1
|
Biadun M, Sidor S, Kalka M, Karelus R, Sochacka M, Krowarsch D, Opalinski L, Zakrzewska M. Production and purification of recombinant long protein isoforms of FGF11 subfamily. J Biotechnol 2025; 403:9-16. [PMID: 40154621 DOI: 10.1016/j.jbiotec.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The FGF11 subfamily of FGF proteins also known as fibroblast growth factor homologous factors (FHFs) includes four proteins, FGF11, FGF12, FGF13, and FGF14. They are mainly expressed in excitable cells but are also present in fibroblasts or osteoclasts, where their function is much less understood. Each FGF11-14 protein has at least two isoforms formed by alternative splicing, which differ in both cellular localization and function. Until recently, only the short isoforms had been efficiently produced and purified in recombinant form. Here, we developed a protocol to produce in the bacterial expression system and efficiently purify the long "a" isoforms of FGF11, FGF12, FGF13 and FGF14. In addition, we characterized their biophysical and biological properties, demonstrating that they activate downstream signaling and, unlike short "b" isoforms, induce cell proliferation.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Szymon Sidor
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Lukasz Opalinski
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
2
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Biadun M, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. FGF12: biology and function. Differentiation 2024; 139:100740. [PMID: 38042708 DOI: 10.1016/j.diff.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of β-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland; Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
5
|
Biadun M, Sochacka M, Kalka M, Chorazewska A, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. Uncovering key steps in FGF12 cellular release reveals a common mechanism for unconventional FGF protein secretion. Cell Mol Life Sci 2024; 81:356. [PMID: 39158730 PMCID: PMC11335280 DOI: 10.1007/s00018-024-05396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorazewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
6
|
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases. Front Immunol 2024; 15:1390453. [PMID: 38962005 PMCID: PMC11219802 DOI: 10.3389/fimmu.2024.1390453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
7
|
Wang C, Wang X, Zhang Y, Mi Y, Han Y, Zhi Y, Zhao R, Cui N, Ma Q, Zhang H, Xue D, Qiao R, Han J, Yu Y, Li J, Shaiea M, Liu D, Gu G, Wang C. Inducible Fgf13 ablation alleviates cardiac fibrosis via regulation of microtubule stability. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1802-1812. [PMID: 38818580 PMCID: PMC11659771 DOI: 10.3724/abbs.2024075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Fibroblast growth factor (FGF) isoform 13, a distinct type of FGF, boasts significant potential for therapeutic intervention in cardiovascular dysfunctions. However, its impact on regulating fibrosis remains unexplored. This study aims to elucidate the role and mechanism of FGF13 on cardiac fibrosis. Here, we show that following transverse aortic constriction (TAC) surgery, interstitial fibrosis and collagen content increase in mice, along with reduced ejection fraction and fractional shortening, augmented heart mass. However, following Fgf13 deletion, interstitial fibrosis is decreased, ejection fraction and fractional shortening are increased, and heart mass is decreased, compared with those in the TAC group. Mechanistically, incubation of cardiac fibroblasts with transforming growth factor β (TGFβ) increases the expressions of types I and III collagen proteins, as well as α-smooth muscle actin (α-SMA) proteins, and enhances fibroblast proliferation and migration. In the absence of Fgf13, the expressions of these proteins are decreased, and fibroblast proliferation and migration are suppressed, compared with those in the TGFβ-stimulated group. Overexpression of FGF13, but not FGF13 mutants defective in microtubule binding and stabilization, rescues the decrease in collagen and α-SMA protein and weakens the proliferation and migration function of the Fgf13 knockdown group. Furthermore, Fgf13 knockdown decreases ROCK protein expression via microtubule disruption. Collectively, cardiac Fgf13 knockdown protects the heart from fibrosis in response to haemodynamic stress by modulating microtubule stabilization and ROCK signaling pathway.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Xiangchong Wang
- Department of PharmacologyHebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese MedicineHebei Higher Education Institute Applied Technology Research Center on TCM Formula PreparationHebei University of Chinese MedicineShijiazhuang050091China
| | - Yiyi Zhang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yuan Mi
- Department of Emergencythe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Yanxue Han
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yaxin Zhi
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Ran Zhao
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Nanqi Cui
- Department of Vascular Surgerythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Qianli Ma
- of Cardiac Surgerythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Huaxing Zhang
- Core Facilities and CentersHebei Medical UniversityShijiazhuang050017China
| | - Dazhong Xue
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Ruoyang Qiao
- College of Basic MedicineHebei Medical UniversityShijiazhuang050017China
| | - Jiabing Han
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yulou Yu
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Jiaxuan Li
- SchoolHebei Medical UniversityShijiazhuang050017China
| | - Mohammed Shaiea
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Demin Liu
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Guoqiang Gu
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Chuan Wang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
8
|
Gędaj A, Chorążewska A, Ciura K, Karelus R, Żukowska D, Biaduń M, Kalka M, Zakrzewska M, Porębska N, Opaliński Ł. The intracellular interplay between galectin-1 and FGF12 in the assembly of ribosome biogenesis complex. Cell Commun Signal 2024; 22:175. [PMID: 38468333 PMCID: PMC10926643 DOI: 10.1186/s12964-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Galectins constitute a class of lectins that specifically interact with β-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radosław Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Biaduń
