1
|
Zhang X, Lin J, Zuo D, Chen X, Xu G, Su J, Zhang W. The Tan-Re-Qing Capsule mitigates acute lung injury by suppressing the NLRP3 inflammasome and MAPK/NF-κB signaling pathways. Gene 2025; 933:149001. [PMID: 39401735 DOI: 10.1016/j.gene.2024.149001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVE The Tan-Re-Qing Capsule (TRQC), a traditional Chinese medicine (TCM) preparation, has been historically utilized in treating acute lung injury (ALI) and COVID-19-induced pulmonary diseases. This study aimed to explore the effect and underlying mechanisms of TRQC in lipopolysaccharide (LPS)-induced ALI models. METHODS The changes of acute lung injury and inflammatory response were observed after TRQC treatment of the LPS-induced ALI mouse model. Based on active compounds in TRQC and network pharmacology analysis, potential targeting signals were identified. The effects of TRQC on signaling in LPS-stimulated BMDMs were investigated. Additionally, the defecatory status of mice and the mechanism of Cl- secretion in HBE cells and T84 colonic epithelial cells were examined. RESULTS TRQC exhibited a notable amelioration of inflammatory injuries in ALI mice. Utilizing a systems-pharmacology approach based on active chemical compounds, TRQC was found to regulate inflammation-related pathways, including NF-κB, NOD-like signaling, and MAPK signaling. In vitro experiments demonstrated that TRQC effectively suppressed LPS-induced activation of macrophages and the assembly of the NLRP3 inflammasome induced by LPS and Nigericin. These effects were attributed to the suppression of NF-κB and NOD-like signaling pathways. Furthermore, TRQC blocked MAPK signaling, thereby mitigating the inhibitory effects of LPS and Nigericin on Ca2+-dependent Cl- efflux across colonic epithelial cells. This mechanism generated a cathartic effect, potentially aiding in the removal of harmful substances and pathogenic bacteria. CONCLUSION Our study demonstrates that TRQC significantly mitigates ALI by effectively suppressing the NLRP3 inflammasome and MAPK/NF-κB signaling pathways. These findings suggest that TRQC could serve as a promising therapeutic candidate for inflammatory lung diseases, offering a novel approach to managing conditions like ALI and potentially extending to other inflammatory diseases.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dongliang Zuo
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China.
| | - Xuan Chen
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guihua Xu
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Su
- School of Life Sciences and Biotechnology and State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Wei Zhang
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
3
|
Uwada J, Nakazawa H, Muramatsu I, Masuoka T, Yazawa T. Role of Muscarinic Acetylcholine Receptors in Intestinal Epithelial Homeostasis: Insights for the Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:ijms24076508. [PMID: 37047478 PMCID: PMC10095461 DOI: 10.3390/ijms24076508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an intestinal disorder that causes prolonged inflammation of the gastrointestinal tract. Currently, the etiology of IBD is not fully understood and treatments are insufficient to completely cure the disease. In addition to absorbing essential nutrients, intestinal epithelial cells prevent the entry of foreign antigens (micro-organisms and undigested food) through mucus secretion and epithelial barrier formation. Disruption of the intestinal epithelial homeostasis exacerbates inflammation. Thus, the maintenance and reinforcement of epithelial function may have therapeutic benefits in the treatment of IBD. Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors for acetylcholine that are expressed in intestinal epithelial cells. Recent studies have revealed the role of mAChRs in the maintenance of intestinal epithelial homeostasis. The importance of non-neuronal acetylcholine in mAChR activation in epithelial cells has also been recognized. This review aimed to summarize recent advances in research on mAChRs for intestinal epithelial homeostasis and the involvement of non-neuronal acetylcholine systems, and highlight their potential as targets for IBD therapy.
Collapse
|
4
|
Barrett KE. Epithelial transport in digestive diseases: mice, monolayers, and mechanisms. Am J Physiol Cell Physiol 2020; 318:C1136-C1143. [PMID: 32293934 PMCID: PMC7311737 DOI: 10.1152/ajpcell.00015.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/26/2023]
Abstract
The transport of electrolytes and fluid by the intestinal epithelium is critical in health to maintain appropriate levels of fluidity of the intestinal contents. The transport mechanisms that underlie this physiological process are also subject to derangement in various digestive disease states, such as diarrheal illnesses. This article summarizes the 2019 Hans Ussing Lecture of the Epithelial Transport Group of the American Physiological Society and discusses some pathways by which intestinal transport is dysregulated, particularly in the setting of infection with the diarrheal pathogen, Salmonella, and in patients treated with small-molecule inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFr-TKI). The burdensome diarrhea in patients infected with Salmonella may be attributable to decreased expression of the chloride-bicarbonate exchanger downregulated in adenoma (DRA) that participates in electroneutral NaCl absorption. This outcome is possibly secondary to increased epithelial proliferation and/or decreased epithelial differentiation that occurs following infection. Conversely, the diarrheal side effects of cancer treatment with EGFr-TKI may be related to the known ability of EGFr-associated signaling to reduce calcium-dependent chloride secretion. Overall, the findings described may suggest targets for therapeutic intervention in a variety of diarrheal disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
5
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
6
|
Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cell Signal 2017; 35:188-196. [PMID: 28412413 DOI: 10.1016/j.cellsig.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.
Collapse
|
7
|
Di Liberto V, Borroto-Escuela DO, Frinchi M, Verdi V, Fuxe K, Belluardo N, Mudò G. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures. Biochim Biophys Acta Gen Subj 2016; 1861:235-245. [PMID: 27815219 DOI: 10.1016/j.bbagen.2016.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/15/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. METHODS Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M1R-FGFR1 heteroreceptor complexes, respectively. RESULTS Oxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M1 receptor (M1R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M1R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex. CONCLUSION The current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity. GENERAL SIGNIFICANT Data may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons.
Collapse
Affiliation(s)
- V Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | - D O Borroto-Escuela
- Karolinska Instituet, Department of Neuroscience, Retzius väg 8, 17177 Stockholm, Sweden; Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, I-61029 Urbino, Italy; Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100 Yaguajay, Cuba.
| | - M Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | - V Verdi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | - K Fuxe
- Karolinska Instituet, Department of Neuroscience, Retzius väg 8, 17177 Stockholm, Sweden.
| | - N Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | - G Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| |
Collapse
|
8
|
Domingue JC, Ao M, Sarathy J, Rao MC. Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl- secretion in human colonic T84 cells. Am J Physiol Cell Physiol 2016; 311:C777-C792. [PMID: 27558159 DOI: 10.1152/ajpcell.00168.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
Bile acids are known to initiate intricate signaling events in a variety of tissues, primarily in the liver and gastrointestinal tract. Of the known bile acids, only the 7α-dihydroxy species, deoxycholic acid and chenodeoxycholic acid (CDCA), and their conjugates, activate processes that stimulate epithelial Cl- secretion. We have previously published that CDCA acts in a rapid manner to stimulate colonic ion secretion via protein kinase A (PKA)-mediated activation of the dominant Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) (Ao M, Sarathy J, Domingue J, Alrefai WA, and Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013); however, PKA signaling did not account for the entire CDCA response. Here we show that in human colonic T84 cells, CDCA's induction of CFTR activity, measured as changes in short-circuit current (Isc), is dependent on epidermal growth factor receptor (EGFR) activation and does not involve the bile acid receptors TGR5 or farnesoid X receptor. CDCA activation of Cl- secretion does not require Src, mitogen-activated protein kinases, or phosphoinositide 3-kinase downstream of EGFR but does require an increase in cytosolic Ca2+ In addition to PKA signaling, we found that the CDCA response requires the novel involvement of the exchange protein directly activated by cAMP (EPAC). EPAC is a known hub for cAMP and Ca2+ cross talk. Downstream of EPAC, CDCA activates Rap2, and changes in free cytosolic Ca2+ were dependent on both EPAC and EGFR activation. This study establishes the complexity of CDCA signaling in the colonic epithelium and shows the contribution of EGFR, EPAC, and Ca2+ in CDCA-induced activation of CFTR-dependent Cl- secretion.
