1
|
Kamoga R, Rukundo GZ, Kalungi S, Adriko W, Nakidde G, Obua C, Obongoloch J, Ihunwo AO. Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. AIMS Neurosci 2024; 11:398-420. [PMID: 39431268 PMCID: PMC11486617 DOI: 10.3934/neuroscience.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dementia is a prevalent, progressive, neurodegenerative condition with multifactorial causes. Due to the lack of effective pharmaceutical treatments for dementia, there are growing clinical and research interests in using vagus nerve stimulation (VNS) as a potential non-pharmacological therapy for dementia. However, the extent of the research volume and nature into the effects of VNS on dementia is not well understood. This study aimed to examine the extent and nature of research activities in relation to the use of VNS in dementia and disseminate research findings for the potential utility in dementia care. Methods We performed a scoping review of literature searches in PubMed, HINARI, Google Scholar, and the Cochrane databases from 1980 to November 30th, 2023, including the reference lists of the identified studies. The following search terms were utilized: brain stimulation, dementia, Alzheimer's disease, vagal stimulation, memory loss, Deme*, cognit*, VNS, and Cranial nerve stimulation. The included studies met the following conditions: primary research articles pertaining to both humans and animals for both longitudinal and cross-sectional study designs and published in English from January 1st, 1980, to November 30th, 2023; investigated VNS in either dementia or cognitive impairment; and were not case studies, conference proceedings/abstracts, commentaries, or ordinary review papers. Findings and conclusions We identified 8062 articles, and after screening for eligibility (sequentially by titles, abstracts and full text reading, and duplicate removal), 10 studies were included in the review. All the studies included in this literature review were conducted over the last three decades in high-income geographical regions (i.e., Europe, the United States, the United Kingdom, and China), with the majority of them (7/10) being performed in humans. The main reported outcomes of VNS in the dementia cases were enhanced cognitive functions, an increased functional connectivity of various brain regions involved in learning and memory, microglial structural modifications from neurodestructive to neuroprotective configurations, a reduction of cerebral spinal fluid tau-proteins, and significant evoked brain tissue potentials that could be utilized to diagnose neurodegenerative disorders. The study outcomes highlight the potential for VNS to be used as a non-pharmacological therapy for cognitive impairment in dementia-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald Kamoga
- Department of Anatomy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Godfrey Zari Rukundo
- Department of Psychiatry, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Samuel Kalungi
- Makerere University, School of health sciences, Department of Pathology. Kampala, Uganda
| | - Wilson Adriko
- Library department, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara Uganda
| | - Gladys Nakidde
- Faculty of Nursing and Health Sciences, Bishop Stuart University, Mbarara, Uganda
| | - Celestino Obua
- Department of Pharmacology, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Johnes Obongoloch
- Department of Biomedical engineering, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Amadi Ogonda Ihunwo
- University of the Witwatersrand, School of Anatomical Sciences, Faculty of Health Sciences, Johannesburg, South Africa
| |
Collapse
|
2
|
Gargano A, Olabiyi BF, Palmisano M, Zimmer A, Bilkei-Gorzo A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 2023; 17:1264253. [PMID: 37694113 PMCID: PMC10492095 DOI: 10.3389/fnins.2023.1264253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Aging is associated with a decline in cognitive abilities, including memory and attention. It is generally accepted that age-related histological changes such as increased neuroinflammatory glial activity and a reduction in the number of specific neuronal populations contribute to cognitive aging. Noradrenergic neurons in the locus coeruleus (LC) undergo an approximately 20 % loss during ageing both in humans and mice, but whether this change contributes to cognitive deficits is not known. To address this issue, we asked whether a similar loss of LC neurons in young animals as observed in aged animals impairs memory and attention, cognitive domains that are both influenced by the noradrenergic system and impaired in aging. Methods For that, we treated young healthy mice with DSP-4, a toxin that specifically kills LC noradrenergic neurons. We compared the performance of DSP-4 treated young mice with the performance of aged mice in models of attention and memory. To do this, we first determined the dose of DSP-4, which causes a similar 20 % neuronal loss as is typical in aged animals. Results Young mice treated with DSP-4 showed impaired attention in the presence of distractor and memory deficits in the 5-choice serial reaction time test (5-CSRTT). Old, untreated mice showed severe deficits in both the 5-CSRTT and in fear extinction tests. Discussion Our data now suggest that a reduction in the number of LC neurons contributes to impaired working memory and greater distractibility in attentional tasks but not to deficits in fear extinction. We hypothesize that the moderate loss of LC noradrenergic neurons during aging contributes to attention deficits and working memory impairments.
Collapse
Affiliation(s)
| | | | | | | | - Andras Bilkei-Gorzo
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus, Bonn, Germany
| |
Collapse
|
3
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Benton KC, Wheeler DS, Kurtoglu B, Ansari MBZ, Cibich DP, Gonzalez DA, Herbst MR, Khursheed S, Knorr RC, Lobner D, Maglasang JG, Rohr KE, Taylor A, Twining RC, Witt PJ, Gasser PJ. Norepinephrine activates β 1 -adrenergic receptors at the inner nuclear membrane in astrocytes. Glia 2022; 70:1777-1794. [PMID: 35589612 PMCID: PMC9276628 DOI: 10.1002/glia.24219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
Norepinephrine exerts powerful influences on the metabolic, neuroprotective and immunoregulatory functions of astrocytes. Until recently, all effects of norepinephrine were believed to be mediated by receptors localized exclusively to the plasma membrane. However, recent studies in cardiomyocytes have identified adrenergic receptors localized to intracellular membranes, including Golgi and inner nuclear membranes, and have shown that norepinephrine can access these receptors via transporter-mediated uptake. We recently identified a high-capacity norepinephrine transporter, organic cation transporter 3 (OCT3), densely localized to outer nuclear membranes in astrocytes, suggesting that adrenergic signaling may also occur at the inner nuclear membrane in these cells. Here, we used immunofluorescence and western blot to show that β1 -adrenergic receptors are localized to astrocyte inner nuclear membranes; that key adrenergic signaling partners are present in astrocyte nuclei; and that OCT3 and other catecholamine transporters are localized to astrocyte plasma and nuclear membranes. To test the functionality of nuclear membrane β1 -adrenergic receptors, we monitored real-time protein kinase A (PKA) activity in astrocyte nuclei using a fluorescent biosensor. Treatment of astrocytes with norepinephrine induced rapid increases in PKA activity in the nuclear compartment. Pretreatment of astrocytes with inhibitors of catecholamine uptake blocked rapid norepinephrine-induced increases in nuclear PKA activity. These studies, the first to document functional adrenergic receptors at the nuclear membrane in any central nervous system cell, reveal a novel mechanism by which norepinephrine may directly influence nuclear processes. This mechanism may contribute to previously described neuroprotective, metabolic and immunoregulatory actions of norepinephrine.
