1
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
2
|
Chapman J, Ng YS, Nicholls TJ. The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes. Life (Basel) 2020; 10:life10090164. [PMID: 32858900 PMCID: PMC7555930 DOI: 10.3390/life10090164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are complex organelles that harbour their own genome. Mitochondrial DNA (mtDNA) exists in the form of a circular double-stranded DNA molecule that must be replicated, segregated and distributed around the mitochondrial network. Human cells typically possess between a few hundred and several thousand copies of the mitochondrial genome, located within the mitochondrial matrix in close association with the cristae ultrastructure. The organisation of mtDNA around the mitochondrial network requires mitochondria to be dynamic and undergo both fission and fusion events in coordination with the modulation of cristae architecture. The dysregulation of these processes has profound effects upon mtDNA replication, manifesting as a loss of mtDNA integrity and copy number, and upon the subsequent distribution of mtDNA around the mitochondrial network. Mutations within genes involved in mitochondrial dynamics or cristae modulation cause a wide range of neurological disorders frequently associated with defects in mtDNA maintenance. This review aims to provide an understanding of the biological mechanisms that link mitochondrial dynamics and mtDNA integrity, as well as examine the interplay that occurs between mtDNA, mitochondrial dynamics and cristae structure.
Collapse
Affiliation(s)
- James Chapman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| |
Collapse
|
3
|
Audano M, Pedretti S, Crestani M, Caruso D, De Fabiani E, Mitro N. Mitochondrial dysfunction increases fatty acid β-oxidation and translates into impaired neuroblast maturation. FEBS Lett 2019; 593:3173-3189. [PMID: 31432511 DOI: 10.1002/1873-3468.13584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
Abstract
The metabolic transition from anaerobic glycolysis and fatty acid β-oxidation to glycolysis coupled to oxidative phosphorylation is a key process for the transition of quiescent neural stem cells to proliferative neural progenitor cells. However, a full characterization of the metabolic shift and the involvement of mitochondria during the last step of neurogenesis, from neuroblasts to neuron maturation, is still elusive. Here, we describe a model of neuroblasts, Neuro2a cells, with impaired differentiation capacity due to mitochondrial dysfunction. Using a detailed biochemical characterization consisting of steady-state metabolomics and metabolic flux analysis, we find increased fatty acid β-oxidation as a peculiar feature of neuroblasts with altered mitochondria. The consequent metabolic switch favors neuroblast proliferation at the expense of neuron maturation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
4
|
Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells. PLoS One 2015; 10:e0128502. [PMID: 26030919 PMCID: PMC4452644 DOI: 10.1371/journal.pone.0128502] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/27/2015] [Indexed: 01/25/2023] Open
Abstract
In our previous study, we found that pretreatment with lipoamide (LM) more effectively than alpha-lipoic acid (LA) protected retinal pigment epithelial (RPE) cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD). Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes.
Collapse
|
5
|
Galimov ER, Chernyak BV, Sidorenko AS, Tereshkova AV, Chumakov PM. Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS One 2014; 9:e86521. [PMID: 24618848 PMCID: PMC3950296 DOI: 10.1371/journal.pone.0086521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
p66shc is a protein product of an mRNA isoform of SHC1 gene that has a pro-oxidant and pro-apoptotic activity and is implicated in the aging process. Mitochondria were suggested as a major source of the p66shc-mediated production of reactive oxygen species (ROS), although the underlying mechanisms are poorly understood. We studied effects of p66shc on oxidative stress induced by hydrogen peroxide or by serum deprivation in human colon carcinoma cell line RKO and in diploid human dermal fibroblasts (HDFs). An shRNA-mediated knockdown of p66shc suppressed and an overexpression of a recombinant p66shc stimulated the production of ROS in the both models. This effect was not detected in the mitochondrial DNA-depleted ρ0-RKO cells that do not have the mitochondrial electron transport chain (ETC). The p66shc-dependent accumulation of mitochondrial ROS was detected with HyPer-mito, a mitochondria-targeted fluorescent protein sensor for hydrogen peroxide. The fragmentation of mitochondria induced by mitochondrial ROS was significantly reduced in the p66shc deficient RKO cells. Mitochondria-targeted antioxidants SkQ1 and SkQR1 also decreased the oxidative stress induced by hydrogen peroxide or by serum deprivation. Together the data indicate that the p66shc-dependant ROS production during oxidative stress has mitochondrial origin in human normal and cancer cells.