Collapse
Affiliation(s)
- Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; .,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
9
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol 2016; 595:423-432. [PMID: 27284010 DOI: 10.1113/jp272227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Transport of fluid and electrolytes in the intestine allows for appropriate adjustments in luminal fluidity while reclaiming water used in digesting and absorbing a meal, and is closely regulated. This article discusses various endogenous and exogenous mechanisms whereby transport is controlled in the gut, placing these in the context of the ideas about the neurohumoral control of alimentary physiology that were promulgated by William Bayliss and Ernest Starling. The article considers three themes. First, mechanisms that intrinsically regulate chloride secretion, centred on the epidermal growth factor receptor (EGFr), are discussed. These may be important in ensuring that excessive chloride secretion, with the accompanying loss of fluid, is not normally stimulated by intestinal distension as the meal passes through the gastrointestinal tract. Second, mechanisms whereby probiotic microorganisms can impart beneficial effects on the gut are described, with a focus on targets at the level of the epithelium. These findings imply that the commensal microbiota exert important influences on the epithelium in health and disease. Finally, mechanisms that lead to diarrhoea in patients infected with an invasive pathogen, Salmonella, are considered, based on recent studies in a novel mouse model. Diarrhoea is most likely attributable to reduced expression of absorptive transporters and may not require the influx of neutrophils that accompanies infection. Overall, the goal of the article is to highlight the many ways in which critical functions of the intestinal epithelium are regulated under physiological and pathophysiological conditions, and to suggest possible targets for new therapies for digestive disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
11
|
Ao M, Domingue JC, Khan N, Javed F, Osmani K, Sarathy J, Rao MC. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells. Am J Physiol Cell Physiol 2016; 310:C1010-23. [PMID: 27076617 DOI: 10.1152/ajpcell.00350.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Fatima Javed
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Kashif Osmani
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
12
|
Cholinergic transactivation of the EGFR in HaCaT keratinocytes stimulates a flotillin-1 dependent MAPK-mediated transcriptional response. Int J Mol Sci 2015; 16:6447-63. [PMID: 25803106 PMCID: PMC4394542 DOI: 10.3390/ijms16036447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Acetylcholine and its receptors regulate numerous cellular processes in keratinocytes and other non-neuronal cells. Muscarinic acetylcholine receptors are capable of transactivating the epidermal growth factor receptor (EGFR) and, downstream thereof, the mitogen-activated protein kinase (MAPK) cascade, which in turn regulates transcription of genes involved in cell proliferation and migration. We here show that cholinergic stimulation of human HaCaT keratinocytes results in increased transcription of matrix metalloproteinase MMP-3 as well as several ligands of the epidermal growth factor family. Since both metalloproteinases and the said ligands are involved in the transactivation of the EGFR, this transcriptional upregulation may provide a positive feed-forward loop for EGFR/MAPK activation. We here also show that the cholinergic EGFR and MAPK activation and the upregulation of MMP-3 and EGF-like ligands are dependent on the expression of flotillin-1 which we have previously shown to be a regulator of MAPK signaling.
Collapse
|
13
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Epidermal growth factor receptor transactivation is required for mitogen-activated protein kinase activation by muscarinic acetylcholine receptors in HaCaT keratinocytes. Int J Mol Sci 2014; 15:21433-54. [PMID: 25421240 PMCID: PMC4264234 DOI: 10.3390/ijms151121433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023] Open
Abstract
Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| |
Collapse
|
14
|
McElroy SJ, Castle SL, Bernard JK, Almohazey D, Hunter CJ, Bell BA, Al Alam D, Wang L, Ford HR, Frey MR. The ErbB4 ligand neuregulin-4 protects against experimental necrotizing enterocolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2768-78. [PMID: 25216938 DOI: 10.1016/j.ajpath.2014.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 12/30/2022]
Abstract
Necrotizing enterocolitis (NEC) affects up to 10% of premature infants, has a mortality of 30%, and can leave surviving patients with significant morbidity. Neuregulin-4 (NRG4) is an ErbB4-specific ligand that promotes epithelial cell survival. Thus, this pathway could be protective in diseases such as NEC, in which epithelial cell death is a major pathologic feature. We sought to determine whether NRG4-ErbB4 signaling is protective in experimental NEC. NRG4 was used i) in the newborn rat formula feeding/hypoxia model; ii) in a recently developed model in which 14- to 16-day-old mice are injected with dithizone to induce Paneth cell loss, followed by Klebsiella pneumoniae infection to induce intestinal injury; and iii) in bacterially infected IEC-6 cells in vitro. NRG4 reduced NEC incidence and severity in the formula feed/hypoxia rat model. It also reduced Paneth cell ablation-induced NEC and prevented dithizone-induced Paneth cell loss in mice. In vitro, cultured ErbB4(-/-) ileal epithelial enteroids had reduced Paneth cell markers and were highly sensitive to inflammatory cytokines. Furthermore, NRG4 blocked, through a Src-dependent pathway, Cronobacter muytjensii-induced IEC-6 cell apoptosis. The potential clinical relevance of these findings was demonstrated by the observation that NRG4 and its receptor ErbB4 are present in human breast milk and developing human intestine, respectively. Thus, NRG4-ErbB4 signaling may be a novel pathway for therapeutic intervention or prevention in NEC.