Collapse
Affiliation(s)
| | | | - Beliz Kurtoglu
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | | | - Daniel P. Cibich
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Dante A. Gonzalez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Matthew R. Herbst
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Saema Khursheed
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Rachel C. Knorr
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Jenree G. Maglasang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Kayla E. Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Analisa Taylor
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Robert C. Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Paul J. Witt
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| | - Paul J. Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201
| |
Collapse
|
5
|
Álvarez-Pérez B, Deulofeu M, Homs J, Merlos M, Vela JM, Verdú E, Boadas-Vaello P. Long-lasting reflexive and nonreflexive pain responses in two mouse models of fibromyalgia-like condition. Sci Rep 2022; 12:9719. [PMID: 35691979 PMCID: PMC9189106 DOI: 10.1038/s41598-022-13968-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Nociplastic pain arises from altered nociception despite no clear evidence of tissue or somatosensory system damage, and fibromyalgia syndrome can be highlighted as a prototype of this chronic pain subtype. Currently, there is a lack of effective treatments to alleviate both reflexive and nonreflexive pain responses associated with fibromyalgia condition, and suitable preclinical models are needed to assess new pharmacological strategies. In this context, although in recent years some remarkable animal models have been developed to mimic the main characteristics of human fibromyalgia, most of them show pain responses in the short term. Considering the chronicity of this condition, the present work aimed to develop two mouse models showing long-lasting reflexive and nonreflexive pain responses after several reserpine (RIM) or intramuscular acid saline solution (ASI) injections. To our knowledge, this is the first study showing that RIM6 and ASI mouse models show reflexive and nonreflexive responses up to 5-6 weeks, accompanied by either astro- or microgliosis in the spinal cord as pivotal physiopathology processes related to such condition development. In addition, acute treatment with pregabalin resulted in reflexive pain response alleviation in both the RIM6 and ASI models. Consequently, both may be considered suitable experimental models of fibromyalgia-like condition, especially RIM6.
Collapse
Affiliation(s)
- Beltrán Álvarez-Pérez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.,University School of Health and Sport (EUSES), University of Girona, Girona, Catalonia, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Gutiérrez IL, Dello Russo C, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Noradrenaline in Alzheimer's Disease: A New Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms23116143. [PMID: 35682822 PMCID: PMC9181823 DOI: 10.3390/ijms23116143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3GL, UK
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-91-394-1463
| |
Collapse
|
7
|
Morimoto K, Eguchi R, Kitano T, Otsuguro KI. Alpha and beta adrenoceptors activate interleukin-6 transcription through different pathways in cultured astrocytes from rat spinal cord. Cytokine 2021; 142:155497. [PMID: 33770644 DOI: 10.1016/j.cyto.2021.155497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
In brain astrocytes, noradrenaline (NA) has been shown to up-regulate IL-6 production via β-adrenoceptors (ARs). However, the underlying intracellular mechanisms for this regulation are not clear, and it remains unknown whether α-ARs are involved. In this study, we investigated the AR-mediated regulation of IL-6 mRNA levels in the cultured astrocytes from rat spinal cord. NA, the α1-agonist phenylephrine, and the β-agonist isoproterenol increased IL-6 mRNA levels. The phenylephrine-induced IL-6 increase was accompanied by an increase in ERK phosphorylation, and these effects were blocked by inhibitors of PKC and ERK. The isoproterenol-induced IL-6 increase was accompanied by an increase in CREB phosphorylation, and these effects were blocked by a PKA inhibitor. Our results indicate that IL-6 increases by α1- and β-ARs are mediated via the PKC/ERK and cAMP/PKA/CREB pathways, respectively. Moreover, conditioned medium collected from astrocytes treated with the α2-AR agonist dexmedetomidine, increased IL-6 mRNA in other astrocytes. In this study, we elucidate that α1- and α2-ARs, in addition to β-ARs, promote IL-6 transcription through different pathways in spinal cord astrocytes.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Spinal Cord/cytology
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Rats
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Taisuke Kitano
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
8
|
The Role of the FOXO1/β 2-AR/p-NF-κB p65 Pathway in the Development of Endometrial Stromal Cells in Pregnant Mice under Restraint Stress. Int J Mol Sci 2021; 22:ijms22031478. [PMID: 33540675 PMCID: PMC7867244 DOI: 10.3390/ijms22031478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.
Collapse
|
9
|
Activation of β 2 adrenergic receptor signaling modulates inflammation: a target limiting the progression of kidney diseases. Arch Pharm Res 2020; 44:49-62. [PMID: 33155167 DOI: 10.1007/s12272-020-01280-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
Beta 2 adrenergic receptor (β2-AR)-agonists, widely used as bronchodilators, have demonstrated wide-spectrum anti-inflammatory properties in both immune and non-immune cells in various tissues. Their anti-inflammatory properties are mediated primarily, but not exclusively, via activation of the canonical β2-AR signaling pathway (β2-AR/cAMP/PKA). As non-canonical β2-AR signaling also occurs, several inconsistent findings on the anti-inflammatory effect of β2-agonists are notably present. Increasing amounts of evidence have unveiled the alternative mechanisms of the β2-AR agonists in protecting the tissues against injuries, i.e., by augmenting mitochondria biogenesis and SIRT1 activity, and by attenuating fibrotic signaling. This review mainly covers the basic mechanisms of the anti-inflammatory effects of β2-AR activation along with its limitations. Specifically, we summarized the role of β2-AR signaling in regulating kidney function and in mediating the progression of acute and chronic kidney diseases. Given their versatile protective effects, β2-agonists can be a promising avenue in the treatment of kidney diseases.
Collapse
|
10
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Pacholko AG, Wotton CA, Bekar LK. Poor Diet, Stress, and Inactivity Converge to Form a "Perfect Storm" That Drives Alzheimer's Disease Pathogenesis. NEURODEGENER DIS 2019; 19:60-77. [PMID: 31600762 DOI: 10.1159/000503451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
North American incidence of Alzheimer's disease (AD) is expected to more than double over the coming generation. Although genetic factors surrounding the production and clearance of amyloid-β and phosphorylated tau proteins are known to be responsible for a subset of early-onset AD cases, they do not explain the pathogenesis of the far more prevalent sporadic late-onset variant of the disease. It is thus likely that lifestyle and environmental factors contribute to neurodegenerative processes implicated in the pathogenesis of AD. Herein, we review evidence that (1) excess sucrose consumption induces AD-associated liver pathologies and brain insulin resistance, (2) chronic stress overdrives activity of locus coeruleus neurons, leading to loss of function (a common event in neurodegeneration), (3) high-sugar diets and stress promote the loss of neuroprotective sex hormones in men and women, and (4) Western dietary trends set the stage for a lithium-deficient state. We propose that these factors may intersect as part of a "perfect storm" to contribute to the widespread prevalence of neurodegeneration and AD. In addition, we put forth the argument that exercise and supplementation with trace lithium can counteract many of the deleterious consequences associated with excessive caloric intake and perpetual stress. We conclude that lifestyle and environmental factors likely contribute to AD pathogenesis and that simple lifestyle and dietary changes can help counteract their effects.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
12
|
Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine Regulation of Brain Cytokines After Psychological Stress. J Endocr Soc 2019; 3:1302-1320. [PMID: 31259292 PMCID: PMC6595533 DOI: 10.1210/js.2019-00053] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that stress-induced brain cytokines are important in the etiology of depression and anxiety. Here, we review how the neuroendocrine responses to psychological stressors affect the immediate and long-term regulation of inflammatory cytokines within the brain and highlight how the regulation changes across time with repeated stress exposure. In doing so, we report on the percentage of studies in the literature that observed increases in either IL-1β, TNF-α, or IL-6 within the hypothalamus, hippocampus, or prefrontal cortex after either acute or chronic stress exposure. The key takeaway is that catecholamines and glucocorticoids play critical roles in the regulation of brain cytokines after psychological stress exposure. Central catecholamines stimulate the release of IL-1β from microglia, which is a key factor in the further activation of microglia and recruitment of monocytes into the brain. Meanwhile, the acute elevation of glucocorticoids inhibits the production of brain cytokines via two mechanisms: the suppression of noradrenergic locus coeruleus neurons and inhibition of the NFκB signaling pathway. However, glucocorticoids and peripheral catecholamines facilitate inflammatory responses to future stimuli by stimulating monocytes to leave the bone marrow, downregulating inhibitory receptors on microglia, and priming inflammatory responses mediated by peripheral monocytes or macrophages. The activation of microglia and the elevation of peripheral glucocorticoid and catecholamine levels are both necessary during times of stress exposure for the development of psychopathologies.