Collapse
Affiliation(s)
- Evgeny R. Galimov
- Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
| | - Alena S. Sidorenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alesya V. Tereshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Yoshii Y, Yoneda M, Ikawa M, Furukawa T, Kiyono Y, Mori T, Yoshii H, Oyama N, Okazawa H, Saga T, Fujibayashi Y. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol 2011; 39:177-85. [PMID: 22033022 DOI: 10.1016/j.nucmedbio.2011.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/08/2011] [Accepted: 08/14/2011] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Radiolabeled Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) (*Cu-ATSM), including (60/62/64)Cu-ATSM, is a potential imaging agent of hypoxic tumors for positron emission tomography (PET). We have reported that *Cu-ATSM is trapped in tumor cells under intracellular overreduced states, e.g., hypoxia. Here we evaluated *Cu-ATSM as an indicator of intracellular overreduced states in mitochondrial disorders using cell lines with mitochondrial dysfunction. METHODS Mitochondrial DNA-less ρ(0)206 cells; the parental 143B human osteosarcoma cells; the cybrids carrying mutated mitochondria from a patient of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (2SD); and that carrying wild-type one (2SA) were used. Cells were treated under normoxia or hypoxia, and (64)Cu-ATSM uptake was examined to compare it with levels of biological reductant NADH and NADPH. RESULTS ρ(0)206 cells showed higher (64)Cu-ATSM uptake than control 143B cells under normoxia, whereas (64)Cu-ATSM uptake was not significantly increased under hypoxia in ρ(0)206 cells. Additionally, (64)Cu-ATSM uptake showed correlate change to the NADH and NADPH levels, but not oxygenic conditions. 2SD cells showed increased (64)Cu-ATSM uptake under normoxia as compared with the control 2SA, and (64)Cu-ATSM uptake followed NADH and NADPH levels, but not oxygenic conditions. CONCLUSIONS (64)Cu-ATSM accumulated in cells with overreduced states due to mitochondrial dysfunction, even under normoxia. We recently reported that (62)Cu-ATSM-PET can visualize stroke-like episodes maintaining oxygen supply in MELAS patients. Taken together, our data indicate that *Cu-ATSM uptake reflects overreduced intracellular states, despite oxygenic conditions; thus, *Cu-ATSM would be a promising marker of intracellular overreduced states for disorders with mitochondrial dysfunction, such as MELAS, Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Yukie Yoshii
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang H, Jia H, Liu J, Ao N, Yan B, Shen W, Wang X, Li X, Luo C, Liu J. Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease. J Cell Mol Med 2011; 14:215-25. [PMID: 20414966 PMCID: PMC3837594 DOI: 10.1111/j.1582-4934.2008.00390.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson’s disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.
Collapse
Affiliation(s)
- Hongyu Zhang
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mancuso DJ, Kotzbauer P, Wozniak DF, Sims HF, Jenkins CM, Guan S, Han X, Yang K, Sun G, Malik I, Conyers S, Green KG, Schmidt RE, Gross RW. Genetic ablation of calcium-independent phospholipase A2{gamma} leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J Biol Chem 2009; 284:35632-44. [PMID: 19840936 PMCID: PMC2790994 DOI: 10.1074/jbc.m109.055194] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/01/2009] [Indexed: 11/06/2022] Open
Abstract
Genetic ablation of calcium-independent phospholipase A(2)gamma (iPLA(2)gamma) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA(2)gamma(-/-) mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA(2)gamma in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA(2)gamma loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction.
