1
|
Chesnutt K, Yayli G, Toelzer C, Damilot M, Cox K, Gautam G, Berger I, Tora L, Poirier M. ATAC and SAGA histone acetyltransferase modules facilitate transcription factor binding to nucleosomes independent of their acetylation activity. Nucleic Acids Res 2025; 53:gkae1120. [PMID: 39656677 PMCID: PMC11724297 DOI: 10.1093/nar/gkae1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription initiation involves the coordination of multiple events, starting with activators binding specific DNA target sequences, which recruit transcription coactivators to open chromatin and enable binding of general transcription factors and RNA polymerase II to promoters. Two key human transcriptional coactivator complexes, ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5 acetyltransferase), containing histone acetyltransferase (HAT) activity, target genomic loci to increase promoter accessibility. To better understand the function of ATAC and SAGA HAT complexes, we used in vitro biochemical and biophysical assays to characterize human ATAC and SAGA HAT module interactions with nucleosomes and how a transcription factor (TF) coordinates these interactions. We found that ATAC and SAGA HAT modules bind nucleosomes with high affinity, independent of their HAT activity and the tested TF. ATAC and SAGA HAT modules directly interact with the VP16 activator domain and this domain enhances acetylation activity of both HAT modules. Surprisingly, ATAC and SAGA HAT modules increase TF binding to its DNA target site within the nucleosome by an order of magnitude independent of histone acetylation. Altogether, our results reveal synergistic coordination between HAT modules and a TF, where ATAC and SAGA HAT modules (i) acetylate histones to open chromatin and (ii) facilitate TF targeting within nucleosomes independently of their acetylation activity.
Collapse
Affiliation(s)
- Kristin V Chesnutt
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
| | - Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Khan Cox
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Michael G Poirier
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
2
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
3
|
Small RNA transcriptomes of mangroves evolve adaptively in extreme environments. Sci Rep 2016; 6:27551. [PMID: 27278626 PMCID: PMC4899726 DOI: 10.1038/srep27551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/20/2016] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.
Collapse
|
4
|
Chemical biology of histone acetyltransferase natural compounds modulators. Mol Divers 2011; 15:401-16. [PMID: 21197572 DOI: 10.1007/s11030-010-9299-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 12/08/2010] [Indexed: 12/17/2022]
Abstract
Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.
Collapse
|
5
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
6
|
Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 2010; 56:329-39. [DOI: 10.1016/j.neuint.2009.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/23/2022]
|
7
|
Kim DH, Lee SH, Nam KH, Chi SW, Chang I, Han KH. Multiple hTAF(II)31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. BMB Rep 2009; 42:411-7. [PMID: 19643037 DOI: 10.5483/bmbrep.2009.42.7.411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation domain (TAD) in virion protein 16 (VP16) of herpes simplex virus does not have any globular structure, yet exhibits a potent transcriptional activity. In order to probe the structural basis for the transcriptional activity of VP16 TAD, we have used NMR spectroscopy to investigate its detailed structural features. Results show that an unbound VP16 TAD is not merely "unstructured" but contains four short motifs (residues 424-433, 442-446, 465-467 and 472-479) with transient structural order. Pre-structured motifs in other intrinsically unfolded proteins (IUPs) were shown to be critically involved in target protein binding. The 472-479 motif was previously shown to bind to hTAF(II)31, whereas the hTAF(II)31-binding ability of other motifs found in this study has not been addressed. The VP16 TAD represents another IUP whose prestructured motifs mediate promiscuous binding to various target proteins.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Bioinformatics Research Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Kutluay SB, Triezenberg SJ. Role of chromatin during herpesvirus infections. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:456-66. [PMID: 19344747 PMCID: PMC2692375 DOI: 10.1016/j.bbagen.2009.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022]
Abstract
DNA viruses have long served as model systems to elucidate various aspects of eukaryotic gene regulation, due to their ease of manipulation and relatively low complexity of their genomes. In some cases, these viruses have revealed mechanisms that are subsequently recognized to apply also to cellular genes. In other cases, viruses adopt mechanisms that prove to be exceptions to the more general rules. The double-stranded DNA viruses that replicate in the eukaryotic nucleus typically utilize the host cell RNA polymerase II (RNAP II) for viral gene expression. As a consequence, these viruses must reckon with the impact of chromatin on active transcription and replication. Unlike the small DNA tumor viruses, such as polyomaviruses and papillomaviruses, the relatively large genomes of herpesviruses are not assembled into nucleosomes in the virion and stay predominantly free of histones during lytic infection. In contrast, during latency, the herpesvirus genomes associate with histones and become nucleosomal, suggesting that regulation of chromatin per se may play a role in the switch between the two stages of infection, a long-standing puzzle in the biology of herpesviruses. In this review we will focus on how chromatin formation on the herpes simplex type-1 (HSV-1) genome is regulated, citing evidence supporting the hypothesis that the switch between the lytic and latent stages of HSV-1 infection might be determined by the chromatin state of the HSV-1.