Collapse
Affiliation(s)
- John D Johnson
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - David F Barnard
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Adam C Kulp
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Devanshi M Mehta
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| |
Collapse
|
13
|
SMN deficiency causes pain hypersensitivity in a mild SMA mouse model through enhancing excitability of nociceptive dorsal root ganglion neurons. Sci Rep 2019; 9:6493. [PMID: 31019235 PMCID: PMC6482187 DOI: 10.1038/s41598-019-43053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating motor neuron degeneration disease caused by a deficiency of the SMN protein. Majority of patients also suffer from chronic pain. However, the pathogenesis of pain in the context of SMA has never been explored. In this study, using various pain tests, we found that a mild SMA mouse model presents with multiple forms of pain hypersensitivity. Patch-clamp recording showed that nociceptive neurons in SMA mouse dorsal root ganglia (DRGs) are hyperexcitable and their sodium current densities are markedly increased. Using quantitative RT-PCR, western blotting and immunofluorescence, we observed enhanced expression of two main voltage-gated sodium channels Nav1.7 and Nav1.8 in SMA mouse DRGs, which is at least in part due to increase in both expression and phosphorylation of NF-κB p50/p65 heterodimer. Moreover, we revealed that plasma norepinephrine levels are elevated in SMA mice, which contributes to mechanical hypersensitivity via the β2-adrenergic receptor. Finally, we uncovered that β2-adrenergic signaling positively modulates expression as well as phosphorylation of p50 and p65 in SMA mouse DRGs. Therefore, our data demonstrate that SMA mice, similar to humans, also develop pain hypersensitivity, and highlight a peripheral signaling cascade that elicits the mechanical sensitization in the mouse model, suggesting potential targets for therapeutic intervention.
Collapse
|
14
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Choudhary P, Pacholko AG, Palaschuk J, Bekar LK. The locus coeruleus neurotoxin, DSP4, and/or a high sugar diet induce behavioral and biochemical alterations in wild-type mice consistent with Alzheimers related pathology. Metab Brain Dis 2018; 33:1563-1571. [PMID: 29862455 DOI: 10.1007/s11011-018-0263-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the United States where it is estimated that one in three seniors dies with AD or another dementia. Are modern lifestyle habits a contributing factor? Increased carbohydrate (sugar) consumption, stress and disruption of sleep patterns are quickly becoming the norm rather than the exception. Interestingly, seven months on a non-invasive high sucrose diet (20% sucrose in drinking water) has been shown to induce behavioral, metabolic and pathological changes consistent with AD in wild-type mice. As chronic stress and depression are associated with loss of locus coeruleus (LC) noradrenergic neurons and projections (source of anti-inflammatory and trophic factor control), we assessed the ability for a selective LC neurotoxin (DSP4) to accelerate and aggravate a high-sucrose mediated AD-related phenotype in wild-type mice. Male C57/Bl6 mice were divided into four groups: 1) saline injected, 2) DSP4 injected, 3) high sucrose drinking water (20%) or 4) DSP4 injected and high sucrose drinking water. We demonstrate that high sucrose consumption and DSP4 treatment promote an early-stage AD-related phenotype after only 3-4 months, as evidenced by elevated fecal corticosterone, increased despair, spatial memory deficits, increased AChE activity, elevated NO production, decreased pGSK3β and increased pTau. Combined treatment appears to accelerate and aggravate pathological processes consistent with Alzheimer disease and dementia. Developing a simple model in wild-type mice will highlight environmental and lifestyle factors that need to be addressed to slow, prevent or even reverse the rising trend in dementia patient numbers and cost.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Anthony G Pacholko
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Josh Palaschuk
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Lane K Bekar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
16
|
Gutiérrez IL, González-Prieto M, García-Bueno B, Caso JR, Feinstein DL, Madrigal JLM. CCL2 Induces the Production of β2 Adrenergic Receptors and Modifies Astrocytic Responses to Noradrenaline. Mol Neurobiol 2018; 55:7872-7885. [PMID: 29478130 DOI: 10.1007/s12035-018-0960-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
The decline in brain noradrenaline levels is associated with the progression of certain neurodegenerative diseases. This seems to be due, at least in part, to the ability of noradrenaline to limit glial activation and to reduce the damage associated with it. Our previous studies of the mechanisms involved in this process indicate that noradrenaline induces the production of the chemokine CCL2 in astrocytes. While CCL2 can protect neurons against certain injuries, its overproduction has also proven to be harmful and to prevent noradrenaline neuroprotective effects. Therefore, in this study, we analyze if the modifications caused to astrocytes by an excessive production of CCL2 may alter their response to noradrenaline. Using primary cultures of rat cortical astrocytes, we observed that CCL2 enhances the production of beta 2 adrenergic receptors in these cells. While this potentiates noradrenaline signaling through cAMP, the activation of the transcription factor CREB is inhibited by CCL2. Furthermore, although CCL2 potentiates noradrenaline induction of glycogenolysis, this does not translate into an augmented release of lactate, one of the processes through which astrocytes help support neurons. Additionally, other neuroprotective actions of noradrenaline, such as the production of brain derived neurotrophic factor and the inhibition of the inducible nitric oxide synthase in astrocytes were modified by CCL2. These data suggest that some of the central nervous system alterations related to CCL2 could be due to its effects on adrenergic receptors and its interference with noradrenaline signaling.
Collapse
Affiliation(s)
- Irene L Gutiérrez
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Marta González-Prieto
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - José L M Madrigal
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
- Dpto. Farmacología, Fac. Medicina, Avda. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Abstract
Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care 2017; 24:308-19. [PMID: 26399249 DOI: 10.1007/s12028-015-0203-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.