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
9
|
Yang W, Yu S, Peng J, Chang P, Chen X. FGF12 regulates cell cycle gene expression and promotes follicular granulosa cell proliferation through ERK phosphorylation in geese. Poult Sci 2023; 102:102937. [PMID: 37494810 PMCID: PMC10394013 DOI: 10.1016/j.psj.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
The granulosa cells play an important role in the fate of follicular development or atresia in poultry. Fibroblast growth factor 12 (FGF12) is downregulated in atretic follicles and may be involved in regulating granulosa cell survival in previous studies, but its molecular mechanism remains unclear. In this study, FGF12 overexpression and knockdown models of goose granulosa cells were constructed to investigate its function. The downstream expression of the cell cycle pathway was analyzed by qPCR. Granulosa cell proliferative activity and apoptosis were detected by CCK8 and TUNEL. Protein phosphorylation levels of ERK and AKT were measured using Western blotting to analyze the key pathway of FGF12 regulation of granulosa cell proliferation. ERK protein phosphorylation inhibitor was added for further verification. After overexpression of FGF12, cell proliferation activity was increased, the expressions of cell cycle pathway genes CCND1, CCNA2, MAD2, and CHK1 were upregulated, the apoptosis of granulosa cell was decreased, and Caspase 3 gene and protein expression were downregulated. After the knockdown of FGF12, cell proliferation activity decreased, the expression of downstream genes in the cell cycle pathway was downregulated, the apoptosis of granulosa cells was increased, and the Bcl-2 gene and protein were downregulated. Overexpression of FGF12 promoted the synthesis of P4 and upregulates the expression of the STAR gene. Overexpression of FGF12 promoted ERK protein phosphorylation but did not affect AKT phosphorylation. The addition of ERK phosphorylation inhibitors resulted in the elimination of the increase in cell proliferative activity caused by FGF12 overexpression. In conclusion, FGF12 could promote proliferation and inhibit apoptosis of goose granulosa cells by increasing ERK phosphorylation.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiqi Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinzhou Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Chang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
11
|
Marra C, Hartke TV, Ringkamp M, Goldfarb M. Enhanced sodium channel inactivation by temperature and FHF2 deficiency blocks heat nociception. Pain 2023; 164:1321-1331. [PMID: 36607284 PMCID: PMC10166761 DOI: 10.1097/j.pain.0000000000002822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Transient voltage-gated sodium currents are essential for the initiation and conduction of action potentials in neurons and cardiomyocytes. The amplitude and duration of sodium currents are tuned by intracellular fibroblast growth factor homologous factors (FHFs/iFGFs) that associate with the cytoplasmic tails of voltage-gated sodium channels (Na v s), and genetic ablation of Fhf genes disturbs neurological and cardiac functions. Among reported phenotypes, Fhf2null mice undergo lethal hyperthermia-induced cardiac conduction block attributable to the combined effects of FHF2 deficiency and elevated temperature on the cardiac sodium channel (Na v 1.5) inactivation rate. Fhf2null mice also display a lack of heat nociception, while retaining other somatosensory capabilities. Here, we use electrophysiological and computational methods to show that the heat nociception deficit can be explained by the combined effects of elevated temperature and FHF2 deficiency on the fast inactivation gating of Na v 1.7 and tetrodotoxin-resistant sodium channels expressed in dorsal root ganglion C fibers. Hence, neurological and cardiac heat-associated deficits in Fhf2null mice derive from shared impacts of FHF deficiency and temperature towards Na v inactivation gating kinetics in distinct tissues.
Collapse
Affiliation(s)
- Christopher Marra
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| | - Timothy V. Hartke
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Matthias Ringkamp
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| |
Collapse
|
12
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
13
|
Zeng Z, He W, Jiang Y, Jiang H, Cheng X, Deng W, Zhou X, Zhang C, Wang G. MAPK8IP2 is a potential prognostic biomarker and promote tumor progression in prostate cancer. BMC Cancer 2022; 22:1162. [PMID: 36357836 PMCID: PMC9650804 DOI: 10.1186/s12885-022-10259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Background MAPK8IP2 is one of the JNK-interacting proteins (JIPs) family members, and is involved in the regulation of the JNK and P38 MAPK signaling pathways. MAPK8IP2 has been reported to be closely associated with several cancers. However, the biological function of MAPK8IP2 in prostate cancer (PCa) remains unclear. Methods MAPK8IP2 expression in PCa and subgroups of PCa was analyzed by public databases. The prognostic role of MAPK8IP2 in prostate cancer was analyzed using the Cox regression method. The potential mechanism by which MAPK8IP2 affects PCa progression was investigated by utilizing public data, including genetic alteration, DNA methylation, m6A methylation, and immune infiltration data. We further performed in vitro assays to validate the effect of MAPK8IP2 on PCa cell proliferation, migration and invasion. Results MAPK8IP2 is highly expressed in PCa tissues. Overexpression of MAPK8IP2 is associated with adverse clinicopathological factors and a poor prognosis in PCa. Receiver operating curve analysis showed that MAPK8IP2 can distinguish PCa tissues from non-PCa tissues with a certain accuracy (AUC = 0.814). The MAPK8IP2 genetic alteration rate was 2.6% and MAPK8IP2 alterations correlated with a poor prognosis. We also found that CDK12 and TP53 mutations were associated with MAPK8IP2 expression. The DNA methylation level of MAPK8IP2 was higher in primary tumors than in normal tissues, and the high MAPK8IP2 DNA methylation group of PCa patients had poor survival. Enrichment analysis indicated that MAPK8IP2 was involved in the MAPK signaling pathway. In vitro, knockdown of MAPK8IP2 inhibited PCa cell proliferation, migration and invasion. Conclusion MAPK8IP2 is a potential target for PCa treatment and can serve as a novel biomarker for PCa diagnosis and prognosis evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10259-2.
