1
|
Suarez A, Fernandez L, Riera J. Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling. J Cereb Blood Flow Metab 2025:271678X241311010. [PMID: 39791314 PMCID: PMC11719438 DOI: 10.1177/0271678x241311010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g., transgenic mice, uncaging, and multiphoton microscopy) and stimulation paradigms to isolate in vivo individual pathways of the astrocyte-mediated NVC. Unfortunately, these pathways are highly nonlinear and non-additive. To separate these pathways in a unified framework, we combine a comprehensive biophysical model of vasoactive signaling from astrocytes with a unique optogenetic stimulation method that selectively induces astrocytic Ca2+ signaling in a large population of astrocytes. We also use a sensitivity analysis and an optimization technique to estimate key model parameters. Optogenetically-induced Ca2+ signals in astrocytes cause a cerebral blood flow (CBF) response with two major components. Component-1 was rapid and smaller (ΔCBF∼13%, 18 seconds), while component-2 was slowest and highest (ΔCBF ∼18%, 45 seconds). The proposed biophysical model was adequate in reproducing component-2, which was validated with a pharmacological manipulation. Model's predictions were not in contradiction with previous studies. Finally, we discussed scenarios accounting for the existence of component-1, which once validated might be included in our model.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Lazaro Fernandez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Jorge Riera
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| |
Collapse
|
2
|
Hou S, He H, Yang H, Chen C, Wang Q, Wu Z, Li S, Xie J. The receptor binding mechanism of mouse sPLA2 group IIE. Biochem Biophys Res Commun 2025; 742:151103. [PMID: 39672005 DOI: 10.1016/j.bbrc.2024.151103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Secreted phospholipase A2s (sPLA2s) participate in physiological function by their enzyme and receptor binding activity. Muscle-type phospholipase A2 receptor (M-type PLA2R) is the sPLA2 binding protein with the highest affinity so far, and also inhibits the enzyme activity of sPLA2. There is species specificity and pH dependence for the binding of M-type PLA2R to sPLA2. Mouse sPLA2 Group IIE (mGIIE) has been verified to have a high affinity for mouse M-type PLA2R (M-type mPLA2R) at the nanomolar scale. For further exploration of the receptor binding mechanism of GIIE, in this study, we use Alphafold Multimer to generate complex models of mGIIE with the M-type mPLA2R ectodomain, wild-type CTLD5 domain of mPLA2R, and three CTLD5 mutants, respectively. mPLA2R-mGIIE models exhibit heterogeneous extended mPLA2R conformations with uncovered sPLA2-binding surface of CTLD5 domain. Complexed models of mGIIE with wild-type and mutated mCTLD5 further confirm that helix α1 of mCTLD5, especially essential residues F838 and W842, interact with the substrate pocket of mGIIE and thus inhibit its enzyme activity. Peptides from helix α1 of mCTLD5 are verified to inhibit the enzymatic activity of mGIIE. This AI-guided research would substantially accelerate our understanding of the functional study of GIIE, and provide the lead-peptide for the further inhibitor design of sPLA2.
Collapse
Affiliation(s)
- Shulin Hou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Huili He
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haishan Yang
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Chunrong Chen
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
3
|
Li S, Qin C, Peng SM, Wang YB, Wang Y, Wang XS, Shi JG, Li XC. A newly identified secretory phospholipase A2 group XIIA homolog (LcPLA2XIIA) in Larimichthys crocea exhibits antimicrobial and antitumor activities. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109924. [PMID: 39332653 DOI: 10.1016/j.fsi.2024.109924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The phospholipase A2 (PLA2) superfamily has attracted increasing attention in recent years due to the multiple physiological and pathological functions exerted by its members. Up to date, the knowledge about the biological role of PLA2XIIA subfamily members remains limited. In this study, a new member of PLA2XIIA subfamily, LcPLA2XIIA, was characterized in large yellow croaker. Different from most members of the PLA2 superfamily with positive charge, LcPLA2XIIA encodes an anionic protein, which is similar to other members of PLA2XIIA subfamily. LcPLA2XIIA is highly expressed in the intestine, and afterwards, it is up-regulated after with Pseudomonas plecoglossicida or Staphylococcus aureus. LcPLA2XIIA exhibits strong inhibitory activity against these two bacteria. The results indicate that LcPLA2XIIA plays an important role in the antimicrobial immune responses of large yellow croaker. LcPLA2XIIA displays strong binding activity to all the tested bacteria. It specifically interacts with LTA, a unique component on the surface of Gram-positive bacteria. It also significantly promotes bacterial agglutination in the presence of Ca2+. These findings reveal that the binding and agglutinating abilities of LcPLA2XIIA to bacteria contribute greatly to its antibacterial activity. In addition, LcPLA2XIIA significantly inhibits the proliferation of infectious hematopoietic necrosis virus instead of recombinant human adenovirus type 5. It also suppresses the growth of human colorectal adenocarcinoma cells by inducing apoptosis, but it has no obvious inhibitory effect on the growth of epithelioma papulosum cyprinid cells. This study provides new insights into the antibacterial activity, and the mechanism of LcPLA2XIIA in large yellow croaker, and antiviral and antitumor functions of PLA2XIIA subfamily members.
Collapse
Affiliation(s)
- Shouhu Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Chuang Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Shi-Ming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ya-Bing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Xiao-Shan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jian-Gao Shi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China.
| |
Collapse
|
4
|
de Araujo MFC, Cardoso LS, Pereira MH, Pereira MG, Atella GC. Trypanosoma cruzi infection modulates secreted phospholipase A 2 expression in the salivary glands of Rhodnius prolixus. Acta Trop 2024; 257:107281. [PMID: 38852917 DOI: 10.1016/j.actatropica.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Phospholipases A2 (PLA2) comprise a superfamily of enzymes that specifically catalyze hydrolysis of the ester bond at the sn-2 position of glycerophospholipids, generating lysophospholipids and fatty acids. In Rhodnius prolixus, one of the main vectors of the Chagas's disease etiologic agent Trypanosoma cruzi, it was previously shown that lysophosphatidylcholine, a bioactive lipid, found in the insect's saliva, contributes to the inhibition of platelet aggregation, and increases the production of nitric oxide, an important vasodilator. Due to its role in potentially generating LPC, here we studied the PLA2 present in the salivary glands of R. prolixus. PLA2 activity is approximately 100 times greater in the epithelium than in the contents of salivary glands. Our study reveals the role of the RpPLA2XIIA gene in the insect feeding performance and in the fatty acids composition of phospholipids extracted from the salivary glands. Knockdown of RpPLA2XIIA significantly altered the relative amounts of palmitic, palmitoleic, oleic and linoleic acids. A short-term decrease in the expression of RpPLA2III and RpPLA2XIIA in the salivary glands of R. prolixus was evident on the third day after infection by T. cruzi. Taken together, our results contribute to the understanding of the role of PLA2 in the salivary glands of hematophagous insects and show that the parasite is capable of modulating even tissues that are not colonized by it.