Collapse
Affiliation(s)
- Sebla B. Kutluay
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Steven J. Triezenberg
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 2009; 23:2438-49. [PMID: 19364764 DOI: 10.1096/fj.08-124768] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intrauterine growth restriction (IUGR) decreases serum insulin growth factor-1 (IGF-1) levels. IGF-1 is an epigenetically regulated gene that has two promoters, alternative exon 5 splicing, and multiple termination sites. The regulation of gene expression involves the whole gene, as evidenced by the aforementioned IGF-1 paradigm. We hypothesized that IUGR in the rat would affect hepatic IGF-1 expression and alter the epigenetic characteristics of the IGF-1 gene along its length. IUGR was induced through a bilateral uterine artery ligation of the pregnant rat, a well-characterized model of IUGR. Pups from anesthesia and sham-operated dams were used as controls. Real-time RT-PCR and ELISA was used to measure expression at day of life (DOL) 0 and 21. Bisulfite sequencing and chromatin immunoprecipitation (ChIP) quantified IGF-1 epigenetic characteristics. A nontranscribed intergenic control was used for ChIP studies. IUGR decreased hepatic and serum IGF-1. Concurrently, IUGR modified epigenetic characteristics, particularly the histone code, along the length of the hepatic IGF-1 gene. Many changes persisted postnatally, and the postnatal effect of IUGR on the histone code was gender-specific. We conclude that IUGR modifies epigenetic characteristics of the rat hepatic IGF-1 gene along the length of the whole gene.
Collapse
Affiliation(s)
- Qi Fu
- University of Utah School of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City, Utah 84158, USA
| | | | | | | | | |
Collapse
|
10
|
Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol 2009; 83:5835-45. [PMID: 19321615 DOI: 10.1128/jvi.00219-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During lytic infection by herpes simplex virus type 1 (HSV-1), histones are present at relatively low levels on the viral genome. However, the mechanisms that account for such low levels--how histone deposition on the viral genome is blocked or how histones are removed from the genome--are not yet defined. In this study, we show that histone occupancy on the viral genome gradually increased with time when transcription of the viral immediate-early (IE) genes was inhibited either by deletion of the VP16 activation domain or by chemical inhibition of RNA polymerase II (RNAP II). Inhibition of IE protein synthesis by cycloheximide did not affect histone occupancy on most IE promoters and coding regions but did cause an increase at delayed-early and late gene promoters. IE gene transcription from HSV-1 genomes associated with high levels of histones was stimulated by superinfection with HSV-2 without altering histone occupancy or covalent histone modifications at IE gene promoters. Moreover, RNAP II and histones cooccupied the viral genome in this context, indicating that RNAP II does not preferentially associate with viral genomes that are devoid of histones. These results suggest that during lytic infection, VP16, RNAP II, and IE proteins may all contribute to the low levels of histones on the viral genome, and yet the dearth of histones is neither a prerequisite for nor a necessary result of VP16-dependent transcription of nucleosomal viral genomes.
Collapse
|
11
|
Transcriptional coactivators are not required for herpes simplex virus type 1 immediate-early gene expression in vitro. J Virol 2009; 83:3436-49. [PMID: 19176620 DOI: 10.1128/jvi.02349-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion protein 16 (VP16) of herpes simplex virus type 1 (HSV-1) is a potent transcriptional activator of viral immediate-early (IE) genes. The VP16 activation domain can recruit various transcriptional coactivators to target gene promoters. However, the role of transcriptional coactivators in HSV-1 IE gene expression during lytic infection had not been fully defined. We showed previously that transcriptional coactivators such as the p300 and CBP histone acetyltransferases and the BRM and Brg-1 chromatin remodeling complexes are recruited to viral IE gene promoters in a manner dependent mostly on the presence of the activation domain of VP16. In this study, we tested the hypothesis that these transcriptional coactivators are required for viral IE gene expression during infection of cultured cells. The disrupted expression of the histone acetyltransferases p300, CBP, PCAF, and GCN5 or the BRM and Brg-1 chromatin remodeling complexes did not diminish IE gene expression. Furthermore, IE gene expression was not impaired in cell lines that lack functional p300, or BRM and Brg-1. We also tested whether these coactivators are required for the VP16-dependent induction of IE gene expression from transcriptionally inactive viral genomes associated with high levels of histones in cultured cells. We found that the disruption of coactivators also did not affect IE gene expression in this context. Thus, we conclude that the transcriptional coactivators that can be recruited by VP16 do not contribute significantly to IE gene expression during lytic infection or the induction of IE gene expression from nucleosomal templates in vitro.