Collapse
|
19
|
Zhang FF, Morioka N, Abe H, Fujii S, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Stimulation of spinal dorsal horn β2-adrenergic receptor ameliorates neuropathic mechanical hypersensitivity through a reduction of phosphorylation of microglial p38 MAP kinase and astrocytic c-jun N-terminal kinase. Neurochem Int 2016; 101:144-155. [PMID: 27840124 DOI: 10.1016/j.neuint.2016.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
Abstract
The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are involved in controlling pain transduction at the spinal level as well. The current study elucidated a role of β-adrenergic receptors in neuropathic pain in mice following a partial sciatic nerve ligation (PSNL). In addition, the cellular and intracellular signaling cascade induced by β-adrenergic receptors in neuropathic mice was elaborated. Intrathecal injection of isoproterenol (1 nmol), a nonselective β-adrenergic receptor agonist, briefly ameliorated hind paw mechanical hypersensitivity of PSNL mice. Isoproterenol's antinociceptive effect was mediated through β2-adrenergic receptors since pretreatment with ICI118551, a selective β2-adrenergic receptor antagonist, but not with CGP20712A, a selective β1-adrenergic receptor antagonist, significantly attenuated isoproterenol's effect. Furthermore, intrathecal treatment with a selective β2-adrenergic receptor agonist, terbutaline, but not a selective β1-adrenergic receptor agonist, dobutamine, also significantly ameliorated neuropathic pain. Fourteen days after PSNL, increased phosphorylation of both p38 Mitogen-activated protein kinase (MAPK) in microglia and c-jun N-terminal kinase (JNK) in astrocytes of ipsilateral spinal dorsal horn were observed. Phosphorylation of both microglial p38 MAPK and astrocytic JNK were downregulated by stimulation of the β2-adrenergic receptor. Together, these results suggest that spinal β2-adrenergic receptor have an inhibitory role in neuropathic nociceptive transduction at the spinal level through a downregulation of glial activity, perhaps through modulation of MAP kinases phosphorylation. Thus, targeting of β2-adrenergic receptors could be an effective therapeutic strategy in treating neuropathic pain.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road, Taian, Shandong, 271016, China
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Hiromi Abe
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shiori Fujii
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuki Miyauchi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
20
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Yoshioka Y, Kadoi H, Yamamuro A, Ishimaru Y, Maeda S. Noradrenaline increases intracellular glutathione in human astrocytoma U-251 MG cells by inducing glutamate-cysteine ligase protein via β3-adrenoceptor stimulation. Eur J Pharmacol 2015; 772:51-61. [PMID: 26724392 DOI: 10.1016/j.ejphar.2015.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
Glutathione (GSH) plays a critical role in protecting cells from oxidative damage. Since neurons rely on the supply of GSH from astrocytes to maintain optimal intracellular GSH concentrations, the GSH concentration of astrocytes is important for the survival of neighboring neurons against oxidative stress. The neurotransmitter noradrenaline is known to modulate the functions of astrocytes and has been suggested to have neuroprotective properties in neurodegenerative diseases. To elucidate the mechanisms underlying the neuroprotective properties of noradrenaline, in this study, we investigated the effect of noradrenaline on the concentrations of intracellular GSH in human U-251 malignant glioma (MG; astrocytoma) cells. Treatment of the cells with noradrenaline for 24h concentration-dependently increased their intracellular GSH concentration. This increase was inhibited by a non-selective β-adrenoceptor antagonist propranolol and by a selective β3-adrenoceptor antagonist SR59230A, but not by a non-selective α-adrenoceptor antagonist phenoxybenzamine, or by a selective β1-adrenoceptor antagonist atenolol or by a selective β2-adrenoceptor antagonist butoxamine. In addition, the selective β3-adrenoceptor agonist CL316243 increased the intracellular GSH in U-251 MG cells. Treatment of the cells with noradrenaline (10μM) for 24h increased the protein level of the catalytic subunit of glutamate-cysteine ligase (GCLc), the rate-limiting enzyme of GSH synthesis; and this increase was inhibited by SR59230A. These results thus suggest that noradrenaline increased the GSH concentration in astrocytes by inducing GCLc protein in them via β3-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Hisatsugu Kadoi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Akiko Yamamuro
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yuki Ishimaru
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
22
|
Bartus RT, Bétourné A, Basile A, Peterson BL, Glass J, Boulis NM. β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS). Neurobiol Dis 2015; 85:11-24. [PMID: 26459114 DOI: 10.1016/j.nbd.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved β2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although β2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of β2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of β2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of β-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that β2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of β2-agonists are evaluated. In sum, effective, safe and orally-active β2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan Glass
- Dept Neurology and Emory ALS Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicholas M Boulis
- Dept Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav Immun 2015; 45:297-310. [PMID: 25459102 DOI: 10.1016/j.bbi.2014.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023] Open
Abstract
β2-Adrenergic receptors (β2-ARs) transduce the effects of (nor)epinephrine on a variety of cell types and act as key mediators of the body's reaction to stress. β2-ARs are also expressed on immune cells and there is ample evidence for their role in immunomodulation. A key regulator of the immune response and a target for regulation by stress-induced signals is the transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB shapes the course of both innate and adaptive immune responses and plays an important role in susceptibility to disease. In this review, we summarise the literature that has been accumulated in the past 20years on adrenergic modulation of NF-κB function. We here focus on the molecular basis of the reported interactions and show that both physiological and pharmacological triggers of β2-ARs intersect with the NF-κB signalling cascade at different levels. Importantly, the action of β2-AR-derived signals on NF-κB activity appears to be highly cell type specific and gene selective, providing opportunities for the development of selective NF-κB modulators.
Collapse
|
24
|
Vonck K, Raedt R, Naulaerts J, De Vogelaere F, Thiery E, Van Roost D, Aldenkamp B, Miatton M, Boon P. Vagus nerve stimulation…25 years later! What do we know about the effects on cognition? Neurosci Biobehav Rev 2014; 45:63-71. [DOI: 10.1016/j.neubiorev.2014.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023]
|
25
|
Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms. PLoS One 2014; 9:e90649. [PMID: 24603712 PMCID: PMC3946252 DOI: 10.1371/journal.pone.0090649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | | | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Department of Physiology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Sarah Gerlo
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
26
|
Laureys G, Gerlo S, Spooren A, Demol F, De Keyser J, Aerts JL. β₂-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations. J Neuroinflammation 2014; 11:21. [PMID: 24479486 PMCID: PMC3942172 DOI: 10.1186/1742-2094-11-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/15/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β₂-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β₂-adrenergic receptors and the TNF-α induced inflammatory gene program. METHODS Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β₂-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration. RESULTS Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β₂-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. CONCLUSIONS Our results show that astrocytic β₂-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic β₂-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Neurology, University Hospital Brussels, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Sarah Gerlo
- VIB Department of Medical Protein Research, Ghent University Department of Biochemistry (Faculty of Medicine and Health Sciences), Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Anneleen Spooren
- Department of Physiology, Laboratory of Eukaryotic Gene Expression and Signal Transduction, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Frauke Demol
- Department of Neurology, University Hospital Brussels, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jacques De Keyser
- Department of Neurology, University Hospital Brussels, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Neurology, University Medical Center Groningen, RUG, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
27
|
Morioka N, Abe H, Araki R, Matsumoto N, Zhang FF, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. A β1/2 adrenergic receptor-sensitive intracellular signaling pathway modulates CCL2 production in cultured spinal astrocytes. J Cell Physiol 2014; 229:323-32. [PMID: 24037783 DOI: 10.1002/jcp.24452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022]
Abstract
The phosphorylation of c-jun N-terminal kinase (JNK) and the subsequent production of C-C chemokine CCL2 (monocyte chemoattractant protein; MCP-1) in spinal astrocytes contribute to the initiation of neurological disorders including chronic pain. Astrocytes express neurotransmitter receptors which could be targeted to ameliorate neurological disorders. In the current study, the involvement of the β-adrenergic system in the regulation of JNK activity and CCL2 production after stimulation with tumor necrosis factor (TNF)-α, one of many initiators of neuroinflammation, was elucidated. Treatment of cultured spinal astrocytes with isoproterenol (a β-adrenergic receptor agonist; 1 µM) reduced both TNF-α-induced JNK1 phosphorylation, as observed by Western blotting, and the subsequent increase of both CCL2 mRNA expression and CCL2 production, which were measured by real time-PCR and ELISA, respectively. The effects of isoproterenol were completely blocked by pretreatment with either propranolol (a β-adrenoceptor antagonist) or H89 (a protein kinase A [PKA] inhibitor). The current study revealed that the regulation of glycogen synthase kinase-3β (GSK-3β) activity is a crucial factor in the inhibitory action of isoproterenol. The TNF-α-induced JNK1 phosphorylation was significantly blocked by treatment with GSK-3β inhibitors (either LiCl or TWS119), and stimulation of β-adrenergic receptors induced the inhibition of GSK-3β through the phosphorylation of Ser(9) . Moreover, treatment with isoproterenol markedly suppressed the TNF-α-induced increase of CCL2 mRNA expression and CCL2 production through a β-adrenergic receptor-PKA pathway mediated by GSK-3β regulation. Thus, activation of β1/2 adrenergic receptors expressed in spinal astrocytes could be a novel method of moderating neurological disorders with endogenous catecholamines or selective agonists.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hostenbach S, Cambron M, D'haeseleer M, Kooijman R, De Keyser J. Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett 2013; 565:39-41. [PMID: 24128880 DOI: 10.1016/j.neulet.2013.10.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 01/18/2023]
Abstract
Neuroinflammation can lead to either damage of astrocytes or astrogliosis. Astrocyte loss may be caused by cytotoxic T cells as seen in Rasmussen encephalitis, auto-antibodies such as in neuromyelitis optica (aquaporin-4 antibodies), or cytokines such as TNF-α in major depressive disorder. Interleukins-1 and -6 appear to be important molecular mediators of astrogliosis. Chronic focal lesions in multiple sclerosis are characterized by a very dense astrogliosis. Other mechanisms, such as astrocytic β2 adrenergic receptor deficiency, upregulation of endothelin-1 and tissue transglutaminase, may contribute to astroglial scarring in multiple sclerosis.
