1
|
Guo Y, Wang J, Yao L, Wang Y, Zhang Y, Zhuo C, Yang X, Li F, Li J, Liu B, He N, Chen J, Xiao S, Lin Z, Zhuo C. Ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae accompanied hypermucoviscosity acquisition. BMC Microbiol 2024; 24:439. [PMID: 39468460 PMCID: PMC11514958 DOI: 10.1186/s12866-024-03508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Antimicrobial resistance and bacterial hypermucoviscosity, associated with escalating production of capsules, constitute major challenges for the clinical management of Klebsiella pneumoniae (K. pneumoniae) infections. This study investigates the association and underlying mechanism between ceftazidime-avibactam (CAZ-AVI) resistance and bacterial hypermucoviscosity in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp). RESULTS The proportion of CAZ-AVI-sensitive clinical isolates exhibiting the hypermucoviscous phenotype was significantly lower than that of the resistant strains (5.6% vs. 46.7%, P < 0.001). To further verify the correlation and molecular mechanism between CAZ-AVI resistance and hypermucoviscosity, 10 CAZ-AVI-resistant isolates were generated through in vitro resistance selection from CAZ-AVI-sensitive KPC-Kp. The results showed the same association as it showed in the clinical isolates, with four out of ten induced CAZ-AVI-resistant isolates transitioning from negative to positive in the string tests. Comparative genomic analysis identified diverse mutations in the wzc gene, crucial for capsule polysaccharide (CPS) synthesis, in all four CAZ-AVI-resistant hypermucoviscous KPC-Kp strains compared to the parent strains. However, these mutations were absent in the other six KPC-Kp strains that did not exhibit induced hypermucoviscosity. Cloning of the wzc gene variants and their expression in wild-type strains confirmed that mutations in the wzc gene can induce bacterial hypermucoviscosity and heightened virulence, however, they do not confer resistance to CAZ-AVI. CONCLUSIONS These results indicated that resistance to CAZ-AVI in KPC-Kp isolates may be accompanied by the acquisition of hypermucoviscosity, with mutations in the wzc gene often involving in this process.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yijing Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu Yang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahui Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nanhao He
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiakang Chen
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China.
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Chen M, Feng X, Liu J, Wang J, Yang X, Yu X, Kong W, Sun B, Wu H. Prokaryote-derived phosphorylated Tau epitope vaccine is immunogenic and non-T-cell activated in the mice model. Vaccine 2024; 42:1211-1219. [PMID: 38331660 DOI: 10.1016/j.vaccine.2023.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Accumulation of phosphorylated Tau protein is a prominent pathological hallmark of Alzheimer's disease (AD). However, current vaccines targeting phosphorylation sites are primarily modified using chemical reactions, which exhibit low efficiency in terms of linking to the vaccine carrier. Despite the identification of over 2000 phosphorylation sites on approximately 20% of E. coli proteins through proteomic studies, it remains unclear whether recombinant Tau proteins expressed in bacteria undergo direct phosphorylation. Additionally, limited information is available regarding the immunogenicity and safety profiles of prokaryotic-derived pTau epitope vaccines. Our study discovered that the prokaryotic system can induce phosphorylation on four residues (T181, T205, S262, and S396) of the full-length Tau protein. Based on this finding, we developed a prokaryotic-modified phosphorylated Tau protein vaccine and immunized wild-type mice, resulting in enhanced immunogenicity and a favorable safety profile.
Collapse
Affiliation(s)
- Mo Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xuejian Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianan Wang
- Changchun BCHT Biotechnology, 1260 Huoju Road, Changchun High-tech Zone, Changchun, Jilin, China
| | - Xu Yang
- Chemistry Room, Jilin Institute for Drug Control, No. 657, Zhanjiang Road, Changchun, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, Walker KA, Miller VL. Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length. mBio 2023; 14:e0080023. [PMID: 37140436 PMCID: PMC10294653 DOI: 10.1128/mbio.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.
Collapse
Affiliation(s)
- Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Logan P. Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taryn A. Miner
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kimberly A. Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Nucci A, Rocha EPC, Rendueles O. Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits. Nat Commun 2022; 13:4751. [PMID: 35963864 PMCID: PMC9376106 DOI: 10.1038/s41467-022-32504-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular capsule is a major virulence factor, but its ubiquity in free-living bacteria with large environmental breadths suggests that it shapes adaptation to novel niches. Yet, how it does so, remains unexplored. Here, we evolve three Klebsiella strains and their capsule mutants in parallel. Their comparison reveals different phenotypic and genotypic evolutionary changes that alter virulence-associated traits. Non-capsulated populations accumulate mutations that reduce exopolysaccharide production and increase biofilm formation and yield, whereas most capsulated populations become hypermucoviscous, a signature of hypervirulence. Hence, adaptation to novel environments primarily occurs by fine-tuning expression of the capsular locus. The same evolutionary conditions selecting for mutations in the capsular gene wzc leading to hypermucoviscosity also result in increased susceptibility to antibiotics by mutations in the ramA regulon. This implies that general adaptive processes outside the host can affect capsule evolution and its role in virulence and infection outcomes may be a by-product of such adaptation. Phenotypic and genotypic evolution in worrisome Klebsiella spp. is influenced by the capsule. Here the authors show that adaptation outside the host can impact virulence-associated traits, including de novo emergence of hypermucoviscosity.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
5
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
6
|
Ren L, Shen D, Liu C, Ding Y. Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction. Front Cell Infect Microbiol 2022; 11:814659. [PMID: 35087767 PMCID: PMC8787120 DOI: 10.3389/fcimb.2021.814659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daonan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Tyrosine Kinase Self-Phosphorylation Controls Exopolysaccharide Biosynthesis in Gluconacetobacter diazotrophicus Strain Pal5. Life (Basel) 2021; 11:life11111231. [PMID: 34833106 PMCID: PMC8620434 DOI: 10.3390/life11111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
The biosynthesis of exopolysaccharides (EPSs) is essential for endophytic bacterial colonisation in plants bacause this exopolymer both protects bacterial cells against the defence and oxidative systems of plants and acts on the plant colonisation mechanism in Gluconacetobacter diazotrophicus. The pathway involved in the biosynthesis of bacterial EPS has not been fully elucidated, and several areas related to its molecular regulation mechanisms are still lacking. G. diazotrophicus relies heavily on EPS for survival indirectly by protecting plants from pathogen attack as well as for endophytic maintenance and adhesion in plant tissues. Here, we report that EPS from G. diazotrophicus strain Pal5 is a signal polymer that controls its own biosynthesis. EPS production depends on a bacterial tyrosine (BY) kinase (Wzc) that consists of a component that is able to phosphorylate a glycosyltranferase or to self-phosphorylate. EPS interacts with the extracellular domain of Wzc, which regulates kinase activity. In G. diazotrophicus strains that are deficient in EPS production, the Wzc is rendered inoperative by self-phosphorylation. The presence of EPS promotes the phosphorylation of a glycosyltransferase in the pathway, thus producing EPS. Wzc-mediated self-regulation is an attribute for the control of exopolysaccharide biosynthesis in G. diazotrophicus.