Collapse
|
12
|
Wang YL, Faiola F, Xu M, Pan S, Martinez E. Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 2008; 283:33808-15. [PMID: 18838386 DOI: 10.1074/jbc.m806936200] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic GCN5 acetyltransferases influence diverse biological processes by acetylating histones and non-histone proteins and regulating chromatin and gene-specific transcription as part of multiprotein complexes. In lower eukaryotes and invertebrates, these complexes include the yeast ADA complex that is still incompletely understood; the SAGA (Spt-Ada-Gcn5 acetylase) complexes from yeast to Drosophila that are mostly coactivators; and the ATAC (Ada Two-A containing) complex, only known in Drosophila and still poorly characterized. In contrast, vertebrate organisms, express two paralogous GCN5-like acetyltransferases (GCN5 and PCAF), which have been found so far only in SAGA-type complexes referred to hereafter as the STAGA (SPT3-TAF9-GCN5/PCAF acetylase) complexes. We now report the purification and characterization of vertebrate (human) ATAC-type complexes and identify novel components of STAGA. We show that human ATAC complexes incorporate in addition to GCN5 or PCAF (GCN5/PCAF), other epigenetic coregulators (ADA2-A, ADA3, STAF36, and WDR5), cofactors of chromatin assembly/remodeling and DNA replication machineries (POLE3/CHRAC17 and POLE4), the stress- and TGFbeta-activated protein kinase (TAK1/MAP3K7) and MAP3-kinase regulator (MBIP), additional cofactors of unknown function, and a novel YEATS2-NC2beta histone fold module that interacts with the TATA-binding protein (TBP) and negatively regulates transcription when recruited to a promoter. We further identify the p38 kinase-interacting protein (p38IP/FAM48A) as a novel component of STAGA with distant similarity to yeast Spt20. These results suggest that vertebrate ATAC-type and STAGA-type complexes link specific extracellular signals to modification of chromatin structure and regulation of the basal transcription machinery.
Collapse
Affiliation(s)
- Yuan-Liang Wang
- Department of Biochemistry, University of California at Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
13
|
STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation. Mol Cell Biol 2007; 28:108-21. [PMID: 17967894 DOI: 10.1128/mcb.01402-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of eukaryotic gene transcription involves the recruitment by DNA-binding activators of multiprotein histone acetyltransferase (HAT) and Mediator complexes. How these coactivator complexes functionally cooperate and the roles of the different subunits/modules remain unclear. Here we report physical interactions between the human HAT complex STAGA (SPT3-TAF9-GCN5-acetylase) and a "core" form of the Mediator complex during transcription activation by the MYC oncoprotein. Knockdown of the STAF65gamma component of STAGA in human cells prevents the stable association of TRRAP and GCN5 with the SPT3 and TAF9 subunits; impairs transcription of MYC-dependent genes, including MYC transactivation of the telomerase reverse transcriptase (TERT) promoter; and inhibits proliferation of MYC-dependent cells. STAF65gamma is required for SPT3/STAGA interaction with core Mediator and for MYC recruitment of SPT3, TAF9, and core Mediator components to the TERT promoter but is dispensable for MYC recruitment of TRRAP, GCN5, and p300 and for acetylation of nucleosomes and loading of TFIID and RNA polymerase II on the promoter. These results suggest a novel STAF65gamma-dependent function of STAGA-type complexes in cell proliferation and transcription activation by MYC postloading of TFIID and RNA polymerase II that involves direct recruitment of core Mediator.
Collapse
|
14
|
Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S. The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 2007; 27:1844-58. [PMID: 17210644 PMCID: PMC1820453 DOI: 10.1128/mcb.01363-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides -8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C(+1)-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.