Collapse
Affiliation(s)
- Stephanie Hostenbach
- Department of Neurology, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Melissa Cambron
- Department of Neurology, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Miguel D'haeseleer
- Department of Neurology, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Ron Kooijman
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Jacques De Keyser
- Department of Neurology, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussel, Belgium; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
29
|
El-Amir YO, Hassanein KMA. Protective effect of curcumin on N-nitrosodiethylamine and carbon tetrachloride-induced hepatocarcinogenesis in Sprague–Dawley rats. COMPARATIVE CLINICAL PATHOLOGY 2013; 22:631-636. [DOI: 10.1007/s00580-012-1457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
The novel HSP90 inhibitor, PU-H71, suppresses glial cell activation but weakly affects clinical signs of EAE. J Neuroimmunol 2012; 255:1-7. [PMID: 23123171 DOI: 10.1016/j.jneuroim.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 12/18/2022]
Abstract
Ansamycins are very effective HSP90 inhibitors that showed significant beneficial effects in the treatment of EAE. However, their toxicity and poor stability in solution limit their clinical use. In the present study we have characterized the anti-inflammatory properties of a novel HSP90 inhibitor, PU-H71, and tested its effects in EAE. Our findings show that PU-H71 reduced lipopolysaccharide astrocyte activation but failed to reduce the inflammatory cytokine activation. In contrast to ansamycins, PU-H71 weakly affects EAE clinical course. In conclusion, although PU-H71 displayed some anti-inflammatory properties, it appeared in vivo less effective than the more toxic HSP90 inhibitors.
Collapse
|
31
|
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22:1108-28. [PMID: 22664908 DOI: 10.1038/cr.2012.87] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.
Collapse
Affiliation(s)
- Changsheng Du
- Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
32
|
Christiansen SH, Selige J, Dunkern T, Rassov A, Leist M. Combined anti-inflammatory effects of β2-adrenergic agonists and PDE4 inhibitors on astrocytes by upregulation of intracellular cAMP. Neurochem Int 2011; 59:837-46. [PMID: 21871511 DOI: 10.1016/j.neuint.2011.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 08/10/2011] [Indexed: 01/15/2023]
Abstract
Inflammation is an important hallmark of all neurodegenerative diseases and activation of different glial populations may be involved in the progression of some of these disorders. Especially, the activation of astroglia can lead to long-term detrimental morphological changes, such as scar formation. Therefore, improved strategies to modulate inflammation in these cells are currently being investigated. We investigated the interaction of phosphodiesterase (PDE) 4 inhibitors, such as rolipram, with other agents raising cellular cAMP levels. When used alone, none of the PDE4 inhibitors increased cAMP levels. The adenylate cyclase activator forskolin, the β(2)-adrenergic agonist clenbuterol and the mixed β(1)/β(2)-adrenergic agonist isoproterenol increased intracellular cAMP levels of cortical murine astrocytes. This increase was synergistically elevated by rolipram or the PDE4 inhibitor RO-201724, but not by inhibition of PDE3. Inflammatory stimulation of the cells with the cytokines TNF-α, IL-1β and IFN-γ strongly induced PDE4B and augmented overall PDE4 activity, while PDE3 activity was low. Clenbuterol and forskolin caused downregulation of cytokines and chemokines such as IL-6 and MCP-1. This effect was further enhanced by rolipram, but not by the PDE3 inhibitor milrinone. The cAMP-raising drug combinations attenuated the upregulation of TNF-α and IL-6 mRNA and the secretion of IL-6, but did not affect initial NF-κB signalling triggered by the stimulating cytokines. These results indicate that PDE4 may be a valuable anti-inflammatory target in brain diseases, especially under conditions associated with stimulation of cAMP-augmenting astrocyte receptors as is observed by clenbuterol treatment.
Collapse
|
33
|
The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project. BMC MEDICAL GENETICS 2010; 11:162. [PMID: 21070631 PMCID: PMC2994840 DOI: 10.1186/1471-2350-11-162] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/11/2010] [Indexed: 02/06/2023]
Abstract
Background The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer's disease (AD). Dopamine β-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and 6294 elderly controls. Methods We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We used logistic regression models and synergy factor analysis to examine potential interactions and associations with AD. Results We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95% confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio = 2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype (rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe and North Spain. Conclusions Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is the predominant mechanism of the association we report here.