Collapse
|
14
|
Effraim PR, Estacion M, Zhao P, Sosniak D, Waxman SG, Dib-Hajj SD. Fibroblast growth factor homologous factor 2 attenuates excitability of DRG neurons. J Neurophysiol 2022; 128:1258-1266. [PMID: 36222860 PMCID: PMC9909838 DOI: 10.1152/jn.00361.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) are cytosolic members of the superfamily of the FGF proteins. Four members of this subfamily (FHF1-4) are differentially expressed in multiple tissues in an isoform-dependent manner. Mutations in FHF proteins have been associated with multiple neurological disorders. FHF proteins bind to the COOH terminus of voltage-gated sodium (Nav) channels and regulate current amplitude and gating properties of these channels. FHF2, which is expressed in dorsal root ganglia (DRG) neurons, has two main splicing isoforms: FHF2A and FHF2B, which differ in the length and sequence of their NH2 termini, have been shown to differentially regulate gating properties of Nav1.7, a channel that is a major driver of DRG neuron firing. FHF2 expression levels are downregulated after peripheral nerve axotomy, which suggests that they may regulate neuronal excitability via an action on Nav channels after injury. We have previously shown that knockdown of FHF2 leads to gain-of-function changes in Nav1.7 gating properties: enhanced repriming, increased current density, and hyperpolarized activation. From this we posited that knockdown of FHF2 might also lead to DRG hyperexcitability. Here we show that knockdown of either FHF2A alone or all isoforms of FHF2 results in increased DRG neuron excitability. In addition, we demonstrate that supplementation of FHF2A and FHF2B reduces DRG neuron excitability. Overexpression of FHF2A or FHF2B also reduced excitability of DRG neurons treated with a cocktail of inflammatory mediators, a model of inflammatory pain. Our data suggest that increased neuronal excitability after nerve injury might be triggered, in part, via a loss of FHF2-Nav1.7 interaction.NEW & NOTEWORTHY FHF2 is known to bind to and modulate the function of Nav1.7. FHF2 expression is also reduced after nerve injury. We demonstrate that knockdown of FHF2 expression increases DRG neuronal excitability. More importantly, overexpression of FHF2 reduces DRG excitability in basal conditions and in the presence of inflammatory mediators (a model of inflammatory pain). These results suggest that FHF2 could potentially be used as a tool to reduce DRG neuronal excitability and to treat pain.
Collapse
Affiliation(s)
- Philip R. Effraim
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel Sosniak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
15
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
16
|
Cai X, Yang S, Peng Y, Huang Y, Chen H, Wu X. Screening of key genes during early embryonic development of Nile tilapia (Oreochromis niloticus). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Yang QQ, Zhai YQ, Wang HF, Cai YC, Ma XY, Yin YQ, Li YD, Zhou GM, Zhang X, Hu G, Zhou JW. Nuclear isoform of FGF13 regulates post-natal neurogenesis in the hippocampus through an epigenomic mechanism. Cell Rep 2021; 35:109127. [PMID: 34010636 DOI: 10.1016/j.celrep.2021.109127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory. In particular, we find that FGF13A, the nuclear isoform of FGF13, is involved in the maintenance of NSCs and the suppression of neuronal differentiation during post-natal hippocampal development. Furthermore, we find that FGF13A interacts with ARID1B, a unit of Brahma-associated factor chromatin remodeling complex, and suppresses the expression of neuron differentiation-associated genes through chromatin modification. Our results suggest that FGF13A is an important regulator for maintaining the self-renewal and neurogenic capacity of NSCs in post-natal hippocampus, revealing an epigenomic regulatory function of FGFs in neurogenesis.
Collapse
Affiliation(s)
- Qiao-Qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ying-Qi Zhai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hai-Fang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Chen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Dong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Min Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
19
|
Matsumoto N, Ebihara M, Oishi S, Fujimoto Y, Okada T, Imamura T. Histamine H1 receptor antagonists selectively kill cisplatin-resistant human cancer cells. Sci Rep 2021; 11:1492. [PMID: 33452347 PMCID: PMC7810706 DOI: 10.1038/s41598-021-81077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer therapy is often hampered by the disease's development of resistance to anticancer drugs. We previously showed that the autonomously upregulated product of fibroblast growth factor 13 gene (FGF13; also known as FGF homologous factor 2 (FHF2)) is responsible for the cisplatin resistance of HeLa cisR cells and that it is likely responsible for the poor prognosis of cervical cancer patients treated with cisplatin. Here we show that cloperastine and two other histamine H1 receptor antagonists selectively kill HeLa cisR cells at concentrations that little affect parental HeLa S cells. The sensitivity of HeLa cisR cells to cloperastine was abolished by knocking down FGF13 expression. Cisplatin-resistant A549 cisR cells were similarly susceptible to cloperastine. H2, H3, and H4 receptor antagonists showed less or no cytotoxicity toward HeLa cisR or A549 cisR cells. These results indicate that histamine H1 receptor antagonists selectively kill cisplatin-resistant human cancer cells and suggest that this effect is exerted through a molecular mechanism involving autocrine histamine activity and high-level expression of FGF13. We think this represents a potential opportunity to utilize H1 receptor antagonists in combination with anticancer agents to treat cancers in which emergent drug-resistance is preventing effective treatment.
Collapse
Affiliation(s)
- Nobuki Matsumoto
- Cell Regulation Laboratory, Bionics Program, Tokyo University of Technology Graduate School of Bionics, Computer and Media Science, Hachioji, Japan
| | - Miku Ebihara
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Shiori Oishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yuku Fujimoto
- Cell Regulation Laboratory, Bionics Program, Tokyo University of Technology Graduate School of Bionics, Computer and Media Science, Hachioji, Japan
| | - Tomoko Okada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Toru Imamura
- Cell Regulation Laboratory, Bionics Program, Tokyo University of Technology Graduate School of Bionics, Computer and Media Science, Hachioji, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan.