Collapse
Affiliation(s)
- Yumiko Tokusumi
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
15
|
Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M. The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 2006; 282:2163-73. [PMID: 17135252 DOI: 10.1074/jbc.m608451200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VP16 has been widely used to unravel the mechanisms underlying gene transcription. Much of the previous work has been conducted in reconstituted in vitro systems. Here we study the formation of transcription complexes at stable reporters under the control of an inducible Tet-VP16 activator in living cells. In this simplified model for gene activation VP16 recruits the general factors and the cofactors Mediator, GCN5, CBP, and PC4, within minutes to the promoter region. Activation is accompanied by only minor changes in histone acetylation and H3K4 methylation but induces a marked promoter-specific increase in H3K79 methylation. Mediated through contacts with VP16 several subunits of the cleavage and polyadenylation factor (CPSF/CstF) are concentrated at the promoter region. We provide in vitro and in vivo evidence that VP16 activates transcription through a specific MED25-associated Mediator, which is deficient in CDK8.
Collapse
Affiliation(s)
- Thomas Uhlmann
- Gene Expression, National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
16
|
Abstract
Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with dermal sarcomas in walleye fish. A WDSV accessory gene encodes a cyclin homolog or retroviral cyclin (rv-cyclin). WDSV rv-cyclin was found to be associated with transcription complexes and to affect transcription in a cell-type and promoter-dependent manner. It inhibited the WDSV promoter in walleye fibroblasts and activated transcription from GAL4 promoters when fused to the GAL4 DNA binding domain, and an activation domain (AD) has been localized to 30 amino acids in the carboxyl region. rv-cyclin can block the pulldown of transcription coactivators by the AD of VP16, and the isolated rv-cyclin AD interferes specifically with the interaction between the carboxyl halves of the VP16 AD, VP16C, and TATA-binding protein-associated factor 9 (TAF9). The carboxyl region and isolated AD can bind TAF9 directly in assays of protein-protein interaction in vitro. Furthermore, rv-cyclin and the isolated rv-cyclin AD interfere specifically with the function of VP16C in transcription assays. A previously identified motif within the VP16C sequence mediates TAF9 binding, and this motif is present in the activation domains of a variety of TAF9-binding transcriptional activators. A similar motif is present in the rv-cyclin AD, and point mutations within this motif affect rv-cyclin function and protein-protein interactions. The results support a model of transcription regulation by direct interaction with TAF9.
Collapse
Affiliation(s)
- Joel Rovnak
- Department of Microbiology, Immunology, and Pathology, Campus Delivery 1619, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
17
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
18
|
Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmüller A, Picaud S, Zoghbi HY, Trottier Y, Tora L, Devys D. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol 2006; 4:e67. [PMID: 16494529 PMCID: PMC1382020 DOI: 10.1371/journal.pbio.0040067] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 01/04/2006] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is one of several inherited neurodegenerative disorders caused by a polyglutamine (polyQ) expansion, but it is the only one in which the retina is affected. Increasing evidence suggests that transcriptional alterations contribute to polyQ pathogenesis, although the mechanism is unclear. We previously demonstrated that theSCA7 gene product, ataxin-7 (ATXN7), is a subunit of the GCN5 histone acetyltransferase–containing coactivator complexes TFTC/STAGA. We show here that TFTC/STAGA complexes purified from SCA7 mice have normal TRRAP, GCN5, TAF12, and SPT3 levels and that their histone or nucleosomal acetylation activities are unaffected. However, rod photoreceptors from SCA7 mouse models showed severe chromatin decondensation. In agreement, polyQ-expanded ataxin-7 induced histone H3 hyperacetylation, resulting from an increased recruitment of TFTC/STAGA to specific promoters. Surprisingly, hyperacetylated genes were transcriptionally down-regulated, and expression analysis revealed that nearly all rod-specific genes were affected, leading to visual impairment in SCA7 mice. In conclusion, we describe here a set of events accounting for SCA7 pathogenesis in the retina, in which polyQ-expanded ATXN7 deregulated TFTC/STAGA recruitment to a subset of genes specifically expressed in rod photoreceptors, leading to chromatin alterations and consequent progressive loss of rod photoreceptor function. A mouse model of Spinocerebellar ataxia type 7 (SCA7) offers new insight into transcriptional alterations that contribute to this neurodegenerative disorder.