Collapse
|
34
|
Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 2010; 57:446-50. [DOI: 10.1016/j.neuint.2010.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
|
35
|
Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm (Vienna) 2010; 117:919-47. [PMID: 20632195 DOI: 10.1007/s00702-010-0438-z] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Generation of neurotoxic amyloid beta peptides and their deposition along with neurofibrillary tangle formation represent key pathological hallmarks in Alzheimer's disease (AD). Recent evidence suggests that inflammation may be a third important component which, once initiated in response to neurodegeneration or dysfunction, may actively contribute to disease progression and chronicity. Various neuroinflammatory mediators including complement activators and inhibitors, chemokines, cytokines, radical oxygen species and inflammatory enzyme systems are expressed and released by microglia, astrocytes and neurons in the AD brain. Degeneration of aminergic brain stem nuclei including the locus ceruleus and the nucleus basalis of Meynert may facilitate the occurrence of inflammation in their projection areas given the antiinflammatory and neuroprotective action of their key transmitters norepinephrine and acetylcholine. While inflammation has been thought to arise secondary to degeneration, recent experiments demonstrated that inflammatory mediators may stimulate amyloid precursor protein processing by various means and therefore can establish a vicious cycle. Despite the fact that some aspects of inflammation may even be protective for bystander neurons, antiinflammatory treatment strategies should therefore be considered. Non-steroidal anti-inflammatory drugs have been shown to reduce the risk and delay the onset to develop AD. While, the precise molecular mechanism underlying this effect is still unknown, a number of possible mechanisms including cyclooxygenase 2 or gamma-secretase inhibition and activation of the peroxisome proliferator activated receptor gamma may alone or, more likely, in concert account for the epidemiologically observed protection.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | | | | | | |
Collapse
|
36
|
Cooperation of NFκB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010; 22:871-81. [DOI: 10.1016/j.cellsig.2010.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
|
37
|
Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. DAILY VARIATION OF CONSTITUTIVELY ACTIVATED NUCLEAR FACTOR KAPPA B (NFKB) IN RAT PINEAL GLAND. Chronobiol Int 2010; 27:52-67. [DOI: 10.3109/07420521003661615] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010; 91:189-99. [PMID: 20138112 DOI: 10.1016/j.pneurobio.2010.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/07/2009] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
Abstract
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu HL, Vetri F, Lee HK, Ye S, Paisansathan C, Mao L, Tan F, Pelligrino DA. Estrogen replacement therapy in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules via a RAGE-related process. Am J Physiol Heart Circ Physiol 2009; 297:H2059-67. [PMID: 19820198 DOI: 10.1152/ajpheart.00445.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we tested the hypothesis that the documented transformation of 17beta-estradiol (E2) from a counterinflammatory hormone in nondiabetic (ND) rats to a proinflammatory agent in rats with diabetes mellitus (DM) is due to an enhanced contribution from the receptor for advanced glycation end products (RAGE). Rhodamine 6G-labeled leukocytes were observed through a closed cranial window in rats. In vivo pial venular leukocyte adherence and infiltration were measured over 10 h reperfusion after transient forebrain ischemia in DM (streptozotocin) versus ND intact, ovariectomized (OVX), and E2-replaced (for 7-10 days) OVX (OVE) females. The role of RAGE was examined in two ways: 1) RAGE knockdown via topical application of RAGE antisense versus missense oligodeoxynucleotide or 2) intracerebroventricular injection of the RAGE decoy inhibitor, soluble RAGE. Among diabetic rats, the lowest levels of cortical RAGE mRNA and immunoreactivity of the RAGE ligand, AGE, were seen in OVX females, with significantly higher levels exhibited in intact and OVE females. However, results from the analysis of cortical RAGE protein only partially tracked those findings. When comparing ND to DM rats, cortical AGE immunoreactivity was significantly lower in OVE and intact females but similar in OVX rats. In DM rats, the level of postischemic leukocyte adhesion and infiltration (highest to lowest) was OVE>intact>>untreated OVX. In NDs, adhesion was highest in the untreated OVX group. Leukocyte extravasation was observed at >6 h postischemia but only in diabetic OVE and intact females and in ND OVX (untreated) rats. Pretreatment with RAGE antisense-oligodeoxynucleotide or soluble RAGE attenuated postischemic leukocyte adhesion and prevented infiltration but only in the diabetic OVE and intact groups. These results indicate that the exacerbation of postischemic leukocyte adhesion by chronic E2 replacement therapy in diabetic OVX females involves a RAGE-related mechanism. Targeting RAGE may restore the neuroprotective effect of E2 replacement therapy in diabetic females.
Collapse
Affiliation(s)
- Hao-Liang Xu
- Neuroanesthesia Research Laboratory, Department of Anesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Rm. E-714C, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Morioka N, Tanabe H, Inoue A, Dohi T, Nakata Y. Noradrenaline reduces the ATP-stimulated phosphorylation of p38 MAP kinase via beta-adrenergic receptors-cAMP-protein kinase A-dependent mechanism in cultured rat spinal microglia. Neurochem Int 2009; 55:226-34. [PMID: 19524113 DOI: 10.1016/j.neuint.2009.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/23/2023]
Abstract
To elucidate the involvement of the noradrenergic system in the regulation of spinal microglial activity, we examined the effects of noradrenaline (NA) on the phosphorylation of three MAP kinases (extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK)) stimulated by ATP in rat cultured spinal microglia using Western blotting. ATP (100 microM) quickly induced the phosphorylation of three MAP kinases and MKK3/6, which are upstream kinases of p38. Under these conditions, NA inhibited only the ATP-stimulated phosphorylation of p38 in a time (30-60 min)- and dose (10-100 microM)-dependent manner, but did not affect those of ERK, JNK, or MKK3/6. The inhibitory action of NA was completely reversed by pretreatment with propranolol, an antagonist for beta-adrenoceptors, or both atenolol and ICI118551, selective antagonists for beta1 and beta2, respectively. Treatment with dibutyryl cAMP or the selective activator of PKA mimicked the inhibitory effect of NA. Furthermore, treatment with KT5720, an inhibitor of protein kinase A, completely blocked the action of NA. These data suggest that NA could control the activation of p38 through the beta1/2-adrenergic pathways, which include the production of cAMP and the activation of PKA. Simultaneously, we found that NA also markedly inhibited the ATP-induced increase in the expression of tumor necrosis factor (TNF)-alpha mRNA through beta-adrenergic pathways. Furthermore, preincubation with either actinomycin D or cyclohexamide, general inhibitors of transcription or protein synthesis, respectively, almost completely blocked the inhibitory action of NA on the ATP-stimulated phosphorylation of p38. These results suggest that de novo synthesis of certain factors by NA through beta-adrenoceptors would participate in the modulation of p38 activity. Thus, the inhibitory system via beta1/2-adrenergic pathways in spinal microglia appears to have an important role in the modulation of microglial functions through the downregulation of p38 activity.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | |
Collapse
|
41
|
Kizaki T, Shirato K, Sakurai T, Ogasawara JE, Oh-ishi S, Matsuoka T, Izawa T, Imaizumi K, Haga S, Ohno H. Beta2-adrenergic receptor regulate Toll-like receptor 4-induced late-phase NF-kappaB activation. Mol Immunol 2009; 46:1195-203. [PMID: 19167076 DOI: 10.1016/j.molimm.2008.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/15/2008] [Accepted: 11/16/2008] [Indexed: 12/01/2022]
Abstract
Stimulation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) triggers myeloid differentiation factor 88 (MyD88)-dependent early-phase NF-kappaB activation and Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent late-phase NF-kappaB activation. In a previous study, we have shown that beta(2)-adrenergic receptor (beta(2)AR) functions as a negative regulator of NF-kappaB activation through beta-arrestin 2 in the macrophage cell line RAW264 and that down-regulation of beta(2)AR expression in response to LPS is essential for NF-kappaB activation and expression of its target gene, inducible nitric oxide synthase (NOS II). Here, we demonstrate that beta(2)AR plays an important role in TRIF-dependent late-phase NF-kappaB activation. LPS-stimulated down-regulation was induced in MyD88-knockdown cells, but not in TRIF-knockdown cells, suggesting that beta(2)AR expression was down-regulated by the TRIF-dependent pathway. On the other hand, depletion of beta(2)AR or beta-arrestin 2 expression by siRNA decreased cytoplasmic IkappaB alpha and abrogated late-phase IkappaB alpha degradation and NF-kappaB activation in response to LPS. Inducible nitric oxide synthase (NOS II) expression was increased continuously during 24 h of LPS stimulation in control cells, but decreased in beta(2)AR or beta-arrestin 2-knockdown cells after 6 h of LPS stimulation. These findings suggest that beta(2)AR functions not only as a negative regulator of NF-kappaB activation, but also as a stabilizing factor of the NF-kappaB/IkappaB alpha complex through cytoplasmic beta-arrestin 2, and that TRIF-dependent down-regulation of beta(2)AR expression increases the level of cytoplasmic NF-kappaB/IkappaB alpha complex free from beta-arrestin 2, leading to continuous late-phase NF-kappaB activation.