Collapse
Affiliation(s)
- David J. Mancuso
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Paul Kotzbauer
- Hope Center for Neurologic Disorders
- Developmental Biology
- Neurology, and
| | - David F. Wozniak
- Hope Center for Neurologic Disorders
- Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Harold F. Sims
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Christopher M. Jenkins
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Shaoping Guan
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Xianlin Han
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Kui Yang
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | - Gang Sun
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Departments of Medicine
| | | | - Sara Conyers
- Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | | | | - Richard W. Gross
- From the Division of Bioorganic Chemistry and Molecular Pharmacology
- Center for Cardiovascular Research, and
- Departments of Medicine
- Developmental Biology
- the Department of Chemistry, Washington University, St. Louis, Missouri 63105
| |
Collapse
|
9
|
Aldarmaa J, Liu Z, Long J, Mo X, Ma J, Liu J. Anti-convulsant effect and mechanism of Astragalus mongholicus extract in vitro and in vivo: protection against oxidative damage and mitochondrial dysfunction. Neurochem Res 2009; 35:33-41. [PMID: 19578991 DOI: 10.1007/s11064-009-0027-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/16/2009] [Indexed: 01/01/2023]
Abstract
Astragalus mongholicus (AM) is a traditional medicinal herb used as a neuroprotective agent for its anxiolytic, antidepressant, antiamnestic, and antiaggresive effects. However, the mechanisms underlying its anti-convulsant properties are not well studied. In the present study, we examined the anticonvulsant effects on pentylenetetrazol (PTZ)-induced seizures in mice and the possible mechanisms of protection against oxidative damage and mitochondrial dysfunction in vitro. The behavioral studies showed that the root extract of AM had powerful anticonvulsant effects against seizures induced by PTZ and the biochemical studies showed that root extract of AM inhibited PTZ-induced increase in lipid peroxidation, protein oxidation and reactive oxygen species, and enhanced mitochondrial function. Electron spin resonance spectroscopy studies demonstrated that the extracts from the root and aerial parts of AM possess potent effects on scavenging hydroxyl and lipid free radicals. We found that AM extract significantly protected malondialdehyde-induced oxidative damage by ameliorating activities of the mitochondrial complexes I, II, malate dehydrogenase and mitochondrial membrane potential. These data suggest that the anti-convulsant effects of AM extract may be mediated by its protective actions against oxidative damage and amelioration of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jalsrai Aldarmaa
- Institute of Mitochondrial Biology and Medicine, Department of Biological Science and Engineering, Xi'an Jiaotong University School of Life Science and Technology, 28 W. Xian-Ning Road, Xi'an, China
| | | | | | | | | | | |
Collapse
|
10
|
Osborne NN, Li GY, Ji D, Mortiboys HJ, Jackson S. Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem 2008; 105:2013-28. [DOI: 10.1111/j.1471-4159.2008.05320.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Yu M, Shi Y, Wei X, Yang Y, Zhou Y, Hao X, Zhang N, Niu R. Depletion of mitochondrial DNA by ethidium bromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol Lett 2007; 170:83-93. [PMID: 17391873 DOI: 10.1016/j.toxlet.2007.02.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 12/14/2022]
Abstract
In order to investigate the role of mitochondrial DNA (mtDNA) in human breast cancer cell proliferation and apoptosis, a mtDNA-deficient cell line, T47D rho(0), was generated following a long-term exposure to ethidium bromide (EtBr). T47D rho(0) cells showed a marked decrease in mitochondrial membrane potential (DeltaPsi(m)). However, the apoptosis rate of T47D rho(0) cells was the same as that of their parental cells, suggesting that the change in DeltaPsi(m) was insufficient to induce cell death. Electromicroscopy revealed a profound alteration of mitochondrial morphology, which was consistent with the loss of mtDNA and the decrease in DeltaPsi(m). Disruption of mtDNA resulted in a slower proliferation rate in tissue culture and a reduction in anchorage-independent growth. An in vivo assay revealed a severe impairment of tumorigenicity in T47D rho(0) cells, indicating the biological relevance of in vitro studies. Taken together, our results suggest that the integrity of mtDNA plays a critical role in human breast cancer cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Man Yu
- State Key Laboratory of Breast Cancer Prevention and Treatment, Tianjin Cancer Hospital and Institute, Tianjin 300060, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Oxidative phosphorylation (OXPHOS) is the only mammalian biochemical pathway dependent on the coordinated assembly of protein subunits encoded by both nuclear and mitochondrial DNA (mtDNA) genes. Cytoplasmic hybrid cells, cybrids, are created by introducing mtDNAs of interest into cells depleted of endogenous mtDNAs, and have been a central tool in unraveling effects of disease-linked mtDNA mutations. In this way, the nuclear genetic complement is held constant so that observed effects on OXPHOS can be linked to the introduced mtDNA. Cybrid studies have confirmed such linkage for many defined, disease-associated mutations. In general, a threshold principle is evident where OXPHOS defects are expressed when the proportion of mutant mtDNA in a heteroplasmic cell is high. Cybrids have also been used where mtDNA mutations are not known, but are suspected, and have produced some support for mtDNA involvement in more common neurodegenerative diseases. Mouse modeling of mtDNA transmission and disease has recently taken advantage of cybrid approaches. By using cultured cells as intermediate carriers of mtDNAs, ES cell cybrids have been produced in several laboratories by pretreatment of the cells with rhodamine 6G before cytoplast fusion. Both homoplasmic and heteroplasmic mice have been produced, allowing modeling of mtDNA transmission through the mouse germ line. We also briefly review and compare other transgenic approaches to modeling mtDNA dynamics, including mitochondrial injection into oocytes or zygotes, and embryonic karyoplast transfer. When breakthrough technology for mtDNA transformation arrives, cybrids will remain valuable for allowing exchange of engineered mtDNAs between cells.