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
20
|
Lu H, Yin M, Wang L, Cheng J, Cheng W, An H, Zhang T. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther 2020; 21:1014-1024. [PMID: 33064958 PMCID: PMC7678946 DOI: 10.1080/15384047.2020.1824512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023] Open
Abstract
FGF13, a member of the FGF subfamily, has been found to be highly expressed in cancer cells such as prostate cancer, melanoma, glioma and multiple myeloma. However, the mechanism of FGF13 function during cancer cell proliferation remains to be unexplored, especially Non-small cell lung cancer (NSCLC). In this study, the cell proliferation effect of FGF13 on A549 cells was checked by CCK-8, clone formation, Ki67 immunofluorescence staining and Flow Cytometry assay. Localization of FGF13 within A549 cells was performed with confocal laser scanning microscope. The protein variations and interaction were measured by western blotting and co-immunoprecipitation analysis. It showed that FGF13 was mainly distributed in the cytoplasm and exhibited a high expression level in A549 cells. High expression of FGF13 activated AKT-GSK3 signaling pathway, and inhibited the activity of p21 and p27. Thus, FGF13 enhanced the process of transition from G1 to S phase and promoted A549 cells proliferation. Furthermore, the interaction between FGF13 and SHCBP1 was confirmed. Meanwhile, FGF13 and SHCBP1 had a cooperative effect to accelerate the cell cycle progression, especially the ability to promote cell proliferation is significantly enhanced via protein interaction. Hence, we conclude that FGF13 played a positive regulation role during A549 cells proliferation. FGF13 interacted with SHCBP1 to facilitate cell cycle progression, providing new insights into deep understanding of non-small cell lung cancer mechanisms of proliferation and regulation function of FGF13.
Collapse
Affiliation(s)
- Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Meichen Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wei Cheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Jiaotong University Health Center, Xi’an, Shaanxi, China
| | - Huanping An
- Department of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
21
|
Sun J, Niu C, Ye W, An N, Chen G, Huang X, Wang J, Chen X, Shen Y, Huang S, Wang Y, Wang X, Wang Y, Jin L, Cong W, Li X. FGF13 Is a Novel Regulator of NF-κB and Potentiates Pathological Cardiac Hypertrophy. iScience 2020; 23:101627. [PMID: 33089113 PMCID: PMC7567043 DOI: 10.1016/j.isci.2020.101627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
FGF13 is an intracellular FGF factor. Its role in cardiomyopathies has been rarely investigated. We revealed that endogenous FGF13 is up-regulated in cardiac hypertrophy accompanied by increased nuclear localization. The upregulation of FGF13 plays a deteriorating role both in hypertrophic cardiomyocytes and mouse hearts. Mechanistically, FGF13 directly interacts with p65 by its nuclear localization sequence and co-localizes with p65 in the nucleus in cardiac hypertrophy. FGF13 deficiency inhibits NF-κB activation in ISO-treated NRCMs and TAC-surgery mouse hearts, whereas FGF13 overexpression shows the opposite trend. Moreover, FGF13 overexpression alone is sufficient to activate NF-κB in cardiomyocytes. The interaction between FGF13 and p65 or the effects of FGF13 on NF-κB have nothing to do with IκB. Together, an IκB-independent mechanism for NF-κB regulation has been revealed in cardiomyocytes both under basal and stressful conditions, suggesting the promising application of FGF13 as a therapeutic target for pathological cardiac hypertrophy and heart failure. Endogenous FGF13 is up-regulated in cardiomyocytes under pressure overload FGF13 directly interacts with p65 Forced FGF13 overexpression activates NF-κB in cardiomyocytes
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ning An
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University Wenzhou, 325000, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
22
|
Fibroblast Growth Factor-14 Acts as Tumor Suppressor in Lung Adenocarcinomas. Cells 2020; 9:cells9081755. [PMID: 32707902 PMCID: PMC7466013 DOI: 10.3390/cells9081755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Investigation of the molecular dynamics in lung cancer is crucial for the development of new treatment strategies. Fibroblast growth factor (FGF) 14 belongs to the FGF family, which might play a crucial role in cancer progression. We analyzed lung adenocarcinoma (LUAC) patients samples and found that FGF14 was downregulated, correlating with reduced survival and oncogenic mutation status. FGF14 overexpression in lung cancer cell lines resulted in decreased proliferation, colony formation, and migration, as well as increased expression of epithelial markers and a decreased expression of mesenchymal markers, indicating a mesenchymal to epithelial transition in vitro. We verified these findings using small interfering RNA against FGF14 and further confirmed the suppressive effect of FGF14 in a NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ immunodeficient xenograft tumor model. Moreover, FGF14 overexpressing tumor cell RNA sequencing data suggests that genes affected by FGF14 were related to the extracellular matrix, playing a role in proliferation and migration. Notably, newly identified FGF14 target genes, adenosine deaminase RNA specific B1 (ADARB1), collagen and calcium-binding epidermal growth factor domain-containing protein 1 (CCBE1), α1 chain of collagen XI (COL11A1), and mucin 16 (MUC16) expression was negatively correlated with overall survival when FGF14 was downregulated in LUAC. These findings led us to suggest that FGF14 regulates proliferation and migration in LUAC.
Collapse
|
23
|
Sochacka M, Opalinski L, Szymczyk J, Zimoch MB, Czyrek A, Krowarsch D, Otlewski J, Zakrzewska M. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun Signal 2020; 18:69. [PMID: 32357892 PMCID: PMC7193404 DOI: 10.1186/s12964-020-00573-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb)
Graphical abstract ![]()
Collapse
Affiliation(s)
- Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta B Zimoch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
24
|
Park JG, Aziz N, Cho JY. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol 2019; 11:1758835919875574. [PMID: 31579105 PMCID: PMC6759727 DOI: 10.1177/1758835919875574] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/19/2019] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.