Collapse
Affiliation(s)
- Steven J McElroy
- Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Shannon L Castle
- Division of Pediatric Surgery, Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jessica K Bernard
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Dana Almohazey
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Catherine J Hunter
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital, Northwestern University, Chicago, Illinois
| | - Brandon A Bell
- Division of Pediatric Surgery, Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Denise Al Alam
- Division of Pediatric Surgery, Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Larry Wang
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Henri R Ford
- Division of Pediatric Surgery, Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Mark R Frey
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California; Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
15
|
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 2014; 28:12-21. [PMID: 24631356 DOI: 10.1016/j.semcdb.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Since its discovery in 1978 and cloning in 1984, transforming growth factor-alpha (TGF-α, TGFA) has been one of the most extensively studied EGF receptor (EGFR) ligands. In this review, we provide a historical perspective on TGFA-related studies, highlighting what we consider important advances related to its function in normal and disease states.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert J Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veteran Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Singh B, Coffey RJ. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol 2013; 76:275-300. [PMID: 24215440 DOI: 10.1146/annurev-physiol-021113-170406] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; ,
| | | |
Collapse
|
17
|
Sutton P, Borgia JA, Bonomi P, Plate JMD. Lyn, a Src family kinase, regulates activation of epidermal growth factor receptors in lung adenocarcinoma cells. Mol Cancer 2013; 12:76. [PMID: 23866081 PMCID: PMC3725175 DOI: 10.1186/1476-4598-12-76] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of receptors for growth factors on lung epithelial cells is essential for transformation into tumor cells, supporting their viability and proliferation. In most lung cancer patients, EGFR is constitutively activated without evidence of mutation. Defining mechanisms for constitutive activation of EGFR could elucidate additional targets for therapy of lung cancers. METHODS The approach was to identify lung cancer cell lines with constitutively activated EGFR and use systematic selection of inhibitors to evaluate their effects on specific EGFR phosphorylations and downstream signaling pathways. Interactions between receptors, kinases, and scaffolding proteins were investigated by co-immunoprecipitation plus Western blotting. RESULTS The results revealed a dependence on Src family of tyrosine kinases for downstream signaling and cell growth. Lyn, a Src family kinase functional in normal and malignant B-lymphocytes, was a defining signal transducer required for EGFR signaling in Calu3 cell line. Src family kinase activation in turn, was dependent on PKCßII. Lyn and PKC exist in membrane complexes of RACK1 and in association with EGFR which pairs with other receptor partners. Silencing of Lyn expression with interfering siRNA decreased EGFR activation and cell viability. CONCLUSIONS The importance of Src family kinases and PKCßII in the initiation of the EGFR signaling pathway in lung tumor cells was demonstrated. We conclude that phosphorylation of EGFR is mediated through PKCßII regulation of Lyn activation, and occurs in association with RACK1 and Cbp/PAG proteins. We suggest that protein complexes in cell membranes, including lipid rafts, may serve as novel targets for combination therapies with EGFR and Src Family Kinase inhibitors in lung cancer.
Collapse
Affiliation(s)
- Parnetta Sutton
- Department of Medical Laboratory Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
18
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Non-neuronal functions of the m2 muscarinic acetylcholine receptor. Genes (Basel) 2013; 4:171-97. [PMID: 24705159 PMCID: PMC3899973 DOI: 10.3390/genes4020171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
19
|
Kruk JS, Vasefi MS, Liu H, Heikkila JJ, Beazely MA. 5-HT1A receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells. Cell Signal 2013; 25:133-43. [DOI: 10.1016/j.cellsig.2012.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
|
20
|
Bernard JK, McCann SP, Bhardwaj V, Washington MK, Frey MR. Neuregulin-4 is a survival factor for colon epithelial cells both in culture and in vivo. J Biol Chem 2012; 287:39850-8. [PMID: 23033483 DOI: 10.1074/jbc.m112.400846] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the ErbB4 tyrosine kinase is elevated in colonic epithelial cells during inflammatory bowel disease, whereas ErbB4 overexpression in cultured colonocytes blocks TNF-induced apoptosis in a ligand-dependent manner. Together, these observations suggest that ErbB4 induction may be a protective response. However, the effects of ErbB4 signaling in the colonic epithelium in vivo are not known. Furthermore, previous work on ErbB4 used ligands shared with other receptors, raising the question of whether the observed responses are explicitly due to ErbB4. In this study, we used the ErbB4-specific ligand neuregulin-4 (NRG4) to activate ErbB4 and define its role in colonocyte biology. NRG4 treatment, either in cultured cells or in mice, blocked colonic epithelial apoptosis induced by TNF and IFN-γ. It was also protective in a murine experimental colitis model. NRG4 stimulated phosphorylation of ErbB4 but not other ErbB receptors, indicating that this is a specific response. Furthermore, in contrast to related ligands, NRG4 enhanced cell survival but not proliferation or migration, and stimulated phosphorylation of the anti-apoptotic mediator Akt but not ERK MAPK. Pharmacological inhibition of PI3K/Akt signaling reversed the anti-apoptotic effects of NRG4, confirming the role of this cascade in NRG4-induced cell survival. With regard to the potential clinical importance of this pathway, NRG4 expression was decreased in human inflammatory bowel disease samples and mouse models of colitis, suggesting that activation of ErbB4 is altered in disease. Thus, exogenous NRG4 may be beneficial for disorders in which epithelial apoptosis is part of the pathology.
Collapse
Affiliation(s)
- Jessica K Bernard
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
21
|
The EGF receptor and HER2 participate in TNF-α-dependent MAPK activation and IL-8 secretion in intestinal epithelial cells. Mediators Inflamm 2012; 2012:207398. [PMID: 22988345 PMCID: PMC3440955 DOI: 10.1155/2012/207398] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022] Open
Abstract
TNF-α activates multiple mitogen-activated protein kinase (MAPK) cascades in intestinal epithelial cells (IECs) leading to the secretion of interleukin 8 (IL-8), a neutrophil chemoattractant and an angiogenic factor with tumor promoting properties. As the epidermal growth factor receptor (EGFR) is a known transducer of proliferative signals and a potent activator of MAPKs, we hypothesized that the EGFR participates in TNF-dependent MAPK activation and IL-8 secretion by intestinal epithelial cells (IECs).
We show that the EGFR is tyrosine-phosphorylated following treatment of IECs (HT-29 and IEC-6) with TNF-α. This requires EGFR autophosphorylation as it was blocked by the EGFR kinase inhibitor AG1478. Autophosphorylation was also inhibited by both a Src-kinase inhibitor and the metalloproteinase inhibitor batimastat. TNF treatment of IECs resulted in the accumulation of soluble TGF-α; treatment of IECs with batimastat suppressed TGF-α release and immunoneutralization of TGF-α resulted in decreased EGFR and ERK phosphorylations. TNF-α treatment of IECs resulted in an association between EGFR and HER2 and inhibition of HER2 using a specific inhibitor AG879 in combination with AG1478-suppressed TNF-α-dependent ERK phosphorylation and IL-8 release. Downregulation of HER2 via siRNA resulted in a significant decrease in ERK phosphorylation and a 50% reduction in IL-8 secretion.