Collapse
Affiliation(s)
- Ian A Trounce
- Center for Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
13
|
Herst PM, Berridge MV. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:170-7. [PMID: 17266920 DOI: 10.1016/j.bbabio.2006.11.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/23/2006] [Accepted: 11/29/2006] [Indexed: 01/09/2023]
Abstract
Oxygen consumption for bioenergetic purposes has long been thought to be the prerogative of mitochondria. Nevertheless, mitochondrial gene knockout (rho(0)) cells that are defective in mitochondrial respiration require oxygen for growth and consume oxygen at the cell surface via trans-plasma membrane electron transport (tPMET). This raises the possibility that cell surface oxygen consumption may support glycolytic energy metabolism by reoxidising cytosolic NADH to facilitate continued glycolysis. In this paper we determined the extent of cell surface oxygen consumption in a panel of 19 cancer cell lines. Non-mitochondrial (myxothiazol-resistant) oxygen consumption was demonstrated to consist of at least two components, cell surface oxygen consumption (inhibited by extracellular NADH) and basal oxygen consumption (insensitive to both myxothiazol and NADH). The extent of cell surface oxygen consumption varied considerably between parental cell lines from 1% to 80% of total oxygen consumption rates. In addition, cell surface oxygen consumption was found to be associated with low levels of superoxide production and to contribute significantly (up to 25%) to extracellular acidification in HL60rho(0) cells. In summary, cell surface oxygen consumption contributes significantly to total cellular oxygen consumption, not only in rho(0) cells but also in mitochondrially competent tumour cell lines with glycolytic metabolism.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington, New Zealand.
| | | |
Collapse
|
14
|
Carraway MS, Suliman HB, Madden MC, Piantadosi CA, Ghio AJ. Metabolic capacity regulates iron homeostasis in endothelial cells. Free Radic Biol Med 2006; 41:1662-9. [PMID: 17145554 DOI: 10.1016/j.freeradbiomed.2006.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 08/07/2006] [Accepted: 09/01/2006] [Indexed: 11/21/2022]
Abstract
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.
Collapse
Affiliation(s)
- M S Carraway
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
15
|
Mura CV, Delgado R, Aguirre P, Bacigalupo J, Núñez MT. Quiescence induced by iron challenge protects neuroblastoma cells from oxidative stress. J Neurochem 2006; 98:11-9. [PMID: 16805792 DOI: 10.1111/j.1471-4159.2006.03798.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The brain uses massive amounts of oxygen, generating large quantities of reactive oxygen species (ROS). Because of its lipid composition, rich in unsaturated fatty acids, the brain is especially vulnerable to ROS. Furthermore, oxidative damage in the brain is often associated with iron, which has pro-oxidative properties. Iron-mediated oxidative damage in the brain is compounded by the fact that brain iron distribution is non-uniform, being particularly high in areas sensitive to neurodegeneration. This work was aimed to further our understanding of the cellular mechanisms by which SHSY5Y neuroblastoma cells adapt to, and survive increasing iron loads. Using an iron accumulation protocol that kills about 50% of the cell population, we found by cell sorting analysis that the SHSY5Y sub-population that survived the iron loading arrested in the G(0) phase of the cell cycle. These cells expressed neuronal markers, while their electrical properties remained largely unaltered. These results suggest that upon iron challenge, neuroblastoma cells respond by entering the G(0) phase, somehow rendering them resistant to oxidative stress. A similar physiological condition might be involved in neuronal survival in tissues known to accumulate iron with age, such as the hippocampus and the substantia nigra pars compacta.
Collapse
Affiliation(s)
- Casilda V Mura
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
16
|
Rojewski MT, Körper S, Thiel E, Schrezenmeier H. Depolarization of mitochondria and activation of caspases are common features of arsenic(III)-induced apoptosis in myelogenic and lymphatic cell lines. Chem Res Toxicol 2004; 17:119-28. [PMID: 14727926 DOI: 10.1021/tx034104+] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clinical efficacy of arsenic(III) oxide (As(2)O(3)) has been shown in patients with relapsed acute promyelocytic leukemia (APL). To identify potential common primary targets of action of As(2)O(3) in myelogenic and lymphatic cell lines, we analyzed As(2)O(3) effects on caspases and on the mitochondrial membrane potential (Psi(M)) under uniform conditions. As(2)O(3) induced breakdown of Psi(M) and activated caspases in cell lines with different sensitivities for As(2)O(3), including cell lines resistant to mitoxantron or camptothecin but sensitive to As(2)O(3). Caspase inhibitors could not prevent breakdown of Psi(M) in lymphoid cell lines, whereas activation of caspases and apoptosis could be inhibited. Activation of caspases seems to be a downstream effect occurring after breakdown of Psi(M). We could show that all of these effects are independent of MDR-1 expression. There was no difference in the mode of action of As(2)O(3) in cell lines sensitive or resistant to camptothecin, mitoxantrone, or doxorubicin. As(2)O(3) deserves further evaluation as an adjunct or alternative to other cytostatic drugs.