Collapse
Affiliation(s)
- Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Effraim PR, Huang J, Lampert A, Stamboulian S, Zhao P, Black JA, Dib-Hajj SD, Waxman SG. Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100029. [PMID: 31223136 PMCID: PMC6565799 DOI: 10.1016/j.ynpai.2019.100029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Fibroblast Growth Factor Homologous Factors (FHF) constitute a subfamily of FGF proteins with four prototypes (FHF1-4; also known as FGF11-14). FHF proteins have been shown to bind directly to the membrane-proximal segment of the C-terminus in voltage-gated sodium channels (Nav), and regulate current density, availability, and frequency-dependent inhibition of sodium currents. Members of the FHF2 subfamily, FHF2A and FHF2B, differ in the length and sequence of their N-termini, and, importantly, differentially regulate Nav1.6 gating properties. Using immunohistochemistry, we show that FHF2 isoforms are expressed in adult dorsal root ganglion (DRG) neurons where they co-localize with Nav1.6 and Nav1.7. FHF2A and FHF2B show differential localization in neuronal compartments in DRG neurons, and levels of expression of FHF2 factors are down-regulated following sciatic nerve axotomy. Because Nav1.7 in nociceptors plays a critical role in pain, we reasoned that its interaction with FHF2 isoforms might regulate its current properties. Using whole-cell patch clamp in heterologous expression systems, we show that the expression of FHF2A in HEK293 cell line stably expressing Nav1.7 channels causes no change in activation, whereas FHF2B depolarizes activation. Both FHF2 isoforms depolarize fast-inactivation. Additionally, FHF2A causes an accumulation of inactivated channels at all frequencies tested due to a slowing of recovery from inactivation, whereas FHF2B has little effect on these properties of Nav1.7. Measurements of the Nav1.7 current in DRG neurons in which FHF2 levels are knocked down confirmed the effects of FHF2A on repriming, and FHF2B on activation, however FHF2A and B did not have an effect on fast inactivation. Our data demonstrates that FHF2 does indeed regulate the current properties of Nav1.7 and does so in an isoform and cell-specific manner.
Collapse
Affiliation(s)
- Philip R. Effraim
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Severine Stamboulian
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Joel A. Black
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Bhushan A, Singh A, Kapur S, Borthakar BB, Sharma J, Rai AK, Kataki AC, Saxena S. Identification and Validation of Fibroblast Growth Factor 12 Gene as a Novel Potential Biomarker in Esophageal Cancer Using Cancer Genomic Datasets. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:616-631. [PMID: 29049013 DOI: 10.1089/omi.2017.0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) has a complex, multifactorial etiology in which environmental, geographical, and genetic factors play major roles. It is the second most common cancer among men and the fourth most common among women in India, with a particularly high prevalence in Northeast India. In this study, an integrative in silico [DAVID, NCG5.0, Oncomine, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas (TCGA)] approach was used to identify the potential biomarkers by using the available three genomic datasets on ESCC from Northeast India followed by its in vitro functional validation. Fibroblast Growth Factor 12 (FGF12) gene was overexpressed in ESCC. The upregulation of FGF12 was also observed on ESCC of TCGA OncoPrint portal, whereas very low expression of FGF12 gene was mapped in normal esophageal tissue on the GTEx database. Silencing of FGF12 showed significant inhibition in activity of tumor cell proliferation, colony formation, and cell migration. The upregulation of FGF12 showed significantly reduced survival in ESCC patients. The protein interaction analysis of FGF12 found the binding with MAPK8IP2 and MAPK13. High expression of FGF12 along with MAPK8IP2, and MAPK13 proteins correlate with poor survival in ESCC patients. Tissue microarray also showed expression of these proteins in patients with ESCC. These results indicate that FGF12 has a potential role in ESCC and suggest that cancer genomic datasets with application of in silico approaches are instrumental for biomarker discovery research broadly and specifically, for the identification of FGF12 as a putative biomarker in ESCC.
Collapse
Affiliation(s)
- Ashish Bhushan
- 1 National Institute of Pathology (ICMR) , New Delhi, India .,2 Faculty of Health and Biomedical Sciences, Symbiosis International University , Pune, India
| | - Avninder Singh
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | - Sujala Kapur
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | | | | | - Avdhesh K Rai
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Amal C Kataki
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Sunita Saxena
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| |
Collapse
|
28
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
29
|
Abstract
Mammalian inner ear comprises of six sensory organs; cochlea, utricle, saccule, and three semicircular canals. The cochlea contains sensory epithelium known as the organ of Corti which senses sound through mechanosensory hair cells. Mammalian inner ear undergoes series of morphogenesis during development beginning thickening of ectoderm nearby hindbrain. These events require tight regulation of multiple signaling cascades including FGF, Wnt, Notch and Bmp signaling. In this review, we will discuss the role of newly emerging signaling, FGF signaling, for its roles required for cochlear development. [BMB Reports 2017; 50(10): 487-495].
Collapse
Affiliation(s)
- Michael Ebeid
- Department of Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska,
USA
| | - Sung-Ho Huh
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska,
USA
- Department of Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska,
USA
| |
Collapse
|
30
|
Barbosa C, Xiao Y, Johnson AJ, Xie W, Strong JA, Zhang JM, Cummins TR. FHF2 isoforms differentially regulate Nav1.6-mediated resurgent sodium currents in dorsal root ganglion neurons. Pflugers Arch 2016; 469:195-212. [PMID: 27999940 DOI: 10.1007/s00424-016-1911-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navβ4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Johnson
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Fhf2 gene deletion causes temperature-sensitive cardiac conduction failure. Nat Commun 2016; 7:12966. [PMID: 27701382 PMCID: PMC5059448 DOI: 10.1038/ncomms12966] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Fever is a highly conserved systemic response to infection dating back over 600 million years. Although conferring a survival benefit, fever can negatively impact the function of excitable tissues, such as the heart, producing cardiac arrhythmias. Here we show that mice lacking fibroblast growth factor homologous factor 2 (FHF2) have normal cardiac rhythm at baseline, but increasing core body temperature by as little as 3 °C causes coved-type ST elevations and progressive conduction failure that is fully reversible upon return to normothermia. FHF2-deficient cardiomyocytes generate action potentials upon current injection at 25 °C but are unexcitable at 40 °C. The absence of FHF2 accelerates the rate of closed-state and open-state sodium channel inactivation, which synergizes with temperature-dependent enhancement of inactivation rate to severely suppress cardiac sodium currents at elevated temperatures. Our experimental and computational results identify an essential role for FHF2 in dictating myocardial excitability and conduction that safeguards against temperature-sensitive conduction failure.
