1
|
Withers-Martinez C, George R, Maslen S, Jean L, Hackett F, Skehel M, Blackman MJ. The malaria parasite egress protease SUB1 is activated through precise, plasmepsin X-mediated cleavage of the SUB1 prodomain. Biochim Biophys Acta Gen Subj 2024; 1868:130665. [PMID: 38969256 DOI: 10.1016/j.bbagen.2024.130665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.
Collapse
Affiliation(s)
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Létitia Jean
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
2
|
Martinez M, Bouillon A, Brûlé S, Raynal B, Haouz A, Alzari PM, Barale JC. Prodomain-driven enzyme dimerization: a pH-dependent autoinhibition mechanism that controls Plasmodium Sub1 activity before merozoite egress. mBio 2024; 15:e0019824. [PMID: 38386597 PMCID: PMC10936178 DOI: 10.1128/mbio.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.
Collapse
Affiliation(s)
- Mariano Martinez
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Anthony Bouillon
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Pedro M. Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Jean-Christophe Barale
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Kovada V, Withers-Martinez C, Bobrovs R, Ce̅rule H, Liepins E, Grinberga S, Hackett F, Collins CR, Kreicberga A, Jiménez-Díaz MB, Angulo-Barturen I, Rasina D, Suna E, Jaudzems K, Blackman MJ, Jirgensons A. Macrocyclic Peptidomimetic Plasmepsin X Inhibitors with Potent In Vitro and In Vivo Antimalarial Activity. J Med Chem 2023; 66:10658-10680. [PMID: 37505188 PMCID: PMC10424242 DOI: 10.1021/acs.jmedchem.3c00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/29/2023]
Abstract
The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.
Collapse
Affiliation(s)
- Vadims Kovada
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Raitis Bobrovs
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Hele̅na Ce̅rule
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Liepins
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Fiona Hackett
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | - Christine R. Collins
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | | | - María Belén Jiménez-Díaz
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Iñigo Angulo-Barturen
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Dace Rasina
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Suna
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Michael J. Blackman
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
- Faculty
of Infectious and Tropical Diseases, London
School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
4
|
Mukherjee S, Nasamu AS, Rubiano KC, Goldberg DE. Activation of the Plasmodium Egress Effector Subtilisin-Like Protease 1 Is Mediated by Plasmepsin X Destruction of the Prodomain. mBio 2023; 14:e0067323. [PMID: 37036362 PMCID: PMC10128010 DOI: 10.1128/mbio.00673-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Following each round of replication, daughter merozoites of the malaria parasite Plasmodium falciparum escape (egress) from the infected host red blood cell (RBC) by rupturing the parasitophorous vacuole membrane (PVM) and the RBC membrane (RBCM). A proteolytic cascade orchestrated by a parasite serine protease, subtilisin-like protease 1 (SUB1), regulates the membrane breakdown. SUB1 activation involves primary autoprocessing of the 82-kDa zymogen to a 54-kDa (p54) intermediate that remains bound to its inhibitory propiece (p31) postcleavage. A second processing step converts p54 to the terminal 47-kDa (p47) form of SUB1. Although the aspartic protease plasmepsin X (PM X) has been implicated in the activation of SUB1, the mechanism remains unknown. Here, we show that upon knockdown of PM X, the inhibitory p31-p54 complex of SUB1 accumulates in the parasites. Using recombinant PM X and SUB1, we show that PM X can directly cleave both p31 and p54. We have mapped the cleavage sites on recombinant p31. Furthermore, we demonstrate that the conversion of p54 to p47 can be effected by cleavage at either SUB1 or PM X cleavage sites that are adjacent to one another. Importantly, once the p31 is removed, p54 is fully functional inside the parasites, suggesting that the conversion to p47 is dispensable for SUB1 activity. Relief of propiece inhibition via a heterologous protease is a novel mechanism for subtilisin activation. IMPORTANCE Malaria parasites replicate inside a parasitophorous vacuole within the host red blood cells. The exit of mature progeny from the infected host cells is essential for further dissemination. Parasite exit is a highly regulated, explosive process that involves membrane breakdown. To do this, the parasite utilizes a serine protease called SUB1 that proteolytically activates various effector proteins. SUB1 activity is dependent on an upstream protease called PM X, although the mechanism was unknown. Here, we describe the molecular basis for PM X-mediated SUB1 activation. PM X proteolytically degrades the inhibitory segment of SUB1, thereby activating it. The involvement of a heterologous protease is a novel mechanism for subtilisin activation.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Armiyaw S. Nasamu
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kelly C. Rubiano
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Mukherjee S, Nasamu AS, Rubiano K, Goldberg DE. Activation of the Plasmodium egress effector subtilisin-like protease 1 is achieved by plasmepsin X destruction of the propiece. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524002. [PMID: 36712005 PMCID: PMC9882241 DOI: 10.1101/2023.01.13.524002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Following each round of replication, daughter merozoites of the malaria parasite Plasmodium falciparum escape (egress) from the infected host red blood cell (RBC) by rupturing the parasitophorous vacuole membrane (PVM) and the RBC membrane (RBCM). A proteolytic cascade orchestrated by the parasite’s serine protease, subtilisin-like protease 1 (SUB1) regulates the membrane breakdown. SUB1 activation involves primary auto-processing of the 82 kDa zymogen to a 54 kDa (p54) intermediate that remains bound to its inhibitory propiece (p31) post cleavage. A second processing step converts p54 to the terminal 47 kDa (p47) form of SUB1. Although the aspartic protease plasmepsin X (PM X) has been implicated in the activation of SUB1, the mechanism remains unknown. Here, we show that upon knockdown of PM X the inhibitory p31/p54 complex of SUB1 accumulates in the parasites. Using recombinant PM X and SUB1, we show that PM X can directly cleave both p31 and p54. We have mapped the cleavage sites on recombinant p31. Furthermore, we demonstrate that the conversion of p54 to p47 can be effected by cleavage at either a SUB1 or PM X cleavage site that are adjacent to one another. Importantly once the p31 is removed, p54 is fully functional inside the parasites suggesting that the conversion to p47 is dispensable for SUB1 activity. Relief of propiece inhibition via a heterologous protease is a novel mechanism for subtilisin activation. Significance Statement Malaria parasites replicate inside a parasitophorous vacuole within the host red blood cells. Exit of mature progeny from the infected host cells is essential for further dissemination. Parasite exit is a highly regulated, explosive process that involves membrane breakdown. To do this, the parasite utilizes a serine protease, called the subtilisin-like protease 1 or SUB1 that proteolytically activates various effector proteins. SUB1 activity is dependent on an upstream protease, called plasmepsin X (PM X), although the mechanism was unknown. Here we describe the molecular basis for PM X mediated SUB1 activation. PM X proteolytically degrades the inhibitory segment of SUB1, thereby activating it. Involvement of a heterologous protease is a novel mechanism for subtilisin activation.
