1
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Zdarova Karasova J, Soukup O, Korabecny J, Hroch M, Krejciova M, Hrabinova M, Misik J, Novotny L, Hepnarova V, Kuca K. Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug Chem Toxicol 2019; 44:207-214. [PMID: 31257938 DOI: 10.1080/01480545.2019.1566350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The search for tacrine derivatives, as potential Alzheimer´s disease treatment, is still being at the forefront of scientific efforts. 7-MEOTA was found to be a potent, centrally active acetylcholinesterase inhibitor free of the serious side effects observed for tacrine. Unfortunately, a relevant argumentation about pharmacokinetics and potential toxicity is incomplete; information about tacrine derivatives absorption and especially CNS penetration are still rare as well as detailed toxicological profile in vivo. Although the structural changes between these compounds are not so distinctive, differences in plasma profile and CNS targeting were found. The maximum plasma concentration were attained at 18th min (tacrine; 38.20 ± 3.91 ng/ml and 7-MEOTA; 88.22 ± 15.19 ng/ml) after i.m. application in rats. Although the brain profiles seem to be similar; tacrine achieved 19.34 ± 0.71 ng/ml in 27 min and 7-MEOTA 15.80 ± 1.13 ng/ml in 22 min; the tacrine Kp (AUCbrain/AUCplasma) fit 1.20 and was significantly higher than 7-MEOTA Kp 0.10. Administration of tacrine and 7-MEOTA showed only mild elevation of some biochemical markers following single p.o. application in 24 hours and 7 days. Also histopathology revealed only mild-to-moderate changes following repeated p.o. administration for 14 days. It seems that small change in tacrine molecule leads to lower ability to penetrate through the biological barriers. The explanation that lower p.o. acute toxicity of 7-MEOTA depends only on differences in metabolic pathways may be now revised to newly described differences in pharmacokinetic and toxicological profiles.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Faculty of Medicine, Department of Medicinal Biochemistry, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Marketa Krejciova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Misik
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | | | - Vendula Hepnarova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Sawatani T, Kaneko YK, Doutsu I, Ogawa A, Ishikawa T. TRPV2 channels mediate insulin secretion induced by cell swelling in mouse pancreatic β-cells. Am J Physiol Cell Physiol 2019; 316:C434-C443. [PMID: 30649920 DOI: 10.1152/ajpcell.00210.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
β-Cell swelling induces membrane depolarization, which has been suggested to be caused at least partly by the activation of cation channels. Here, we show the identification of the cation channels. In isolated mouse pancreatic β-cells, the exposure to 30% hypotonic solution elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c). The [Ca2+]c elevation was partially inhibited by ruthenium red, a blocker of several Ca2+-permeable channels including transient receptor potential vanilloid receptors [transient receptor potential cation channel subfamily V (TRPV)], and by nicardipine, but not by the depletion of intracellular Ca2+ stores with thapsigargin and caffeine. The hypotonic stimulation also increased insulin secretion from isolated mouse islets, which was significantly suppressed by ruthenium red. Expression of TRPV2 and TRPV4 was confirmed in mouse pancreatic islets and the MIN6 β-cell line by RT-PCR, Western blot, and immunohistochemical analyses. However, neither 4α-phorbol 12,13-didecanoate nor GSK1016790A, TRPV4 activators, showed any apparent effect on [Ca2+]c in isolated mouse β-cells or in MIN6 cells. In contrast, probenecid, a TRPV2 activator, induced an increase in [Ca2+]c in MIN6 cells, which was attenuated by ruthenium red. Moreover, the [Ca2+]c elevation induced by 30% hypotonic stimulation was significantly reduced by knockdown of TRPV2 with siRNA and by tranilast, a TRPV2 inhibitor. The knockdown of TRPV2 also decreased insulin secretion induced by the hypotonic stimulation. In addition, glucose-stimulated insulin secretion was also significantly reduced in the TRPV2-knockdown MIN6 cells. These results suggest that osmotic cell swelling activates TRPV2 in mouse β-cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and insulin secretion.
Collapse
Affiliation(s)
- Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Isao Doutsu
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Ai Ogawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Japan
| |
Collapse
|
4
|
Tamashiro H, Yoshino M. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:97-104. [PMID: 25450564 DOI: 10.1016/j.jinsphys.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29±0.009 Hz (n=43) and an amplitude of 14.6±1.25 mg (n=29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30-50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.