Collapse
|
32
|
Yu L, Toriseva M, Tuomala M, Seikkula H, Elo T, Tuomela J, Kallajoki M, Mirtti T, Taimen P, Boström PJ, Alanen K, Nurmi M, Nees M, Härkönen P. Increased expression of fibroblast growth factor 13 in prostate cancer is associated with shortened time to biochemical recurrence after radical prostatectomy. Int J Cancer 2016; 139:140-52. [DOI: 10.1002/ijc.30048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Yu
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Mervi Toriseva
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Miikka Tuomala
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Heikki Seikkula
- Department of Urology; Turku University Hospital; Turku Finland
| | - Teresa Elo
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | | | - Tuomas Mirtti
- Department of Pathology; Helsinki University Hospital (HUSLAB) and Institute for Molecular Medicine Finland (FIMM), University of Helsinki; Helsinki Finland
| | - Pekka Taimen
- Department of Pathology; University of Turku; Turku Finland
| | | | - Kalle Alanen
- Department of Pathology; University of Turku; Turku Finland
| | - Martti Nurmi
- Department of Pathology; University of Turku; Turku Finland
| | - Matthias Nees
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
- Turku Centre for Biotechnology; University of Turku; Turku Finland
| | - Pirkko Härkönen
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| |
Collapse
|
33
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1461] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
34
|
Fast-onset long-term open-state block of sodium channels by A-type FHFs mediates classical spike accommodation in hippocampal pyramidal neurons. J Neurosci 2015; 34:16126-39. [PMID: 25429153 DOI: 10.1523/jneurosci.1271-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Classical accommodation is a form of spike frequency adaptation in neurons whereby excitatory drive results in action potential output of gradually decreasing frequency. Here we describe an essential molecular component underlying classical accommodation in juvenile mouse hippocampal CA1 pyramidal neurons. A-type isoforms of fibroblast growth factor homologous factors (FHFs) bound to axosomatic voltage-gated sodium channels bear an N-terminal blocking particle that drives some associated channels into a fast-onset, long-term inactivated state. Use-dependent accumulating channel blockade progressively elevates spike voltage threshold and lengthens interspike intervals. The FHF particle only blocks sodium channels from the open state, and mutagenesis studies demonstrate that this particle uses multiple aliphatic and cationic residues to both induce and maintain the long-term inactivated state. The broad expression of A-type FHFs in neurons throughout the vertebrate CNS suggests a widespread role of these sodium channel modulators in the control of neural firing.
Collapse
|
35
|
Pablo JL, Pitt GS. Fibroblast Growth Factor Homologous Factors: New Roles in Neuronal Health and Disease. Neuroscientist 2014; 22:19-25. [PMID: 25492945 DOI: 10.1177/1073858414562217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fibroblast growth factor homologous factors (FHFs) are a noncanonical subset of intracellular fibroblast growth factors that have been implicated in a variety of neurobiological processes and in disease. They are most prominently regulators of voltage-gated Na(+) channels (NaVs). In this review, we discuss new insights into how FHFs modulate NaVs. This is followed by a summary of a growing body of evidence that FHFs operate in much broader fashion. Finally, we highlight unknown aspects of FHF function as areas of future interest.
Collapse
Affiliation(s)
- Juan L Pablo
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
37
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
38
|
Nakayama F, Umeda S, Yasuda T, Fujita M, Asada M, Meineke V, Imamura T, Imai T. Cellular internalization of fibroblast growth factor-12 exerts radioprotective effects on intestinal radiation damage independently of FGFR signaling. Int J Radiat Oncol Biol Phys 2013; 88:377-84. [PMID: 24315567 DOI: 10.1016/j.ijrobp.2013.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. METHODS AND MATERIALS Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. RESULTS Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. CONCLUSIONS These findings indicate that FGF12 can protect the intestine against radiation-induced injury through its internalization, independently of FGFRs, suggesting that cellular uptake of FGF12 is an alternative signaling pathway useful for cancer radiation therapy.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan.
| | - Sachiko Umeda
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Takeshi Yasuda
- Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Fujita
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Masahiro Asada
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Viktor Meineke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Toru Imamura
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Imai
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| |
Collapse
|
39
|
Okada T, Murata K, Hirose R, Matsuda C, Komatsu T, Ikekita M, Nakawatari M, Nakayama F, Wakatsuki M, Ohno T, Kato S, Imai T, Imamura T. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3:2899. [PMID: 24113164 PMCID: PMC3795355 DOI: 10.1038/srep02899] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/18/2013] [Indexed: 12/22/2022] Open
Abstract
Cancer cells often develop drug resistance. In cisplatin-resistant HeLa cisR cells, fibroblast growth factor 13 (FGF13/FHF2) gene and protein expression was strongly upregulated, and intracellular platinum concentrations were kept low. When the FGF13 expression was suppressed, both the cells' resistance to platinum drugs and their ability to keep intracellular platinum low were abolished. Overexpression of FGF13 in parent cells led to greater resistance to cisplatin and reductions in the intracellular platinum concentration. These cisplatin-resistant cells also showed increased resistance to copper. In preoperative cervical cancer biopsy samples from poor prognoses patients after cisplatin chemoradiotherapy, FGF13-positive cells were detected more abundantly than in the biopsy samples from patients with good prognoses. These results suggest that FGF13 plays a pivotal role in mediating resistance to platinum drugs, possibly via a mechanism shared by platinum and copper. Our results point to FGF13 as a novel target and useful prognostic guide for cancer therapy.