Collapse
|
6
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
7
|
Zabala-Peñafiel A, Cysne-Finkelstein L, Conceição-Silva F, Fagundes A, Miranda LDFC, Souza-Silva F, Brandt AAML, Dias-Lopes G, Alves CR. Novel Insights Into Leishmania (Viannia) braziliensis In Vitro Fitness Guided by Temperature Changes Along With Its Subtilisins and Oligopeptidase B. Front Cell Infect Microbiol 2022; 12:805106. [PMID: 35531337 PMCID: PMC9069558 DOI: 10.3389/fcimb.2022.805106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are virulence factors with a recognized impact on the Leishmania spp. life cycle. This study considers a set of analyses measuring phenotypic factors of L. (V.) braziliensis clinical isolates as promastigotes growth curves, murine peritoneal macrophages infection, inflammatory mediators production, and serine proteases gene expression (subtilisin 13: S13, subtilisin 28: S28, oligopeptidase B: OPB) assessing these isolates’ fitness on in vitro conditions. Parasites had different behavior during the early growth phase from day zero to day three, and all isolates reached the stationary growth phase between days four and seven. Macrophages infection showed two tendencies, one of decreased infection rate and number of parasites per macrophage (Infection Index <1000) and another with a constant infection index (≥1400). TNF-α (≥10 pg/mL) detected in infections by 75% of isolates, IL-6 (≥80 pg/mL) by 30% of isolates and low levels of NO (≥0.01µM) in almost all infections. Gene expression showed higher values of S13 (≥2RQ) in the intracellular amastigotes of all the isolates evaluated. On the contrary, S28 expression was low (≤1RQ) in all isolates. OPB expression was different between promastigotes and intracellular amastigotes, being significantly higher (≥2RQ) in the latter form of 58% of the isolates. Predictive structural assays of S13 and OPB were performed to explore temperature influence on gene expression and the encoded proteases. Gene expression data is discussed based on in silico predictions of regulatory regions that show plasticity in the linearity index of secondary structures of S13 and OPB 3’-untranslated regions of mRNA, dependent on temperature changes. While hairpin structures suggest an active region of mRNA for both genes above 26°C, pseudoknot structure found in S13 is an indication of a particular profile of this gene at mammalian host temperatures (37°C). Furthermore, the predicted 3D structures are in accordance with the influence of these temperatures on the catalytic site stability of both enzymes, favoring their action over peptide substrates. Data gathered here suggest that L. (V.) braziliensis serine proteases can be influenced by the temperature conditions affecting parasite fitness throughout its life cycle.
Collapse
Affiliation(s)
- Anabel Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lea Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fatima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Fagundes
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana de Freitas Campos Miranda
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Iguaçu, Dom Rodrigo, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Artur A. M. L. Brandt
- Departamento de Computação e Sistemas, Faculdade de Educação Tecnológica do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciência da Computação, Univeritas-Rio, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| |
Collapse
|
8
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
9
|
Lehmann C, Tan MSY, de Vries LE, Russo I, Sanchez MI, Goldberg DE, Deu E. Plasmodium falciparum dipeptidyl aminopeptidase 3 activity is important for efficient erythrocyte invasion by the malaria parasite. PLoS Pathog 2018; 14:e1007031. [PMID: 29768491 PMCID: PMC5973627 DOI: 10.1371/journal.ppat.1007031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/29/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Parasite egress from infected erythrocytes and invasion of new red blood cells are essential processes for the exponential asexual replication of the malaria parasite. These two tightly coordinated events take place in less than a minute and are in part regulated and mediated by proteases. Dipeptidyl aminopeptidases (DPAPs) are papain-fold cysteine proteases that cleave dipeptides from the N-terminus of protein substrates. DPAP3 was previously suggested to play an essential role in parasite egress. However, little is known about its enzymatic activity, intracellular localization, or biological function. In this study, we recombinantly expressed DPAP3 and demonstrate that it has indeed dipeptidyl aminopeptidase activity, but contrary to previously studied DPAPs, removal of its internal prodomain is not required for activation. By combining super resolution microscopy, time-lapse fluorescence microscopy, and immunoelectron microscopy, we show that Plasmodium falciparum DPAP3 localizes to apical organelles that are closely associated with the neck of the rhoptries, and from which DPAP3 is secreted immediately before parasite egress. Using a conditional knockout approach coupled to complementation studies with wild type or mutant DPAP3, we show that DPAP3 activity is important for parasite proliferation and critical for efficient red blood cell invasion. We also demonstrate that DPAP3 does not play a role in parasite egress, and that the block in egress phenotype previously reported for DPAP3 inhibitors is due to off target or toxicity effects. Finally, using a flow cytometry assay to differentiate intracellular parasites from extracellular parasites attached to the erythrocyte surface, we show that DPAP3 is involved in the initial attachment of parasites to the red blood cell surface. Overall, this study establishes the presence of a DPAP3-dependent invasion pathway in malaria parasites.
Collapse
Affiliation(s)
- Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laura E. de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilaria Russo
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Daniel E. Goldberg
- Departments of Molecular Microbiology and Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
10
|
Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont DH, Tolia N, Beck JR, Meyers MJ, Niles JC, Zimmerberg J, Goldberg DE. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 2018; 358:518-522. [PMID: 29074774 PMCID: PMC5928414 DOI: 10.1126/science.aan1478] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/18/2017] [Indexed: 01/31/2023]
Abstract
Proteases of the malaria parasite Plasmodium falciparum have long been investigated as drug targets. The P. falciparum genome encodes 10 aspartic proteases called plasmepsins, which are involved in diverse cellular processes. Most have been studied extensively but the functions of plasmepsins IX and X (PMIX and PMX) were unknown. Here we show that PMIX is essential for erythrocyte invasion, acting on rhoptry secretory organelle biogenesis. In contrast, PMX is essential for both egress and invasion, controlling maturation of the subtilisin-like serine protease SUB1 in exoneme secretory vesicles. We have identified compounds with potent antimalarial activity targeting PMX, including a compound known to have oral efficacy in a mouse model of malaria.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Svetlana Glushakova
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilaria Russo
- Faculty of Biology, Medicine and Health, Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Barbara Vaupel
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anna Oksman
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arthur S Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Niraj Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Josh R Beck
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
11
|
Thomas JA, Tan MSY, Bisson C, Borg A, Umrekar TR, Hackett F, Hale VL, Vizcay-Barrena G, Fleck RA, Snijders AP, Saibil HR, Blackman MJ. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol 2018; 3:447-455. [PMID: 29459732 PMCID: PMC6089347 DOI: 10.1038/s41564-018-0111-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023]
Abstract
Malaria parasites replicate within a parasitophorous vacuole in red blood cells (RBCs). Progeny merozoites egress upon rupture of first the parasitophorous vacuole membrane (PVM), then poration and rupture of the RBC membrane (RBCM). Egress is protease-dependent 1 , but none of the effector molecules that mediate membrane rupture have been identified and it is unknown how sequential rupture of the two membranes is controlled. Minutes before egress, the parasite serine protease SUB1 is discharged into the parasitophorous vacuole2-6 where it cleaves multiple substrates2,5,7-9 including SERA6, a putative cysteine protease10-12. Here, we show that Plasmodium falciparum parasites lacking SUB1 undergo none of the morphological transformations that precede egress and fail to rupture the PVM. In contrast, PVM rupture and RBCM poration occur normally in SERA6-null parasites but RBCM rupture does not occur. Complementation studies show that SERA6 is an enzyme that requires processing by SUB1 to function. RBCM rupture is associated with SERA6-dependent proteolytic cleavage within the actin-binding domain of the major RBC cytoskeletal protein β-spectrin. We conclude that SUB1 and SERA6 play distinct, essential roles in a coordinated proteolytic cascade that enables sequential rupture of the two bounding membranes and culminates in RBCM disruption through rapid, precise, SERA6-mediated disassembly of the RBC cytoskeleton.