Collapse
|
8
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
9
|
Yang Y, Liu J, Clarke BR, Seidel L, Bolla JR, Ward PN, Zhang P, Robinson CV, Whitfield C, Naismith JH. The molecular basis of regulation of bacterial capsule assembly by Wzc. Nat Commun 2021; 12:4349. [PMID: 34272394 PMCID: PMC8285477 DOI: 10.1038/s41467-021-24652-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Bacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein "Wzx-Wzy" system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.
Collapse
Affiliation(s)
- Yun Yang
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Jiwei Liu
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philip N Ward
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Peijun Zhang
- Division of Structural Biology, The University of Oxford, Oxford, UK.,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada.
| | - James H Naismith
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK. .,Division of Structural Biology, The University of Oxford, Oxford, UK. .,The Research Complex at Harwell, Harwell Campus, Harwell, UK.
| |
Collapse
|
10
|
Sachdeva S, Palur RV, Sudhakar KU, Rathinavelan T. E. coli Group 1 Capsular Polysaccharide Exportation Nanomachinary as a Plausible Antivirulence Target in the Perspective of Emerging Antimicrobial Resistance. Front Microbiol 2017; 8:70. [PMID: 28217109 PMCID: PMC5290995 DOI: 10.3389/fmicb.2017.00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Bacteria evolving resistance against the action of multiple drugs and its ability to disseminate the multidrug resistance trait(s) across various strains of the same bacteria or different bacterial species impose serious threat to public health. Evolution of such multidrug resistance is due to the fact that, most of the antibiotics target bacterial survival mechanisms which exert selective pressure on the bacteria and aids them to escape from the action of antibiotics. Nonetheless, targeting bacterial virulence strategies such as bacterial surface associated polysaccharides biosynthesis and their surface accumulation mechanisms may be an attractive strategy, as they impose less selective pressure on the bacteria. Capsular polysaccharide (CPS) or K-antigen that is located on the bacterial surface armors bacteria from host immune response. Thus, unencapsulating bacteria would be a good strategy for drug design, besides CPS itself being a good vaccine target, by interfering with CPS biosynthesis and surface assembly pathway. Gram-negative Escherichia coli uses Wzy-polymerase dependent (Groups 1 and 4) and ATP dependent (Groups 1 and 3) pathways for CPS production. Considering E. coli as a case in point, this review explains the structure and functional roles of proteins involved in Group 1 Wzy dependent CPS biosynthesis, surface expression and anchorage in relevance to drug and vaccine developments.
Collapse
Affiliation(s)
- Shivangi Sachdeva
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Raghuvamsi V Palur
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Karpagam U Sudhakar
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | | |
Collapse
|
11
|
Derouiche A, Shi L, Kalantari A, Mijakovic I. Substrate Specificity of the Bacillus subtilis BY-Kinase PtkA Is Controlled by Alternative Activators: TkmA and SalA. Front Microbiol 2016; 7:1525. [PMID: 27725816 PMCID: PMC5035731 DOI: 10.3389/fmicb.2016.01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial protein-tyrosine kinases (BY-kinases) are known to regulate different aspects of bacterial physiology, by phosphorylating cellular protein substrates. Physiological cues that trigger BY-kinases activity are largely unexplored. In Proteobacteria, BY-kinases contain a cytosol-exposed catalytic domain and a transmembrane activator domain in a single polypeptide chain. In Firmicutes, the BY-kinase catalytic domain and the transmembrane activator domain exist as separate polypeptides. We have previously speculated that this architecture might enable the Firmicutes BY-kinases to interact with alternative activators, and thus account for the observed ability of these kinases to phosphorylate several distinct classes of protein substrates. Here, we present experimental evidence that supports this hypothesis. We focus on the model Firmicute-type BY-kinase PtkA from Bacillus subtilis, known to phosphorylate several different protein substrates. We demonstrate that the transcriptional regulator SalA, hitherto known as a substrate of PtkA, can also act as a PtkA activator. In doing so, SalA competes with the canonical PtkA activator, TkmA. Our results suggest that the respective interactions of SalA and TkmA with PtkA favor phosphorylation of different protein substrates in vivo and in vitro. This observation may contribute to explaining how specificity is established in the seemingly promiscuous interactions of BY-kinases with their cellular substrates.
Collapse
Affiliation(s)
- Abderahmane Derouiche
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Lei Shi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Aida Kalantari
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
12
|
Liu C, Miller DP, Wang Y, Merchant M, Lamont RJ. Structure-function aspects of the Porphyromonas gingivalis tyrosine kinase Ptk1. Mol Oral Microbiol 2016; 32:314-323. [PMID: 27498608 DOI: 10.1111/omi.12173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The development of synergistically pathogenic communities of Porphyromonas gingivalis and Streptococcus gordonii is controlled by a tyrosine-phosphorylation-dependent signaling pathway in P. gingivalis. The Ptk1 bacterial tyrosine (BY) kinase of P. gingivalis is required for maximal community development and for the production of extracellular polysaccharide. We show that the consensus BY kinase Walker A and B domains, the RK cluster, and the YC domain of Ptk1 are necessary for autophosphorylation and for substrate phosphorylation. Mass spectrometry showed that six tyrosine residues in a 16-amino-acid C-terminal region were phosphorylated in recombinant (r) Ptk1. Complementation of a ptk1 mutant with the wild-type ptk1 allele in trans restored community development between P. gingivalis and S. gordonii, and extracellular polysaccharide production by P. gingivalis. In contrast, complementation of Δptk1 with ptk1 containing a mutation in the Walker A domain failed to restore community development or extracellular polysaccharide production. rPtk1 was capable of phosphorylating the tyrosine phosphatase Ltp1 and the transcriptional regulator CdhR, both of which are involved in the development of P. gingivalis communities with S. gordonii.