Collapse
Affiliation(s)
- Maria Fernanda Carvalho de Araujo
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Silva Cardoso
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Herrera-Marcos LV, Martínez-Beamonte R, Arnal C, Barranquero C, Puente-Lanzarote JJ, Lou-Bonafonte JM, Gonzalo-Romeo G, Mocciaro G, Jenkins B, Surra JC, Rodríguez-Yoldi MJ, Alastrué-Vera V, Letosa J, García-Gil A, Güemes A, Koulman A, Osada J. Lipidomic signatures discriminate subtle hepatic changes in the progression of porcine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G411-G425. [PMID: 38375587 DOI: 10.1152/ajpgi.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Recently, the development of nonalcoholic steatohepatitis (NASH) in common strains of pigs has been achieved using a diet high in saturated fat, fructose, cholesterol, and cholate and deficient in choline and methionine. The aim of the present work was to characterize the hepatic and plasma lipidomic changes that accompany the progression of NASH and its reversal by switching pigs back to a chow diet. One month of this extreme steatotic diet was sufficient to induce porcine NASH. The lipidomic platform using liquid chromatography-mass spectrometry analyzed 467 lipid species. Seven hepatic phospholipids [PC(30:0), PC(32:0), PC(33:0), PC(33:1), PC(34:0), PC(34:3) and PC(36:2)] significantly discriminated the time of dietary exposure, and PC(30:0), PC(33:0), PC(33:1) and PC(34:0) showed rapid adaptation in the reversion period. Three transcripts (CS, MAT1A, and SPP1) showed significant changes associated with hepatic triglycerides and PC(33:0). Plasma lipidomics revealed that these species [FA 16:0, FA 18:0, LPC(17:1), PA(40:5), PC(37:1), TG(45:0), TG(47:2) and TG(51:0)] were able to discriminate the time of dietary exposure. Among them, FA 16:0, FA 18:0, LPC(17:1) and PA(40:5) changed the trend in the reversion phase. Plasma LDL-cholesterol and IL12P40 were good parameters to study the progression of NASH, but their capacity was surpassed by hepatic [PC(33:0), PC(33:1), and PC(34:0)] or plasma lipid [FA 16:0, FA 18:0, and LPC(17:1)] species. Taken together, these lipid species can be used as biomarkers of metabolic changes in the progression and regression of NASH in this model. The lipid changes suggest that the development of NASH also affects peripheral lipid metabolism.NEW & NOTEWORTHY A NASH stage was obtained in crossbred pigs. Hepatic [PC(33:0), PC(33:1) and PC(34:0)] or plasma [FA 16:0, FA 18:0 and LPC(17:1)] species were sensitive parameters to detect subtle changes in development and regression of nonalcoholic steatohepatitis (NASH). These findings may delineate the liquid biopsy to detect subtle changes in progression or in treatments. Furthermore, phospholipid changes according to the insult-inducing NASH may play an important role in accepting or rejecting fatty livers in transplantation.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Puente-Lanzarote
- Servicio de Bioquímica Clínica, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Gonzalo-Romeo
- Servicio General de Apoyo a la Investigación, División de Experimentación Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriele Mocciaro
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Letosa
- Industrial Zootécnica Aragonesa S.L. (INZAR, S.L.), Zaragoza, Spain
| | - Agustín García-Gil
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Güemes
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Yu J, Boehr DD. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front Mol Biosci 2023; 10:1306483. [PMID: 38099197 PMCID: PMC10720463 DOI: 10.3389/fmolb.2023.1306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Recruitment of enzymes to intracellular membranes often modulates their catalytic activity, which can be important in cell signaling and membrane trafficking. Thus, re-localization is not only important for these enzymes to gain access to their substrates, but membrane interactions often allosterically regulate enzyme function by inducing conformational changes across different time and amplitude scales. Recent structural, biophysical and computational studies have revealed how key enzymes interact with lipid membrane surfaces, and how this membrane binding regulates protein structure and function. This review summarizes the recent progress in understanding regulatory mechanisms involved in enzyme-membrane interactions.
Collapse
Affiliation(s)
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Yordanova V, Hazarosova R, Vitkova V, Momchilova A, Robev B, Nikolova B, Krastev P, Nuss P, Angelova MI, Staneva G. Impact of Truncated Oxidized Phosphatidylcholines on Phospholipase A 2 Activity in Mono- and Polyunsaturated Biomimetic Vesicles. Int J Mol Sci 2023; 24:11166. [PMID: 37446342 DOI: 10.3390/ijms241311166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The interplay between inflammatory and redox processes is a ubiquitous and critical phenomenon in cell biology that involves numerous biological factors. Among them, secretory phospholipases A2 (sPLA2) that catalyze the hydrolysis of the sn-2 ester bond of phospholipids are key players. They can interact or be modulated by the presence of truncated oxidized phosphatidylcholines (OxPCs) produced under oxidative stress from phosphatidylcholine (PC) species. The present study examined this important, but rarely considered, sPLA2 modulation induced by the changes in biophysical properties of PC vesicles comprising various OxPC ratios in mono- or poly-unsaturated PCs. Being the most physiologically active OxPCs, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) have been selected for our study. Using fluorescence spectroscopy methods, we compared the effect of OxPCs on the lipid order as well as sPLA2 activity in large unilamellar vesicles (LUVs) made of the heteroacid PC, either monounsaturated [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)], or polyunsaturated [1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC)] at a physiological temperature. The effect of OxPCs on vesicle size was also assessed in both the mono- and polyunsaturated PC matrices. Results: OxPCs decrease the membrane lipid order of POPC and PDPC mixtures with PGPC inducing a much larger decrease in comparison with POVPC, indicative that the difference takes place at the glycerol level. Compared with POPC, PDPC was able to inhibit sPLA2 activity showing a protective effect of PDPC against enzyme hydrolysis. Furthermore, sPLA2 activity on its PC substrates was modulated by the OxPC membrane content. POVPC down-regulated sPLA2 activity, suggesting anti-inflammatory properties of this truncated oxidized lipid. Interestingly, PGPC had a dual and opposite effect, either inhibitory or enhancing on sPLA2 activity, depending on the protocol of lipid mixing. This difference may result from the chemical properties of the shortened sn-2-acyl chain residues (aldehyde group for POVPC, and carboxyl for PGPC), being, respectively, zwitterionic or anionic under hydration at physiological conditions.
Collapse
Affiliation(s)
- Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Hospital "Sv. Ivan Rilski", 15 Acad. Ivan Geshov Blvd., 1431 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital "St. Ekaterina", 52 Pencho Slaveikov Blvd., 1431 Sofia, Bulgaria
| | - Philippe Nuss
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, 75012 Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Miglena I Angelova
- Department of Physics, Faculty of Sciences and Engineering, Sorbonne University, 75005 Paris, France
- Matière et Systèmes Complexes (MSC), CNRS UMR 7057, University Paris Cite-Diderot, 75013 Paris, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
10
|
Chun CKY, Roth M, Welti R, Richards MP, Hsu WW, O'Quinn T, Chao MD. Exploring the potential effect of phospholipase A2 antibody to extend beef shelf-life in a beef liposome model system. Meat Sci 2023; 198:109091. [PMID: 36587462 DOI: 10.1016/j.meatsci.2022.109091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effect of phospholipase A2 (PLA2) and a PLA2 antibody (aPLA2) on phospholipid (PL) hydrolysis in beef and to understand how the altered PL composition may affect lipid oxidation and antioxidant capacity of beef in an in vitro system. Various combinations of PLA2 and aPLA2 were introduced to a beef liposome model system and exposed to a retail display. The PL and free fatty acid (FFA) profiles, antioxidant capacity and lipid oxidation were measured for the liposome system. Key PL classes were reduced and the release of polyunsaturated FFAs was increased with the inclusion of PLA2 in the treatments (P < 0.05). There was no inhibition of PL hydrolysis with the addition of aPLA2. PLA2 showed strong antioxidant capacity in the liposome system (P < 0.01), but lipid oxidation still increased in samples treated with PLA2 throughout the retail display (P < 0.01). Finally, aPLA2 treatments demonstrated potential to decrease lipid oxidation (P < 0.01).