Collapse
Affiliation(s)
- James A Thomas
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Aaron Borg
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Trishant R Umrekar
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK
| | - Victoria L Hale
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Helen R Saibil
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
12
|
Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog 2017; 13:e1006453. [PMID: 28683142 PMCID: PMC5500368 DOI: 10.1371/journal.ppat.1006453] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. Malaria, a disease that kills hundreds of thousands of people each year, is caused by a single-celled parasite that grows in red blood cells of infected individuals. Following each round of parasite multiplication, the infected red cells are actively ruptured in a process called egress, releasing a new generation of parasites. Egress is essential for progression to clinical disease, but little is known about how it is controlled. In this work we set out to address the function in egress of a Plasmodium falciparum protein called SERA5, an abundant component of the vacuole in which the parasite grows. We show that parasites lacking SERA5 (or lacking both SERA5 and a closely-related protein called SERA4) undergo accelerated but defective egress in which the bounding vacuole and red cell membranes do not rupture properly. This impedes the escape and subsequent replication of the newly-developed parasites. We also show that modification of SERA5 by parasites proteases just prior to egress is important for SERA5 function. Our results show that SERA5 is a ‘negative regulator’ of egress, controlling the speed of the pathway that leads to disruption of the membranes surrounding the intracellular parasite. Our findings increase our understanding of the molecular mechanisms underlying malarial egress and show that efficient egress requires tight control of the timing of membrane rupture.
Collapse
Affiliation(s)
- Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jonathan Atid
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
14
|
Giganti D, Bouillon A, Tawk L, Robert F, Martinez M, Crublet E, Weber P, Girard-Blanc C, Petres S, Haouz A, Hernandez JF, Mercereau-Puijalon O, Alzari PM, Barale JC. A novel Plasmodium-specific prodomain fold regulates the malaria drug target SUB1 subtilase. Nat Commun 2014; 5:4833. [PMID: 25204226 DOI: 10.1038/ncomms5833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/29/2014] [Indexed: 11/09/2022] Open
Abstract
The Plasmodium subtilase SUB1 plays a pivotal role during the egress of malaria parasites from host hepatocytes and erythrocytes. Here we report the crystal structure of full-length SUB1 from the human-infecting parasite Plasmodium vivax, revealing a bacterial-like catalytic domain in complex with a Plasmodium-specific prodomain. The latter displays a novel architecture with an amino-terminal insertion that functions as a 'belt', embracing the catalytic domain to further stabilize the quaternary structure of the pre-protease, and undergoes calcium-dependent autoprocessing during subsequent activation. Although dispensable for recombinant enzymatic activity, the SUB1 'belt' could not be deleted in Plasmodium berghei, suggesting an essential role of this domain for parasite development in vivo. The SUB1 structure not only provides a valuable platform to develop new anti-malarial candidates against this promising drug target, but also defines the Plasmodium-specific 'belt' domain as a key calcium-dependent regulator of SUB1 during parasite egress from host cells.
Collapse
Affiliation(s)
- David Giganti
- 1] Institut Pasteur, Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France [2] CNRS UMR 3528, F-75015 Paris, France
| | - Anthony Bouillon
- 1] Institut Pasteur, Unité d'Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France [2] CNRS URA 2581, F-75015 Paris, France
| | - Lina Tawk
- 1] Institut Pasteur, Unité d'Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France [2] CNRS URA 2581, F-75015 Paris, France
| | - Fabienne Robert
- 1] Institut Pasteur, Unité d'Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France [2] CNRS URA 2581, F-75015 Paris, France
| | - Mariano Martinez
- 1] Institut Pasteur, Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France [2] CNRS UMR 3528, F-75015 Paris, France
| | - Elodie Crublet
- Institut Pasteur, Proteopole &CNRS UMR 3528, F-75015 Paris, France
| | - Patrick Weber
- Institut Pasteur, Proteopole &CNRS UMR 3528, F-75015 Paris, France
| | | | - Stéphane Petres
- Institut Pasteur, Proteopole &CNRS UMR 3528, F-75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Proteopole &CNRS UMR 3528, F-75015 Paris, France
| | - Jean-François Hernandez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR5247, CNRS, Universités Montpellier 1 &2, 15 avenue Charles Flahault, 34093 Montpellier cedex 5, France
| | - Odile Mercereau-Puijalon
- 1] Institut Pasteur, Unité d'Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France [2] CNRS URA 2581, F-75015 Paris, France
| | - Pedro M Alzari
- 1] Institut Pasteur, Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France [2] CNRS UMR 3528, F-75015 Paris, France [3] Institut Pasteur, Proteopole &CNRS UMR 3528, F-75015 Paris, France
| | - Jean-Christophe Barale
- 1] Institut Pasteur, Unité d'Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France [2] CNRS URA 2581, F-75015 Paris, France
| |
Collapse
|
15
|
The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat Commun 2014; 5:3726. [PMID: 24785947 PMCID: PMC4024747 DOI: 10.1038/ncomms4726] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022] Open
Abstract
Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite.
Collapse
|
16
|
Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets. Interdiscip Perspect Infect Dis 2014; 2014:453186. [PMID: 24799897 PMCID: PMC3988940 DOI: 10.1155/2014/453186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.