Collapse
Affiliation(s)
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| |
Collapse
|
5
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Barfod ET, Moore AL, Van de Graaf BG, Lidofsky SD. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling. Mol Biol Cell 2011; 22:634-650. [PMID: 21209319 PMCID: PMC3046060 DOI: 10.1091/mbc.e10-06-0514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/13/2010] [Accepted: 12/17/2010] [Indexed: 01/15/2023] Open
Abstract
The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Pharmacology, University of Vermont, Burlington, VT 05405 Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
7
|
Varela D, Penna A, Simon F, Eguiguren AL, Leiva-Salcedo E, Cerda O, Sala F, Stutzin A. P2X4 activation modulates volume-sensitive outwardly rectifying chloride channels in rat hepatoma cells. J Biol Chem 2010; 285:7566-74. [PMID: 20056605 PMCID: PMC2844204 DOI: 10.1074/jbc.m109.063693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/30/2009] [Indexed: 11/06/2022] Open
Abstract
Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H(2)O(2) plays an essential role in the activation of these channels and that H(2)O(2) per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl(-) current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 microm H(2)O(2) VSOR Cl(-) current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 microm H(2)O(2), exogenous addition of ATP in the presence of extracellular Ca(2+) resulted in a decrease in the half-time for VSOR Cl(-) current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl(-) current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl(-) current onset in a extracellular Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Diego Varela
- Centro de Estudios Moleculares de la Célula & Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
9
|
Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6236-43. [PMID: 18941214 PMCID: PMC2597670 DOI: 10.4049/jimmunol.181.9.6236] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wooki Kim
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
10
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
11
|
Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernández-Fernández JM, Valverde MA. IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid. ACTA ACUST UNITED AC 2008; 181:143-55. [PMID: 18378772 PMCID: PMC2287294 DOI: 10.1083/jcb.200712058] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2–EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)–inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.
Collapse
Affiliation(s)
- Jacqueline Fernandes
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Varela D, Simon F, Olivero P, Armisén R, Leiva-Salcedo E, Jørgensen F, Sala F, Stutzin A. Activation of H 2O 2-Induced VSOR Cl - Currents in HTC Cells Require Phospholipase Cγ1 Phosphorylation and Ca 2+ Mobilisation. Cell Physiol Biochem 2007; 20:773-80. [DOI: 10.1159/000110437] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2007] [Indexed: 11/19/2022] Open
|
13
|
Abstract
This chapter reviews recent evidence indicating that canonical or classical transient receptor potential (TRPC) channels are directly or indirectly mechanosensitive (MS) and can therefore be designated as mechano-operated channels (MOCs). The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated and receptor-operated channels (SOCs and ROCs). Mechanical forces may be conveyed to TRPC channels through the "conformational coupling" mechanism that transmits information regarding the status of internal Ca(2+) stores. All TRPCs are regulated by receptors coupled to phospholipases that are themselves MS and can regulate channels via lipidic second messengers. Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer mechanics, physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used for separating out different MS-gating mechanisms and their possible role in specific TRPCs are discussed.
