- Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz, Germany,
| | - Cecilia Anichini
- Dipartimento di Scienze Pediatriche e dell'Adolescenza, Università di Torino, Torino, Italy,
| | | | - Notker Graf
- Zentrum für Humangenetik, Hildesheim, Germany
| | - Dirk Prawitt
- Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz, Germany,
| | - Maria Vittoria Cubellis
- Department of Structural and Functional Biology, University of Naples ‘Federico II’, 80126 Naples, Italy,
| | | | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany,
| | - Andrea Riccio
- Department of Environmental Science, Second University of Naples, 81100 Caserta, Italy,
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, 80131 Naples, Italy,
| |
Collapse
|
25
|
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A, Tanimoto K. The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol 2013; 33:858-71. [PMID: 23230275 PMCID: PMC3571351 DOI: 10.1128/mcb.01003-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuuta Sakaguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Hori N, Yamane M, Kouno K, Sato K. Induction of DNA demethylation depending on two sets of Sox2 and adjacent Oct3/4 binding sites (Sox-Oct motifs) within the mouse H19/insulin-like growth factor 2 (Igf2) imprinted control region. J Biol Chem 2012; 287:44006-16. [PMID: 23115243 DOI: 10.1074/jbc.m112.424580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA demethylation is used to establish and maintain an unmethylated state. The molecular mechanisms to induce DNA demethylation at a particular genomic locus remain unclear. The mouse H19/insulin-like growth factor 2 (Igf2) imprinted control region (ICR) is a methylation state-sensitive insulator that regulates transcriptional activation of both genes. The unmethylated state of the ICR established in female germ cells is maintained during development, resisting the wave of genome-wide de novo methylation. We previously demonstrated that a DNA fragment (fragment b) derived from this ICR-induced DNA demethylation when it was transfected into undifferentiated mouse embryonal carcinoma cell lines. Moreover, two octamer motifs within fragment b were necessary to induce this DNA demethylation. Here, we demonstrated that both octamer motifs and their flanking sequences constitute Sox-Oct motifs (SO1 and SO2) and that the SO1 region, which requires at least four additional elements, including the SO2 region, contributes significantly to the induction of high-frequency DNA demethylation as a Sox-Oct motif. Moreover, RNAi-mediated inhibition of Oct3/4 expression in P19 cells resulted in a reduced DNA demethylation frequency of fragment b but not of the adenine phosphoribosyltransferase gene CpG island. The Sox motif of SO1 could function as a sensor for a hypermethylated state of the ICR to repress demethylation activity. These results indicate that Sox-Oct motifs in the ICR determine the cell type, DNA region, and allele specificity of DNA demethylation. We propose a link between the mechanisms for maintenance of the unmethylated state of the H19/Igf2 ICR and the undifferentiated cell-specific induction of DNA demethylation.
Collapse
Affiliation(s)
- Naohiro Hori
- Division of Molecular Biology, Faculty of Medicine, Department of Molecular and Cellular Biology, School of Life Sciences, Tottori University, Tottori 683-8503, Japan.
| | | | | | | |
Collapse
|
27
|
Takahashi T, Matsuzaki H, Tomizawa SI, Okamura E, Ichiyanagi T, Fukamizu A, Sasaki H, Tanimoto K. Sequences in the H19 ICR that are transcribed as small RNA in oocytes are dispensable for methylation imprinting in YAC transgenic mice. Gene 2012; 508:26-34. [PMID: 22890135 DOI: 10.1016/j.gene.2012.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022]
Abstract
Allele-specific methylation of the endogenous H19 imprinting control region (ICR) is established in sperm. We previously showed that the paternal H19 ICR in yeast artificial chromosome (YAC) transgenic mice (TgM) was preferentially methylated in somatic cells, but not in germ cells, suggesting that differential methylation could be established after fertilization. In this report, we discovered small RNA molecules in growing oocytes, the nucleotide sequences of which mapped to the H19 ICR. To test if these small RNA sequences play a role in the establishment of differential methylation, we deleted the sequences from the H19 ICR DNA and generated YAC TgM. In somatic cells of these mice, methylation imprinting of the transgene was normally established. In addition, the mutant fragment was not methylated in sperm and eggs. These data demonstrate that sequences in the H19 ICR that correspond to the small RNA sequences are dispensable for methylation imprinting in YAC TgM.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cells, Cultured
- Chromosomes, Artificial, Yeast
- DNA Methylation
- Female
- Fertilization/genetics
- Genomic Imprinting
- Locus Control Region/genetics
- Male
- Mice
- Mice, Transgenic
- Oocytes/metabolism
- RNA, Long Noncoding
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Testis/metabolism
Collapse
Affiliation(s)
- Takuya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Hum Genet 2011; 20:240-3. [PMID: 21863054 DOI: 10.1038/ejhg.2011.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The imprinted expression of the IGF2 and H19 genes is controlled by the imprinting control region 1 (ICR1) located at chromosome 11p15.5. DNA methylation defects involving ICR1 result in two growth disorders with opposite phenotypes: an overgrowth disorder, the Beckwith-Wiedemann syndrome (maternal ICR1 hypermethylation in 10% of BWS cases) and a growth retardation disorder, the Silver-Russell syndrome (paternal ICR1 loss of methylation in 60% of SRS cases). In familial BWS, hypermethylation of ICR1 has been found in association with microdeletion of repetitive DNA motifs within ICR1 that bind the zinc finger protein CTCF; but more recently, ICR1 point mutations were described in BWS pedigrees. We present a case report of two brothers with BWS and prolonged post-pubertal growth resulting in very large stature. A maternally inherited point mutation was identified in ICR1 in both brothers, which altered binding of OCT transcription factors. The same mutation was present on the paternally inherited allele of their unaffected mother. This is a second report of a point mutation causing ICR1 hypermethylation by altering an OCT-binding motif. The atypical growth phenotype of the brothers may be connected to the unusual underlying cause of their BWS.