Collapse
|
17
|
Suarez C, Volkmann K, Gomes AR, Billker O, Blackman MJ. The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog 2013; 9:e1003811. [PMID: 24348254 PMCID: PMC3861531 DOI: 10.1371/journal.ppat.1003811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
Transmission of the malaria parasite to its vertebrate host involves an obligatory exoerythrocytic stage in which extensive asexual replication of the parasite takes place in infected hepatocytes. The resulting liver schizont undergoes segmentation to produce thousands of daughter merozoites. These are released to initiate the blood stage life cycle, which causes all the pathology associated with the disease. Whilst elements of liver stage merozoite biology are similar to those in the much better-studied blood stage merozoites, little is known of the molecular players involved in liver stage merozoite production. To facilitate the study of liver stage biology we developed a strategy for the rapid production of complex conditional alleles by recombinase mediated engineering in Escherichia coli, which we used in combination with existing Plasmodium berghei deleter lines expressing Flp recombinase to study subtilisin-like protease 1 (SUB1), a conserved Plasmodium serine protease previously implicated in blood stage merozoite maturation and egress. We demonstrate that SUB1 is not required for the early stages of intrahepatic growth, but is essential for complete development of the liver stage schizont and for production of hepatic merozoites. Our results indicate that inhibitors of SUB1 could be used in prophylactic approaches to control or block the clinically silent pre-erythrocytic stage of the malaria parasite life cycle. Malaria is caused by a single-celled parasite and is transmitted by the bite of an infected mosquito. The inoculated sporozoite forms of the parasite invade liver cells where they replicate, eventually releasing thousands of merozoites into the bloodstream to initiate the blood stage parasite life cycle which causes clinical malaria. The liver stage of the parasite life cycle is asymptomatic, so it is widely considered a potential target for prophylactic vaccine- or drug-based approaches designed to prevent infection. In this study, we use a robust, highly efficient gene engineering approach called recombineering, combined with a conditional gene deletion strategy to examine the function in liver stages of a parasite protease called SUB1, previously implicated in release of blood stage parasites. We show that SUB1 is expressed in the liver stage schizont and that the protease is essential for production of liver stage merozoites. Our results enhance our understanding of malarial liver stage biology, provide new tools for studying essential gene function in malaria, and suggest that inhibitors of SUB1 could be used as prophylactic drugs to prevent clinical malaria.
Collapse
Affiliation(s)
- Catherine Suarez
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Katrin Volkmann
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (OB); (MJB)
| | - Michael J. Blackman
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
- * E-mail: (OB); (MJB)
| |
Collapse
|
18
|
Expression of functional Plasmodium falciparum enzymes using a wheat germ cell-free system. EUKARYOTIC CELL 2013; 12:1653-63. [PMID: 24123271 DOI: 10.1128/ec.00222-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 μg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.
Collapse
|
19
|
Bouillon A, Giganti D, Benedet C, Gorgette O, Pêtres S, Crublet E, Girard-Blanc C, Witkowski B, Ménard D, Nilges M, Mercereau-Puijalon O, Stoven V, Barale JC. In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound. J Biol Chem 2013; 288:18561-73. [PMID: 23653352 PMCID: PMC3689996 DOI: 10.1074/jbc.m113.456764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.
Collapse
Affiliation(s)
- Anthony Bouillon
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - David Giganti
- the Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France
- CNRS, UMR3258, F-75015 Paris, France
| | - Christophe Benedet
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Olivier Gorgette
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - Stéphane Pêtres
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Elodie Crublet
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Christine Girard-Blanc
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Benoit Witkowski
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Didier Ménard
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Michael Nilges
- the Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France
- CNRS, UMR3258, F-75015 Paris, France
| | - Odile Mercereau-Puijalon
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - Véronique Stoven
- the Center for Computational Biology, Mines-ParisTech, Fontainebleau F-77300 France, and
- the Institut Curie, INSERM U900, F-75248 Paris, France
| | - Jean-Christophe Barale
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| |
Collapse
|
20
|
Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, Blackman MJ. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog 2013; 9:e1003344. [PMID: 23675297 PMCID: PMC3649973 DOI: 10.1371/journal.ppat.1003344] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.
Collapse
Affiliation(s)
- Christine R. Collins
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Malcolm Strath
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Maria Penzo
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
21
|
Fulle S, Withers-Martinez C, Blackman MJ, Morris GM, Finn PW. Molecular determinants of binding to the Plasmodium subtilisin-like protease 1. J Chem Inf Model 2013; 53:573-83. [PMID: 23414065 PMCID: PMC3608215 DOI: 10.1021/ci300581z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PfSUB1, a subtilisin-like protease of the human malaria parasite Plasmodium falciparum, is known to play important roles during the life cycle of the parasite and has emerged as a promising antimalarial drug target. In order to provide a detailed understanding of the origin of binding determinants of PfSUB1 substrates, we performed molecular dynamics simulations in combination with MM-GBSA free energy calculations using a homology model of PfSUB1 in complex with different substrate peptides. Key interactions, as well as residues that potentially make a major contribution to the binding free energy, are identified at the prime and nonprime side of the scissile bond and comprise peptide residues P4 to P2'. This finding stresses the requirement for peptide substrates to interact with both prime and nonprime side residues of the PfSUB1 binding site. Analyzing the energetic contributions of individual amino acids within the peptide-PfSUB1 complexes indicated that van der Waals interactions and the nonpolar part of solvation energy dictate the binding strength of the peptides and that the most favorable interactions are formed by peptide residues P4 and P1. Hot spot residues identified in PfSUB1 are dispersed over the entire binding site, but clustered areas of hot spots also exist and suggest that either the S4-S2 or the S1-S2' binding site should be exploited in efforts to design small molecule inhibitors. The results are discussed with respect to which binding determinants are specific to PfSUB1 and, therefore, might allow binding selectivity to be obtained.
Collapse
Affiliation(s)
- Simone Fulle
- InhibOx Ltd. , Oxford Centre for Innovation, New Road, Oxford OX1 1BY, U.K
| | | | | | | | | |
Collapse
|
22
|
Katrib M, Ikin RJ, Brossier F, Robinson M, Slapetova I, Sharman PA, Walker RA, Belli SI, Tomley FM, Smith NC. Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 2012; 13:685. [PMID: 23216867 PMCID: PMC3770453 DOI: 10.1186/1471-2164-13-685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/04/2012] [Indexed: 12/28/2022] Open
Abstract
Background Proteases regulate pathogenesis in apicomplexan parasites but investigations of proteases have been largely confined to the asexual stages of Plasmodium falciparum and Toxoplasma gondii. Thus, little is known about proteases in other Apicomplexa, particularly in the sexual stages. We screened the Eimeria tenella genome database for proteases, classified these into families and determined their stage specific expression. Results Over forty protease genes were identified in the E. tenella genome. These were distributed across aspartic (three genes), cysteine (sixteen), metallo (fourteen) and serine (twelve) proteases. Expression of at least fifteen protease genes was upregulated in merozoites including homologs of genes known to be important in host cell invasion, remodelling and egress in P. falciparum and/or T. gondii. Thirteen protease genes were specifically expressed or upregulated in gametocytes; five of these were in two families of serine proteases (S1 and S8) that are over-represented in the coccidian parasites, E. tenella and T. gondii, distinctive within the Apicomplexa because of their hard-walled oocysts. Serine protease inhibitors prevented processing of EtGAM56, a protein from E. tenella gametocytes that gives rise to tyrosine-rich peptides that are incorporated into the oocyst wall. Conclusion Eimeria tenella possesses a large number of protease genes. Expression of many of these genes is upregulated in asexual stages. However, expression of almost one-third of protease genes is upregulated in, or confined to gametocytes; some of these appear to be unique to the Coccidia and may play key roles in the formation of the oocyst wall, a defining feature of this group of parasites.