Collapse
|
22
|
Bhola NE, Freilino ML, Joyce SC, Sen M, Thomas SM, Sahu A, Cassell A, Chen CS, Grandis JR. Antitumor mechanisms of targeting the PDK1 pathway in head and neck cancer. Mol Cancer Ther 2012; 11:1236-46. [PMID: 22491800 DOI: 10.1158/1535-7163.mct-11-0936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G-protein-coupled receptors (GPCR) activate the epidermal growth factor receptor (EGFR) and mediate EGFR-independent signaling pathways to promote the growth of a variety of cancers, including head and neck squamous cell carcinoma (HNSCC). Identification of the common signaling mechanisms involved in GPCR-induced EGFR-dependent and EGFR-independent processes will facilitate the development of more therapeutic strategies. In this study, we hypothesized that phosphoinositide-dependent kinase 1 (PDK1) contributes to GPCR-EGFR cross-talk and signaling in the absence of EGFR and suggests that inhibition of the PDK1 pathway may be effective in the treatment of HNSCC. The contribution of PDK1 to the EGFR-dependent and EGFR-independent signaling in HNSCC was determined using RNA interference, a kinase-dead mutant, and pharmacologic inhibition. In vivo xenografts studies were also carried out to determine the efficacy of targeting PDK1 alone or in combination with the U.S. Food and Drug Administration-approved EGFR inhibitor cetuximab. PDK1 contributed to both GPCR-induced EGFR activation and cell growth. PDK1 also mediated activation of p70S6K in the absence of EGFR. Blockade of PDK1 with a small molecule inhibitor (AR-12) abrogated HNSCC growth, induced apoptosis, and enhanced the antiproliferative effects of EGFR tyrosine kinase inhibitors in vitro. HNSCC xenografts expressing kinase-dead PDK1 showed increased sensitivity to cetuximab compared with vector-transfected controls. Administration of AR-12 substantially decreased HNSCC tumor growth in vivo. These cumulative results show that PDK1 is a common signaling intermediate in GPCR-EGFR cross-talk and EGFR-independent signaling, and in which targeting the PDK1 pathway may represent a rational therapeutic strategy to enhance clinical responses to EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Neil E Bhola
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
LPA (lysophosphatidic acid) is a bioactive phospholipid having diverse effects on various types of tissues. When NMuMG (normal murine mammary gland) cells were cultured in the presence of 0-10 μM LPA, cell numbers were increased by dose dependency for the 6-day culture periods (P<0.05). In DNA synthesis assay, 10 μM LPA induced 4.5-fold more DNA synthesis compared with control (P<0.05). In addition, the cultured cell density in the given area was increased by LPA treatment. MMP (matrix metalloproteinase) inhibitor GM6001 and EGFR [EGF (epidermal growth factor) receptor] tyrosine kinase inhibitor AG1478 [tyrphostin AG1478, 4-(3-chloroanilino)-6,7-dimethoxyquinazoline] significantly decreased LPA-induced DNA synthesis and cell growth without cell death (P<0.05). To test the hypothesis that LPA-induced cell growth is mediated through LPA subtype receptors, LPA subtype receptor gene expressions were amplified by PCR. NMuMG cells expressed LPA1 and LPA2 receptor genes in the presence of 10% FBS (fetal bovine serum). LPA treatments increased ERK1/2 (extracellular-signal-regulated kinase) phosphorylation at 30 min and then dephosphorylated at 2 h after treatment. LPA treatment phosphorylated at tyrosine residues on a variety of Gi and PI3-dependent signal transducers in NMuMG cells. These results suggest that LPA subtype receptors play a role as the active transactivator of EGFR-associated kinases as well as direct growth regulator in mammary tissues.
Collapse
|
24
|
Paul G, Marchelletta RR, McCole DF, Barrett KE. Interferon-γ alters downstream signaling originating from epidermal growth factor receptor in intestinal epithelial cells: functional consequences for ion transport. J Biol Chem 2011; 287:2144-55. [PMID: 22069319 DOI: 10.1074/jbc.m111.318139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.
Collapse
Affiliation(s)
- Gisela Paul
- Division of Gastroenterology, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
25
|
Yoo BK, He P, Lee SJ, Yun CC. Lysophosphatidic acid 5 receptor induces activation of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1008-16. [PMID: 21832242 DOI: 10.1152/ajpcell.00231.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe cells. LPA(5)-dependent activation of NHE3 was blocked by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 and U0126, but not by phosphatidylinositol 3-kinase inhibitor LY294002 or phospholipase C-β inhibitor U73122. We found that LPA(5) transactivated the epidermal growth factor receptor (EGFR) and that inhibition of EGFR blocked LPA(5)-dependent activation of NHE3, suggesting an obligatory role of EGFR in the NHE3 regulation. Confocal immunofluorescence and surface biotinylation analyses showed that LPA(5) was located mostly in the apical membrane. EGFR, on the other hand, showed higher expression in the basolateral membrane. However, inhibition of apical EGFR, but not basolateral EGFR, abrogated LPA-induced regulation of MEK and NHE3, indicating that LPA(5) selectively activates apical EGFR. Furthermore, transactivation of EGFR independently activated the MEK-ERK pathway and proline-rich tyrosine kinase 2 (Pyk2). Similarly to MEK inhibition, knockdown of Pyk2 blocked activation of NHE3 by LPA. Furthermore, we showed that RhoA and Rho-associated kinase (ROCK) are involved in activation of Pyk2. Interestingly, LPA(5) did not directly activate RhoA but was required for transactivation of EGFR. Together, these results unveil a pivotal role of apical EGFR in NHE3 regulation by LPA and show that the RhoA-ROCK-Pyk2 and MEK-ERK pathways converge onto NHE3.
Collapse
Affiliation(s)
- Byong Kwon Yoo
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
26
|
Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoël M, Raffelsberger W, Poch O, Mckeating JA, Brino L, Baumert TF. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 2011; 17:589-95. [PMID: 21516087 PMCID: PMC3938446 DOI: 10.1038/nm.2341] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.