Collapse
Affiliation(s)
- Owen P Hamill
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Rosario Maroto
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
14
|
Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E. Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch 2007; 455:97-103. [PMID: 17384962 DOI: 10.1007/s00424-007-0250-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/02/2007] [Indexed: 11/28/2022]
Abstract
TREK-1 is an unconventional K(+) channel that is activated by both physical and chemical stimuli. In this study, we show that the inner leaflet membrane phospholipids, including PIP(2), exert a mixed stimulatory and inhibitory effect on TREK-1. Intra-cellular phospholipids inhibit basal channel activity and activation by membrane stretch, intra-cellular acidosis and arachidonic acid. However, binding of endogenous negative inner leaflet phospholipids with poly-lysine reduces inhibition and reveals channel stimulation by exogenous intra-cellular phospholipids. A similar effect is observed with PI, PE, PS and PA, unlike DG, demonstrating that the phosphate at position 3 is required although the global charge of the molecule is not critical. Inhibition depends on the distal C-terminal domain that conditions channel mechano-sensitivity, but is independent of the positively charged PIP(2) stimulatory site in the proximal C-terminal domain. This is, to our knowledge, the first report of an ion channel dually regulated by membrane phospholipids.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, UPR 2580 CNRS, 141 rue de la Cardonille, 34094, Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
15
|
Barfod ET, Moore AL, Roe MW, Lidofsky SD. Ca2+-activated IK1 channels associate with lipid rafts upon cell swelling and mediate volume recovery. J Biol Chem 2007; 282:8984-8993. [PMID: 17264085 DOI: 10.1074/jbc.m607730200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Restoration of cell volume in the continued presence of osmotic stimuli is essential, particularly in hepatocytes, which swell upon nutrient uptake. Responses to swelling involve the Ca2+-dependent activation of K+ channels, which promote fluid efflux to drive volume recovery; however, the channels involved in hepatocellular volume regulation have not been identified. We found that hypotonic exposure of HTC hepatoma cells evoked the opening of 50 pS K+-permeable channels, consistent with intermediate conductance (IK) channels. We isolated from rat liver and HTC cells a cDNA with sequence identity to the coding region of IK1. Swelling-activated currents were inhibited by transfection with a dominant interfering IK1 mutant. The IK channel blockers clotrimazole and TRAM-34 inhibited whole cell swelling-activated K+ currents and volume recovery. To determine whether IK1 underwent volume-sensitive localization, we expressed a green fluorescent protein fusion of IK1 in HTC cells. The localization of IK1 was suggestive of distribution in lipid rafts. Consistent with this, there was a time-dependent increase in colocalization between IK1 and the lipid raft ganglioside GM1 on the plasma membrane, which subsequently decreased with volume recovery. Pharmacological disruption of lipid rafts altered the plasma membrane distribution of IK1 and inhibited volume recovery after hypotonic exposure. Collectively, these findings support the hypothesis that IK1 regulates compensatory responses to hepatocellular swelling and suggest that regulation of cell volume involves coordination of signaling from lipid rafts with IK1 function.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
16
|
Nam JH, Lee HS, Nguyen YH, Kang TM, Lee SW, Kim HY, Kim SJ, Earm YE, Kim SJ. Mechanosensitive activation of K+ channel via phospholipase C-induced depletion of phosphatidylinositol 4,5-bisphosphate in B lymphocytes. J Physiol 2007; 582:977-90. [PMID: 17347270 PMCID: PMC2075244 DOI: 10.1113/jphysiol.2007.128413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In various types of cells mechanical stimulation of the plasma membrane activates phospholipase C (PLC). However, the regulation of ion channels via mechanosensitive degradation of phosphatidylinositol 4,5-bisphosphate (PIP(2)) is not known yet. The mouse B cells express large conductance background K(+) channels (LK(bg)) that are inhibited by PIP(2). In inside-out patch clamp studies, the application of MgATP (1 mm) also inhibited LK(bg) due to the generation of PIP(2) by phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative pipette pressure activated LK(bg), which was antagonized by PIP(2) (> 1 microm) or higher concentration of MgATP (5 mm). The inhibition by PIP(2) was partially reversible. However, the application of methyl-beta-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of LK(bg) activity and facilitated the activation by stretch. In cell-attached patches, LK(bg) were activated by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LK(bg) was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or by cross-linking IgM-type B cell receptors activated LK(bg). Western blot analysis and confocal microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation of PLCgamma2 and PIP(2) hydrolysis of plasma membrane. The time dependence of PIP(2) hydrolysis and LK(bg) activation were similar. The presence of LK(bg) and their stretch sensitivity were also proven in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism of stretch-dependent ion channel activation, namely, that the degradation of PIP(2) caused by stretch-activated PLC releases LK(bg) from the tonic inhibition by PIP(2).