Collapse
Affiliation(s)
- C Liu
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Y Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Chesterman C, Jia Z. Purification, characterization, and crystallization of membrane bound Escherichia coli tyrosine kinase. Protein Expr Purif 2016; 125:34-42. [DOI: 10.1016/j.pep.2015.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/28/2022]
|
14
|
Kato T, Shirakawa Y, Takegawa K, Kimura Y. Functional analysis of conserved motifs in a bacterial tyrosine kinase, BtkB, from Myxococcus xanthus. J Biochem 2015; 158:385-92. [PMID: 25998248 DOI: 10.1093/jb/mvv053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Myxococcus xanthus has two bacterial protein-tyrosine (BY) kinases, BtkA and BtkB. Autophosphorylation in C-terminal tyrosine-rich clusters and poly(Glu, Tyr) kinase activities of cytoplasmic catalytic domains of BtkA and BtkB were activated by the intracellular juxtamembrane regions of the second transmembrane helices. Protein kinase activity against poly(Glu, Tyr) of cytoplasmic fragment of BtkB (CF-BtkB) containing an activator region was not inhibited by serine/threonine protein kinase inhibitors. However, addition of tyrosine protein kinase inhibitors, genistein and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), at a concentration of 0.2 mM, inhibited the CF-BtkB kinase activity by 20 and 64%, respectively. A CF-BtkB mutant constructed by replacing all C-terminal tyrosine residues with phenylalanines, did not undergo autophosphorylation. Further, this mutation did not significantly affect poly(Glu, Tyr) kinase activity, suggesting that M. xanthus BtkB kinase activity is not dependent on autophosphorylation in the C-terminal tyrosine cluster. A conserved motif (ExxRxxR) of BY kinases is involved in the self-association of catalytic domains of BY kinases, necessary to accomplish trans-phosphorylation. An ExxRxxR motif mutant of CF-BtkB led to loss of autophosphorylation and poly(Glu, Tyr) kinase activities. These observations provide insights into the regulation mechanism of M. xanthus BY kinase activity.
Collapse
Affiliation(s)
- Takuya Kato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa; and
| | - Yuuki Shirakawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa; and
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Kyusyu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa; and
| |
Collapse
|
15
|
PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum. PLoS One 2014; 9:e109106. [PMID: 25268738 PMCID: PMC4182512 DOI: 10.1371/journal.pone.0109106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.
Collapse
|
16
|
Wright CJ, Xue P, Hirano T, Liu C, Whitmore SE, Hackett M, Lamont RJ. Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy. Microbiologyopen 2014; 3:383-94. [PMID: 24811194 PMCID: PMC4082711 DOI: 10.1002/mbo3.177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Interspecies communication between Porphyromonas gingivalis and Streptococcus gordonii underlies the development of synergistic dual species communities. Contact with S. gordonii initiates signal transduction within P. gingivalis that is based on protein tyrosine (de)phosphorylation. In this study, we characterize a bacterial tyrosine (BY) kinase (designated Ptk1) of P. gingivalis and demonstrate its involvement in interspecies signaling. Ptk1 can utilize ATP for autophosphorylation and is dephosphorylated by the P. gingivalis tyrosine phosphatase, Ltp1. Community development with S. gordonii is severely abrogated in a ptk1 mutant of P. gingivalis, indicating that tyrosine kinase activity is required for maximal polymicrobial synergy. Ptk1 controls the levels of the transcriptional regulator CdhR and the fimbrial adhesin Mfa1 which mediates binding to S. gordonii. The ptk1 gene is in an operon with two genes involved in exopolysaccharide synthesis, and similar to other BY kinases, Ptk1 is necessary for exopolysaccharide production in P. gingivalis. Ptk1 can phosphorylate the capsule related proteins PGN_0224, a UDP-acetyl-mannosamine dehydrogenase, and PGN_0613, a UDP-glucose dehydrogenase, in P. gingivalis. Knockout of ptk1 in an encapsulated strain of P. gingivalis resulted in loss of capsule production. Collectively these results demonstrate that the P. gingivalis Ptk1 BY kinase regulates interspecies communication and controls heterotypic community development with S. gordonii through adjusting the levels of the Mfa1 adhesin and exopolysaccharide.
Collapse
Affiliation(s)
- Christopher J Wright
- Oral Health and Systemic Disease, University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | | | | | |
Collapse
|
17
|
Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK. Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions. Curr Microbiol 2013; 67:659-67. [DOI: 10.1007/s00284-013-0416-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
|
18
|
Temel DB, Dutta K, Alphonse S, Nourikyan J, Grangeasse C, Ghose R. Regulatory interactions between a bacterial tyrosine kinase and its cognate phosphatase. J Biol Chem 2013; 288:15212-28. [PMID: 23543749 DOI: 10.1074/jbc.m113.457804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.
Collapse
Affiliation(s)
- Deniz B Temel
- Department of Chemistry, City College of New York, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mori Y, Maeda M, Takegawa K, Kimura Y. PhpA, a tyrosine phosphatase of Myxococcus xanthus, is involved in the production of exopolysaccharide. Microbiology (Reading) 2012; 158:2546-2555. [DOI: 10.1099/mic.0.059824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yumi Mori
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Miri Maeda
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
20
|
Kimura Y, Kato T, Mori Y. Function analysis of a bacterial tyrosine kinase, BtkB, inMyxococcus xanthus. FEMS Microbiol Lett 2012; 336:45-51. [DOI: 10.1111/j.1574-6968.2012.02651.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/30/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yoshio Kimura
- Department of Applied Biological Science; Faculty of Agriculture; Kagawa University; Miki-cho; Kagawa; Japan
| | - Takuya Kato
- Department of Applied Biological Science; Faculty of Agriculture; Kagawa University; Miki-cho; Kagawa; Japan
| | - Yumi Mori
- Department of Applied Biological Science; Faculty of Agriculture; Kagawa University; Miki-cho; Kagawa; Japan
| |
Collapse
|
21
|
Cefalo AD, Broadbent JR, Welker DL. Intraspecific and interspecific interactions among proteins regulating exopolysaccharide synthesis in Streptococcus thermophilus, Streptococcus iniae, and Lactococcus lactis subsp. cremoris and the assessment of potential lateral gene transfer. Can J Microbiol 2011; 57:1002-15. [PMID: 22107596 DOI: 10.1139/w11-090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the yeast two-hybrid system, intraspecific protein interactions were detected in Streptococcus iniae and Lactococcus lactis subsp. cremoris between the transmembrane activation protein (CpsC and EpsA, respectively) and the protein tyrosine kinase (CpsD and EpsB, respectively), between two protein tyrosine kinases, and between the protein tyrosine kinase and the phosphotyrosine phosphatase (CpsB and EpsC, respectively). For each of these intraspecific interactions, interspecific interactions were also detected when one protein was from S. iniae and the other was from Streptococcus thermophilus . Interactions were also observed between two protein tyrosine kinases when one protein was from either of the Streptococcus species and the other from L. lactis subsp. cremoris. The results and sequence comparisons performed in this study support the conclusion that interactions among the components of the tyrosine kinase - phosphatase regulatory system are conserved in the order Lactobacillales and that interspecific genetic exchanges of the genes that encode these proteins have the potential to form functional recombinants. A better understanding of intraspecific and interspecific protein interactions involved in regulating exopolysaccharide biosynthesis may facilitate construction of improved strains for industrial uses as well as identification of factors needed to form functional regulatory complexes in naturally occurring recombinants.