Collapse
Affiliation(s)
- Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Mary Roth
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Ruth Welti
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Mark P Richards
- University of Wisconsin Madison, Animal and Dairy Sciences, Madison, WI 53706-1205, USA
| | - Wei-Wen Hsu
- University of Cincinnati, Environmental and Public Health Sciences, Cincinnati, OH 45267, USA
| | - Travis O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| |
Collapse
|
11
|
Zhang H, Zhang Y, Mu T, Cao J, Liu X, Yang X, Ren D, Zhao K. Response of gut microbiota and ileal transcriptome to inulin intervention in HFD induced obese mice. Int J Biol Macromol 2023; 225:861-872. [PMID: 36402387 DOI: 10.1016/j.ijbiomac.2022.11.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Inulin, as a dietary fiber, exerted prominent anti-obesity effects by modulating gut microbiota. However, the possible relationship and interplay of gut microbiome and function of distal intestine is still unclear now. This study aimed to investigate the possible targets of microbes and the related intestinal genes mediated by inulin. C57 BL/6 male mice were randomly allocated to chow diet (Chow) group, high-fat diet (HFD) group, and HFD supplemented with 3 % inulin (Inulin) group. Compared with HFD treatment, inulin supplementation significantly decreased the body weight, fat deposition, and fasting blood glucose level. In addition, mice treated with inulin had a remarkable alteration in the structure of cecal microbiota and transcriptomic profiling of ileum. In particular, inulin supplementation significantly reversed the HFD induced expression of Bacteroides, Allobaculum and nonrank_f_Bacteroidates_S24-7_group, and reversed the expression of genes belonging to phospholipase A2 (PLA2) family and cytochrome P450 (CYP450) family. In summary, inulin might alleviate HFD-induced fat deposition and metabolic disorders via regulating lipid metabolism of ileum, while the interaction between the sPLA2s and gut microbes might play important roles in the process.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Yunhui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Tong Mu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Jianxin Cao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xiaoxia Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
12
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
13
|
Mouchlis VD, Dennis EA. Membrane Association Allosterically Regulates Phospholipase A 2 Enzymes and Their Specificity. Acc Chem Res 2022; 55:3303-3311. [PMID: 36315840 PMCID: PMC9730854 DOI: 10.1021/acs.accounts.2c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/19/2023]
Abstract
Water-soluble proteins as well as membrane-bound proteins associate with membrane surfaces and bind specific lipid molecules in specific sites on the protein. Membrane surfaces include the traditional bilayer membranes of cells and subcellular organelles formed by phospholipids. Monolayer membranes include the outer monolayer phospholipid surface of intracellular lipid droplets of triglycerides and various lipoproteins including HDL, LDL, VLDL, and chylomicrons. These lipoproteins circulate in our blood and lymph systems and contain triglycerides, cholesterol, cholesterol esters, and proteins in their interior, and these are sometimes interspersed on their surfaces. Similar lipid-water interfaces also occur in mixed micelles of phospholipids and bile acids in our digestive system, which may also include internalized triglycerides and cholesterol esters. Diacyl phospholipids constitute the defining molecules of biological membranes. Phospholipase A1 (PLA1) hydrolyzes phospholipid acyl chains at the sn-1 position of membrane phospholipids, phospholipase A2 (PLA2) hydrolyzes acyl chains at the sn-2 position, phospholipase C (PLC) hydrolyzes the glycerol-phosphodiester bond, and phospholipase D (PLD) hydrolyzes the polar group-phosphodiester bond. Of the phospholipases, the PLA2s have been the most well studied at the mechanistic level. The PLA2 superfamily consists of 16 groups and numerous subgroups, and each is generally described as one of 6 types. The most well studied of the PLA2s include extensive genetic and mutational studies, complete lipidomics specificity characterization, and crystallographic structures. This Account will focus principally on results from deuterium exchange mass spectrometric (DXMS) studies of PLA2 interactions with membranes and extensive molecular dynamics (MD) simulations of their interactions with membranes and specific phospholipids bound in their catalytic and allosteric sites. These enzymes either are membrane-bound or are water-soluble and associate with membranes before extracting their phospholipid substrate molecule into their active site to carry out their enzymatic hydrolytic reaction. We present evidence that when a PLA2 associates with a membrane, the membrane association can result in a conformational change in the enzyme whereby the membrane association with an allosteric site on the enzyme stabilizes the enzyme in an active conformation on the membrane. We sometimes refer to this transition from a "closed" conformation in aqueous solution to an "open" conformation when associated with a membrane. The enzyme can then extract a single phospholipid substrate into its active site, and catalysis occurs. We have also employed DXMS and MD simulations to characterize how PLA2s interact with specific inhibitors that could lead to potential therapeutics. The PLA2s constitute a paradigm for how membranes interact allosterically with proteins, causing conformational changes and activation of the proteins to enable them to extract and bind a specific phospholipid from a membrane for catalysis, which is probably generalizable to intracellular and extracellular transport and phospholipid exchange processes as well as other specific biological functions. We will focus on the four main types of PLA2, namely, the secreted (sPLA2), cytosolic (cPLA2), calcium-independent (iPLA2), and lipoprotein-associated PLA2 (Lp-PLA2) also known as platelet-activating factor acetyl hydrolase (PAF-AH). Studies on a well-studied specific example of each of the four major types of the PLA2 superfamily demonstrate clearly that protein subsites can show precise specificity for one of the phospholipid hydrophobic acyl chains, often the one at the sn-2 position, including exquisite sensitivity to the number and position of double bonds.
Collapse
Affiliation(s)
- Varnavas D. Mouchlis
- Department of Chemistry and Biochemistry
and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601 United States
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry
and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601 United States
| |
Collapse
|
14
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
15
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Treatment of Mouse Sperm with a Non-Catalytic Mutant of PLA2G10 Reveals That PLA2G10 Improves In Vitro Fertilization through Both Its Enzymatic Activity and as Ligand of PLA2R1. Int J Mol Sci 2022; 23:ijms23148033. [PMID: 35887380 PMCID: PMC9320362 DOI: 10.3390/ijms23148033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization.