Collapse
Affiliation(s)
- Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway, N.S.W. 2007, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCoy JM, Whitehead L, van Dooren GG, Tonkin CJ. TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathog 2012; 8:e1003066. [PMID: 23226109 PMCID: PMC3514314 DOI: 10.1371/journal.ppat.1003066] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection. Ca(2+)-mediated signaling events modulate key steps required for host cell egress, invasion and motility, including secretion of microneme organelles and activation of the force-generating actomyosin-based motor. Here we show that a plant-like Calcium-Dependent Protein Kinase (CDPK) in T. gondii, TgCDPK3, which localizes to the inner side of the plasma membrane, is not essential to the parasite but is required for optimal in vitro growth. We demonstrate that TgCDPK3, the orthologue of Plasmodium PfCDPK1, regulates Ca(2+) ionophore- and DTT-induced host cell egress, but not motility or invasion. Furthermore, we show that targeting to the inner side of the plasma membrane by dual acylation is required for its activity. Interestingly, TgCDPK3 regulates microneme secretion when parasites are intracellular but not extracellular. Indeed, the requirement for TgCDPK3 is most likely determined by the high K(+) concentration of the host cell. Our results therefore suggest that TgCDPK3's role differs from that previously hypothesized, and rather support a model where this kinase plays a role in rapidly responding to Ca(2+) signaling in specific ionic environments to upregulate multiple processes required for gliding motility.
Collapse
Affiliation(s)
- James M. McCoy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
24
|
Ruecker A, Shea M, Hackett F, Suarez C, Hirst EMA, Milutinovic K, Withers-Martinez C, Blackman MJ. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 2012; 287:37949-63. [PMID: 22984267 PMCID: PMC3488066 DOI: 10.1074/jbc.m112.400820] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte.
Collapse
Affiliation(s)
- Andrea Ruecker
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael Shea
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Fiona Hackett
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Catherine Suarez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Elizabeth M. A. Hirst
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Katarina Milutinovic
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Chrislaine Withers-Martinez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael J. Blackman
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
25
|
Withers-Martinez C, Suarez C, Fulle S, Kher S, Penzo M, Ebejer JP, Koussis K, Hackett F, Jirgensons A, Finn P, Blackman MJ. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target. Int J Parasitol 2012; 42:597-612. [PMID: 22543039 PMCID: PMC3378952 DOI: 10.1016/j.ijpara.2012.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 01/09/2023]
Abstract
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop ‘pan-reactive’ drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1.
Collapse
|
26
|
Alam A, Bhatnagar RK, Chauhan VS. Expression and characterization of catalytic domain of Plasmodium falciparum subtilisin-like protease 3. Mol Biochem Parasitol 2012; 183:84-9. [PMID: 22285468 DOI: 10.1016/j.molbiopara.2011.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022]
Abstract
PfSUB3 is the third subtilisin-like protease annotated in Plasmodium genome database "PlasmoDB". The other two members, PfSUB1 and PfSUB2 have been implicated in merozoite egress and invasion in asexual blood stages. In this study, we recombinantly expressed a region of PfSUB3 spanning from Asn(334) to Glu(769) (PfSUB3c) which encompassed the predicted catalytic domain with all the active site residues and predicted mature region spanning from Thr(516) to Glu(769) (PfSUB3m) in E. coli. PfSUB3m showed PMSF-sensitive proteolytic activity in in vitro assays. Replacement of active site serine with alanine in PfSUB3m resulted in inactive protein. We found that PfSUB3c and PfSUB3m undergo truncation to produce a 25-kDa species which was sufficient for proteolytic activity. Quantitative real-time PCR, immnufluorescence assay and Western blot analyses revealed that PfSUB3 is expressed at late asexual blood stages. Serine protease activity of PfSUB3 and its expression in the late stages of erythrocytic schizogony are indicative of some possible role of the protease in merozoite egress and/or invasion processes.
Collapse
Affiliation(s)
- Asrar Alam
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
27
|
Bastianelli G, Bouillon A, Nguyen C, Crublet E, Pêtres S, Gorgette O, Le-Nguyen D, Barale JC, Nilges M. Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS One 2011; 6:e21812. [PMID: 21818266 PMCID: PMC3144881 DOI: 10.1371/journal.pone.0021812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 06/13/2011] [Indexed: 12/02/2022] Open
Abstract
Background Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. Findings Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged −5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P.falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1. Conclusions Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.
Collapse
Affiliation(s)
- Giacomo Bastianelli
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, URA2185, Paris, France
| | - Anthony Bouillon
- Unité d'Immunologie Moleculaires des Parasites, Département de Parasitologie et de Mycologie, Paris, France
- CNRS, URA2581, Paris, France
| | | | - Elodie Crublet
- Institut Pasteur, Plate-Forme 5 - Production de Protéines Recombinantes et d'Anticorps, Paris, France
| | - Stéphane Pêtres
- Institut Pasteur, Plate-Forme 5 - Production de Protéines Recombinantes et d'Anticorps, Paris, France
| | - Olivier Gorgette
- Unité d'Immunologie Moleculaires des Parasites, Département de Parasitologie et de Mycologie, Paris, France
- CNRS, URA2581, Paris, France
| | | | - Jean-Christophe Barale
- Unité d'Immunologie Moleculaires des Parasites, Département de Parasitologie et de Mycologie, Paris, France
- CNRS, URA2581, Paris, France
| | - Michael Nilges
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, URA2185, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun 2011; 79:1086-97. [PMID: 21220481 DOI: 10.1128/iai.00902-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan pathogen responsible for the most severe form of human malaria, Plasmodium falciparum, replicates asexually in erythrocytes within a membrane-bound parasitophorous vacuole (PV). Following each round of intracellular growth, the PV membrane (PVM) and host cell membrane rupture to release infectious merozoites in a protease-dependent process called egress. Previous work has shown that, just prior to egress, an essential, subtilisin-like parasite protease called PfSUB1 is discharged into the PV lumen, where it directly cleaves a number of important merozoite surface and PV proteins. These include the essential merozoite surface protein complex MSP1/6/7 and members of a family of papain-like putative proteases called SERA (serine-rich antigen) that are implicated in egress. To determine whether PfSUB1 has additional, previously unrecognized substrates, we have performed a bioinformatic and proteomic analysis of the entire late asexual blood stage proteome of the parasite. Our results demonstrate that PfSUB1 is responsible for the proteolytic processing of a range of merozoite, PV, and PVM proteins, including the rhoptry protein RAP1 (rhoptry-associated protein 1) and the merozoite surface protein MSRP2 (MSP7-related protein-2). Our findings imply multiple roles for PfSUB1 in the parasite life cycle, further supporting the case for considering the protease as a potential new antimalarial drug target.