Collapse
Affiliation(s)
- Angela D Cefalo
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | | | | |
Collapse
|
22
|
The Yersinia enterocolitica phage shock proteins B and C can form homodimers and heterodimers in vivo with the possibility of close association between multiple domains. J Bacteriol 2011; 193:5747-58. [PMID: 21856846 DOI: 10.1128/jb.05080-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.
Collapse
|
23
|
A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 2011; 193:5853-7. [PMID: 21840977 DOI: 10.1128/jb.05750-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Myxococcus xanthus cytoplasmic bacterial tyrosine kinase, BtkA, showed phosphorylation activity in the presence of Exo. Phosphorylated BtkA was expressed late after starvation induction and early after glycerol induction. The btkA mutant was unable to complete maturation to heat- and sonication-resistant spores under both starvation- and glycerol-induced developmental conditions.
Collapse
|
24
|
Larue K, Ford RC, Willis LM, Whitfield C. Functional and structural characterization of polysaccharide co-polymerase proteins required for polymer export in ATP-binding cassette transporter-dependent capsule biosynthesis pathways. J Biol Chem 2011; 286:16658-68. [PMID: 21454677 PMCID: PMC3089508 DOI: 10.1074/jbc.m111.228221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/17/2011] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope.
Collapse
Affiliation(s)
- Kane Larue
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| | - Robert C. Ford
- the Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Lisa M. Willis
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| |
Collapse
|
25
|
Bechet E, Gruszczyk J, Terreux R, Gueguen-Chaignon V, Vigouroux A, Obadia B, Cozzone AJ, Nessler S, Grangeasse C. Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export. Mol Microbiol 2011; 77:1315-25. [PMID: 20633230 DOI: 10.1111/j.1365-2958.2010.07291.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capsular polysaccharides are well-established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine-kinases, named BY-kinases. However, the accurate functioning of these tyrosine-kinases remains unknown. Here, we report the crystal structure of the non-phosphorylated cytoplasmic domain of the tyrosine-kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring-shaped octamer. Mutational analysis demonstrates that a conserved EX(2) RX(2) R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY-kinases from proteobacteria autophosphorylate on their C-terminal tyrosine cluster via a single-step intermolecular mechanism. This structure-function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK-cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY-kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY-kinases in the capsular polysaccharide assembly machinery.
Collapse
Affiliation(s)
- Emmanuelle Bechet
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, 69367 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cefalo AD, Broadbent JR, Welker DL. Protein-protein interactions among the components of the biosynthetic machinery responsible for exopolysaccharide production in Streptococcus thermophilus MR-1C. J Appl Microbiol 2011; 110:801-12. [PMID: 21205103 DOI: 10.1111/j.1365-2672.2010.04935.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM This study identified protein-protein interactions among the biosynthetic machinery responsible for exopolysaccharide (EPS) production in Streptococcus thermophilus MR-1C. METHODS AND RESULTS Protein-protein interactions were investigated using the yeast two-hybrid system. A strong protein-protein interaction was detected between the transmembrane activation protein Wzd and the protein tyrosine kinase Wze. Weaker protein-protein interactions were detected between two duplicate Wze proteins and between Wze and the phosphotyrosine phosphatase Wzh. Protein-protein interactions involving a Wzd/Wze fusion protein and Wzd and Wze may indicate that these proteins form multi-protein complexes. All combinations of the Wzh, Wzd, Wze, Wzg (regulation), CpsE (glycosyl-1-phosphate transferase), CpsS (polymerization), CpsL (unknown), CpsW (regulation) and CpsU (membrane translocation) were analysed for protein-protein interactions but no additional interactions were discovered using the yeast two-hybrid system. CONCLUSIONS Interactions among the phosphotyrosine phosphatase, tyrosine kinase, and transmembrane activation protein are important in the regulation of capsule biosynthesis in Strep. thermophilus MR-1C. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides some valuable insight into the organization and interactions between the many proteins involved in EPS production. A better understanding of this process may facilitate the genetic manipulation of capsule production to impart desirable properties to dairy starter cultures.
Collapse
Affiliation(s)
- A D Cefalo
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| | | | | |
Collapse
|
27
|
Lu T, Tan H, Lee D, Chen G, Jia Z. New insights into the activation of Escherichia coli tyrosine kinase revealed by molecular dynamics simulation and biochemical analysis. Biochemistry 2009; 48:7986-95. [PMID: 19634880 DOI: 10.1021/bi900811p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli tyrosine kinase (Etk) regulates the export of pathogenic capsular polysaccharide (CPS) by intermolecularly autophosphorylating its C-terminal tyrosine cluster. The kinase Etk, however, needs to be first activated by the intramolecular phosphorylation of a tyrosine residue, Y574, next to the active site. The recently determined structure of Etk shows that dephosphorylated Y574 blocks the active site and prevents substrate access. After phosphorylation, the negatively charged P-Y574 side chain was previously postulated to flip out to associate with a positively charged R614, unblocking the active site. This proposed activation is unique among protein kinases; however, there is no direct structural evidence in support of this hypothesis. In this paper, we carried out molecular dynamics simulation, mutagenesis, and biochemical analysis to study the activation mechanism of Etk. Our simulation results are in excellent agreement with the proposed molecular switch involving P-Y574 and R614 in the activation of Etk. Further, we show that a previously unidentified residue, R572, modulates the rotation of the P-Y574 side chain through electrostatic interaction, slowing down the opening of the active site. Our enzymatic assays demonstrate that the R572A mutant of Etk possesses significantly increased kinase activity, providing direct experimental support for the unique activation mechanism of Etk. In addition, the simulation of the Etk Y574F mutant predicted short periods of unblocked active site by Y574F, in good agreement with the low kinase activity of this mutant. The C-terminal substrate peptide and the nucleotide cofactor were also docked into the active site, and their implications are discussed.