Collapse
|
17
|
Alonazi M, Karray A, Jallouli R, Ben Bacha A. Biochemical, Kinetic and Biological Properties of Group V Phospholipase A2 from Dromedary. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113437. [PMID: 35684381 PMCID: PMC9182273 DOI: 10.3390/molecules27113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Secretory group V phospholipase A2 (PLA2-V) is known to be involved in inflammatory processes in cellular studies, nevertheless, the biochemical and the enzymatic characteristics of this important enzyme have been unclear yet. We reported, as a first step towards understanding the biochemical properties, catalytic characteristics, antimicrobial and cytotoxic effects of this PLA2, the production of PLA2-V from dromedary. The obtained DrPLA2-V has an absolute requirement for Ca2+ and NaTDC for enzymatic activity with an optimum pH of 9 and temperature of 45 °C with phosphatidylethanolamine as a substrate. Kinetic parameters showed that Kcat/Kmapp is 2.6 ± 0.02 mM−1 s−1. The enzyme was found to display potent Gram-positive bactericidal activity (with IC50 values of about 5 µg/mL) and antifungal activity (with IC50 values of about 25 µg/mL)in vitro. However, the purified enzyme did not display a cytotoxic effect against cancer cells.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, Université de Sfax-Tunisia, Sfax 3038, Tunisia;
| | - Raida Jallouli
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia
- Correspondence: ; Tel.: +966-504-784-639
| |
Collapse
|
18
|
Old but New: Group IIA Phospholipase A 2 as a Modulator of Gut Microbiota. Metabolites 2022; 12:metabo12040352. [PMID: 35448539 PMCID: PMC9029192 DOI: 10.3390/metabo12040352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Among the phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family contains 11 mammalian isoforms that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using sPLA2-deficient or -overexpressed mouse strains, along with mass spectrometric lipidomics to determine sPLA2-driven lipid pathways, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. In general, individual sPLA2s exert their specific functions within tissue microenvironments, where they are intrinsically expressed through hydrolysis of extracellular phospholipids. Recent studies have uncovered a new aspect of group IIA sPLA2 (sPLA2-IIA), a prototypic sPLA2 with the oldest research history among the mammalian PLA2s, as a modulator of the gut microbiota. In the intestine, Paneth cell-derived sPLA2-IIA acts as an antimicrobial protein to shape the gut microbiota, thereby secondarily affecting inflammation, allergy, and cancer in proximal and distal tissues. Knockout of intestinal sPLA2-IIA in BALB/c mice leads to alterations in skin cancer, psoriasis, and anaphylaxis, while overexpression of sPLA2-IIA in Pla2g2a-null C57BL/6 mice induces systemic inflammation and exacerbates arthritis. These phenotypes are associated with notable changes in gut microbiota and fecal metabolites, are variable in different animal facilities, and are abrogated after antibiotic treatment, co-housing, or fecal transfer. These studies open a new mechanistic action of this old sPLA2 and add the sPLA2 family to the growing list of endogenous factors capable of affecting the microbe–host interaction and thereby systemic homeostasis and diseases.
Collapse
|
19
|
Doré E, Joly-Beauparlant C, Morozumi S, Mathieu A, Lévesque T, Allaeys I, Duchez AC, Cloutier N, Leclercq M, Bodein A, Payré C, Martin C, Petit-Paitel A, Gelb MH, Rangachari M, Murakami M, Davidovic L, Flamand N, Arita M, Lambeau G, Droit A, Boilard E. The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation. JCI Insight 2022; 7:152638. [PMID: 35076027 PMCID: PMC8855825 DOI: 10.1172/jci.insight.152638] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.
Collapse
Affiliation(s)
- Etienne Doré
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Alban Mathieu
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Tania Lévesque
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Isabelle Allaeys
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Anne-Claire Duchez
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Nathalie Cloutier
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Mickaël Leclercq
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Antoine Bodein
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Christine Payré
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Cyril Martin
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Agnes Petit-Paitel
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Manu Rangachari
- CHU de Québec-Université Laval Research Center, Neurosciences Axis, Quebec City, Quebec, Canada
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Laetitia Davidovic
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Nicolas Flamand
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Yokohama, Japan
| | - Gérard Lambeau
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Eric Boilard
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
21
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Pungerčar J, Bihl F, Lambeau G, Križaj I. What do secreted phospholipases A 2 have to offer in combat against different viruses up to SARS-CoV-2? Biochimie 2021; 189:40-50. [PMID: 34097986 PMCID: PMC8449419 DOI: 10.1016/j.biochi.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Alekseeva AS, Volynsky PE, Boldyrev IA. Estimation of the Phospholipase A2 Selectivity on POPC/POPG Membranes Using the Interaction Map. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821050032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The regulation of the activity and selectivity of phospholipase A2 (PLA2), which is capable of cleaving fatty acid in the second position (sn-2) of the phospholipid, is carried out through the membrane-binding and catalytic sites of the enzyme. For hydrolytic activity, PLA2 must first bind to the phospholipid membrane, and the binding efficiency depends on the composition of the membrane. The membrane-binding site of PLA2 is formed by several tens of amino acids and its composition differs from enzyme to enzyme; hydrophobic and positively charged amino acids play a key role in the interaction. In this work, we investigated the interaction of PLA2 from bee venom with phospholipid bilayers of palmitoyl oleoylphosphatidylcholine (POPC) containing different amounts of palmitoyloleoylphosphatidylglycerol (POPG). On the basis of the measurements of the protein intrinsic fluorescence and the anisotropy of the fluorescence of the lipid probe we propose the construction of lipid–protein interaction maps, which reflect both the efficiency of protein binding and changes in the structure of the membrane. These changes cause alterations in the fluorescence anisotropy of the label, which in turn is a measure of the mobility of the lipid environment of the fluorescent probe. Analysis of interaction maps showed that there is a relationship between lipid mobility and enzyme binding efficiency: the optimum interaction of PLA2 with membranes from a POPC/POPG mixture lies in the region of the highest lipid mobility, and not in the region of the highest negative charge. This dependence complements the existing understanding of the process of recognition of the membrane surface by the enzyme and the selection of lipids by the enzyme already bound to the membrane. The proposed mapping method can be extended to other membrane-active proteins.
Collapse
|
24
|
Dacheux M, Chaouch S, Joy A, Labat A, Payré C, Petit-Paitel A, Bihl F, Lagrange I, Grellier P, Touqui L, Lambeau G, Deregnaucourt C. Role of human group IIA secreted phospholipase A2 in malaria pathophysiology: Insights from a transgenic mouse model. Biochimie 2021; 189:120-136. [PMID: 34175441 DOI: 10.1016/j.biochi.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/08/2023]
Abstract
We previously showed that injection of recombinant human group IIA secreted phospholipase A2 (hGIIA sPLA2) to Plasmodium chabaudi-infected mice lowers parasitaemia by 20%. Here, we show that transgenic (TG) mice overexpressing hGIIA sPLA2 have a peak of parasitaemia about 30% lower than WT littermates. During infection, levels of circulating sPLA2, enzymatic activity and plasma lipid peroxidation were maximal at day-14, the peak of parasitaemia. Levels of hGIIA mRNA increased in liver but not in spleen and blood cells, suggesting that liver may contribute as a source of circulating hGIIA sPLA2. Before infection, baseline levels of leukocytes and pro-inflammatory cytokines were higher in TG mice than WT littermates. Upon infection, the number of neutrophils, lymphocytes and monocytes increased and were maximal at the peak of parasitaemia in both WT and TG mice, but were higher in TG mice. Similarly, levels of the Th1 cytokines IFN-γ and IL-2 increased in WT and TG mice, but were 7.7- and 1.7-fold higher in TG mice. The characteristic shift towards Th2 cytokines was observed during infection in both WT and TG mice, with increased levels of IL-10 and IL-4 at day-14. The current data are in accordance with our previous in vitro findings showing that hGIIA kills parasites by releasing toxic lipids from oxidized lipoproteins. They further show that hGIIA sPLA2 is induced during mouse experimental malaria and has a protective in vivo role, lowering parasitaemia by likely releasing toxic lipids from oxidized lipoproteins but also indirectly by promoting a more sustained innate immune response.