Collapse
Affiliation(s)
- Joachim Lupberger
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Mirjam B. Zeisel
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Fei Xiao
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Christine Thumann
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Isabel Fofana
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Laetitia Zona
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Christopher Davis
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Christopher J. Mee
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Marine Turek
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Sebastian Gorke
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Department of Medicine II
University of FreiburgFahnenbergplatz, 79085 Freiburg im Breisgau, DE
| | - Cathy Royer
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Benoit Fischer
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Muhammad N. Zahid
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
| | - Dimitri Lavillette
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - Judith Fresquet
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - François-Loïc Cosset
- Virologie Humaine
INSERM : U758IFR128École Normale Supérieure - Lyon46, Allee D'Italie 69364 Lyon Cedex 07, FR
| | - S Michael Rothenberg
- Massachusetts General Hospital Cancer Center
Howard Hughes Medical InstituteHarvard Medical School55 Fruit St, Boston, MA 02114, US
| | - Thomas Pietschmann
- TWINCORE, Division of Experimental Virology
Centre for Experimental and Clinical Infection Research HannoverMedical School Hannover (MHH)Helmholtz Centre for Infection Research (HZI)Feodor-Lynen-Straße 7 D-30625 Hannover, DE
| | - Arvind H. Patel
- MRC Virology Unit
University of Glasgow - Institute of VirologyGlasgow, Glasgow City G12 8QQ, GB
| | - Patrick Pessaux
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| | - Michel Doffoël
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| | - Wolfgang Raffelsberger
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Olivier Poch
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Jane A. Mckeating
- Hepatitis C Research Group
University of BirminghamDivision of Immunity and InfectionEdgbaston, Birmingham B15 2TT, GB
| | - Laurent Brino
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire
INSERM : U964CNRS : UMR7104Université de StrasbourgParc D'Innovation - 1 Rue Laurent Fries - BP 10142 - 67404 Illkirch Cedex, FR
| | - Thomas F. Baumert
- Interaction Virus-Hôte et Maladies du Foie
INSERM : U748Université de Strasbourg - Faculté de Médecine 3 Rue Koeberle 67000 Strasbourg, FR
- Service d'Hépato-Gastroentérologie
Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg (HUS)1 Place de l'Hôpital 67000 Strasbourg, FR
| |
Collapse
|
27
|
Li X, Huang Y, Jiang J, Frank SJ. Synergy in ERK activation by cytokine receptors and tyrosine kinase growth factor receptors. Cell Signal 2011; 23:417-424. [PMID: 20946955 PMCID: PMC3026594 DOI: 10.1016/j.cellsig.2010.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) signal through EGF and PDGF receptors, which are important receptor tyrosine kinases (RTKs). Growth hormone (GH) and prolactin (PRL) are four helical bundle peptide hormones that signal via GHR and PRLR, members of the cytokine receptor superfamily. In this study, we examine crosstalk between signaling pathways emanating from these disparate receptor groups (RTKs and cytokine receptors). We find that GH and EGF specifically synergize for activation of ERK in murine preadipocytes. The locus of this synergy resides at the level of MEK activation, but not above this level (i.e., not at the level of EGFR, SHC, or Raf activation). Furthermore, dephosphorylation of the scaffold protein, KSR, at a critical serine residue is also synergistically promoted by GH and EGF, suggesting that GH sensitizes these cells to EGF-induced ERK activation by augmenting the actions of KSR in facilitating MEK-ERK activation. Similarly specific synergy in ERK activation is also detected in human T47D breast cancer cells by cotreatment with PRL and PDGF. This synergy also resides at the level of MEK activation. Consistent with this synergy, PRL and PDGF also synergized for c-fos-dependent transactivation of a luciferase reporter gene in T47D cells, indicating that events downstream of ERK activation reflect this signaling synergy. Important conceptual and physiological implications of these findings are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012
| | - Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85004
| | - Jing Jiang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012
| | - Stuart J. Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0012
- Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL 35233
| |
Collapse
|
28
|
Toumi F, Frankson M, Ward JB, Kelly OB, Mroz MS, Bertelsen LS, Keely SJ. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors. Neurogastroenterol Motil 2011; 23:178-86, e43. [PMID: 20939850 DOI: 10.1111/j.1365-2982.2010.01610.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function. METHODS Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) colonic epithelial cells. Protein expression was measured by western blotting and intracellular Ca(2+) levels by Fura-2 fluorescence. KEY RESULTS While acute (15 min) treatment of T(84) cells with a cholinergic G(q) PCR agonist, carbachol (CCh), rapidly stimulated Cl(-) secretion, subsequent CCh-induced responses were attenuated in a biphasic manner. The first phase was transient and resolved within 6 h but this was followed by a chronic phase of attenuated responsiveness that was sustained up to 48 h. CCh-pretreatment did not chronically alter responses to another G(q)PCR agonist, histamine, or to thapsigargin or forskolin which elevate intracellular Ca(2+) and cAMP, respectively. This chronically acting antisecretory mechanism is not shared by neurotransmitters that activate G(s)PCRs. Conditioned medium from CCh-pretreated cells mimicked its chronic antisecretory actions, suggesting involvement of an epithelial-derived soluble factor but further experimentation ruled out the involvement of epidermal growth factor receptor ligands. Acute CCh exposure did not chronically alter surface expression of muscarinic M(3) receptors but inhibited intracellular Ca(2+) mobilization upon subsequent agonist challenge. CONCLUSIONS & INFERENCES These data reveal a novel, chronically acting, antisecretory mechanism that downregulates epithelial secretory capacity upon repeated G(q)PCR agonist exposure. This mechanism involves release of a soluble factor that uncouples receptor activation from downstream prosecretory signals.
Collapse
Affiliation(s)
- F Toumi
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
29
|
Frey MR, Hilliard VC, Mullane MT, Polk DB. ErbB4 promotes cyclooxygenase-2 expression and cell survival in colon epithelial cells. J Transl Med 2010; 90:1415-24. [PMID: 20585313 PMCID: PMC2947587 DOI: 10.1038/labinvest.2010.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ErbB4 receptor tyrosine kinase is expressed at high levels in human and mouse colitis, and inhibits colon epithelial cell apoptosis in the presence of proinflammatory cytokines. In this study, we investigated the molecular mechanisms responsible for ErbB4-induced cell survival. In cultured mouse colon epithelial cells, ErbB4 overexpression resulted in increased levels of cyclooxygenase-2 (COX-2) mRNA and protein; in contrast, ErbB4 knockdown with siRNA blocked COX-2 accumulation in response to tumor necrosis factor. Although ErbB4 is expressed as up to four isoforms in epithelial tissues, its ability to promote COX-2 expression was isoform independent. ErbB4-stimulated COX-2 induction was associated with an increase in mRNA half-life and was blocked by inhibition of Src, phosphatidylinositol (PI) 3-kinase, or epidermal growth factor receptor (EGFR). Furthermore, ErbB4 expression promoted EGFR phosphorylation in the presence of heregulin, implicating ErbB4-EGFR heterodimerization in these responses. As to the cellular responses to ErbB4 activation, increased survival of ErbB4-expressing cells in the presence of proinflammatory cytokines was sensitive to the COX-2 inhibitor celecoxib. Furthermore, ErbB4-overexpressing cells acquired the ability to form colonies in soft agar, indicative of cellular transformation, also in a celecoxib-sensitive manner. Together our data indicate that ErbB4 is a key regulator of COX-2 expression and cellular survival in colon epithelial cells, acting in concert with EGFR through a Src- and PI 3-kinase-dependent mechanism. These results suggest that chronic overexpression of ErbB4 in the context of inflammation could contribute to colitis-associated tumorigenesis by inhibiting colonocyte apoptosis.
Collapse
Affiliation(s)
- Mark Ronald Frey
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Valda Catherine Hilliard
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew Travis Mullane
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - D. Brent Polk
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232, Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
30
|
Scharl M, Rudenko I, McCole DF. Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 2010; 299:G935-45. [PMID: 20689057 PMCID: PMC2957338 DOI: 10.1152/ajpgi.00106.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Crohn's disease candidate gene, protein tyrosine phosphatase nonreceptor type 2 (PTPN2), has been shown to regulate epidermal growth factor (EGF)-induced phosphatidylinositol 3-kinase (PI3K) activation in fibroblasts. In intestinal epithelial cells (IECs), EGF-induced EGF receptor (EGFR) activation and recruitment of PI3K play a key role in regulating many cellular functions including Ca(2+)-dependent Cl(-) secretion. Moreover, EGFR also serves as a conduit for signaling by other non-growth factor receptor ligands such as the proinflammatory cytokine, IFN-γ. Here we investigated a possible role for PTPN2 in the regulation of EGFR signaling and Ca(2+)-dependent Cl(-) secretion in IECs. PTPN2 knockdown enhanced EGF-induced EGFR tyrosine phosphorylation in T(84) cells. In particular, PTPN2 knockdown promoted EGF-induced phosphorylation of EGFR residues Tyr-992 and Tyr-1068 and led subsequently to increased association of the catalytic PI3K subunit, p110, with EGFR and elevated phosphorylation of the downstream marker, Akt. As a functional consequence, loss of PTPN2 potentiated EGF-induced inhibition of carbachol-stimulated Ca(2+)-dependent Cl(-) secretion. In contrast, PTPN2 knockdown affected neither IFN-γ-induced EGFR transactivation nor EGF- or IFN-γ-induced phosphorylation of ERK1/2. In summary, our data establish a role for PTPN2 in the regulation of EGFR signaling in IECs in response to EGF but not IFN-γ. Knockdown of PTPN2 directs EGFR signaling toward increased PI3K activation and increased suppression of epithelial chloride secretory responses. Moreover, our findings suggest that PTPN2 dysfunction in IECs leads to altered control of intestinal epithelial functions regulated by EGFR.