Collapse
|
29
|
Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD. An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 2010; 175:169-80. [PMID: 21075147 DOI: 10.1016/j.molbiopara.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/24/2023]
Abstract
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Child MA, Epp C, Bujard H, Blackman MJ. Regulated maturation of malaria merozoite surface protein-1 is essential for parasite growth. Mol Microbiol 2010; 78:187-202. [PMID: 20735778 PMCID: PMC2995310 DOI: 10.1111/j.1365-2958.2010.07324.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The malaria parasite Plasmodium falciparum invades erythrocytes where it replicates to produce invasive merozoites, which eventually egress to repeat the cycle. Merozoite surface protein-1 (MSP1), a prime malaria vaccine candidate and one of the most abundant components of the merozoite surface, is implicated in the ligand-receptor interactions leading to invasion. MSP1 is extensively proteolytically modified, first just before egress and then during invasion. These primary and secondary processing events are mediated respectively, by two parasite subtilisin-like proteases, PfSUB1 and PfSUB2, but the function and biological importance of the processing is unknown. Here, we examine the regulation and significance of MSP1 processing. We show that primary processing is ordered, with the primary processing site closest to the C-terminal end of MSP1 being cleaved last, irrespective of polymorphisms throughout the rest of the molecule. Replacement of the secondary processing site, normally refractory to PfSUB1, with a PfSUB1-sensitive site, is deleterious to parasite growth. Our findings show that correct spatiotemporal regulation of MSP1 maturation is crucial for the function of the protein and for maintenance of the parasite asexual blood-stage life cycle.
Collapse
Affiliation(s)
- Matthew A Child
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
31
|
Koussis K, Withers-Martinez C, Yeoh S, Child M, Hackett F, Knuepfer E, Juliano L, Woehlbier U, Bujard H, Blackman MJ. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J 2009; 28:725-35. [PMID: 19214190 PMCID: PMC2647770 DOI: 10.1038/emboj.2009.22] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/14/2009] [Indexed: 11/16/2022] Open
Abstract
The malaria parasite Plasmodium falciparum replicates within an intraerythrocytic parasitophorous vacuole (PV). Rupture of the host cell allows release (egress) of daughter merozoites, which invade fresh erythrocytes. We previously showed that a subtilisin-like protease called PfSUB1 regulates egress by being discharged into the PV in the final stages of merozoite development to proteolytically modify the SERA family of papain-like proteins. Here, we report that PfSUB1 has a further role in ‘priming' the merozoite prior to invasion. The major protein complex on the merozoite surface comprises three proteins called merozoite surface protein 1 (MSP1), MSP6 and MSP7. We show that just before egress, all undergo proteolytic maturation by PfSUB1. Inhibition of PfSUB1 activity results in the accumulation of unprocessed MSPs on the merozoite surface, and erythrocyte invasion is significantly reduced. We propose that PfSUB1 is a multifunctional processing protease with an essential role in both egress of the malaria merozoite and remodelling of its surface in preparation for erythrocyte invasion.
Collapse
|
32
|
Abstract
Malaria is a scourge of large swathes of the globe, stressing the need for a continuing effort to better understand the biology of its aetiological agent. Like all pathogens of the phylum Apicomplexa, the malaria parasite spends part of its life inside a host cell or cyst. It eventually needs to escape (egress) from this protective environment to progress through its life cycle. Egress of Plasmodium blood-stage merozoites, liver-stage merozoites and mosquito midgut sporozoites relies on protease activity, so the enzymes involved have potential as antimalarial drug targets. This review examines the role of parasite proteases in egress, in the light of current knowledge of the mechanics of the process. Proteases implicated in egress include the cytoskeleton-degrading malarial proteases falcipain-2 and plasmepsin II, plus a family of putative papain-like proteases called SERA. Recent revelations have shown that activation of the SERA proteases may be triggered by regulated secretion of a subtilisin-like serine protease called SUB1. These findings are discussed in the context of the potential for development of new chemotherapeutics targeting this stage in the parasite's life cycle.
Collapse
Affiliation(s)
- Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
33
|
Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 2008; 131:1072-83. [PMID: 18083098 DOI: 10.1016/j.cell.2007.10.049] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/31/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known. We report that, just prior to egress, an essential serine protease called PfSUB1 is discharged from previously unrecognized parasite organelles (termed exonemes) into the parasitophorous vacuole space. There, PfSUB1 mediates the proteolytic maturation of at least two essential members of another enzyme family called SERA. Pharmacological blockade of PfSUB1 inhibits egress and ablates the invasive capacity of released merozoites. Our findings reveal the presence in the malarial parasitophorous vacuole of a regulated, PfSUB1-mediated proteolytic processing event required for release of viable parasites from the host erythrocyte.
Collapse
Affiliation(s)
- Sharon Yeoh
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Malaria parasites must invade the erythrocytes of its host, to be able to grow and multiply. Having depleted the host cell of its nutrients, the parasites break out to invade new erythrocytes. In this issue of Cell, Yeoh et al. (2007) discover a new organelle, the exoneme, that contains a protease SUB1, which helps the parasite to escape from old erythrocytes and invade new ones.
Collapse
|
35
|
Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F, Fonović M, Grainger M, Phillips CI, Powers JC, Bogyo M. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 2008; 4:203-13. [PMID: 18246061 DOI: 10.1038/nchembio.70] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/08/2008] [Indexed: 11/09/2022]
Abstract
Newly replicated Plasmodium falciparum parasites escape from host erythrocytes through a tightly regulated process that is mediated by multiple classes of proteolytic enzymes. However, the identification of specific proteases has been challenging. We describe here a forward chemical genetic screen using a highly focused library of more than 1,200 covalent serine and cysteine protease inhibitors to identify compounds that block host cell rupture by P. falciparum. Using hits from the library screen, we identified the subtilisin-family serine protease PfSU B1 and the cysteine protease dipeptidyl peptidase 3 (DPAP3) as primary regulators of this process. Inhibition of both DPAP3 and PfSUB1 caused a block in proteolytic processing of the serine repeat antigen (SERA) protein SERA5 that correlated with the observed block in rupture. Furthermore, DPAP3 inhibition reduced the levels of mature PfSUB1. These results suggest that two mechanistically distinct proteases function to regulate processing of downstream substrates required for efficient release of parasites from host red blood cells.