Collapse
Affiliation(s)
- Mélanie Dacheux
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Alonso Joy
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Amandine Labat
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Christine Payré
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Agnès Petit-Paitel
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Isabelle Lagrange
- Ecole Nationale Vétérinaire d'Alfort, BioPôle, Laboratoire d'hématologie, 94704 Maisons-Alfort, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team - INSERM U938, Institut Pasteur, 75015 Paris, France; Sorbonne Université, INSERM UMRS938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Christiane Deregnaucourt
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
| |
Collapse
|
25
|
Hou S, Bai J, Chen C, Zhang X, Chang F, Cao Z, Xu T, Xie J. The atypical binding mechanism of second calcium on phospholipase A2 group IIE. Biochem Biophys Res Commun 2021; 557:267-272. [PMID: 33894413 DOI: 10.1016/j.bbrc.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Secreted phospholipase A2s (sPLA2s) are calcium dependent enzymes involved in various biological events such as lipid metabolism and inflammation. We previously identified the second calcium (Ca2) binding site of human sPLA2 Group IIE (hGIIE) by structural study and suggested that Asn21 act as the switch of Ca2 binding to modulate the enzymatic activity, but the detailed Ca2 binding mechanism is still unclear. Combined with enzymatic assay, model analysis and calcium binding affinity data for mutated hGIIE proteins, we herein further demonstrate that the flexibly bound Ca2 is essential for the catalysis of hGIIE, unlike the stable binding of Ca2 in hGIIA that replenishes the calcium in the typical loop during the reaction. The atypical Ca2 binding feature of hGIIE will provide a better understanding on the catalytic mechanism of hGIIE.
Collapse
Affiliation(s)
- Shulin Hou
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Junping Bai
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunting Chen
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fangyuan Chang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhihua Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
26
|
Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins (Basel) 2021; 13:toxins13040290. [PMID: 33923919 PMCID: PMC8073766 DOI: 10.3390/toxins13040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.
Collapse
|
27
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
28
|
Murphy RC, Lai Y, Nolin JD, Aguillon Prada RA, Chakrabarti A, Novotny MV, Seeds MC, Altemeier WA, Gelb MH, Hite RD, Hallstrand TS. Exercise-induced alterations in phospholipid hydrolysis, airway surfactant, and eicosanoids and their role in airway hyperresponsiveness in asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L705-L714. [PMID: 33533300 DOI: 10.1152/ajplung.00546.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Ying Lai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - James D Nolin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Robier A Aguillon Prada
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Arindam Chakrabarti
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael V Novotny
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael C Seeds
- Section on Molecular Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - William A Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| | - Robert Duncan Hite
- Division of Pulmonary Disease & Critical Care Medicine, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Murphy RC, Altemeier WA, Lai Y, Hallstrand TS. The Intricate Web of Phospholipase A 2s and Specific Features of Airway Hyperresponsiveness in Asthma. Am J Respir Cell Mol Biol 2020; 63:543-545. [PMID: 32484733 DOI: 10.1165/rcmb.2020-0131le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Ying Lai
- University of Washington, Seattle, Washington
| | | |
Collapse
|
30
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
31
|
Alekseeva AS, Volynsky PE, Krylov NA, Chernikov VP, Vodovozova EL, Boldyrev IA. Phospholipase A2 way to hydrolysis: Dint formation, hydrophobic mismatch, and lipid exclusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183481. [PMID: 33002451 DOI: 10.1016/j.bbamem.2020.183481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Phospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule. Understanding the mechanism of PLA2 interaction with the lipid membrane is the most challenging step in biochemistry of this enzyme. We used a combination of experimental and computer simulation techniques to clarify molecular details of bee venom PLA2 interaction with lipid bilayers formed by palmitoyloleoylphosphatidylcholine or dipalmitoylphosphatidylcholine. We found that after initial enzyme contact with the membrane, a network of hydrogen bonds was formed. This led to deformation of the interacting leaflet and dint formation. The bilayer response to the deformation depended on its phase state. In a gel-phase bilayer, diffusion of lipids is restricted therefore chain melting occurred in both leaflets of the bilayer. In the case of a fluid-phase bilayer, lateral diffusion is possible, and lipid polar head groups were excluded from the contact area. As a result, the bilayer became thinner and a large hydrophobic area was formed. We assume that relative ability of a bilayer to come through lipid redistribution process defines the rate of initial stages of the catalysis.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology, Tsyurupy st., 3, 117418 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
32
|
Synergy between 15-lipoxygenase and secreted PLA 2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:25679-25689. [PMID: 32973091 DOI: 10.1073/pnas.2005111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response proteins in comparison to lipopolysaccharide (LPS), underlying the differences between pathogen-induced and sterile inflammation. Here we report that synergistic activities of 15-lipoxygenase (15-LO) and secreted phospholipase A2 (sPLA2) are needed for the formation of TLR4 agonists, which were identified as lysophospholipids (lysoPLs) with oxidized unsaturated acyl chain. Hydroxy, hydroperoxy, and keto products of 2-arachidonoyl-lysoPI oxidation by 15-LO were identified by mass spectrometry (MS), and they activated the same gene pattern as stressEVs. Extracellular PLA2 activity was detected in the synovial fluid from rheumatoid arthritis and gout patients. Furthermore, injection of sPLA2 promoted K/BxN serum-induced arthritis in mice, whereby ankle swelling was partially TLR4 dependent. Results confirm the role of oxidized lysoPL of stressEVs in sterile inflammation that promotes chronic diseases. Both 15-LO and sPLA2 enzymes are induced during inflammation, which opens the opportunity for therapy without compromising innate immunity against pathogens.