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen AK, Latz MI, Sobolewski P, Frangos JA. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2020-7. [PMID: 17322118 DOI: 10.1152/ajpregu.00649.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminescent dinoflagellates respond to flow by the production of light. The primary mechanotransduction event is unknown, although downstream events include a calcium flux in the cytoplasm, a self-propagating action potential across the vacuole membrane, and a proton flux into the cytoplasm that activates the luminescent chemistry. Given the role of GTP-binding (G) proteins in the mechanotransduction of flow by nonmarine cells and the presence of G-proteins in dinoflagellates, it was hypothesized that flow-stimulated dinoflagellate bioluminescence involves mechanotransduction by G-proteins. In the present study, osmotic swelling of cells of the dinoflagellate Lingulodinium polyedrum was used as a drug delivery system to introduce GDPbetaS, an inhibitor of G-protein activation. Osmotically swollen cells produced higher levels of flow-stimulated bioluminescence at a lower threshold of shear stress, indicating they were more flow sensitive. GDPbetaS inhibited flow-stimulated bioluminescence in osmotically swollen cells and in cells that were restored to the isosmotic condition following hypoosmotic treatment with GDPbetaS. These results provide evidence that G-proteins are involved in the mechanotransduction of flow in dinoflagellates and suggest that G-protein involvement in mechanotransduction may be a fundamental evolutionary adaptation.
Collapse
Affiliation(s)
- Antony K Chen
- La Jolla Bioengineering Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
18
|
Xia W, Shen Y, Xie H, Zheng S. Involvement of endoplasmic reticulum in hepatitis B virus replication. Virus Res 2006; 121:116-21. [PMID: 16870295 DOI: 10.1016/j.virusres.2006.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/20/2006] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
The mitochondrial calcium and downstream proline-rich tyrosine kinase-2 (PyK2) signaling pathway are critical to hepatitis B virus (HBV) replication, and the endoplasmic reticulum (ER) plays an important role in intracellular calcium regulation. To investigate the role of ER in HBV replication, the HBV genome transfected HepG2.2.15 cells were treated by cyclosporine A (CsA), cyclopiazonic acid (CPA), ryanodine and U73122, which are all specific blockers of calcium channels located in either ER or mitochondria. The HBV replication level was evaluated by two methods: slot blot hybridization analysis of intracellular HBV DNA and real-time polymerase chain reaction (PCR) analysis of secreted HBV DNA in supernatant; the activation of PyK2 kinase was detected by Western blot analysis. Results indicated that the HBV replication was inhibited when mitochondrial permeability transition pore, ER Ca2+ -ATPase and ER inositol 1,4,5-trisphosphate receptor (IP3R) were blocked by CsA, CPA and U73122, respectively; but not inhibited when ER ryanodine receptor was blocked by ryanodine. The PyK2 phosphorylation level declined after treatment of 2 microg/ml CsA, 5 microM CPA and 25 microM U73122, but not changed apparently after 50 microM ryanodine treatment. Compared with monotreatment, a more powerful inhibitory effect was achieved when the CsA, CPA and U73122 were combined used in twosome or triple manner, while the HBV replication level did not change apparently when ryanodine combined with CsA, CPA or U73122. In conclusion, besides the mitochondria, the ER also participates in the HBV replication through calcium-PyK2 signaling pathway; the calcium channels of ER Ca2+ -ATPase and ER IP3R are responsible for this role; during this complicated process, an interaction between ER and mitochondria maybe involved.
Collapse
Affiliation(s)
- Weiliang Xia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | | | | | | |
Collapse
|
19
|
Lan WZ, Wang PYT, Hill CE. Modulation of hepatocellular swelling-activated K+currents by phosphoinositide pathway-dependent protein kinase C. Am J Physiol Cell Physiol 2006; 291:C93-103. [PMID: 16452155 DOI: 10.1152/ajpcell.00602.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K+channels participate in the regulatory volume decrease (RVD) accompanying hepatocellular nutrient uptake and bile formation. We recently identified KCNQ1 as a molecular candidate for a significant fraction of the hepatocellular swelling-activated K+current ( IKVol). We have shown that the KCNQ1 inhibitor chromanol 293B significantly inhibited RVD-associated K+flux in isolated perfused rat liver and used patch-clamp techniques to define the signaling pathway linking swelling to IKVolactivation. Patch-electrode dialysis of hepatocytes with solutions that maintain or increase phosphatidylinositol 4,5-bisphosphate (PIP2) increased IKVol, whereas conditions that decrease cellular PIP2decreased IKVol. GTP and AlF4−stimulated IKVoldevelopment, suggesting a role for G proteins and phospholipase C (PLC). Supporting this, the PLC blocker U-73122 decreased IKVoland inhibited the stimulatory response to PIP2or GTP. Protein kinase C (PKC) is involved, because K+current was enhanced by 1-oleoyl-2-acetyl- sn-glycerol and inhibited after chronic PKC stimulation with phorbol 12-myristate 13-acetate (PMA) or the PKC inhibitor GF 109203X. Both IKVoland the accompanying membrane capacitance increase were blocked by cytochalasin D or GF 109203X. Acute PMA did not eliminate the cytochalasin D inhibition, suggesting that PKC-mediated IKVolactivation involves the cytoskeleton. Under isotonic conditions, a slowly developing K+current similar to IKVolwas activated by PIP2, lipid phosphatase inhibitors to counter PIP2depletion, a PLC-coupled α1-adrenoceptor agonist, or PKC activators and was depressed by PKC inhibition, suggesting that hypotonicity is one of a set of stimuli that can activate IKVolthrough a PIP2/PKC-dependent pathway. The results indicate that PIP2indirectly activates hepatocellular KCNQ1-like channels via cytoskeletal rearrangement involving PKC activation.