Collapse
Affiliation(s)
- Dominique Helmlinger
- 1Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Sara Hardy
- 2Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Gretta Abou-Sleymane
- 1Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- 3Chaire de Génétique Humaine, Collège de France, Paris, France
| | - Adrien Eberlin
- 2Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Aaron B Bowman
- 4Howard Hughes Medical Institute, Department of Molecular and Human Genetics, and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne Gansmüller
- 5Imaging Technology Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | - Serge Picaud
- 6Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U-592, UPMC, Paris, France
| | - Huda Y Zoghbi
- 4Howard Hughes Medical Institute, Department of Molecular and Human Genetics, and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yvon Trottier
- 1Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- 3Chaire de Génétique Humaine, Collège de France, Paris, France
| | - Làszlò Tora
- 2Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Didier Devys
- 1Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- 2Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| |
Collapse
|
19
|
Rovnak J, Hronek BW, Ryan SO, Cai S, Quackenbush SL. An activation domain within the walleye dermal sarcoma virus retroviral cyclin protein is essential for inhibition of the viral promoter. Virology 2005; 342:240-51. [PMID: 16150476 PMCID: PMC3364292 DOI: 10.1016/j.virol.2005.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/01/2005] [Accepted: 08/09/2005] [Indexed: 12/21/2022]
Abstract
Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with seasonal dermal sarcomas. Developing tumors have low levels of accessory gene transcripts, A1 and B, and regressing tumors have high levels of full-length and spliced transcripts. Transcript A1 encodes a retroviral cyclin (rv-cyclin) with limited homology to host cyclins. The rv-cyclin is physically linked to components of the transcriptional co-activator complex, Mediator, and regulates transcription. In walleye fibroblasts, it inhibits the WDSV promoter independently of cis-acting DNA sequences. The rv-cyclin activates transcription from GAL4 promoters when fused to the GAL4 DNA binding domain. A 30 a.a. activation domain in the carboxy region can be inactivated by single point mutations, and these mutations diminish the ability of the rv-cyclin to inhibit the WDSV promoter. When fused to glutathione S-transferase, the rv-cyclin, its carboxy region, and the activation domain pull down components of transcription complexes from nuclear extracts, and pull down is lost by mutation of the activation domain.
Collapse
Affiliation(s)
- Joel Rovnak
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brett W. Hronek
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Sean O. Ryan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Sumin Cai
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Sandra L. Quackenbush
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Corresponding author. Department of Microbiology, Immunology, and Pathology, Campus Delivery 1619, Colorado State University, Fort Collins, CO 80523, USA. Fax: +1 970 491 0603. (S.L. Quackenbush)
| |
Collapse
|
20
|
Ström AL, Forsgren L, Holmberg M. A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis 2005; 20:646-55. [PMID: 15936949 DOI: 10.1016/j.nbd.2005.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease primarily affecting the brainstem, retina and Purkinje cells of the cerebellum. The disease is caused by a polyglutamine expansion in ataxin-7, a protein found in two complexes TFTC and STAGA, involved in transcriptional regulation. Transcriptional dysregulation has been implicated in the pathology of several polyglutamine diseases. In this paper, we analyzed the effect of both wild-type and expanded ataxin-7 on transcription driven by the co-activator CBP and the Purkinje cell expressed nuclear receptor RORalpha1. We could show that transcription mediated by both CBP and RORalpha1 was repressed by expanded ataxin-7. Interestingly, repression of transcription could also be observed with wild-type full-length ataxin-7, not only on CBP- and RORalpha1-mediated transcription, but also on basal transcription. The repression could be counteracted by inhibition of deacetylation, suggesting that ataxin-7 may act as a repressor of transcription by inhibiting the acetylation activity of TFTC and STAGA.