Collapse
Affiliation(s)
- Tomoko Okada
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Position effect on FGF13 associated with X-linked congenital generalized hypertrichosis. Proc Natl Acad Sci U S A 2013; 110:7790-5. [PMID: 23603273 DOI: 10.1073/pnas.1216412110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
X-linked congenital generalized hypertrichosis (Online Mendelian Inheritance in Man 307150) is an extremely rare condition of hair overgrowth on different body sites. We previously reported linkage in a large Mexican family with X-linked congenital generalized hypertrichosis cosegregating with deafness and with dental and palate anomalies to Xq24-27. Using SNP oligonucleotide microarray analysis and whole-genome sequencing, we identified a 389-kb interchromosomal insertion at an extragenic palindrome site at Xq27.1 that completely cosegregates with the disease. Among the genes surrounding the insertion, we found that Fibroblast Growth Factor 13 (FGF13) mRNA levels were significantly reduced in affected individuals, and immunofluorescence staining revealed a striking decrease in FGF13 localization throughout the outer root sheath of affected hair follicles. Taken together, our findings suggest a role for FGF13 in hair follicle growth and in the hair cycle.
Collapse
|
41
|
Oehrl W, Cotsiki M, Panayotou G. Differential regulation of M3/6 (DUSP8) signaling complexes in response to arsenite-induced oxidative stress. Cell Signal 2013; 25:429-38. [DOI: 10.1016/j.cellsig.2012.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022]
|
42
|
Shavkunov A, Panova N, Prasai A, Veselenak R, Bourne N, Stoilova-McPhie S, Laezza F. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex. Assay Drug Dev Technol 2012; 10:148-60. [PMID: 22364545 DOI: 10.1089/adt.2011.413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.
Collapse
Affiliation(s)
- Alexander Shavkunov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Nakayama F, Yasuda T, Umeda S, Asada M, Imamura T, Meineke V, Akashi M. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. J Biol Chem 2011; 286:25823-34. [PMID: 21518765 DOI: 10.1074/jbc.m110.198267] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular effect of fibroblast growth factor-12 (FGF12) remains unknown because FGF12 cannot activate any fibroblast growth factor receptors (FGFRs), and FGF12 is not currently thought to be released from cells. We reported previously that FGF12 plays an intracellular role in the inhibition of radiation-induced apoptosis. In this study, we demonstrated that recombinant FGF12 was able to be internalized into the cytoplasm of a rat intestinal epithelial cell line, IEC6, and this process was dependent on two novel cell-penetrating peptide (CPP) domains (CPP-M and CPP-C). In particular, CPP-C, composed of ∼10 amino acids, was identified as a specific domain of FGF12 and its subfamily in the C-terminal region (residues 140-149), although CPP-M was a common domain in the internal region of the FGF family. The absence of CPP-C from FGF12 or a mutation (E142L) in the CPP-C domain drastically reduced the internalization of FGF12 into cells. Therefore, CPP-C played an essential role in the internalization of FGF12. In addition, CPP-C was able to deliver other polypeptides into cells as a CPP because an FGF1/CPP-C chimeric protein was internalized into IEC6 cells more efficiently than wild-type FGF1. Finally, intraperitoneally added FGF12 inhibited radiation-induced apoptosis in the intestinal epithelial cells of BALB/c mice, and deletion of the CPP-C domain decreased the inhibition of the apoptosis. These findings suggest that exogenous FGF12 can play a role in tissues by translocating into cells through the plasma membrane, and the availability of this novel CPP provides a new tool for the intracellular delivery of bioactive molecules.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Department of Radiation Emergency Medicine, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2. J Neurosci 2010; 30:14805-16. [PMID: 21048139 DOI: 10.1523/jneurosci.1161-10.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Deletion of the human SHANK3 gene near the terminus of chromosome 22q is associated with Phelan-McDermid syndrome and autism spectrum disorders. Nearly all such deletions also span the tightly linked IB2 gene. We show here that IB2 protein is broadly expressed in the brain and is highly enriched within postsynaptic densities. Experimental disruption of the IB2 gene in mice reduces AMPA and enhances NMDA receptor-mediated glutamatergic transmission in cerebellum, changes the morphology of Purkinje cell dendritic arbors, and induces motor and cognitive deficits suggesting an autism phenotype. These findings support a role for human IB2 mutation as a contributing genetic factor in Chr22qter-associated cognitive disorders.
Collapse
|
45
|
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2010; 149:121-30. [PMID: 20940169 DOI: 10.1093/jb/mvq121] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related polypeptides that are essential for embryonic development and that function postnatally as homoeostatic factors, in the response to injury, in the regulation of electrical excitability of cells and as hormones that regulate metabolism. In humans, FGF signalling is involved in developmental, neoplastic, metabolic and neurological diseases. Fgfs have been identified in metazoans but not in unicellular organisms. In vertebrates, FGFs can be classified as having intracrine, paracrine and endocrine functions. Paracrine and endocrine FGFs act via cell-surface FGF receptors (FGFRs); while, intracrine FGFs act independent of FGFRs. The evolutionary history of the Fgf family indicates that an intracrine Fgf is the likely ancestor of the Fgf family. During metazoan evolution, the Fgf family expanded in two phases, after the separation of protostomes and deuterostomes and in the evolution of early vertebrates. These expansions enabled FGFs to acquire diverse actions and functions.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan.