Collapse
Affiliation(s)
- Wen-Zhi Lan
- Department of Medicine and Physiology, GI Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
20
|
Aromataris EC, Roberts ML, Barritt GJ, Rychkov GY. Glucagon activates Ca2+ and Cl- channels in rat hepatocytes. J Physiol 2006; 573:611-25. [PMID: 16581855 PMCID: PMC1779747 DOI: 10.1113/jphysiol.2006.109819] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glucagon is one of the major hormonal regulators of glucose metabolism, counteracting the hepatic effects of insulin when the concentration of glucose in the bloodstream falls below a certain level. Glucagon also regulates bile flow, hepatocellular volume and membrane potential of hepatocytes. It is clear that changes in cell volume and membrane potential cannot occur without significant ion fluxes across the plasma membrane. The effects of glucagon on membrane currents in hepatocytes, however, are not well understood. Here we show, by patch-clamping of rat hepatocytes, that glucagon activates two types of currents: a small inwardly rectifying Ca2+ current with characteristics similar to those of the store-operated Ca2+ current and a larger outwardly rectifying Cl- current similar to that activated by cell swelling. We show that the mechanism of glucagon action on membrane conductance involves phospholipase C and adenylyl cyclase. Contribution of the adenylyl cyclase-dependent pathway to activation of the currents depended on Epac (exchange protein directly activated by cAMP), but not on protein kinase A. The activation of Ca2+ and Cl- channels is likely to play a key role in the mechanisms by which glucagon regulates hepatocyte metabolism and volume.
Collapse
Affiliation(s)
- Edoardo C Aromataris
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
21
|
Barfod ET, Moore AL, Melnick RF, Lidofsky SD. Src regulates distinct pathways for cell volume control through Vav and phospholipase Cgamma. J Biol Chem 2005; 280:25548-25557. [PMID: 15866884 DOI: 10.1074/jbc.m411717200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell volume recovery in response to swelling requires reorganization of the cytoskeleton and fluid efflux. We have previously shown that electrolyte and fluid efflux via K+ and Cl- channels is controlled by swelling-induced activation of phospholipase Cgamma (PLCgamma). Recently, integrin engagement has been suggested to trigger responses to swelling through activation of Rho family GTPases and Src kinases. Because both PLCgamma and Rho GTPases can be regulated by Src during integrin-mediated cytoskeletal reorganization, we sought to identify swelling-induced Src effectors. Upon hypotonic challenge, Src was rapidly activated in transient plasma membrane protrusions, where it colocalized with Vav, an activator of Rho GTPases. Inhibition of Src with PP2 attenuated phosphorylation of Vav. PP2 also attenuated phosphorylation of PLCgamma, and inhibited swelling-mediated activation of K+ and Cl- channels and cell volume recovery. These findings suggest that swelling-induced Src regulates cytoskeletal dynamics, through Vav, and fluid efflux, through PLCgamma, and thus can coordinate structural reorganization with fluid balance to maintain cellular integrity.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
22
|
Carini R, Grazia De Cesaris M, Splendore R, Baldanzi G, Nitti MP, Alchera E, Filigheddu N, Domenicotti C, Pronzato MA, Graziani A, Albano E. Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. Gastroenterology 2004; 127:914-23. [PMID: 15362046 DOI: 10.1053/j.gastro.2004.