Collapse
|
33
|
Residue Asn21 acts as a switch for calcium binding to modulate the enzymatic activity of human phospholipase A2 group IIE. Biochimie 2020; 176:117-121. [DOI: 10.1016/j.biochi.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 01/24/2023]
|
34
|
Manukyan AK. Structural aspects and activation mechanism of human secretory group IIA phospholipase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:511-531. [DOI: 10.1007/s00249-020-01458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
|
35
|
De Luca D, Shankar-Aguilera S, Autilio C, Raschetti R, Vedovelli L, Fitting C, Payré C, Jeammet L, Perez-Gil J, Cogo PE, Carnielli VP, Lambeau G, Touqui L. Surfactant-secreted phospholipase A2interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol 2020; 319:L95-L104. [DOI: 10.1152/ajplung.00462.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secreted phospholipase A2hydrolyzes surfactant phospholipids and is crucial for the inflammatory cascade; preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the enzyme plays a relevant role in neonates needing surfactant replacement. We aimed to: 1) identify phospholipases A2isoforms expressed in preterm lung; 2) study the enzyme role on surfactant retreatment and function and the effect of exogenous surfactant on the enzyme system; and 3) verify whether phospholipase A2is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured enzyme activity (alone or with inhibitors), enzyme subtypes, surfactant protein-A, and inflammatory mediators. Surfactant function and phospholipid profile were also tested. Urea ratio was used to obtain epithelial lining fluid concentrations. Follow-up data were prospectively collected. Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates needing surfactant retreatment have higher enzyme activity ( P = 0.021) and inflammatory mediators ( P always ≤ 0.001) and lower amounts of phospholipids ( P always < 0.05). Enzyme activity was inversely correlated to surfactant adsorption (ρ = −0.6; P = 0.008; adjusted P = 0.009), total phospholipids (ρ = −0.475; P = 0.05), and phosphatidylcholine (ρ = −0.622; P = 0.017). Exogenous surfactant significantly reduced global phospholipase activity ( P < 0.001) and subtype-IIA ( P = 0.005) and increased dioleoylphosphatidylglycerol ( P < 0.001) and surfactant adsorption ( P < 0.001). Enzyme activity correlated with duration of ventilation (ρ = 0.679, P = 0.005; adjusted P = 0.04) and respiratory morbidity score at 12 mo postnatal age (τ-b = 0.349, P = 0.037; adjusted P = 0.043) but was not associated with mortality, bronchopulmonary dysplasia, or other long-term respiratory outcomes.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris, France
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
| | - Shivani Shankar-Aguilera
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital “12 de Octubre,” Complutense University, Madrid, Spain
| | - Roberto Raschetti
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
| | - Luca Vedovelli
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
| | | | - Christine Payré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Louise Jeammet
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital “12 de Octubre,” Complutense University, Madrid, Spain
| | - Paola E. Cogo
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
- Division of Pediatrics, Department of Medicine and Surgery, University of Udine, Udine, Italy
| | - Virgilio P. Carnielli
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
- Division of Neonatology, “G. Salesi” Women’s and Children Hospital, Polytechnical University of Marche, Ancona, Italy
| | - Gérard Lambeau
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
36
|
Roy MC, Kim Y. sPLA 2 behaves like a prophylactic agent and mediates cellular and humoral immune responses in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21670. [PMID: 32196735 DOI: 10.1002/arch.21670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Most immune effectors are inducible to microbial pathogen infection while some are already present to act as prophylactic immunity against as yet unseen infection. This study identified secretory phospholipase A2 (sPLA2 ) as a prophylactic factor in diamondback moth, Plutella xylostella. Western blotting using a polyclonal antibody raised against other lepidopteran sPLA2 reacted specifically with ∼25 kDa protein, which was present at approximately 0.4 mM in the plasma of naïve larvae. Interrogation of P. xylostella transcriptomes revealed an open-reading frame for sPLA2 (Px-sPLA2 ), exhibiting high homology with other Group III sPLA2 s. Px-sPLA2 was expressed in all developmental stages. In the larval stage, bacterial challenge induced its expression in hemocytes and fat body but not in gut or epidermis. RNA interference (RNAi) suppressed Px-sPLA2 messenger RNA level and sPLA2 activity in plasma. An inhibition zone assay showed that Px-sPLA2 exhibited antibacterial activities against different species, because specific RNAi knockdown impaired the activity. The RNAi treatment also suppressed the cellular immune response assessed by hemocyte nodule formation and humoral immune response assessed by antimicrobial peptide gene expression. Finally, benzylideneacetone (BZA, a specific sPLA2 inhibitor) treatment inhibited plasma sPLA2 activity of naive larvae in a dose-dependent manner. An addition of BZA significantly increased the bacterial virulence of an entomopathogen, Bacillus thuringiensis. These results suggest that Px-sPLA2 is an immune-associated factor of P. xylostella and its relatively high level of concentration in the plasma of naive larvae strongly suggests its role as a prophylactic factor in defending against pathogens at early infection stages.
Collapse
Affiliation(s)
- Miltan Chandra Roy
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
37
|
Pucca MB, Ahmadi S, Cerni FA, Ledsgaard L, Sørensen CV, McGeoghan FTS, Stewart T, Schoof E, Lomonte B, Auf dem Keller U, Arantes EC, Çalışkan F, Laustsen AH. Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A 2 and Cytotoxins. Front Pharmacol 2020; 11:611. [PMID: 32457615 PMCID: PMC7221120 DOI: 10.3389/fphar.2020.00611] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toxin synergism is a complex biochemical phenomenon, where different animal venom proteins interact either directly or indirectly to potentiate toxicity to a level that is above the sum of the toxicities of the individual toxins. This provides the animals possessing venoms with synergistically enhanced toxicity with a metabolic advantage, since less venom is needed to inflict potent toxic effects in prey and predators. Among the toxins that are known for interacting synergistically are cytotoxins from snake venoms, phospholipases A2 from snake and bee venoms, and melittin from bee venom. These toxins may derive a synergistically enhanced toxicity via formation of toxin complexes by hetero-oligomerization. Using a human keratinocyte assay mimicking human epidermis in vitro, we demonstrate and quantify the level of synergistically enhanced toxicity for 12 cytotoxin/melittin-PLA2 combinations using toxins from elapids, vipers, and bees. Moreover, by utilizing an interaction-based assay and by including a wealth of information obtained via a thorough literature review, we speculate and propose a mechanistic model for how toxin synergism in relation to cytotoxicity may be mediated by cytotoxin/melittin and PLA2 complex formation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Felipe A Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Farrell T S McGeoghan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trenton Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biology, Lund University, Lund, Sweden
| | - Erwin Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bruno Lomonte
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey.,Department of Biology, Faculty of Science and Art, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Smichi N, Othman H, Zarai Z, Fendri A, Abousalham A. -Identification of a novel intestinal phospholipase A2 from annular seabream: Insights into its catalytic mechanism and its role in biological processes. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
40
|
Md Abdullah AB, Lee DW, Jung J, Kim Y. Deletion mutant of sPLA 2 using CRISPR/Cas9 exhibits immunosuppression, developmental retardation, and failure of oocyte development in legume pod borer, Maruca vitrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103500. [PMID: 31589887 DOI: 10.1016/j.dci.2019.103500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes release of free fatty acids linked to phospholipids at sn-2 position. Some of these released free fatty acids are used to synthesize eicosanoids that mediate various physiological processes in insects. Although a large number of PLA2s form a superfamily consisting of at least 16 groups, few PLA2s have been identified and characterized in insects. Furthermore, physiological functions of insect PLA2s remain unclear. Clustered regularly interspaced short parlindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has been a useful research tool to validate gene function. This study identified and characterized a secretory PLA2 (sPLA2) from legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), and validated its physiological functions using CRISPR/Cas9. An open reading frame of M. vitrata sPLA2 (Mv-sPLA2) encoding 192 amino acids contained signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Mv-sPLA2 was related to other Group III sPLA2s. Mv-sPLA2 was expressed in both larval and adult stages. It was inducible by immune challenge. RNA interference (RNAi) of Mv-sPLA2 significantly suppressed cellular immunity and impaired larval development. Furthermore, RNAi treatment in female adults prevented oocyte development. These physiological alterations were also observed in a mutant line of M. vitrata with Mv-sPLA2 deleted by using CRISPR/Cas9. Mv-sPLA2 was not detected in the mutant line from western blot analysis. Addition of an eicosanoid, PGE2, significantly rescued oocyte development of females of the mutant line. These results suggest that Mv-sPLA2 plays crucial role in immune, developmental, and reproductive processes of M. vitrata.