Collapse
Affiliation(s)
- Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, Mitaka 181-8611, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prandota J. Mollaret meningitis may be caused by reactivation of latent cerebral toxoplasmosis. Int J Neurosci 2009; 119:1655-1692. [PMID: 19922380 DOI: 10.1080/00207450802480044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mollaret meningitis (MM) occurs mainly in females and is characterized by recurrent episodes of headache, transient neurological abnormalities, and the cerebrospinal fluid containing mononuclear cells. HSV-2 was usually identified as the causative agent. Recently, we found that recurrent headaches in non-HIV-infected subjects were due to acquired cerebral toxoplasmosis (CT). The aim of the study was therefore to focus on molecular pathomechanisms that may lead to reactivation of latent CT and manifest as MM. Literature data cited in this work were selected to illustrate that various factors may affect latent CNS Toxoplasma gondii infection/inflammation intensity and/or host defense mechanisms, i.e., the production of NO, cytokines, tryptophan degradation by indoleamine 2,3-dioxygenase, mechanisms mediated by an IFN-gamma responsive gene family, limiting the availability of intracellular iron to T. gondii, and production of reactive oxygen/nitrogen species, finally inducing choroid plexitis and/or vasculitis. Examples of triggers revealing MM and accompanying disturbances of IFN-gamma-mediated immune responses that control HSV-2 and T. gondii include: female predominance (female mice are more susceptible to T. gondii infection than males); HSV-2 infection (increased IFN-gamma, IL-12); metaraminol (increased plasma catecholamine levels, changes in cytokine expression favoring T(H)2 cells responses); probably cholesterol contained in debris from ruptured epidermoid cysts (decreased NO; increased TNF-alpha, IL-6, IL-8). These irregularities induced by the triggers may be responsible for reactivation of latent CT and development of MM. Thus, subjects with MM should have test(s) for T. gondii infection performed obligatorily.
Collapse
Affiliation(s)
- Joseph Prandota
- Pediatrics & Clinical Pharmacology, Department of Social Pediatrics, Faculty of Public Health, University Medical School, Wroclaw, Poland.
| |
Collapse
|
43
|
De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008; 267:3-16. [DOI: 10.1016/j.jns.2007.08.044] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/29/2022]
|
44
|
Jana M, Jana A, Liu X, Ghosh S, Pahan K. Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:4142-52. [PMID: 17785853 PMCID: PMC2604815 DOI: 10.4049/jimmunol.179.6.4142] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in microglial cells and isolating primary microglia from PPAR-alpha-/- mice, we have demonstrated that gemfibrozil inhibits the activation of microglia independent of PPAR-alpha. Interestingly, gemfibrozil induced the activation of p85alpha-associated PI3K (p110beta but not p110alpha) and inhibition of that PI3K by either chemical inhibitors or dominant-negative mutants abrogated the inhibitory effect of gemfibrozil. Conversely, overexpression of the constitutively active mutant of p110 enhanced the inhibitory effect of gemfibrozil on LPS-induced expression of proinflammatory molecules. Similarly, gemfibrozil also inhibited fibrillar amyloid beta (Abeta)-, prion peptide (PrP)-, dsRNA (poly IC)-, HIV-1 Tat-, and 1-methyl-4-phenylpyridinium (MPP+)-, but not IFN-gamma-, induced microglial expression of iNOS. Inhibition of PI3K also abolished the inhibitory effect of gemfibrozil on Abeta-, PrP-, poly IC-, Tat-, and MPP+-induced microglial expression of iNOS. Involvement of NF-kappaB activation in LPS-, Abeta-, PrP-, poly IC-, Tat-, and MPP+-, but not IFN-gamma-, induced microglial expression of iNOS and stimulation of IkappaBalpha expression and inhibition of NF-kappaB activation by gemfibrozil via the PI3K pathway suggests that gemfibrozil inhibits the activation of NF-kappaB and the expression of proinflammatory molecules in microglia via PI3K-mediated up-regulation of IkappaBalpha.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Xiaojuan Liu
- Section of Neuroscience, Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Sankar Ghosh
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, CT 06536
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
- Section of Neuroscience, Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
45
|
Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P, Kamal A, Burrows FJ, Fritz LC, Feinstein DL. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 2006; 99:1351-62. [PMID: 17064348 DOI: 10.1111/j.1471-4159.2006.04221.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heat-shock response (HSR), a highly conserved cellular response, is characterized by rapid expression of heat-shock proteins (HSPs), and inhibition of other synthetic activities. The HSR can attenuate inflammatory responses, via suppression of transcription factor activation. A HSR can be induced pharmacologically by HSP90 inhibitors, through activation of the transcription factor Heat Shock Factor 1 (HSF1). In the present study we characterized the effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG), a less toxic derivative of the naturally occurring HSP90 inhibitor geldanamycin, on glial inflammatory responses and the development of experimental autoimmune encephalomyelitis. In primary enriched glial cultures, 17-AAG dose dependently reduced lipopolysaccharide-dependent expression and activity of inducible nitric oxide synthase, attenuated interleukin (IL)-1beta expression and release, increased inhibitor of kappaB protein levels, and induced HSP70 expression. 17-AAG administration to mice immunized with myelin oligodendrocyte glycoprotein peptide prevented disease onset when given at an early time, and reduced clinical symptoms when given during ongoing disease. T cells from treated mice showed a reduced response to immunogen re-stimulation, and 17-AAG reduced CD3- and CD28-dependent IL-2 production. Together, these data suggest that HSP90 inhibitors could represent a new approach for therapeutic intervention in autoimmune diseases such as multiple sclerosis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Inflammatory Agents/pharmacology
- Benzoquinones/pharmacology
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/physiopathology
- Disease Models, Animal
- Encephalitis/drug therapy
- Encephalitis/immunology
- Encephalitis/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Gliosis/drug therapy
- Gliosis/immunology
- Gliosis/physiopathology
- HSP72 Heat-Shock Proteins/drug effects
- HSP72 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- I-kappa B Proteins/drug effects
- I-kappa B Proteins/metabolism
- Immunosuppressive Agents/pharmacology
- Interleukin-1beta/drug effects
- Interleukin-1beta/metabolism
- Interleukin-2/metabolism
- Lactams, Macrocyclic/pharmacology
- Mice
- Mice, Inbred C57BL
- Nitric Oxide Synthase Type II/drug effects
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Rats, Sprague-Dawley