Collapse
Affiliation(s)
- Michael Scharl
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Ivan Rudenko
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Declan F. McCole
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| |
Collapse
|
31
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bulut K, Felderbauer P, Hoeck K, Schmidt WE, Hoffmann P. Carbachol induces TGF-alpha expression and colonic epithelial cell proliferation in sensory-desensitised rats. Int J Colorectal Dis 2010; 25:335-41. [PMID: 20012300 DOI: 10.1007/s00384-009-0856-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 02/04/2023]
Abstract
OBJECTIVE/BACKGROUND Signals for the expression of the peptide growth factors epidermal growth factor and transforming growth factor-alpha (TGFalpha) in the gastrointestinal mucosa are largely unknown. We have shown earlier that extrinsic afferents in the gastrointestinal tract induce TGFalpha expression in colonic mucosa via the deliberation of neurotransmitters substance P and calcitonin gene-related peptide. The aim of our present study was to determine the effects of carbachol on mucosal TGFalpha expression and epithelial cell proliferation in vivo. DESIGN/METHODS Rats were divided in three groups. Group 1 was treated with vehicle only, group 2 received one single subcutaneous injection of 250 microg/kg of carbachol and animals in group 3 were sensory-desensitised prior to the injection of 250 microg/kg carbachol. TGFalpha expression and epithelial cell proliferation was evaluated by polymerase chain reaction, Western blot analysis and bromodeoxyuridine staining. RESULTS Carbachol induced a significant increase in mucosal epithelial cell proliferation and TGFalpha expression. Sensory desensitisation did neither abolish the increased TGFalpha expression nor the increase in epithelial cell proliferation. CONCLUSION Parasympathetic pathways are involved in the control of TGFalpha expression in gastrointestinal mucosa as well as in epithelial cell proliferation.
Collapse
Affiliation(s)
- Kerem Bulut
- Department of Internal Medicine I, St. Josef Hospital, Ruhr-University of Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
33
|
Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA. P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 2010; 285:7545-55. [PMID: 20064929 DOI: 10.1074/jbc.m109.078170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The G protein-coupled receptor P2Y(2) nucleotide receptor (P2Y(2)R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y(2)Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y(2)R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-alpha protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y(2)R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y(2)R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.
Collapse
Affiliation(s)
- Ann M Ratchford
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, Defea K, Hollenberg MD. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. Mol Pharmacol 2009; 76:791-801. [PMID: 19605524 PMCID: PMC2769049 DOI: 10.1124/mol.109.055509] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/14/2009] [Indexed: 02/03/2023] Open
Abstract
We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode of its presentation to the receptor (tethered versus soluble) can confer biased signaling by PAR(2), its arrestin recruitment, and its internalization. Thus, PAR(2) can signal to multiple pathways that are differentially triggered by distinct proteinase-revealed TLs or by synthetic signal-selective activating peptides.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Department of Pharmacology and Therapeutics and Medicine, University of Calgary, Calgary, AB T2N4C2, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Miyatake M, Rubinstein TJ, McLennan GP, Belcheva MM, Coscia CJ. Inhibition of EGF-induced ERK/MAP kinase-mediated astrocyte proliferation by mu opioids: integration of G protein and beta-arrestin 2-dependent pathways. J Neurochem 2009; 110:662-74. [PMID: 19457093 DOI: 10.1111/j.1471-4159.2009.06156.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although micro, kappa, and delta opioids activate extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase, the mechanisms involved in their signaling pathways and the cellular responses that ensue differ. Here we focused on the mechanisms by which micro opioids rapidly (min) activate ERK and their slower (h) actions to inhibit epidermal growth factor (EGF)-induced ERK-mediated astrocyte proliferation. The micro-opioid agonists ([d-ala(2), mephe(4), gly-ol(5)] enkephalin and morphine) promoted the phosphorylation of ERK/MAP kinase within 5 min via G(i/o) protein, calmodulin (CaM), and beta-arrestin2-dependent signaling pathways in immortalized and primary astrocytes. This was based on the attenuation of the micro-opioid activation of ERK by pertussis toxin (PTX), the CaM antagonist, W-7, and siRNA silencing of beta-arrestin2. All three pathways were shown to activate ERK via an EGF receptor transactivation-mediated mechanism. This was disclosed by abolishment of micro-opioid-induced ERK phosphorylation with the EGF receptor-specific tyrosine phosphorylation inhibitor, AG1478, and micro-opioid-induced reduction of EGF receptor tyrosine phosphorylation by PTX, and beta-arrestin2 targeting siRNA in the present studies and formerly by CaM antisense. Long-term (h) treatment of primary astrocytes with [d-ala(2),mephe(4),gly-ol(5)] enkephalin or morphine, attenuated EGF-induced ERK phosphorylation and proliferation (as measured by 5'-bromo-2'-deoxy-uridine labeling). PTX and beta-arrestin2 siRNA but not W-7 reversed the micro-opioid inhibition. Unexpectedly, beta-arrestin-2 siRNA diminished both EGF-induced ERK activation and primary astrocyte proliferation suggesting that this adaptor protein plays a novel role in EGF signaling as well as in the opioid receptor phase of this pathway. The results lend insight into the integration of the different micro-opioid signaling pathways to ERK and their cellular responses.
Collapse
Affiliation(s)
- Mayumi Miyatake
- E. A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
36
|
Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J 2009; 23:425-32. [PMID: 18832597 PMCID: PMC2638965 DOI: 10.1096/fj.08-112771] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/11/2008] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an activated oncogene in many cancers. It can be transactivated by ligands of G protein-coupled receptors (GPCRs). We show here that a novel gene, human rhomboid family-1 (RHBDF1), which was recently reported to have a pivotal role in epithelial cancer cell growth in culture and in xenograft tumors, participates in the modulation of GPCR-mediated EGFR transactivation. The RHBDF1 protein localizes mainly in the endoplasmic reticulum. Silencing the RHBDF1 gene in head and neck squamous cancer cell line 1483 cells with siRNA causes an inhibition of gastrin-releasing peptide (GRP) -induced phosphorylation of EGFR and EGFR-dependent signaling proteins p44/42 MAPK and AKT, accompanied by an inhibition of GRP-induced survival, proliferation, and invasion of the cells. The EGFR signaling pathway itself remains intact, however, as the cells remain responsive to exogenous EGF. In addition, RHBDF1 gene silencing disrupts GRP-stimulated secretion of EGFR ligand TGF-alpha, but not the production of latent TGF-alpha, whereas engineered overexpression of RHBDF1 markedly accelerates the secretion of TGF-alpha. These findings are consistent with the view that RHBDF1 is critically involved in a GPCR ligand-stimulated process leading to the activation of latent EGFR ligands.