Collapse
Affiliation(s)
- Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Feng X, Akiyoshi DE, Widmer G, Tzipori S. Characterization of subtilase protease in Cryptosporidium parvum and C. hominis. J Parasitol 2007; 93:619-26. [PMID: 17626354 DOI: 10.1645/ge-622r1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cryptosporidium spp., enteropathogens of humans and other animals, are members of the Apicomplexa. In parasites belonging to this phylum, proteases have been shown to play a key role in the invasion of host cells, organelle biogenesis, and intracellular survival. The subtilases constitute a family of serine proteases present in prokaryotes, eukaryotes, and viruses. The C. parvum subtilase gene, CpSUB1, encodes a transcript of 3972 base pairs (bp) and 1324 amino acids. Using homologous polymerase chain reaction primers, a similar gene, ChSUB1, which has 98% (4007 bp/4050 bp) identity to CpSUB1, was found in C. hominis. The alignment of the CpSUB1 and ChSUB1 nucleotide sequences identified primarily silent substitutions, consistent with the absence of diversifying selection. The catalytic domain of CpSUB1 is very similar to that of other Apicomplexa (> 38% amino acid identity and >57% similarity) and to the bacterial subtilisin BPN from B. subtilis (36 and 47%). Transcriptional upregulation during merozoite development was observed in cell culture, and a predicted 76-bp intron located near the 3' end of the open reading frame was confirmed experimentally. Cryptosporidium parvum infection in cell culture was significantly inhibited by subtilisin inhibitor III and other serine protease inhibitors, emphasizing the importance of the parasite's subtilase for intracellular development and the enzyme's potential as a drug target.
Collapse
Affiliation(s)
- Xiaochuan Feng
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | | | | | |
Collapse
|
37
|
Montero E, Gonzalez LM, Rodriguez M, Oksov Y, Blackman MJ, Lobo CA. A conserved subtilisin protease identified in Babesia divergens merozoites. J Biol Chem 2006; 281:35717-26. [PMID: 16982617 DOI: 10.1074/jbc.m604344200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invasion of erythrocytes is an integral part of the Babesia divergens life cycle. Serine proteases have been shown to play an important role in invasion by related Apicomplexan parasites such as the malaria parasite Plasmodium falciparum. Here we demonstrate the presence of two dominant serine proteases in asexual B. divergens using a biotinylated fluorophosphonate probe. One of these active serine proteases (p48) and its precursors were recognized by anti-PfSUB1 antibodies. These antibodies were used to clone the gene encoding a serine protease using a B. divergens cDNA library. BdSub-1 is a single copy gene with no introns. The deduced gene product (BdSUB-1) clearly belongs to the subtilisin superfamily and shows significant homology to Plasmodium subtilisins, with the highest degree of sequence identity around the four catalytic residues. Like subtilisin proteases in other Apicomplexan parasites, BdSUB-1 undergoes two steps of processing during activation in the secretory pathway being finally converted to an active form (p48). The mature protease is concentrated in merozoite dense granules, apical secretory organelles involved in erythrocyte invasion. Anti-PfSUB1 antibodies have a potent inhibitory effect on erythrocyte invasion by B. divergens merozoites in vitro. This report demonstrates conservation of the molecular machinery involved in erythrocyte invasion by these two Apicomplexan parasites and paves the way for a comparative analysis of other molecules that participate in this process in the two parasites.
Collapse
Affiliation(s)
- Estrella Montero
- Department of Molecular Parasitology, Lindsley Kimball Research Institute, New York Blood Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jean L, Withers-Martinez C, Hackett F, Blackman MJ. Unique insertions within Plasmodium falciparum subtilisin-like protease-1 are crucial for enzyme maturation and activity. Mol Biochem Parasitol 2005; 144:187-97. [PMID: 16183148 DOI: 10.1016/j.molbiopara.2005.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/14/2005] [Accepted: 07/27/2005] [Indexed: 11/22/2022]
Abstract
Parasite serine proteases play essential roles in the asexual erythrocytic life cycle of the malaria parasite. The timing and location of expression of Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) are consistent with a role in erythrocyte invasion. Maturation of PfSUB-1 involves two autocatalytic processing events in which an 82 kDa precursor is converted to a 54 kDa form, followed by further cleavage to produce a 47 kDa form. Here we have compared PfSUB-1 with a number of Plasmodium orthologues and the most closely related bacterial subtilase sequences and find that, like many malarial proteins, PfSUB-1 possesses both low and high complexity insertions. The latter take the form of six surface-associated strands or loops which are conserved in all SUB-1 orthologues but not present in any other subtilase. Several mutants of PfSUB-1 with deletions of all, or part, of each of the six loop insertions were produced in an insect cell expression system. Aside from loop III, which was dispensable, individual deletion of the loop insertions revealed a role in protein maturation and/or stability. Specific substitutions within loop II inhibited maturation and enzyme activity. Mutations in loops V and VI specifically inhibited the second step of autocatalytic maturation providing evidence that the two processing steps have distinct structural requirements and that conversion to p47 is not a prerequisite for proteolytic activity in trans.
Collapse
Affiliation(s)
- Létitia Jean
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
39
|
Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ. Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 2005; 1:241-51. [PMID: 16322767 PMCID: PMC1291349 DOI: 10.1371/journal.ppat.0010029] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/12/2005] [Indexed: 11/19/2022] Open
Abstract
Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface "sheddase," but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase). We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite.
Collapse
Affiliation(s)
- Philippa K Harris
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Sharon Yeoh
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Anton R Dluzewski
- Department of Immunobiology, Guy's, King's and St. Thomas' Hospitals School of Medicine, London, United Kingdom
- Wolfson Centre, Guy's, King's and St. Thomas' Hospitals School of Biomedical and Life Sciences, London, United Kingdom
| | - Rebecca A O'Donnell
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | | | - Fiona Hackett
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Lawrence H Bannister
- Wolfson Centre, Guy's, King's and St. Thomas' Hospitals School of Biomedical and Life Sciences, London, United Kingdom
| | - Graham H Mitchell
- Department of Immunobiology, Guy's, King's and St. Thomas' Hospitals School of Medicine, London, United Kingdom
| | - Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Abstract
The life cycle of the malaria parasite contains three distinct invasive forms, or zoites. For at least two of these--the sporozoite and the blood-stage merozoite--invasion into their respective host cell requires the activity of parasite proteases. This review summarizes the evidence for this, discusses selected well-described proteolytic modifications linked to invasion, and describes recent progress towards identifying the proteases involved.
Collapse
Affiliation(s)
- Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
41
|
Dowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol 2004; 7:388-96. [PMID: 15358257 DOI: 10.1016/j.mib.2004.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular life-style has been adopted by many pathogens as a successful immune evasion mechanism. To gain entry to a large variety of host cells and to establish an intracellular niche, Toxoplasma gondii and other apicomplexans rely on an active process distinct from phagocytosis. Calcium-regulated secretion of microneme proteins and parasite actin polymerization together with the action of at least one myosin motor act in concert to generate the gliding motility necessary to propel the parasite into host cells. During this active penetration, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole hence conferring the resistance to acidification and degradative fusion. Apicomplexans possess a large repertoire of microneme proteins that contribute to invasion, but their precise role and the level of functional redundancy remain to be evaluated. Remarkably, most microneme proteins are proteolytically cleaved during biogenesis and post-exocytosis. The significance of the processing events and the identification of the proteases implicated are the object of intensive investigations. These proteases may constitute potential drug targets for intervention against malaria and other diseases caused by these parasites.