Collapse
Affiliation(s)
- Markus T Rojewski
- Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Medizinische Klinik III, Hämatologie, Onkologie und Transfusionsmedizin, D-12203 Berlin, Germany. ..de
| | | | | | | |
Collapse
|
17
|
Herst PM, Tan AS, Scarlett DJG, Berridge MV. Cell surface oxygen consumption by mitochondrial gene knockout cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:79-87. [PMID: 15178469 DOI: 10.1016/j.bbabio.2004.01.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/29/2004] [Accepted: 01/30/2004] [Indexed: 11/18/2022]
Abstract
Mitochondrial gene knockout (rho(0)) cells that depend on glycolysis for their energy requirements show an increased ability to reduce cell-impermeable tetrazolium dyes by electron transport across the plasma membrane. In this report, we show for the first time, that oxygen functions as a terminal electron acceptor for trans-plasma membrane electron transport (tPMET) in HL60rho(0) cells, and that this cell surface oxygen consumption is associated with oxygen-dependent cell growth in the absence of mitochondrial electron transport function. Non-mitochondrial oxygen consumption by HL60rho(0) cells was extensively inhibited by extracellular NADH and NADPH, but not by NAD(+), localizing this process at the cell surface. Mitochondrial electron transport inhibitors and the uncoupler, FCCP, did not affect oxygen consumption by HL60rho(0) cells. Inhibitors of glucose uptake and glycolysis, the ubiquinone redox cycle inhibitors, capsaicin and resiniferatoxin, the flavin centre inhibitor, diphenyleneiodonium, and the NQO1 inhibitor, dicoumarol, all inhibited oxygen consumption by HL60rho(0) cells. Similarities in inhibition profiles between non-mitochondrial oxygen consumption and reduction of the cell-impermeable tetrazolium dye, WST-1, suggest that both systems may share a common tPMET pathway. This is supported by the finding that terminal electron acceptors from both pathways compete for electrons from intracellular NADH.
Collapse
Affiliation(s)
- Patries M Herst
- Department of Radiation Therapy, Wellington School of Medicine and Health Sciences, University of Otago, PO Box 7343, Wellington, New Zealand
| | | | | | | |
Collapse
|
18
|
Singh KK, Rasmussen AK, Rasmussen LJ. Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae. Ann N Y Acad Sci 2004; 1011:284-98. [PMID: 15126304 DOI: 10.1007/978-3-662-41088-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.
Collapse
Affiliation(s)
- Keshav K Singh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
19
|
SINGH KESHAVK, RASMUSSEN ANNEKARIN, RASMUSSEN LENEJUEL. Genome-Wide Analysis of Signal Transducers and Regulators of Mitochondrial Dysfunction inSaccharomyces cerevisiae. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Killilea DW, Atamna H, Liao C, Ames BN. Iron accumulation during cellular senescence in human fibroblasts in vitro. Antioxid Redox Signal 2003; 5:507-16. [PMID: 14580305 PMCID: PMC4503765 DOI: 10.1089/152308603770310158] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Iron accumulates as a function of age in several tissues in vivo and is associated with the pathology of numerous age-related diseases. The molecular basis of this change may be due to a loss of iron homeostasis at the cellular level. Therefore, changes in iron content in primary human fibroblast cells (IMR-90) were studied in vitro as a model of cellular senescence. Total iron content increased exponentially during cellular senescence, resulting in 10-fold higher levels of iron compared with young cells. Low-dose hydrogen peroxide (H2O2) induced early senescence in IMR-90s and concomitantly accelerated iron accumulation. Furthermore, senescence-related and H2O2-stimulated iron accumulation was attenuated by N-tert-butylhydroxylamine (NtBHA), a mitochondrial antioxidant that delays senescence in vitro. However, SV40-transformed, immortalized IMR-90s showed no time-dependent changes in metal content in culture or when treated with H2O2 and/or NtBHA. These data indicate that iron accumulation occurs during normal cellular senescence in vitro. This accumulation of iron may contribute to the increased oxidative stress and cellular dysfunction seen in senescent cells.
Collapse
Affiliation(s)
- David W Killilea
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | |
Collapse
|