Collapse
Affiliation(s)
- Huafei Zou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
37
|
McCole DF, Barrett KE. Decoding epithelial signals: critical role for the epidermal growth factor receptor in controlling intestinal transport function. Acta Physiol (Oxf) 2009; 195:149-59. [PMID: 18983445 DOI: 10.1111/j.1748-1716.2008.01929.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium engages in bidirectional transport of fluid and electrolytes to subserve the physiological processes of nutrient digestion and absorption, as well as the elimination of wastes, without excessive losses of bodily fluids that would lead to dehydration. The overall processes of intestinal ion transport, which in turn drive the secretion or absorption of water, are accordingly carefully regulated. We and others have identified the epidermal growth factor receptor (EGFr) as a critical regulator of mammalian intestinal ion transport. In this article, we focus on our studies that have uncovered the intricate signalling mechanisms downstream of EGFr that regulate both chloride secretion and sodium absorption by colonocytes. Emphasis will be placed on the EGFr-associated regulatory pathways that dictate the precise outcome to receptor activation in response to signals that may seem, on their face, to be quite similar if not identical. The concepts to be discussed underlie the ability of the intestinal epithelium to utilize a limited set of signalling effectors to produce a variety of outcomes suitable for varying physiological and pathophysiological demands. Our findings therefore are relevant not only to basic biological principles, but also may ultimately point to new therapeutic targets in intestinal diseases where ion transport is abnormal.
Collapse
Affiliation(s)
- D F McCole
- Department of Medicine, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
38
|
ERBBs in the gastrointestinal tract: recent progress and new perspectives. Exp Cell Res 2008; 315:583-601. [PMID: 19041864 DOI: 10.1016/j.yexcr.2008.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 12/24/2022]
Abstract
The gastrointestinal epithelium does much more than provide a physical barrier between the intestinal lumen and our internal milieu. It is actively engaged in absorption and secretion of salt and water via ion transporters, exchangers and selective ion channels. It is also a continuously self-renewing epithelium that undergoes ordered growth and differentiation along its vertical axis. From this dual perspective, we will consider the actions of the ERBB family of ligands and receptors in the maintenance of gastrointestinal homeostasis and discuss instances when the actions of this family go awry such as in cancer and Ménétrier's disease.
Collapse
|
39
|
Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 2008; 119:33-43. [PMID: 18558434 DOI: 10.1016/j.pharmthera.2008.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/28/2008] [Indexed: 12/27/2022]
Abstract
Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface.
Collapse
Affiliation(s)
- Neil M Nathanson
- Department of Pharmacology, School of Medicine, University of Washington, Box 357750, Seattle, WA 98195-7750, USA.
| |
Collapse
|
40
|
Barrett KE. New ways of thinking about (and teaching about) intestinal epithelial function. ADVANCES IN PHYSIOLOGY EDUCATION 2008; 32:25-34. [PMID: 18334565 DOI: 10.1152/advan.00092.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This article summarizes a presentation made at the Teaching Refresher Course of the American Physiological Society, which was held at the Experimental Biology meeting in 2007. The intestinal epithelium has important ion transport and barrier functions that contribute pivotally to normal physiological functioning of the intestine and other body systems. These functions are also frequently the target of dysfunction that, in turn, results in specific digestive disease states, such as diarrheal illnesses. Three emerging concepts are discussed with respect to ion transport: the complex interplay of intracellular signals that both activate and inhibit chloride secretion; the role of multiprotein complexes in the regulation of ion transport, taking sodium/hydrogen exchange as an example; and acute and chronic regulation of colonic sodium absorption, involving both sodium channel internalization and de novo synthesis of new channels. Similarly, recently obtained information about the molecular components of epithelial tight junctions and the ways in which tight junctions are regulated both in health and disease are discussed to exemplify ways to teach about intestinal barrier properties. Finally, both genetically determined intestinal diseases and those arising as a result of infections and/or inflammation are described, and these can be used as the means to enhance the basic and clinical relevance of teaching about intestinal epithelial physiology as well as the impact that the understanding of such physiology has had on associated therapeutics. The article also indicates, where relevant, how different approaches may be used effectively to teach related concepts to graduate versus medical/professional student audiences.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California 92093-0063, USA.
| |
Collapse
|
41
|
Frank SJ. Mechanistic aspects of crosstalk between GH and PRL and ErbB receptor family signaling. J Mammary Gland Biol Neoplasia 2008; 13:119-29. [PMID: 18236142 DOI: 10.1007/s10911-008-9065-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 11/27/2022] Open
Abstract
Growth hormone (GH) and prolactin (PRL) are anterior pituitary hormones that have multiple roles in growth and metabolism. Both hormones are important in mammary development and breast cancer. The epidermal growth factor (EGF) family of peptides and the receptors that they activate (the ErbB family) are also major players in mammary biology and pathophysiology. Recent studies in signal transduction have highlighted the interplay between signaling pathways referred to as crosstalk. In this review, cell biological and signaling studies related to crosstalk between GH and PRL and the ErbB family are discussed. In particular, the role of GH- and PRL-induced phosphorylation of ErbB receptors in regulating EGF responsiveness is highlighted with attention to potential pathophysiological relevance.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Cell Biology and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| |
Collapse
|
42
|
van der Merwe JQ, Hollenberg MD, MacNaughton WK. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G441-51. [PMID: 18032480 DOI: 10.1152/ajpgi.00303.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.
Collapse
Affiliation(s)
- Jacques Q van der Merwe
- Inflammation Research Network, Department of Physiology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | |
Collapse
|
43
|
Chappell AE, Bunz M, Smoll E, Dong H, Lytle C, Barrett KE, McCole DF. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J 2008; 22:2023-36. [PMID: 18211955 DOI: 10.1096/fj.07-099697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H(2)O(2)), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl(-) secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H(2)O(2) inhibit Ca(2+)-dependent Cl(-) secretion across T(84) colonic epithelial cells by elevating cytosolic Ca(2+), which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca(2+)-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca(2+)-dependent stimuli is mediated in part by K(+) efflux through basolateral K(+) channels and Cl(-) uptake by the Na(+)-K(+)-2Cl(-) cotransporter, NKCC1. We demonstrate that H(2)O(2) inhibits Ca(2+)-dependent basolateral K(+) efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl(-) conductance. Thus, we have demonstrated that H(2)O(2) inhibits Ca(2+)-dependent Cl(-) secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.
Collapse
Affiliation(s)
- Alfred E Chappell
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Transforming growth factor-alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family. Expression of TGFalpha is highly regulated in response to exogenous cellular signals including cytokines and other growth factors. The growth factor has been found to be indispensable for proper development of many tissues and organs. TGFalpha has also been implicated in numerous disease states including forms of breast cancer. This minireview summarizes the basic biology of TGFalpha and its actions during normal and pathogenic development of the mammary epithelium.