Collapse
Affiliation(s)
- Tian Lu
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Abstract
The capsule is a cell surface structure composed of long-chain polysaccharides that envelops many isolates of Escherichia coli. It protects the cell against host defenses or physical environmental stresses, such as desiccation. The component capsular polysaccharides (CPSs) are major surface antigens in E. coli. They are named K antigens (after the German word Kapsel). Due to variations in CPS structures, more than 80 serologically unique K antigens exist in E. coli. Despite the hypervariability in CPS structures, only two capsule-assembly strategies exist in E. coli. These have led to the assignment of group 1 and group 2 capsules, and many of the key elements of the corresponding assembly pathways have been resolved. Structural features, as well as genetic and regulatory variations, give rise to additional groups 3 and 4. These employ the same biosynthesis processes described in groups 2 and 1, respectively. Each isolate possesses a distinctive set of cytosolic and inner-membrane enzymes, which generate a precise CPS structure, defining a given K serotype. Once synthesized, a multiprotein complex is needed to translocate the nascent CPS across the Gram-negative cell envelope to the outer surface of the outer membrane, where the capsule structure is assembled. While the translocation machineries for group 1 and group 2 CPSs are fundamentally different from one another, they possess no specificity for a given CPS structure. Each is conserved in all isolates producing capsules belonging to a particular group.
Collapse
|
29
|
Lee DC, Jia Z. Emerging structural insights into bacterial tyrosine kinases. Trends Biochem Sci 2009; 34:351-7. [DOI: 10.1016/j.tibs.2009.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 01/06/2023]
|
30
|
Bechet E, Guiral S, Torres S, Mijakovic I, Cozzone AJ, Grangeasse C. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids 2009; 37:499-507. [PMID: 19189200 DOI: 10.1007/s00726-009-0237-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/29/2008] [Indexed: 02/05/2023]
Abstract
When considering protein phosphorylation in bacteria, phosphorylation of aspartic acid and histidine residues mediated by the two-component systems is the first to spring to mind. And yet other phosphorylation systems have been described in bacteria in the past 20 years including eukaryotic-like serine/threonine kinases and more recently tyrosine-kinases. Among the latter, a peculiar type is widespread among bacteria, but not in higher organisms. These enzymes possess unique structural features defining thus a new family of enzymes termed Bacterial tyrosine kinases (BY-kinases). BY-kinases have been shown to be mainly involved in polysaccharide production, but their ability to phosphorylate endogenous substrates indicates that they participate in the regulation of other functions of the bacterial cell. Recent advances in mass spectrometry based phosphoproteomics provided lists of many new phosphotyrosine-proteins, indicating that BY-kinases may be involved in regulating a large array of other cellular functions. One may expect that in a near future, tyrosine phosphorylation will turn out to be one of the key regulatory processes in the bacterial cell and will yield new insights into the understanding of its physiology.
Collapse
Affiliation(s)
- Emmanuelle Bechet
- Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, France
| | | | | | | | | | | |
Collapse
|
31
|
Larue K, Kimber MS, Ford R, Whitfield C. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 2009; 284:7395-403. [PMID: 19129185 DOI: 10.1074/jbc.m809068200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major component of the Gram-negative outer membrane and is an important virulence determinant. The O-antigen polysaccharide of the LPS molecule provides protection from host defenses, and the length of O-antigen chains plays a pivotal role. In the Wzy-dependent O-antigen biosynthesis pathway, the integral inner membrane protein Wzz determines the O-antigen chain length. How these proteins function is currently unknown, but the hypothesis includes activities such as a "molecular ruler" or a "molecular stopwatch," and other possibilities may exist. Wzz homologs are membrane proteins with two transmembrane helices that flank a large periplasmic domain. Recent x-ray crystallographic studies of the periplasmic portions of Wzz proteins found multiple oligomeric forms, with quaternary structures favoring the "molecular ruler" interpretation. Here, we have studied full-length Wzz proteins with the transmembrane portions embedded in lipid membranes. Using electron microscopy and image analysis we find a unique hexameric state rather than differing oligomeric forms. The data suggest that in vivo Wzz proteins determine O-antigen chain length via subtle structure-function relationships at the level of primary, secondary, or tertiary structure within the context of a hexameric complex.
Collapse
Affiliation(s)
- Kane Larue
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
32
|
Marrichi M, Camacho L, Russell DG, DeLisa MP. Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria. J Biol Chem 2008; 283:35223-35. [PMID: 18819916 DOI: 10.1074/jbc.m802660200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prediction of export pathway specificity in prokaryotes is a challenging endeavor due to the similar overall architecture of N-terminal signal peptides for the Sec-, SRP- (signal recognition particle), and Tat (twin arginine translocation)-dependent pathways. Thus, we sought to create a facile experimental strategy for unbiased discovery of pathway specificity conferred by N-terminal signals. Using a limited collection of Escherichia coli strains that allow protein oxidation in the cytoplasm or, conversely, disable protein oxidation in the periplasm, we were able to discriminate the specific mode of export for PhoA (alkaline phosphatase) fusions to signal peptides for all of the major modes of transport across the inner membrane (Sec, SRP, or Tat). Based on these findings, we developed a mini-Tn5 phoA approach to isolate pathway-specific export signals from libraries of random fusions between exported proteins and the phoA gene. Interestingly, we observed that reduced PhoA was exported in a Tat-independent manner when targeted for Tat export in the absence of the essential translocon component TatC. This suggests that initial docking to TatC serves as a key specificity determinant for Tat-specific routing of PhoA, and in its absence, substrates can be rerouted to the Sec pathway, provided they remain compatible with the Sec export mechanism. Finally, the utility of our approach was demonstrated by experimental verification that four secreted proteins from Mycobacterium tuberculosis carrying putative Tat signals are bona fide Tat substrates and thus represent potential Tat-dependent virulence factors in this important human pathogen.