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Department of Anesthesiology, University of Illinois, and Jesse Brown Veteran's Affairs Research Division, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kalinin S, Polak PE, Madrigal JLM, Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F, Feinstein DL. Beta-amyloid-dependent expression of NOS2 in neurons: prevention by an alpha2-adrenergic antagonist. Antioxid Redox Signal 2006; 8:873-83. [PMID: 16771677 DOI: 10.1089/ars.2006.8.873] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neurotransmitter noradrenaline (NA) exerts important antiinflammatory effects on glial cells including suppression of the inducible form of nitric oxide synthase (NOS2). The authors examined the consequences of manipulating NA in vivo by treating adult rats with the neurotoxin DSP4, which selectively lesions noradrenergic neurons of the locus ceruleus (LC), and reduces cortical NA levels. Following LC lesion, intracortical injection of aggregated amyloid beta 1-42 (Abeta1-42) caused appearance of NOS2 within neurons, and increased neuronal damage assessed by staining for nonphosphorylated neurofilament proteins with antibody SMI-32. Co-treatment with a selective alpha2-adrenergic antagonist reduced neuronal NOS2 staining as well as SMI-32 staining. Neuronal damage was dependent on NOS2 expression since injection of Abeta1-42 into DSP4-treated NOS2-deficient mice did not result in neuronal damage. These results demonstrate that decrease of NA levels in vivo can exacerbate inflammatory responses and neuronal damage due to inflammatory stimuli such as Abeta. These findings suggest that alpha2-adrenergic antagonists could provide therapeutic benefit in neurological diseases such as AD or PD where LC loss is known to occur.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Madrigal JLM, Dello Russo C, Gavrilyuk V, Feinstein DL. Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid Redox Signal 2006; 8:885-92. [PMID: 16771678 DOI: 10.1089/ars.2006.8.885] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors previously showed that conditioned media (CM) from activated microglia increased inducible nitric oxide synthase (NOS2) in cortical neurons. Here they examined the ability of noradrenaline (NA) to reduce neuronal NOS2 or cell death. Primary mouse cortical neurons were activated using CM from microglia incubated with lipopolysaccharide (LPS). Neuronal NOS2 was assessed by increases in nitrite accumulation, and increases in NOS2 mRNA levels and fluorescence of the NO-sensitive probe DAF-2 DA. NOS2 induction was associated with an increase in neuronal LDH release. When NA was added during microglial activation, neuronal NOS2 was significantly reduced (by approximately 70%); in contrast if NA was added to the neurons along with CM, there was less reduction (about 35% decrease) in NOS2 expression. NA added to either microglia or to neurons reduced neuronal LDH release comparably. Pretreatment of CM with blocking antibody to TNFalpha, alone or with IL1-receptor antagonist, partially reduced neuronal cell death and NOS2. Incubation of neurons with NA increased IkBalpha, which could reduce NOS2. These results demonstrate that NA modulates neuronal NOS2 expression and damage, and that these effects are primarily due to inhibition of microglia released factors. Perturbations of NA could exacerbate neuronal damage by allowing for increased inflammatory responses.
Collapse
Affiliation(s)
- Jose L M Madrigal
- Department of Anesthesiology, University of Illinois, and VA Chicago Health Care System, 60612, USA
| | | | | | | |
Collapse
|
48
|
Moriuchi M, Yoshimine H, Oishi K, Moriuchi H. Norepinephrine inhibits human immunodeficiency virus type-1 infection through the NF-κB inactivation. Virology 2006; 345:167-73. [PMID: 16274722 DOI: 10.1016/j.virol.2005.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/26/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Exercise or acute stress can exert significant effects on immune system as well as cardiovascular and respiratory systems through catecholamines. In this study, we investigated effects of norepinephrine (NE), a catecholamine neurotransmitter on human immunodeficiency virus type-1 (HIV-1) infection. NE inhibited in vitro HIV-1 infection of peripheral blood mononuclear cells (PBMC) from healthy donors and ex vivo HIV-1 replication in patients' PBMC. In transient expression assays, NE downregulated HIV-1 long terminal repeat, but site-directed mutagenesis on NF-kappaB-binding sites or cotreatment with H89 (a protein kinase A inhibitor) abrogated the NE-mediated effect. Gel-shift assays showed suppression of NF-kappaB activity in NE-treated cells. NE increased cytoplasmic levels of IkappaB-alpha, a natural inhibitor of NF-kappaB. Thus, NE apparently inhibits HIV-1 infection, at least in part through NF-kappaB inactivation.
Collapse
Affiliation(s)
- Masako Moriuchi
- Division of Medical Virology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
49
|
Lin MW, Tsao LT, Huang LJ, Kuo SC, Weng JR, Ko HH, Lin CN, Lee MR, Wang JP. Inhibition of lipopolysaccharide-stimulated NO production by crotafuran B in RAW 264.7 macrophages involves the blockade of NF-κB activation through the increase in IκBα synthesis. Toxicol Appl Pharmacol 2006; 210:108-15. [PMID: 16087206 DOI: 10.1016/j.taap.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/28/2005] [Accepted: 07/11/2005] [Indexed: 11/28/2022]
Abstract
Crotafuran B, a natural pterocarpanoid isolated from Crotalaria pallida, inhibited the lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (IC50 16.4+/-0.7 microM) and inducible nitric oxide synthase (iNOS) protein and mRNA expression (IC50 11.5+/-0.6 microM and 11.8+/-2.2 microM, respectively), but not via its cytotoxicity or the inhibition of iNOS enzyme activity, in RAW 264.7 macrophages. Crotafuran B also reduced the iNOS promoter activity (IC50 13.4+/-0.1 microM) in piNOS-LUC-transfected cells. Crotafuran B treatment inhibited the p65 nuclear translocation and the nuclear factor-kappaB (NF-kappaB) DNA binding activity in LPS-activated macrophages. Crotafuran B also reduced the NF-kappaB transcriptional activity in pNF-kappaB-LUC-transfected cells. Crotafuran B had no effect on the LPS-induced phosphorylation of inhibitory kappaBalpha (IkappaBalpha), but enhanced the cellular level of IkappaBalpha that rebounded to the basal levels and increased the IkappaBalpha mRNA expression. These results indicate that the crotafuran B inhibition of NO production involves a decrease in the iNOS gene expression via the inhibition of NF-kappaB activation through the increase in IkappaBalpha synthesis.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abdulla D, Goralski KB, Del Busto Cano EG, Renton KW. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during a lipopolysaccharide-induced model of central nervous system inflammation. Drug Metab Dispos 2005; 33:1521-31. [PMID: 16006567 DOI: 10.1124/dmd.105.004564] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that inflammatory and infectious conditions of the central nervous system (CNS) differentially regulate hepatic drug metabolism through changes in cytochrome P450 (P450); however, the pathways leading to this regulation remain unknown. We provide evidence delineating a signal transduction pathway for hepatic P450 gene expression down-regulation in an established rat model of CNS inflammation using lipopolysaccharide (LPS) injected (i.c.v.) directly into the lateral cerebral ventricle. Brain cytokine levels were elevated, and the expression of tumor necrosis factor alpha and inhibitor of kappaB alpha (IkappaBalpha) were increased in the liver following the i.c.v. administration of LPS, indicating the presence of an inflammatory response in the brain and liver. The expression of CYP2D1/5, CYP2B1/2, and CYP1A1 was down-regulated following CNS inflammation. The binding of several transcription factors [nuclear factor of the kappa enhancer in B cells (NF-kappaB), activator protein-1, cAMP response element binding protein, CCAAT-enhancer binding protein (C/EBP)] to responsive elements on P450 promoter regions was examined using electromobility shift assays. Binding of both NF-kappaB and C/EBP to the promoter regions of CYP2D5 and CYP2B1, respectively, was increased, indicating that they play an important role in the regulation of these two isoforms during inflammatory responses. Evidence is also provided suggesting that the rapid transfer of LPS from the CNS into the periphery likely accounts for the down-regulation of P450s in the liver.
Collapse
Affiliation(s)
- Dalya Abdulla
- Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, N.S., B3H 4H7, Canada
| | | | | | | |
Collapse
|