Collapse
|
29
|
Ideraabdullah FY, Abramowitz LK, Thorvaldsen JL, Krapp C, Wen SC, Engel N, Bartolomei MS. Novel cis-regulatory function in ICR-mediated imprinted repression of H19. Dev Biol 2011; 355:349-57. [PMID: 21600199 DOI: 10.1016/j.ydbio.2011.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/25/2011] [Accepted: 04/30/2011] [Indexed: 11/27/2022]
Abstract
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Amouyal M. Gene insulation. Part II: natural strategies in vertebrates. Biochem Cell Biol 2011; 88:885-98. [PMID: 21102651 DOI: 10.1139/o10-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The way a gene is insulated from its genomic environment in vertebrates is not basically different from what is observed in yeast and Drosophila (preceding article in this issue). If the formation of a looped chromatin domain, whether generated by attachment to the nuclear matrix or not, has become a classic way to confine an enhancer to a specific genomic domain and to coordinate, sequentially or simultaneously, gene expression in a given program, its role has been extended to new networks of genes or regulators within the same gene. A wider definition of the bases of the chromatin loops (nonchromosomal nuclear structures or genomic interacting elements) is also available. However, whereas insulation in Drosophila is due to a variety of proteins, in vertebrates insulators are still practically limited to CTCF (the CCCTC-binding factor), which appears in all cases to be the linchpin of an architecture that structures the assembly of DNA-protein interactions for gene regulation. As in yeast and Drosophila, the economy of means is the rule and the same unexpected diversion of known transcription elements (active or poised RNA polymerases, TFIIIC elements out of tRNA genes, permanent histone replacement) is observed, with variants peculiar to CTCF. Thus, besides structuring DNA looping, CTCF is a barrier to DNA methylation or interferes with all sorts of transcription processes, such as that generating heterochromatin.
Collapse
|
31
|
Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, Cabrol S, Le Caignec C, David A, Le Bouc Y, El-Osta A, Gicquel C. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 2009; 19:803-14. [DOI: 10.1093/hmg/ddp549] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Wang H, Gao MX, Li L, Wang B, Hori N, Sato K. Isolation, expression, and characterization of the human ZCRB1 gene mapped to 12q12. Genomics 2006; 89:59-69. [PMID: 16959469 DOI: 10.1016/j.ygeno.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/18/2006] [Indexed: 11/29/2022]
Abstract
While isolating morphine-dependence-related genes with differential display, we cloned a novel human gene, zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1, alias MADP-1) encoding a nuclear protein (217 residues). The ZCRB1 gene consists of eight exons and seven introns. It is mapped to 12q12, which is within a locus reported for Parkinson disease (M. Funayama et al., Ann. Neurol. 51 (2002) 296-301). The 5'-flanking region contains an enhancer core motif and binding sites for AP-1, AP-2, and LF-A1. ZCRB1 is characterized by an RNA-binding motif and a CCHC zinc finger motif. The latter overlaps the C..C...GH....C core nucleocapsid motif. ZCRB1 is conserved from zebrafish to human and shares homology with cold-inducible RNA-binding protein. Transfection assay showed that ZCRB1 is located in the nucleoplasm, but outside the nucleolus. ZCRB1 gene expression was stimulated by morphine, inhibited by 30-36 degrees C, and up-regulated by 39 degrees C incubation in SH-SY5Y neural cells. Zcrb1 gene expression is highest in the heart and testes, lower in the cerebellum, and lowest in the liver in mice. ZCRB1 mRNA expression is specifically elevated in hepatocarcinoma HepG2 cells. These data provide new clues for further understanding of morphine dependence, heat shock, and hepatocarcinoma.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Enhancer Elements, Genetic
- Exons
- Gene Expression/genetics
- HeLa Cells
- Humans
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Morphine/pharmacology
- Morphine Dependence/genetics
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Transfection
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Haoran Wang
- Department of Psychology and Program for Neuroscience, University of Toronto, Toronto, ON, Canada M5S 3G3.