Collapse
Affiliation(s)
- Anna-Lena Ström
- Department of Medical Biosciences, Unit of Medical and Clinical Genetics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
21
|
Jonker HRA, Wechselberger RW, Boelens R, Folkers GE, Kaptein R. Structural properties of the promiscuous VP16 activation domain. Biochemistry 2005; 44:827-39. [PMID: 15654739 DOI: 10.1021/bi0482912] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herpes simplex virion protein 16 (VP16) contains two strong activation regions that can independently and cooperatively activate transcription in vivo. We have identified the regions and residues involved in the interaction with the human transcriptional coactivator positive cofactor 4 (PC4) and the general transcription factor TFIIB. NMR and biochemical experiments revealed that both VP16 activation regions are required for the interaction and undergo a conformational transition from random coil to alpha-helix upon binding to its target PC4. The interaction is strongly electrostatically driven and the binding to PC4 is enhanced by the presence of its amino-terminal domain. We propose models for binding of VP16 to the core domains of PC4 and TFIIB that are based on two independent docking approaches using NMR chemical shift changes observed in titration experiments. The models are consistent with results from site-directed mutagenesis and provide an explanation for the contribution of both acidic and hydrophobic residues for transcriptional activation by VP16. Both intrinsically unstructured activation domains are attracted to their interaction partner by electrostatic interactions, and adopt an alpha-helical conformation around the important hydrophobic residues. The models showed multiple distinct binding surfaces upon interaction with various partners, providing an explanation for the promiscuous properties, cooperativity, and the high activity of this activation domain.
Collapse
Affiliation(s)
- Hendrik R A Jonker
- Bijvoet Center for Biomolecular Research, section NMR spectroscopy, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
de Turris V, Di Leva G, Caldarola S, Loreni F, Amaldi F, Bozzoni I. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis. J Mol Biol 2004; 344:383-94. [PMID: 15522292 DOI: 10.1016/j.jmb.2004.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/02/2004] [Accepted: 09/21/2004] [Indexed: 12/01/2022]
Abstract
In vertebrates almost all snoRNAs are encoded in introns of a specific subclass of polII transcripts: the TOP genes. The majority of these RNAs originate through debranching of the spliced introns, the rest through endonucleolytic cleavage of the precursor that contains them. In both cases it has been suggested that snoRNP factors associate at early steps during transcription and control snoRNA biogenesis. Here, we analyzed the specific case of the U16 snoRNA that was shown to originate mainly through endonucleolytic cleavage. We show that TOP promoter elements determine a specific ratio of snoRNA and mRNA production. Under the control of these sequences the snoRNA is likely to originate from both splicing and cleavage of the pre-mRNA. Conversely, canonical polII promoter elements seem not to be compatible with snoRNA release through the cleavage reaction and produce a lower snoRNA/mRNA ratio. In addition, we show that the proximal part of the TOP promoter is responsible for this peculiar post-transcriptional process that controls the relative ratio between snoRNA and mRNA.
Collapse
Affiliation(s)
- Valeria de Turris
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, University "La Sapienza" P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Li YJ, Fu XH, Liu DP, Liang CC. Opening the chromatin for transcription. Int J Biochem Cell Biol 2004; 36:1411-23. [PMID: 15147721 DOI: 10.1016/j.biocel.2003.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Eukaryotic genomes are packaged into a dynamic hierarchy chromatin structure. In such a particular context, the transition from a repressed compacted chromatin to a rather extended fiber is necessary for transcription. The chromatin opening includes three events, the initial factor getting access to nucleosome DNA, local chromatin opening mediated by activator/coactivator, and transcription associated with extensive chromatin opening. Chromatin dynamics, which is DNA sequence dependent, and also occurs in condensed fiber, provides the opportunity for activators binding to DNA. Coactivators recruited by the activator open the chromatin locally. However, it appears that genes adopt distinct chromatin opening mechanisms according to whether the gene is induced expression, developmental and tissue-specific expression, or constitutive expression. In contrast to transcription initiation-related local chromatin opening, large scale of chromatin opening is associated with a functional enhancer as well as high transcription rate. How the transcription initiated from an enhancer or enhancer like modules, i.e. intergenic transcription, conducts the extensive chromatin opening is discussed. A model for long-range interaction that non-coding transcripts from enhancers may promote efficient communication with promoters is proposed.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, R514, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China.