| | | |
Collapse
|
46
|
Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A, delle Fave G, Pederzoli P, Croce CM, Scarpa A. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010; 28:245-255. [PMID: 19917848 PMCID: PMC4288616 DOI: 10.1200/jco.2008.21.5988] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 07/27/2009] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We investigated the global gene expression in a large panel of pancreatic endocrine tumors (PETs) aimed at identifying new potential targets for therapy and biomarkers to predict patient outcome. PATIENTS AND METHODS Using a custom microarray, we analyzed 72 primary PETs, seven matched metastases, and 10 normal pancreatic samples. Relevant differentially expressed genes were validated by either quantitative real-time polymerase chain reaction or immunohistochemistry on tissue microarrays. RESULTS Our data showed that: tuberous sclerosis 2 (TSC2) and phosphatase and tensin homolog (PTEN) were downregulated in most of the primary tumors, and their low expression was significantly associated with shorter disease-free and overall survival; somatostatin receptor 2 (SSTR2) was absent or very low in insulinomas compared with nonfunctioning tumors; and expression of fibroblast growth factor 13 (FGF13) gene was significantly associated with the occurrence of liver metastasis and shorter disease-free survival. TSC2 and PTEN are two key inhibitors of the Akt/mammalian target of rapamycin (mTOR) pathway and the specific inhibition of mTOR with rapamycin or RAD001 inhibited cell proliferation of PET cell lines. CONCLUSION Our results strongly support a role for PI3K/Akt/mTOR pathway in PET, which ties in with the fact that mTOR inhibitors have reached phase III trials in neuroendocrine tumors. The finding of differential SSTR expression raises the potential for SSTR expression to be evaluated as a marker of response to somatostatin analogs. Finally, we identified FGF13 as a new prognostic marker that predicted poorer outcome in patients who were clinically considered free from disease.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Irene Dalai
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Stefano Barbi
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Stefania Beghelli
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Massimo Falconi
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Marco della Peruta
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lorenzo Piemonti
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Gabriele Capurso
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Alessia Di Florio
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Gianfranco delle Fave
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Paolo Pederzoli
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Carlo M. Croce
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Aldo Scarpa
- From the Departments of Pathology and Surgical and Gastroenterological Sciences, University of Verona; Applied Research on Cancer–Network, Verona; Laboratory of Experimental Surgery, San Raffaele Scientific Institute, Milan; Digestive and Liver Disease Unit, II Medical School, University “La Sapienza,” Rome, Italy; and the Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
47
|
Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2009; 22:660-7. [PMID: 20004242 DOI: 10.1016/j.cellsig.2009.11.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/25/2009] [Accepted: 11/28/2009] [Indexed: 12/13/2022]
Abstract
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38alpha, p38beta, p38gamma and p38delta) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38alpha has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38beta, gamma and delta activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38gamma and p38beta induced by environmental stress, whereas MKK6 is the major p38gamma activator in response to TNFalpha. In contrast, p38delta activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFalpha is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38gamma substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.
Collapse
Affiliation(s)
- Gaëlle Remy
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, UAM Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
This paper summarises how scaffold proteins affects and regulate the JNK signalling pathway. We believe that some of these scaffold proteins, by virtue of their anchoring and catalytic properties contribute to a high degree of specificity of intra cellular signalling pathways that regulate the progression through the cell cycle.
Collapse
Affiliation(s)
- W Engström
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
49
|
Feng Y, Wen J, Chang CCJ. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 2009; 133:1850-6. [PMID: 19886722 DOI: 10.5858/133.11.1850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 11/06/2022]
Abstract
CONTEXT p38 mitogen-activated protein kinase (MAPK) signaling has been implicated in responses ranging from apoptosis to cell cycle, induction of expression of cytokine genes, and differentiation. This plethora of activators conveys the complexity of the p38 pathway. This complexity is further complicated by the observation that the downstream effects of p38 MAPK activation may be different depending on types of stimuli, cell types, and various p38 MAPK isoforms involved. OBJECTIVE This review focuses on the recent advancement of the p38 MAPK isoforms as well as the roles of p38 MAPK in hematologic malignancies. DATA SOURCES Review of pertinent published literature and work in our laboratory. CONCLUSIONS In some hematologic malignancies, activation of p38 plays a key role in promoting or inhibiting proliferation and also in increasing resistance to chemotherapeutic agents. The importance of different p38 isoforms in various cellular functions has been acknowledged recently. Further understanding of these isoforms will allow the design of more specific inhibitors to target particular isoforms to maximize the treatment effect and minimize the side effects for treating hematopoietic malignancies.
Collapse
Affiliation(s)
- Yongdong Feng
- Department of Pathology, The Methodist Hospital and The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | |
Collapse
|
50
|
Owens TW, Valentijn AJ, Upton JP, Keeble J, Zhang L, Lindsay J, Zouq NK, Gilmore AP. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ 2009; 16:1551-62. [PMID: 19662026 DOI: 10.1038/cdd.2009.102] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most cells undergo apoptosis through the intrinsic pathway. This is dependent on mitochondrial outer membrane permeabilisation (MOMP), which is mediated by the pro-apoptotic Bcl-2 family proteins, Bax and Bak. During apoptosis, Bax translocates from the cytosol to the outer mitochondrial membrane (OMM), wherein it contributes to the formation of pores to release cytochrome-c. However, it remains unclear whether Bax translocation is sufficient to bring about MOMP or whether Bax requires further signals on the OMM to be fully activated. We have previously shown that during mammary epithelial cell anoikis, Bax translocation does not commit cells to MOMP and detached cells are rescued if survival signals from the extracellular matrix (ECM) are restored. These findings implied that a second signal is required for mitochondrial Bax to fully activate and cause MOMP. We now identify p38MAPK (mitogen-activated protein kinase) as this necessary signal to activate Bax after its translocation to mitochondria. The inhibition of p38MAPK did not prevent Bax translocation, but its activity was required for mitochondrial Bax to bring about MOMP. p38MAPK was activated and recruited to a high molecular weight mitochondrial complex after loss of ECM attachment. Artificially targeting p38MAPK to the OMM increased the kinetics of anoikis, supporting a requirement for its mitochondrial localisation to regulate Bax activation and drive commitment to apoptosis.
Collapse
Affiliation(s)
- T W Owens
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|