| | | | | | | | | | | |
Collapse
|
33
|
Szabó PE, Han L, Hyo-Jung J, Mann JR. Mutagenesis in mice of nuclear hormone receptor binding sites in the Igf2/H19 imprinting control region. Cytogenet Genome Res 2006; 113:238-46. [PMID: 16575186 DOI: 10.1159/000090838] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/19/2005] [Indexed: 11/19/2022] Open
Abstract
The H19/Igf2 imprinting control region (ICR) is a DNA methylation-dependent chromatin insulator in somatic cells. The hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites, and blocks activity of the proximal Igf2 promoter by insulating it from the shared distal enhancers. The hypermethylated paternally inherited ICR lacks CTCF binding and insulator activity, but induces methylation-silencing of the paternal H19 promoter. The paternal-specific methylation of the ICR is established in the male germ cells, while the ICR emerges from the female germ line in an unmethylated form. Despite several attempts to find cis-regulatory elements, it is still unknown what determines these male and female germ cell-specific epigenetic modifications. We recently proposed that five in vivo footprints spanning fifteen half nuclear hormone receptor (NHR) binding sites within the ICR might be involved, and here we report on the effects of mutagenizing all of these half sites in mice. No effect was obtained--in the female and male germ lines the mutant ICR remained hypomethylated and hypermethylated, respectively. The ICR imprinting mechanism remains undefined.
Collapse
Affiliation(s)
- P E Szabó
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-3011, USA.
| | | | | | | |
Collapse
|
34
|
Hanel ML, Lau JCY, Paradis I, Drouin R, Wevrick R. Chromatin modification of the human imprinted NDN (necdin) gene detected by in vivo footprinting. J Cell Biochem 2005; 94:1046-57. [PMID: 15669020 DOI: 10.1002/jcb.20365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Allele-specific transcription is a characteristic feature of imprinted genes. Many imprinted genes are also transcribed in a tissue- or cell type-specific manner. Overlapping epigenetic signals must, therefore, modulate allele-specific and tissue-specific expression at imprinted loci. In addition, long-range interactions with an Imprinting Center (IC) may influence transcription, in an allele-specific or cell-type specific manner. The IC on human chromosome 15q11 controls parent-of-origin specific allelic identity of a set of genes located in cis configuration within 2 Mb. We have now examined the chromatin accessibility of the promoter region of one of the Imprinting Centre-controlled genes, NDN encoding necdin, using in vivo DNA footprinting to identify sites of DNA-protein interaction and altered chromatin configuration. We identified sites of modified chromatin that mark the parental alleles in NDN-expressing cells, and in cells in which NDN is not expressed. Our results suggest that long-lasting allele-specific marks and more labile tissue-specific marks layer epigenetic information that can be discriminated using DNA footprinting methodologies. Sites of modified chromatin mark the parental alleles in NDN-expressing cells, and in cells in which NDN is not expressed. Our results suggest that a layering of epigenetic information controls allele- and tissue-specific gene expression of this imprinted gene.
Collapse
Affiliation(s)
- Meredith L Hanel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
35
|
Prawitt D, Enklaar T, Gärtner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, Schmidtke P, Reutzel D, Fees S, Lucito R, Korzon M, Brozek I, Limon J, Housman DE, Pelletier J, Zabel B. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor. Proc Natl Acad Sci U S A 2005; 102:4085-90. [PMID: 15743916 PMCID: PMC554791 DOI: 10.1073/pnas.0500037102] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 mRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19/IGF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS.
Collapse
Affiliation(s)
- Dirk Prawitt
- Children's Hospital, University of Mainz, Langenbeckstrasse 1, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD, Disteche CM. Boundaries between Chromosomal Domains of X Inactivation and Escape Bind CTCF and Lack CpG Methylation during Early Development. Dev Cell 2005; 8:31-42. [PMID: 15669143 DOI: 10.1016/j.devcel.2004.10.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.