Collapse
Affiliation(s)
- Timothy Dowse
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
42
|
Abstract
Proteases play critical roles in the life cycle of the malaria parasite, Plasmodium spp. Within the asexual erythrocytic cycle, responsible for the clinical manifestations of malaria, substantial interest has focused on the role of parasite serine proteases as a result of indications that they are involved in red blood cell invasion. Over the past 6 years, three Plasmodium genes encoding serine proteases of the subtilisin-like clan, or subtilases, have been identified. All are expressed in the asexual blood stages and, in at least two cases, the gene products localize to secretory organelles of the invasive merozoite. They may have potential as novel drug targets. Here, we review progress in our understanding of the maturation, specificity, structure and function of these Plasmodium subtilases.
Collapse
|
43
|
Jean L, Hackett F, Martin SR, Blackman MJ. Functional characterization of the propeptide of Plasmodium falciparum subtilisin-like protease-1. J Biol Chem 2003; 278:28572-9. [PMID: 12764150 DOI: 10.1074/jbc.m303827200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythrocyte invasion by the malaria merozoite is prevented by serine protease inhibitors. Various aspects of the biology of Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1), including the timing of its expression and its apical location in the merozoite, suggest that this enzyme is involved in invasion. Recombinant PfSUB-1 expressed in a baculovirus system is secreted in the p54 form, noncovalently bound to its cognate propeptide, p31. To understand the role of p31 in PfSUB-1 maturation, we examined interactions between p31 and both recombinant and native enzymes. CD analyses revealed that recombinant p31 (rp31) possesses significant secondary structure on its own, comparable with that of folded propeptides of some bacterial subtilisins. Kinetic studies demonstrated that rp31 is a fast binding, high affinity inhibitor of PfSUB-1. Inhibition of two bacterial subtilisins by rp31 was much less effective, with inhibition constants 49-60-fold higher than that for PfSUB-1. Single (at the P4 or P1 position) or double (at P4 and P1 positions) point mutations of residues within the C-terminal region of rp31 had little effect on its inhibitory activity, and truncation of 11 residues from the rp31 C terminus substantially reduced, but did not abolish, inhibition. None of these modifications prevented binding to the PfSUB-1 catalytic domain or rendered the propeptide susceptible to proteolytic digestion by PfSUB-1. These studies provide new insights into the function of the propeptide in PfSUB-1 activation and shed light on the structural requirements for interaction with the catalytic domain.
Collapse
Affiliation(s)
- Letitia Jean
- Parasitology and Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
44
|
Miller SA, Thathy V, Ajioka JW, Blackman MJ, Kim K. TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Mol Microbiol 2003; 49:883-94. [PMID: 12890015 DOI: 10.1046/j.1365-2958.2003.03604.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All parasites in the phylum Apicomplexa, including Toxoplasma gondii and Plasmodium falciparum, contain rhoptries, specialized secretory organelles whose contents are thought to be essential for successful invasion of host cells. Serine proteinase inhibitors have been reported to block host cell invasion by both T. gondii and P. falciparum. We describe the cloning and characterization of TgSUB2, a subtilisin-like serine proteinase, from T. gondii. Like its closest homologue P. falciparum PfSUB-2, TgSUB2 is predicted to be a type I transmembrane protein. Disruption of TgSUB2 was unsuccessful implying that TgSUB2 is an essential gene. TgSUB2 undergoes autocatalytic processing as it traffics through the secretory pathway. TgSUB2 localizes to rhoptries and associates with rhoptry protein ROP1, a potential substrate. A sequence within TgSUB2 with homology to the ROP1 cleavage site (after Glu) was identified and mutated by site-directed mutagenesis. This mutation abolished TgSUB2 autoprocessing suggesting that TgSUB2 is a rhoptry protein maturase with similar specificity to the ROP1 maturase. Processing of secretory organelle contents appears to be ubiquitous among the Apicomplexa. As subtilases are present in genomes of all the Apicomplexa sequenced to date, subtilases may represent a novel chemotherapeutic target.
Collapse
Affiliation(s)
- Steven A Miller
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Howell SA, Well I, Fleck SL, Kettleborough C, Collins CR, Blackman MJ. A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J Biol Chem 2003; 278:23890-8. [PMID: 12686561 DOI: 10.1074/jbc.m302160200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form during invasion. We have previously proposed, on the basis of incomplete mass spectrometric mapping data, that PfAMA-1 shedding results from cleavage at two alternative positions. We now show conclusively that the PfAMA-1 ectodomain is shed from the merozoite solely as a result of cleavage at a single site, just 29 residues away from the predicted transmembrane-spanning sequence. Remarkably, this cleavage is mediated by the same membrane-bound parasite serine protease as that responsible for shedding of the merozoite surface protein-1 (MSP-1) complex, an abundant, glycosylphosphatidylinositol-anchored multiprotein complex. Processing of MSP-1 is essential for invasion. Our results indicate the presence on the merozoite surface of a multifunctional serine sheddase with a broad substrate specificity. We further demonstrate that translocation and shedding of PfAMA-1 is an actin-independent process.
Collapse
Affiliation(s)
- Steven A Howell
- Division of Protein Structure, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Blackman MJ, Corrie JET, Croney JC, Kelly G, Eccleston JF, Jameson DM. Structural and biochemical characterization of a fluorogenic rhodamine-labeled malarial protease substrate. Biochemistry 2002; 41:12244-52. [PMID: 12356327 DOI: 10.1021/bi0263661] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of the proenzyme form of the malarial protease PfSUB-1 involves the autocatalytic cleavage of an Asp-Asn bond within the internal sequence motif (215)LVSADNIDIS(224). A synthetic decapeptide based on this sequence but with the N- and C-terminal residues replaced by cysteines (Ac-CVSADNIDIC-OH) was labeled with 5- or 6-isomers of iodoacetamidotetramethylrhodamine (IATR). The doubly labeled peptides have low fluorescence because of ground-state, noncovalent dimerization of the rhodamines. Cleavage of either peptide by recombinant PfSUB-1 results in dissociation of the rhodamine dimers, which abolishes the self-quenching and consequently leads to an approximately 30-fold increase in the fluorescence. This spectroscopic signal provides a continuous assay of proteolysis, enabling quantitative kinetic measurements to be made, and has also enabled the development of a fluorescence-based assay suitable for use in high-throughput screens for inhibitors of PfSUB-1. The structure of the rhodamine dimer in the 6-IATR-labeled peptide was shown by NMR to be a face-to-face stacking of the xanthene rings. Time-resolved fluorescence measurements suggest that the doubly labeled peptides exist in an equilibrium consisting of rhodamines involved in dimers (closed forms) and rhodamines not involved in dimers (open forms). These data also indicate that the rhodamine dimers fluoresce and that the associated lifetimes are subnanosecond.
Collapse
Affiliation(s)
- Michael J Blackman
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K.
| | | | | | | | | | | |
Collapse
|