Collapse
Affiliation(s)
- Matthew Marrichi
- School of Chemical and Biomolecular Engineering, Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
33
|
Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS One 2008; 3:e3053. [PMID: 18725960 PMCID: PMC2516531 DOI: 10.1371/journal.pone.0003053] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/04/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In recent years, an idiosyncratic new class of bacterial enzymes, named BY-kinases, has been shown to catalyze protein-tyrosine phosphorylation. These enzymes share no structural and functional similarities with their eukaryotic counterparts and, to date, only few substrates of BY-kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. METHODOLOGY/PRINCIPAL FINDINGS Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc and Etk. The regulatory role of Tyr71 phosphorylation on Ugd activity was then assessed and Tyr71 mutation was found to prevent Ugd activation by phosphorylation. Further, Ugd phosphorylation by Wzc or Etk was shown to serve distinct physiological purposes. Phosphorylation of Ugd by Wzc was found to participate in the regulation of the amount of the exopolysaccharide colanic acid, whereas Etk-mediated Ugd phosphorylation appeared to participate in the resistance of E. coli to the antibiotic polymyxin. CONCLUSIONS/SIGNIFICANCE Ugd phosphorylation seems to be at the junction between two distinct biosynthetic pathways, illustrating the regulatory potential of tyrosine phosphorylation in bacterial physiology.
Collapse
|
34
|
Kolot M, Gorovits R, Silberstein N, Fichtman B, Yagil E. Phosphorylation of the integrase protein of coliphage HK022. Virology 2008; 375:383-90. [DOI: 10.1016/j.virol.2008.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
35
|
Tocilj A, Munger C, Proteau A, Morona R, Purins L, Ajamian E, Wagner J, Papadopoulos M, Van Den Bosch L, Rubinstein JL, Féthière J, Matte A, Cygler M. Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 2008; 15:130-8. [PMID: 18204465 DOI: 10.1038/nsmb.1374] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/07/2007] [Indexed: 11/09/2022]
Abstract
The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 A into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal for its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.
Collapse
Affiliation(s)
- Ante Tocilj
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Soulat D, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B. UDP-Acetyl-Mannosamine Dehydrogenase Is an Endogenous Protein Substrate of Staphylococcus aureus Protein-Tyrosine Kinase Activity. J Mol Microbiol Biotechnol 2007; 13:45-54. [PMID: 17693712 DOI: 10.1159/000103596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The in silico analysis of the amino acid sequences deduced from the complete genome sequence of Staphylococcus aureus suggested the presence of two protein tyrosine kinase activities, each split into two distinct polypeptides, respectively Cap5A1/Cap5B1 and Cap5A2/Cap5B2, like in some other Gram-positive bacteria. To check this prediction, the corresponding genes were cloned and overexpressed, and the four corresponding proteins were purified by affinity chromatography and assayed for phosphorylating activity in vitro. Individually, none of them was found to autophosphorylate. However, when Cap5B2 was incubated in the presence of Cap5A2 or, with a larger efficiency, in the presence of Cap5A1, this protein exhibited intensive autokinase activity, occurring selectively at tyrosine residues. On the other hand, whatever the protein combination assayed, Cap5B1 did not present any phosphorylating activity. In search of a possible role for the phosphorylation reaction mediated by Cap5B2, an endogenous substrate of this kinase was characterized. This substrate, termed Cap5O, is the enzyme UDP-acetyl-mannosamine dehydrogenase involved in the cascade of reactions leading to the synthesis of the bacterial capsule. It represents the first endogenous substrate for a tyrosine kinase activity so far identified in S. aureus. The analysis of its dehydrogenase activity showed that it was positively controlled by its phosphorylation at tyrosine.
Collapse
Affiliation(s)
- D Soulat
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, Lyon, France
| | | | | | | | | |
Collapse
|
37
|
Soulat D, Jault JM, Geourjon C, Gouet P, Cozzone AJ, Grangeasse C. Tyrosine-kinase Wzc from Escherichia coli possesses an ATPase activity regulated by autophosphorylation. FEMS Microbiol Lett 2007; 274:252-9. [PMID: 17627778 DOI: 10.1111/j.1574-6968.2007.00841.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The catalytic mechanism of bacterial tyrosine-kinases (PTK) is poorly understood. These enzymes possess Walker A and B ATP-binding motifs, which are effectively required for their autophosphorylation whereas these motifs are usually found in ATP-binding proteins but not in eukaryotic protein-kinases. It was previously shown that the PTK Wzc in Escherichia coli undergoes intra- and interphosphorylation. In this work, it is shown that, in addition to its kinase activity, Wzc produces free inorganic phosphate. It is demonstrated that this ATPase activity is increased significantly by intraphosphorylation of Wzc. The fact that intraphosphorylation of Wzc does not affect Wzc affinity for ATP was also demonstrated and it was suggested that it could rather modify the local environment of the ATP molecule in the catalytic site so as to render Wzc more liable to catalyze ATP hydrolysis and interphosphorylation. These results should contribute to better understanding of the catalytic mechanism of this particular class of tyrosine-kinases, which seems, so far, restricted to bacteria.
Collapse
Affiliation(s)
- Didier Soulat
- Institute of Microbiology and Immunobiology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:2390-5. [PMID: 17283336 PMCID: PMC1793899 DOI: 10.1073/pnas.0607763104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capsular polysaccharides (CPSs) are essential virulence determinants of many pathogenic bacteria. Escherichia coli group 1 CPSs provide paradigms for widespread surface polysaccharide assembly systems in Gram-negative bacteria. In these systems, complex carbohydrate polymers must be exported across the periplasm and outer membrane to the cell surface. Group 1 CPS export requires oligomers of the outer membrane protein, Wza, for translocation across the outer membrane. Assembly also depends on Wzc, an inner membrane tyrosine autokinase known to regulate export and synthesis of group 1 CPS. Here, we provide a structural view of a complex comprising Wzc and Wza that spans the periplasm, connecting the inner and outer membranes. Examination of transmembrane sections of the complex suggests that the periplasm is compressed at the site of complex formation. An important feature of CPS production is the coupling of steps involved in biosynthesis and export. We propose that the Wza-Wzc complex provides the structural and regulatory core of a larger macromolecular machine. We suggest a mechanism by which CPS may move from the periplasm through the outer membrane.
Collapse
Affiliation(s)
- Richard F. Collins
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Changjiang Dong
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Catherine H. Botting
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Catherine McDonnell
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Robert C. Ford
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
- To whom correspondence may be addressed. E-mail:
or
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
39
|
Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, Grangeasse C. Influence of tyrosine-kinase Wzc activity on colanic acid production in Escherichia coli K12 cells. J Mol Biol 2006; 367:42-53. [PMID: 17254603 DOI: 10.1016/j.jmb.2006.12.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/13/2006] [Accepted: 12/18/2006] [Indexed: 11/22/2022]
Abstract
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzc(ca) of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzc(ca) phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzc(ca), and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzc(ca).