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Ischemic preconditioning has been proved effective in reducing ischemia/reperfusion injury during liver surgery. However, the mechanisms involved are still poorly understood. Here, we have investigated the role of phosphatidylinositol 3-kinase (PI3K) in the signal pathway leading to hepatic preconditioning. METHODS PI3K activation was evaluated in isolated rat hepatocytes preconditioned by 10-minute hypoxia followed by 10-minute reoxygenation. RESULTS Hypoxic preconditioning stimulated phosphatidylinositol-3,4,5-triphosphate production and the phosphorylation of PKB/Akt, a downstream target of PI3K. Conversely, PI3K inhibition by wortmannin or LY294002 abolished hepatocyte tolerance against hypoxic damage induced by preconditioning. PI3K activation in preconditioned hepatocytes required the stimulation of adenosine A 2A receptors and was mimicked by adenosine A 2A receptors agonist CGS21680. In the cells treated with CGS21680, PI3K activation was prevented either by inhibiting adenylate cyclase and PKA with, respectively, 2,5-dideoxyadenosine and H89 or by blocking Galphai-protein and Src tyrosine kinase with, respectively, pertussis toxin and PP2. H89 also abolished the phosphorylation of adenosine A 2A receptors. However, the direct PKA activation by forskolin failed to stimulate PI3K. This suggested that PKA-phosphorylated adenosine A 2A receptors may activate PI3K by coupling it with Galphai-protein through Src. We also observed that, by impairing PI3K-mediated activation of phospholypase Cgamma (PLCgamma), wortmannin and LY294002 blocked the downstream transduction of preconditioning signals via protein kinase C (PKC) delta/ isozymes. CONCLUSIONS PI3K is activated following hepatocyte hypoxic preconditioning by the combined stimulation of adenosine A 2A receptors, PKA, Galphai protein, and Src. By regulating PKC-/delta-dependent signals, PI3K can play a key role in the development of hepatic tolerance to hypoxia/reperfusion.
Collapse
Affiliation(s)
- Rita Carini
- Dip. Scienze Mediche, Università "A. Avogadro" del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Franco R, Rodríguez R, Pasantes-Morales H. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflugers Arch 2004; 449:159-69. [PMID: 15322850 DOI: 10.1007/s00424-004-1322-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Reducing osmolarity by 35% increased (3)H-taurine efflux from Swiss 3T3 fibroblasts from 0.5% to a peak of 5.7%. The presence of ATP (10-100 microM; EC(50) 1.5 microM) increased taurine efflux up to 10%, and decreased the set point for hyposmotically stimulated taurine release (HTR). ATP potentiation was mimicked by UTP, reduced by addition of suramin and pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and unaffected by ADP, beta,gamma-methylene-ATP (beta,gamma-ATP) or 2-methylthio-ATP (Me-ATP), suggesting its mediation by purinergic P2Y(2) and P2Y(4) metabotropic receptors. Under isosmotic conditions ATP increased the cytosolic [Ca(2+)] ([Ca(2+)](i)) markedly, but did not increase taurine release. HTR was independent of external Ca(2+) but was reduced (by 56-59%) by BAPTA-AM, thapsigargin-induced depletion of intracellular Ca(2+) stores, or phospholipase C (PLC) inhibition. Blockade of calmodulin (CaM) or calmodulin kinase II (CaMKII) reduced HTR by 54% and 76%, respectively. The ATP-mediated potentiation was prevented fully by all these treatments. HTR was reduced by 30-50% by blockers of protein tyrosine kinases (AG18), phosphoinositide 3-kinase (PI3K) (wortmannin), p21rho (toxin B), p21rho-kinase (Y27632) and the stress-activated kinase p38 (PD169316). ATP-mediated potentiation was reduced similarly by these blockers. Simultaneous inhibition of PI3K and CaMKII abolished HTR. Altogether, these results suggest a modulatory effect of ATP, probably exerted by a potentiation of the Ca(2+)-dependent fraction of HTR. This fraction has as signalling elements a PLC-dependent [Ca(2+)](i) increase, resulting from Ca(2+) released from thapsigargin-sensitive internal stores, followed by activation of CaM/CaMKII reactions. The Ca(2+)/ATP effect operates only when the Ca(2+)-independent, tyrosine kinase-mediated pathway is already activated. Suggested elements of cross-talk between the two pathways are PLC, PI3K and CaMKII.