Collapse
Affiliation(s)
- Al Baki Md Abdullah
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Dae-Weon Lee
- School of Chemistry and Life Sciences, Kyungsung University, Busan, 48434, South Korea
| | - Jinkyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
41
|
Hydrolysis of three different head groups phospholipids by chicken group V phospholipase A2 using the monomolecular film technique. Biosci Rep 2020; 40:221815. [PMID: 31919493 PMCID: PMC6974423 DOI: 10.1042/bsr20192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The kinetic aspects of lipolysis by pulmonary phospholipase A2 (ChPLA2-V), chicken intestinal phospholipase A2 (ChPLA2-IIA) and chicken pancreatic phospholipase A2 (ChPLA2-IB), from chicken have been compared using the monomolecular films technique, on short-chain phospholipids (with three different head groups) and on long-chain phospholipids. The main conclusions from our experimental data indicate that the maximum catalytic activities of ChPLA2-V on 1,2 phosphatidylcholine and 1,2 phosphatidylethanolamine reached 15.26 and 36.12 moles/cm2.min.mM, respectively, at a pressure of 15 and 35 dynes/cm, respectively. Whereas, those of ChPLA2-IB were 3.58 (at the pressure of 20 dynes/cm) and 4.9 moles/cm2.min.mM. However, hydrolysis of phosphatidylglycerol monolayers (C12PG), were very much higher compared with all the substrates tested with 122 moles/cm2.min. Surprisingly, the hydrolysis rate of ChPLA2-V on long-chain phosphatidylglycerol (C18PG) was very low (1.45 moles/cm2.min) compared with all tested substrates, even with the use of p-cyclodextrin. And thus, the fatty acid preference of ChPLA2-V was 2-decanoyl > 2-oleoyl with a PG head group. In order to gain significant correlations between enzyme’s structures and their relative functions, we tried to examine the surface electrostatic potentials of the various secreted phospholipase 2 (sPLA2) from chicken. In the present study, we detailed that the substrate affinity, specificity and the hydrolysis rates of sPLA2 at each interface is governed by the surface electrostatic potentials and hydrophobic interactions operative at this surface.
Collapse
|
42
|
Smichi N, Parsiegla G, Achouri N, Zarai Z, Abousalham A, Fendri A. Intestinal phospholipase A 2 from Sparidae species: Functional properties and cytotoxic potential evaluation. Int J Biol Macromol 2020; 143:881-890. [PMID: 31739040 DOI: 10.1016/j.ijbiomac.2019.09.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
Marine species have gained significant attention as potential source for a broad spectrum of bioactive proteins. Fish phospholipases A2 (PLA2) have attracted renewed interest due to their excellent properties in lipid digestion. Herein, we report for the first time the catalytic properties of two intestinal secreted PLA2 (sPLA2) identified from Diplodus sargus (IDsPLA2) and Sparus aurata (ISaPLA2). The highest sequence identity was obtained with recently isolated Sparidae digestive PLA2 (45%) and Human pancreatic PLA2 (42%). IDsPLA2 and ISaPLA2 were overexpressed in E. coli as inclusion bodies, refolded and purified. Both enzymes have improved thermostability compared to mammalian pancreatic sPLA2 since they are active and stable at 55 °C, with specific activities of 320 and 190 U mg-1 measured on phosphatidylcholine, respectively. Interestingly, IDsPLA2, but not ISaPLA2, revealed weak toxicity towards macrophages and suggests its involvement in cell membrane degradation. ISaPLA2 was found to be more active than IDsPLA2 when using the monolayer technique at 20 mN m-1. Structural models of both enzymes revealed their differences. In silico docking of phospholipids with both models allowed proposing key amino-acids in substrate binding and selectivity. Overall, these results provide insight into the enzymatic and structural properties of two novel sPLA2 with potential for future applications.
Collapse
Affiliation(s)
- Nabil Smichi
- University of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS, BP 3038 Sfax, Tunisia.
| | - Goetz Parsiegla
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Neila Achouri
- University of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS, BP 3038 Sfax, Tunisia
| | - Zied Zarai
- University of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS, BP 3038 Sfax, Tunisia
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2), 43, Bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ahmed Fendri
- University of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS, BP 3038 Sfax, Tunisia
| |
Collapse
|
43
|
Antimalarial Activity of Human Group IIA Secreted Phospholipase A 2 in Relation to Enzymatic Hydrolysis of Oxidized Lipoproteins. Infect Immun 2019; 87:IAI.00556-19. [PMID: 31405958 DOI: 10.1128/iai.00556-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2 Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.
Collapse
|
44
|
Hudson BN, Jessup RE, Prahalad KK, Lyon AM. Gα q and the Phospholipase Cβ3 X-Y Linker Regulate Adsorption and Activity on Compressed Lipid Monolayers. Biochemistry 2019; 58:3454-3467. [PMID: 31322863 DOI: 10.1021/acs.biochem.9b00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phospholipase Cβ (PLCβ) enzymes are peripheral membrane proteins required for normal cardiovascular function. PLCβ hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers that increase intracellular Ca2+ level and activate protein kinase C. Under basal conditions, PLCβ is autoinhibited by its C-terminal domains and by the X-Y linker, which contains a stretch of conserved acidic residues required for interfacial activation. Following stimulation of G protein-coupled receptors, the heterotrimeric G protein subunit Gαq allosterically activates PLCβ and helps orient the activated complex at the membrane for efficient lipid hydrolysis. However, the molecular basis for how the PLCβ X-Y linker, its C-terminal domains, Gαq, and the membrane coordinately regulate activity is not well understood. Using compressed lipid monolayers and atomic force microscopy, we found that a highly conserved acidic region of the X-Y linker is sufficient to regulate adsorption. Regulation of adsorption and activity by the X-Y linker also occurs independently of the C-terminal domains. We next investigated whether Gαq-dependent activation of PLCβ altered interactions with the model membrane. Gαq increased PLCβ adsorption in a manner that was independent of the PLCβ regulatory elements and targeted adsorption to specific regions of the monolayer in the absence of the C-terminal domains. Thus, the mechanism of Gαq-dependent activation likely includes a spatial component.
Collapse
|
45
|
In vitrolipolysis and lymphatic absorption ofn-3 long-chain PUFA in the rat: influence of the molecular lipid species as carrier. Br J Nutr 2019; 122:639-647. [DOI: 10.1017/s0007114519001491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe aim of this work was to study the bioavailability of fatty acids (FA), focusing onn-3 long-chain (LC) PUFA, carried by different molecular lipid species, that is, phospholipids (PL) or TAG, with three formulations based on fish oils or marine PL, providing a similarn-3 LC PUFA amount. The digestive lipolysis was first assessed using anin vitroenzymatic model. Then, intestinal absorption and enterocyte metabolism were investigatedin vivo, on male Wistar rats through lymph lipid analysis. Thein vitroresults showed that the release ofn-3 LC PUFA from lipolysis was increased by 48 % when FA were provided as PL rather than TAG. Thein vivoresults demonstrated that EPA and DHA from both TAG and PL were similarly absorbed and incorporated into lymph lipids. However, DHA was mainly distributed at thesn-1/3 positions of lymph TAG when provided as marine PL, whereas it was equally distributed at the three positions with marine TAG. On the whole, even if the molecular lipid species ofn-3 LC PUFA did not greatly modify thein vivodigestion and absorption steps, it modulated the rearrangement of DHA on the glyceride positions of the lymph TAG, which may further impact the DHA metabolic fate and tissue accretion. Consequently, the present study has provided data which may be used to formulate lipid diets rich in DHA in the context of an insufficient consumption ofn-3 PUFA in Western countries.