Collapse
Affiliation(s)
- Brice Obadia
- Institute of Biology and Chemistry of Proteins, University of Lyon, CNRS, 69367 Lyon, France
| | | | | | | | | | | |
Collapse
|
40
|
Ferreira AS, Leitão JH, Sousa SA, Cosme AM, Sá-Correia I, Moreira LM. Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol 2006; 73:524-34. [PMID: 17114319 PMCID: PMC1796985 DOI: 10.1128/aem.01450-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the exopolysaccharide (EPS) cepacian by Burkholderia cepacia complex strains requires the 16.2-kb bce cluster of genes. Two of the clustered genes, bceD and bceF, code for two proteins homologous to phosphotyrosine phosphatases and tyrosine kinases, respectively. We show experimental evidence indicating that BceF is phosphorylated on tyrosine and that the conserved lysine residue present at position 563 in the Walker A ATP-binding motif is required for this autophosphorylation. It was also proved that BceD is capable of dephosphorylating the phosphorylated BceF. Using the artificial substrate p-nitrophenyl phosphate (PNPP), BceD exhibited a V(max) of 8.8 mumol of PNPP min(-1) mg(-1) and a K(m) of 3.7 mM PNPP at 30 degrees C. The disruption of bceF resulted in the abolishment of cepacian accumulation in the culture medium, but 75% of the parental strain's EPS production yield was still registered for the bceD mutant. The exopolysaccharide produced by the bceD mutant led to less viscous solutions and exhibited the same degree of acetylation as the wild-type cepacian, suggesting a lower molecular mass for this mutant biopolymer. The size of the biofilm produced in vitro by bceD and bceF mutant strains is smaller than the size of the biofilm formed by the parental strain, and this phenotype was confirmed by complementation assays, indicating that BceD and BceF play a role in the establishment of biofilms of maximal size.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Lacour S, Doublet P, Obadia B, Cozzone AJ, Grangeasse C. A novel role for protein-tyrosine kinase Etk from Escherichia coli K-12 related to polymyxin resistance. Res Microbiol 2006; 157:637-41. [PMID: 16814990 DOI: 10.1016/j.resmic.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/23/2006] [Accepted: 01/27/2006] [Indexed: 11/24/2022]
Abstract
The role of protein-tyrosine kinases in bacterial polymyxin resistance was assessed by both genetic and biochemical approaches. Each of the two genes, wzc and etk, encoding protein-tyrosine kinases in Escherichia coli, was knocked out by using the PCR-based method of one-step inactivation of chromosomal genes, and the corresponding mutant strain was assayed in each case for resistance to different concentrations of polymyxin B by measuring the percentage of surviving cells. The resistance of a double knock-out wzc-etk-mutant was also analyzed and complementation experiments were performed by checking the effect of plasmid vectors expressing either Wzc or Etk. Our results concurred in showing that protein-kinase Wzc is not essential for polymyxin resistance, whereas protein-kinase Etk appears to play a key role in such antibiotic resistance. This newly found specific function of Etk reinforces the concept that protein-tyrosine kinases are involved in distinct facets of bacterial physiology.
Collapse
Affiliation(s)
- Soline Lacour
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, 7, passage du Vercors 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Capsules are protective structures on the surfaces of many bacteria. The remarkable structural diversity in capsular polysaccharides is illustrated by almost 80 capsular serotypes in Escherichia coli. Despite this variation, the range of strategies used for capsule biosynthesis and assembly is limited, and E. coli isolates provide critical prototypes for other bacterial species. Related pathways are also used for synthesis and export of other bacterial glycoconjugates and some enzymes/processes have counterparts in eukaryotes. In gram-negative bacteria, it is proposed that biosynthesis and translocation of capsular polysaccharides to the cell surface are temporally and spatially coupled by multiprotein complexes that span the cell envelope. These systems have an impact on both a general understanding of membrane trafficking in bacteria and on bacterial pathogenesis.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
43
|
Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C. Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem 2006; 281:2144-50. [PMID: 16172129 PMCID: PMC3315051 DOI: 10.1074/jbc.m508078200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The K antigenic capsular polysaccharide forms a structural layer, the capsule, on the surfaces of Escherichia coli cells. The capsule provides an important protective covering that helps protect encapsulated bacteria from host immune defenses. The assembly and translocation of the capsule requires proteins in the inner and outer membranes. The inner membrane protein Wzc is a tyrosine autokinase that plays an essential role in what is believed to be a coordinated biosynthesis and secretion process. Mutants lacking Wzc can form K antigen oligosaccharides but are unable to polymerize high molecular weight capsular polymers. Wzc homologs have been identified in exopolymer biosynthesis systems in many different Gram-negative and -positive bacteria. Using single particle averaging on cryo-negatively stained samples, we have produced the first three-dimensional structure of this type of membrane protein in its phosphorylated state at approximately 14 A resolution. Perfluoro-octanoate-PAGE analysis of detergent-solubilized oligomeric Wzc and symmetry analysis of the transmission electron microscopy data clearly demonstrated that Wzc forms a tetrameric complex with C4 rotational symmetry. Viewed from the top of the complex, the oligomer is square with a diameter of approximately 100 A and can be divided into four separate densities. From the side, Wzc is approximately 110 A high and has a distinctive appearance similar to an extracted molar tooth. The upper "crown" region is approximately 55 A high and forms a continuous ring of density. Four unconnected "roots" ( approximately 65 A high) emerge from the underside of the crown. We propose that the crown is formed by protein-protein contacts from the four Wzc periplasmic domains, while each root represents an individual cytoplasmic tyrosine autokinase domain.
Collapse
Affiliation(s)
- Richard F. Collins
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert C. Ford
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - Martyn Hulley
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
44
|
Cozzone AJ. Role of Protein Phosphorylation on Serine/Threonine and Tyrosine in the Virulence of Bacterial Pathogens. J Mol Microbiol Biotechnol 2006; 9:198-213. [PMID: 16415593 DOI: 10.1159/000089648] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial pathogens have developed a diversity of strategies to interact with host cells, manipulate their behaviors, and thus to survive and propagate. During the process of pathogenesis, phosphorylation of proteins on hydroxyl amino acids (serine, threonine, tyrosine) occurs at different stages, including cell-cell interaction and adherence, translocation of bacterial effectors into host cells, and changes in host cellular structure and function induced by infection. The phosphorylation reactions are catalyzed in a reversible fashion by specific protein kinases and phosphatases that belong to either the invading bacterial cells or the infected eukaryotic host cells. Among the various virulence factors involved in bacterial pathogenesis, special attention has been paid recently to the cell wall components, exopolysaccharides. A major breakthrough has been made by showing the existence of a biological link between the activity of certain protein-tyrosine kinases/phosphatases and the production and/or transport of surface polysaccharides. In addition, genetic studies have revealed a key role played by some serine/threonine kinases in pathogenesis. Considering the structural organization and membrane topology of these different kinases, it can be envisaged that they operate as one-component systems in signal transduction pathways, in the form of single proteins containing input and output domains on the same polypeptide chain. From a general standpoint, the demonstration of a direct relationship between protein phosphorylation on serine/threonine/tyrosine and bacterial virulence represents a novel concept of great importance in deciphering the molecular and cellular mechanisms that underlie pathogenesis.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, Lyon, France.