Collapse
Affiliation(s)
- Rodrigo Franco
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico, Apartado Postal 70-253, 04510 Mexico City, Mexico
| | | | | |
Collapse
|
24
|
Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A. NAD(P)H Oxidase-derived H2O2 Signals Chloride Channel Activation in Cell Volume Regulation and Cell Proliferation. J Biol Chem 2004; 279:13301-4. [PMID: 14761962 DOI: 10.1074/jbc.c400020200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular swelling triggers the activation of Cl(-) channels (volume-sensitive outwardly rectifying (VSOR) Cl(-) channels) in many cell types. Ensuing regulatory volume decrease has been considered the primary function of these channels. However, Cl(-) channels, which share functional properties with volume-sensitive Cl(-) channels, have been shown to be involved in other physiological processes, including cell proliferation and apoptosis, raising the question of their physiological roles and the signal transduction pathways involved in their activation. Here we report that exogenously applied H(2)O(2) elicited VSOR Cl(-) channel activation. Furthermore, activation of these channels was found to be coupled to NAD(P)H oxidase activity. Also, epidermal growth factor, known to increase H(2)O(2) production, activated Cl(-) channels with properties identical to swelling-sensitive Cl(-) channels. It is concluded that NAD(P)H oxidase-derived H(2)O(2) is the common signal transducing molecule that mediates the activation of these ubiquitously expressed anion channels under a variety of physiological conditions.
Collapse
Affiliation(s)
- Diego Varela
- Instituto de Ciencias Biomédicas and Centro de Estudios Moleculares de la Célula Facultad de Medicina Universidad de Chile, Santiago-6530499, Santiago, Chile
| | | | | | | | | |
Collapse
|
25
|
Hermoso M, Olivero P, Torres R, Riveros A, Quest AFG, Stutzin A. Cell volume regulation in response to hypotonicity is impaired in HeLa cells expressing a protein kinase Calpha mutant lacking kinase activity. J Biol Chem 2004; 279:17681-9. [PMID: 14960580 DOI: 10.1074/jbc.m304506200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloride conductance (G(Cl,swell)) that participates in the regulatory volume decrease process triggered by osmotic swelling in HeLa cells was impaired by removal of extracellular Ca(2+), depletion of intracellular Ca(2+) stores with thapsigargin, or by preloading the cells with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Furthermore, overnight exposure to the phorbol ester tetradecanoyl phorbol acetate and acute incubation with inhibitors of the conventional protein kinase C (PKC) isoforms bisindolylmaleimide I and Gö6976 inhibited G(Cl,swell). Treatment of HeLa cells with U73122, a phospholipase C inhibitor, also prevented G(Cl,swell). Hypotonicity induced selective PKC alpha accumulation in the membrane/cytoskeleton fraction in fractionation experiments and translocation of a green fluorescent protein-PKC alpha fusion protein to the plasma membrane of transiently transfected HeLa cells. To further explore the role of PKCs in hypotonicity-induced G(Cl,swell), HeLa clones stably expressing either a kinase-dead dominant negative variant of the Ca(2+)-dependent PKC isoform alpha (PKC alpha K386R) or of the atypical PKC isoform zeta (PKCzeta K275W) were generated. G(Cl,swell) was significantly reduced in HeLa cells expressing the dominant negative PKC alpha mutant but remained unaltered in cells expressing dominant negative PKCzeta. These findings strongly implicate PKC alpha as a critical regulatory element that is required for efficient regulatory volume decrease in HeLa cells.
Collapse
Affiliation(s)
- Marcela Hermoso
- Instituto de Ciencias Biomédicas and Centro de Estudios Moleculares de la Célula Facultad de Medicina, Universidad de Chile, Santiago 6530499, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
26
|
Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A. The Volume-Activated Chloride Current Depends on Phospholipase C Activation and Intracellular Calcium Mobilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004. [DOI: 10.1007/0-387-23752-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|