Collapse
|
37
|
Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004; 275:269-86. [PMID: 15501218 DOI: 10.1016/j.ydbio.2004.08.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/10/2004] [Accepted: 08/10/2004] [Indexed: 01/10/2023]
Abstract
The past few years have seen remarkable progress in our understanding of embryonic stem cell (ES cell) biology. The necessity of examining human ES cells in culture, coupled with the wealth of genomic data and the multiplicity of cell lines available, has enabled researchers to identify critical conserved pathways regulating self-renewal and identify markers that tightly correlate with the ES cell state. Comparison across species has suggested additional pathways likely to be important in long-term self-renewal of ES cells including heterochronic genes, microRNAs, genes involved in telomeric regulation, and polycomb repressors. In this review, we have discussed information on molecules known to be important in ES cell self-renewal or blastocyst development and highlighted known differences between mouse and human ES cells. We suggest that several additional pathways required for self-renewal remain to be discovered and these likely include genes involved in antisense regulation, microRNAs, as well as additional global repressive pathways and novel genes. We suggest that cross species comparisons using large-scale genomic analysis tools are likely to reveal conserved and divergent paths required for ES cell self-renewal and will allow us to derive ES lines from species and strains where this has been difficult.
Collapse
Affiliation(s)
- Mahendra Rao
- Stem Cell Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Rand E, Ben-Porath I, Keshet I, Cedar H. CTCF Elements Direct Allele-Specific Undermethylation at the Imprinted H19 Locus. Curr Biol 2004; 14:1007-12. [PMID: 15182675 DOI: 10.1016/j.cub.2004.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 03/26/2004] [Accepted: 03/30/2004] [Indexed: 11/30/2022]
Abstract
The H19 imprinted gene locus is regulated by an upstream 2 kb imprinting control region (ICR) that influences allele-specific expression, DNA methylation, and replication timing. This ICR becomes de novo methylated during late spermatogenesis in the male but emerges from oogenesis in an unmethylated form, and this allele-specific pattern is then maintained throughout early development and in all tissues of the mouse. We have used a genetic approach involving transfection into embryonic stem (ES) cells in order to decipher how the maternal allele is protected from de novo methylation at the time of implantation. Our studies show that CCCTC binding factor (CTCF) boundary elements within the ICR have the ability to prevent de novo methylation on the maternal allele. Since CTCF does not recognize its binding sequence when methylated, this reaction does not occur on the paternal allele, thus preserving the gamete-derived, allele-specific pattern. These results suggest that CTCF may play a general role in the maintenance of differential methylation patterns in vivo.
Collapse
Affiliation(s)
- Eyal Rand
- Department of Cellular Biochemistry, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
39
|
Bowman AB, Levorse JM, Ingram RS, Tilghman SM. Functional characterization of a testis-specific DNA binding activity at the H19/Igf2 imprinting control region. Mol Cell Biol 2003; 23:8345-51. [PMID: 14585991 PMCID: PMC262389 DOI: 10.1128/mcb.23.22.8345-8351.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA methylation state of the H19/Igf2 imprinting control region (ICR) is differentially set during gametogenesis. To identify factors responsible for the paternally specific DNA methylation of the ICR, germ line and somatic extracts were screened for proteins that bind to the ICR in a germ line-specific manner. A specific DNA binding activity that was restricted to the male germ line and enriched in neonatal testis was identified. Its three binding sites within the ICR are very similar to the consensus sequence for nuclear receptor extended half sites. To determine if these binding sites are required for establishment of the paternal epigenetic state, a mouse strain in which the three sites were mutated was generated. The mutated ICR was able to establish a male-specific epigenetic state in sperm that was indistinguishable from that established by the wild-type ICR, indicating that these sequences are either redundant or have no function. An analysis of the methylated state of the mutant ICR in the soma revealed no differences from the wild-type ICR but did uncover in both mutant and wild-type chromosomes a significant relaxation in the stringency of the methylated state of the paternal allele and the unmethylated state of the maternal allele in neonatal and adult tissues.
Collapse
Affiliation(s)
- Aaron B Bowman
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
40
|
Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R, Ohlsson R. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 2003; 17:586-90. [PMID: 12629040 PMCID: PMC196004 DOI: 10.1101/gad.254903] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 01/08/2003] [Indexed: 11/24/2022]
Abstract
The repression of the maternally inherited Igf2 allele has been proposed to depend on a methylation-sensitive chromatin insulator organized by the 11 zinc finger protein CTCF at the H19 imprinting control region (ICR). Here we document that point mutations of the nucleotides in physical contact with CTCF within the endogenous H19 ICR lead to loss of CTCF binding and Igf2 imprinting only when passaged through the female germline. This effect is accompanied by a significant loss of methylation protection of the maternally derived H19 ICR. Because CTCF interacts with other imprinting control regions, it emerges as a central factor responsible for interpreting and propagating gamete-derived epigenetic marks and for organizing epigenetically controlled expression domains.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Development & Genetics, Evolution Biology Centre, Uppsala University, S-752 36 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|