| |
Collapse
|
45
|
Mijakovic I, Petranovic D, Bottini N, Deutscher J, Ruhdal Jensen P. Protein-Tyrosine Phosphorylation in Bacillus subtilis. J Mol Microbiol Biotechnol 2006; 9:189-97. [PMID: 16415592 DOI: 10.1159/000089647] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years bacterial protein-tyrosine kinases have been found to phosphorylate a growing number of protein substrates, including RNA polymerase sigma factors, UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. The activity of these protein substrates was affected by tyrosine phosphorylation, indicating that this post-translational modification could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this field was done in Bacillus subtilis, and we here present the current state of knowledge on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network of protein-tyrosine phosphorylation. We discuss the approaches currently used to chart this network: ranging from studies of substrate specificity and the physiological role of tyrosine phosphorylation of individual enzymes to the global approaches at the level of systems biology.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Microbial Physiology and Genetics Group, BioCentrum, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Peleg A, Shifrin Y, Ilan O, Nadler-Yona C, Nov S, Koby S, Baruch K, Altuvia S, Elgrably-Weiss M, Abe CM, Knutton S, Saper MA, Rosenshine I. Identification of an Escherichia coli operon required for formation of the O-antigen capsule. J Bacteriol 2005; 187:5259-66. [PMID: 16030220 PMCID: PMC1196049 DOI: 10.1128/jb.187.15.5259-5266.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.
Collapse
Affiliation(s)
- Adi Peleg
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reid AN, Whitfield C. functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J Bacteriol 2005; 187:5470-81. [PMID: 16030241 PMCID: PMC1196018 DOI: 10.1128/jb.187.15.5470-5481.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.
Collapse
Affiliation(s)
- Anne N Reid
- Department of Molecular and Cellular Biology, New Science Complex, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
48
|
Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sá-Correia I. The Gellan Gum Biosynthetic Genes gelC and gelE Encode Two Separate Polypeptides Homologous to the Activator and the Kinase Domains of Tyrosine Autokinases. J Mol Microbiol Biotechnol 2005; 8:43-57. [PMID: 15741740 DOI: 10.1159/000082080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The high-molecular-weight exopolysaccharide gellan is an important commercial gelling agent produced in high yield by the Gram-negative bacterium Sphingomonas elodea ATCC 31461. The cluster of genes required for gellan biosynthesis contains the genes gelC and gelE. These encode for two polypeptides homologous to the activator domain and the kinase domain, respectively, of bacterial autophosphorylating tyrosine kinases involved in polysaccharide chain length determination. The GelC/GelE pair is an exception to the biochemically characterized Gram-negative tyrosine autokinases since it consists of two polypeptides instead of a single one. The deletion of gelC or gelE resulted in the abolishment of gellan in the culture medium confirming their role in gellan biosynthesis. In addition, ATP-binding assays confirmed the predicted ATP-binding ability of GelE. Interestingly, GelE contains an unusual Walker A sequence (ASTGVGCS), where the invariant lysine is replaced by a cysteine. This residue was replaced by alanine or lysine and although both mutant proteins were able to restore gellan production by complementation of the gelE deletion mutant to the production level observed with native GelE, only the mutated GelE where the cysteine was replaced by alanine was demonstrated to bind ATP in vitro. The importance of specific tyrosine residues present in the C-terminal domain of GelE in gellan assembly was also determined. The tyrosine residue at position 198 appears to be essential for the synthesis of high-molecular-weight gellan, although other tyrosine residues may additionally contribute to GelE biological function.
Collapse
Affiliation(s)
- Leonilde M Moreira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, PT-1049-001 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
49
|
Whitfield C, Paiment A. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 2004; 338:2491-502. [PMID: 14670711 DOI: 10.1016/j.carres.2003.08.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular and capsular polysaccharides (EPSs and CPSs) are produced by a wide range of bacteria, including important pathogens of humans, livestock, and plants. These polymers are major surface antigens and serve a variety of roles in virulence, depending on the biology of the producing organism. In addition to their importance in disease, some EPSs also have industrial applications as gelling and emulsifying agents. An understanding of the processes involved in the synthesis and regulation of CPSs and EPSs therefore potentially contributes to an understanding of the disease state, surface expression of protective antigens, and modulation of polymer structure to give defined physical properties. Escherichia coli has provided important model systems for EPS and CPS biosynthesis. Here we describe current knowledge concerning assembly of the Group 1 CPSs of E. coli and the conservation of similar mechanisms in other bacteria.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
50
|
Moreira LM, Videira PA, Sousa SA, Leitão JH, Cunha MV, Sá-Correia I. Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun 2004; 312:323-33. [PMID: 14637140 DOI: 10.1016/j.bbrc.2003.10.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacteria belonging to the Burkholderia cepacia complex (BCC) are important opportunistic pathogens in patients with cystic fibrosis (CF). Since approximately 80% of the CF isolates examined produce exopolysaccharide (EPS), it was hypothesized that this EPS may play a role in the colonization and persistence of these bacteria in the CF lung. The present study describes the identification and physical organization of the EPS biosynthetic gene cluster. This bce gene cluster was identified following the isolation of three EPS-defective mutants from the highly mucoid CF isolate IST408, belonging to BCC genomovar I, based on random plasposon insertion mutagenesis and comparison of the nucleotide sequence of the interrupted genes with the available genome of Burkholderia cenocepacia J2315. This 16.2 kb cluster includes 12 genes and is located on chromosome 2. Database searches for homologous proteins and secondary structure analysis for the deduced Bce amino acid sequences revealed genes predicted to encode enzymes required for the formation of nucleotide sugar precursors, glycosyltransferases involved in the repeat-unit assembly, and other proteins involved in polymerization and export of bacterial surface polysaccharides.
Collapse
Affiliation(s)
- Leonilde M Moreira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|