| | | | | | | |
Collapse
|
24
|
Taatjes DJ, Marr MT, Tjian R. Regulatory diversity among metazoan co-activator complexes. Nat Rev Mol Cell Biol 2004; 5:403-10. [PMID: 15122353 DOI: 10.1038/nrm1369] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dylan J Taatjes
- University of Colorado, Department of Chemistry and Biochemistry, Campus Box 215, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
25
|
Hong T, Nakagawa T, Pan W, Kim MY, Kraus WL, Ikehara T, Yasui K, Aihara H, Takebe M, Muramatsu M, Ito T. Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 2004; 317:259-64. [PMID: 15047177 DOI: 10.1016/j.bbrc.2004.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Indexed: 11/24/2022]
Abstract
The isoflavones genistein and daidzein and the daidzein metabolite equol have been reported to interact with estrogen receptors (ERs). Some studies indicate that they behave clinically like estrogen in some estrogen-deficiency diseases. However, the detailed molecular mechanism used by these compounds to create beneficial effects in patients with estrogen-related diseases has not been clarified. Using histone acetyltransferase (HAT) assay, we found that equol, genistein, and AglyMax had significant effects on ERalpha-mediated histone acetylation. Although 17beta-estradiol (E2)-dependent HAT activity of steroid receptor coactivators 2 (SRC2) and p300 mediated by ERbeta could be detected, it was weaker than that mediated by ERalpha. Equol, genistein, AglyMax, and daidzein all markedly stimulated ERbeta-mediated histone acetylation. On the other hand, anti-estrogenic compounds ICI 182,780 (ICI) and tamoxifen (TA) did not have an effect on HAT activity mediated by either ERalpha or ERbeta. Our data indicate that estrogenic ligands exert their effects by elevating histone acetylation and coactivator activity of ER, and suggest that the risk of estrogen-related diseases might be reduced by a sufficient amount of genistein or AglyMax supplements.
Collapse
Affiliation(s)
- Tao Hong
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mittler G, Stühler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J 2004; 22:6494-504. [PMID: 14657022 PMCID: PMC291814 DOI: 10.1093/emboj/cdg619] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ARC92/ACID1 was identified as a novel specific target of the herpes simplex transactivator VP16 using an affinity purification procedure. Characterization of the protein revealed tight interactions with human Mediator mediated through a von Willebrand type A domain. ARC92/ACID1 further contains a novel activator-interacting domain (ACID), which it shares with at least one other human gene termed PTOV1/ACID2. The structure of ARC92/ACID1 is of ancient origin but is conserved in mammals and in selected higher eukaryotes. A subpopulation of Mediator is associated with ARC92/ACID1, which is specifically required for VP16 activation both in vitro and in mammalian cells, but is dispensable for other activators such as SP1. Despite many known targets of VP16, ARC92/ACID1 appears to impose a critical control on transcription activation by VP16 in mammalian cells.
Collapse
Affiliation(s)
- Gerhard Mittler
- National Research Center for Environment and Health-GSF, Institute of Molecular Immunology, Gene Expression, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Walker AK, Shi Y, Blackwell TK. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem 2004; 279:15339-47. [PMID: 14726532 DOI: 10.1074/jbc.m310731200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.
Collapse
Affiliation(s)
- Amy K Walker
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Liu X, Tesfai J, Evrard YA, Dent SYR, Martinez E. c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. J Biol Chem 2003; 278:20405-12. [PMID: 12660246 PMCID: PMC4031917 DOI: 10.1074/jbc.m211795200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deregulation of the c-Myc oncoprotein (Myc) is implicated in many types of cancer. Myc is a sequence-specific transcription factor that regulates transcription of genes involved in the control of cell proliferation and apoptosis via mechanisms that are still poorly understood. Cell transformation by Myc involves its association with the transformation-transactivation domain-associated protein (TRRAP) and the human histone acetyltransferase (HAT) GCN5. TRRAP and GCN5 are components of a variety of shared and distinct multiprotein HAT complexes with diverse functions. Myc induces TRRAP recruitment and histone hyperacetylation at specific Myc-activated genes in vivo. However, the identity of the HAT complexes recruited by Myc and the roles of TRRAP and GCN5 in Myc function are still unclear. Here we show that Myc co-recruits TRRAP and GCN5 via direct physical interactions of its N-terminal activation/transformation domain with the human STAGA (SPT3-TAF-GCN5 acetylase) coactivator complex. We demonstrate that GCN5 and TRRAP cooperate to enhance transcription activation by the N-terminal activation domain of Myc in vivo and that this synergy requires both the SPT3/GCN5 interaction domain of TRRAP and the HAT activity of GCN5. Thus, TRRAP might function as an adaptor within the STAGA complex, which helps recruit GCN5 HAT activity to Myc during transcription activation.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Jerusalem Tesfai
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Yvonne A. Evrard
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sharon Y. R. Dent
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, California 92521
- To whom correspondence should be addressed: Dept. of Biochemistry, University of California, Riverside, CA 92521. Tel.: 909-787-2031; Fax: 909-787-4434;
| |
Collapse
|