Collapse
|
46
|
Duchez AC, Boudreau LH, Naika GS, Rousseau M, Cloutier N, Levesque T, Gelb MH, Boilard E. Respective contribution of cytosolic phospholipase A2α and secreted phospholipase A 2 IIA to inflammation and eicosanoid production in arthritis. Prostaglandins Other Lipid Mediat 2019; 143:106340. [PMID: 31129176 DOI: 10.1016/j.prostaglandins.2019.106340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Phospholipase A2s (PLA2) play a key role in generation of eicosanoids. Cytosolic PLA2α (cPLA2α) is constitutively expressed in most cells, whereas IIA secreted PLA2 (sPLA2-IIA) is induced during inflammation and is present at high levels in the synovial fluid of rheumatoid arthritis patients. In mice, both cPLA2α and sPLA2-IIA have been implicated in autoimmune arthritis; however, the respective contribution of these two enzymes to the pathogenesis and production of eicosanoids is unknown. We evaluated the respective role of cPLA2α and sPLA2-IIA with regard to arthritis and eicosanoid profile in an in vivo model of arthritis. While arthritis was most severe in mice expressing both enzymes, it was abolished when both cPLA2α and sPLA2-IIA were lacking. cPLA2α played a dominant role in the severity of arthritis, although sPLA2-IIA sufficed to significantly contribute to the disease. Several eicosanoids were modulated during the course of arthritis and numerous species involved sPLA2-IIA expression. This study confirms the critical role of PLA2s in arthritis and unveils the distinct contribution of cPLA2α and sPLA2-IIA to the eicosanoid profile in arthritis.
Collapse
Affiliation(s)
- Anne-Claire Duchez
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada
| | - Luc H Boudreau
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada
| | - Gajendra S Naika
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Matthieu Rousseau
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada
| | - Tania Levesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, G1V 4G2, Canada; Canadian National Transplantation Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
47
|
Martinez G, Hograindleur JP, Jeammet L, Le Blévec E, Coutton C, Mermillod P, Lambeau G, Schmitt E, Ray PF, Arnoult C. Enzymatic activity of mouse group X-sPLA2 improves in vitro production of preimplantation bovine embryos. Theriogenology 2019; 131:113-122. [PMID: 30959437 DOI: 10.1016/j.theriogenology.2019.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Assisted reproductive technologies (ART) are widely used for both humans and domestic animals. In bovine species, in vitro embryo production is increasingly used and significant efforts are being made to optimize media and culture conditions. Phospholipase A2 (PLA2) are lipolytic enzymes that hydrolyze glycerophospholipids to produce free fatty acids and lysophospholipids that have been found to be critical for many biological processes. Mouse group X secreted PLA2 (mGX) is abundant in the male reproductive tract and its use during sperm capacitation has been shown to improve in vitro production of viable embryos in a mouse model. Here, we examined its effect in the bovine species, testing the impact of mGX on the three steps involved in vitro production of preimplantation embryos: oocyte maturation, fertilization and preimplantation development. We found that incubating cumulus oocyte complexes (COC) or gametes with mGX resulted in increased blastocyst hatching and blastocyst production, respectively. The increases of embryo production induced by the phospholipase mGX were not observed for the catalytically inactive mutant H48Q-mGX, suggesting that these effects require the enzymatic activity of mGX. We also tested bGIB, a bovine homolog of mGX. bGIB failed to improve blastocyst production, underlining the high specificity of mGX. In conclusion, the results presented show that the effects of mGX are not restricted to the mouse model and that it is potent in the bovine species as well. This result strengthens the potential of mGX as a "pro-fertility drug" for mammalian reproduction.
Collapse
Affiliation(s)
- Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N 1 Est, F-61300, L'Aigle, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Louise Jeammet
- Université Côte d'Azur, CNRS, IPMC, F-06560, Valbonne, Sophia Antipolis, France
| | - Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pascal Mermillod
- Laboratoire Physiologie de la Reproduction et des Comportements, INRA UMR 7247, Inra-Cnrs-Université de Tours-Haras Nationaux, F-37380, Nouzilly, France
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, IPMC, F-06560, Valbonne, Sophia Antipolis, France
| | - Eric Schmitt
- IMV Technologies, ZI N 1 Est, F-61300, L'Aigle, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
48
|
Shchegravina ES, Tretiakova DS, Alekseeva AS, Galimzyanov TR, Utkin YN, Ermakov YA, Svirshchevskaya EV, Negrebetsky VV, Karpechenko NY, Chernikov VP, Onishchenko NR, Vodovozova EL, Fedorov AY, Boldyrev IA. Phospholipidic Colchicinoids as Promising Prodrugs Incorporated into Enzyme-Responsive Liposomes: Chemical, Biophysical, and Enzymological Aspects. Bioconjug Chem 2019; 30:1098-1113. [PMID: 30817133 DOI: 10.1021/acs.bioconjchem.9b00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.
Collapse
Affiliation(s)
- Ekaterina S Shchegravina
- Lobachevsky State University of Niznhy Novgorod , 23 Gagarin Prospest , Nizhny Novgorod , 603950 Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Timur R Galimzyanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt , Moscow , 119071 Russian Federation.,National University of Science and Technology MISiS , 4 Leninskiy Prospekt , Moscow , 119049 Russian Federation
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Yuri A Ermakov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt , Moscow , 119071 Russian Federation
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Vadim V Negrebetsky
- Pirogov Russian National Research Medical University , 1 Ostrovityanov Street , Moscow , 117997 Russian Federation
| | - Natalia Yu Karpechenko
- N. N. Blokhin National Medical Research Center of Oncology , 24 Kashirskoye Shosse , Moscow , 115478 Russian Federation
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology , 3 Tsurupa Street , Moscow , 117418 Russian Federation
| | - Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| | - Alexey Yu Fedorov
- Lobachevsky State University of Niznhy Novgorod , 23 Gagarin Prospest , Nizhny Novgorod , 603950 Russian Federation
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Street , Moscow , 117997 Russian Federation
| |
Collapse
|
49
|
Šribar J, Kovačič L, Oberčkal J, Ivanušec A, Petan T, Fox JW, Križaj I. The neurotoxic secreted phospholipase A 2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci Rep 2019; 9:283. [PMID: 30670719 PMCID: PMC6342964 DOI: 10.1038/s41598-018-36461-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
The β-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (β-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the β-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which β-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.
Collapse
Affiliation(s)
- Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Lidija Kovačič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jernej Oberčkal
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
50
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|