Collapse
Affiliation(s)
- Brian W Booth
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
45
|
Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OMZ, Wang JM. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res 2007; 67:5906-13. [PMID: 17575160 DOI: 10.1158/0008-5472.can-07-0691] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The G protein-coupled formylpeptide receptor (FPR), which mediates leukocyte migration in response to bacterial and host-derived chemotactic peptides, promotes the chemotaxis, survival, and tumorigenesis of highly malignant human glioblastoma cells. Because glioblastoma cells may also express other receptors for growth signals, such as the epidermal growth factor (EGF) receptor (EGFR), we investigated the role of EGFR in the signaling cascade of FPR and how two receptors cross-talk to exacerbate tumor growth. We found that N-formyl-methionyl-leucyl-phenylalanine, an FPR agonist peptide, rapidly induced EGFR phosphorylation at tyrosine residue (Tyr) 992, but not residues 846, 1068, or 1173, in glioblastoma cells, whereas all these residues were phosphorylated after only EGF treatment. The FPR agonist-induced EGFR phosphorylation in tumor cells was dependent on the presence of FPR as well as Galphai proteins, and was controlled by Src tyrosine kinase. The transactivation of EGFR contributes to the biological function of FPR in glioblastoma cells because inhibition of EGFR phosphorylation significantly reduced FPR agonist-induced tumor cell chemotaxis and proliferation. Furthermore, depletion of both FPR and EGFR by short interference RNA abolished the tumorigenesis of the glioblastoma cells. Our study indicates that the glioblastoma-promoting activity of FPR is mediated in part by transactivation of EGFR and the cross-talk between two receptors exacerbates the malignant phenotype of tumor cells. Thus, targeting both receptors may yield antiglioblastoma agents superior to those targeting one of them.
Collapse
Affiliation(s)
- Jian Huang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Science Applications International Corporation-Frederick, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chang HT, Kao YL, Wu CM, Fan TC, Lai YK, Huang KL, Chang YS, Tsai JJ, Chang MDT. Signal peptide of eosinophil cationic protein upregulates transforming growth factor-alpha expression in human cells. J Cell Biochem 2007; 100:1266-75. [PMID: 17063486 DOI: 10.1002/jcb.21120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eosinophil cationic protein (ECP) is a major component of eosinophil granule protein that is used as a clinical bio-marker for asthma and allergic inflammatory diseases. Previously, it has been reported that the signal peptide of human ECP (ECPsp) inhibits the cell growth of Escherichia coli (E. coli) and Pichia pastoris (P. pastoris), but not mammalian A431 cells. The inhibitory effect is due to the lack of human signal peptide peptidase (hSPP), a protease located on the endoplasmic reticulum (ER) membrane, in the lower organisms. In this study, we show that the epidermal growth factor receptor (EGFR) is upregulated by the exogenous ECPsp-eGFP as a result of the increased expression of the transforming growth factor-alpha (TGF-alpha) at both transcriptional and translational levels in A431 and HL-60 clone 15 cell lines. Furthermore, the N-terminus of ECPsp fragment generated by the cleavage of hSPP (ECPspM1-G17) gives rise to over threefold increase of TGF-alpha protein expression, whereas another ECPsp fragment (ECPspL18-A27) and the hSPP-resistant ECPsp (ECPspG17L) do not show similar effect. Our results indicate that the ECPspM1-G17 plays a crucial role in the upregulation of TGF-alpha, suggesting that the ECPsp not only directs the secretion of mature ECP, but also involves in the autocrine system.
Collapse
Affiliation(s)
- Hao-Teng Chang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR. Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 2007; 582:507-24. [PMID: 17478539 PMCID: PMC2075325 DOI: 10.1113/jphysiol.2007.129718] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The capacity of the intestine to secrete fluid is dependent on the basolateral Na(+)-K(+)-2Cl(-) co-transporter (NKCC1). Given that cAMP and Ca(2+) signals promote sustained and transient episodes of fluid secretion, respectively, this study investigated the differential regulation of functional NKCC1 membrane expression in the native human colonic epithelium. Tissue sections and colonic crypts were obtained from sigmoid rectal biopsy tissue samples. Cellular location of NKCC1, Na(+)-K(+)-ATPase, M3 muscarinic acetylcholine receptor (M(3)AChR) and lysosomes was examined by immunolabelling techniques. NKCC1 activity (i.e. bumetanide-sensitive uptake), intracellular Ca(2+) and cell volume were assessed by 2',7'-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), Fura-2 and differential interference contrast/calcein imaging. Unstimulated NKCC1 was expressed on basolateral membranes and exhibited a topological expression gradient, predominant at the crypt base. Cholinergic Ca(2+) signals initiated at the crypt base and spread along the crypt axis. In response, NKCC1 underwent a Ca(2+)-dependent 4 h cycle of recruitment to basolateral membranes, activation, internalization, degradation and re-expression. Internalization was prevented by the epidermal growth factor receptor kinase inhibitor tyrphostin-AG1478, and re-expression was prohibited by the protein synthesis inhibitor cylcoheximide; the lysosome inhibitor chloroquine promoted accumulation of NKCC1 vesicles. NKCC1 internalization and re-expression were accompanied by secretory volume decrease and bumetanide-sensitive regulatory volume increase, respectively. In contrast, forskolin (i.e. cAMP elevation)-stimulated NKCC1 activity was sustained, and membrane expression and cell volume remained constant. Co-stimulation with forskolin and acetylcholine promoted dramatic recruitment of NKCC1 to basolateral membranes and prolonged the cycle of co-transporter activation, internalization and re-expression. In conclusion, persistent NKCC1 activation by cAMP is constrained by a Ca(2+)-dependent cycle of co-transporter internalization, degradation and re-expression; this is a novel mechanism to limit intestinal fluid loss.
Collapse
Affiliation(s)
- Amy Reynolds
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
McCole DF, Truong A, Bunz M, Barrett KE. Consequences of Direct Versus Indirect Activation of Epidermal Growth Factor Receptor in Intestinal Epithelial Cells Are Dictated by Protein-tyrosine Phosphatase 1B. J Biol Chem 2007; 282:13303-15. [PMID: 17339316 DOI: 10.1074/jbc.m700424200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is an integral regulator of many cellular functions. EGFR also acts as a central conduit for extracellular signals involving direct activation of the receptor by EGFR ligands or indirect activation by G protein-coupled receptor (GPCR)-stimulated transactivation of the EGFR. We have previously shown that EGFR negatively regulates epithelial chloride secretion as a result of transforming growth factor-alpha-mediated EGFR transactivation in response to muscarinic GPCR activation. Here we show that direct activation of the EGFR by EGFR ligands produces a different pattern of EGFR tyrosine phosphorylation and downstream phosphatidylinositol 3-kinase recruitment than GPCR-stimulated transactivation of the EGFR occurring via paracrine EGFR ligand release. Moreover, we demonstrate that this differential signaling and its consequences depend on protein-tyrosine phosphatase 1B activity. Thus protein-tyrosine phosphatase 1B governs differential recruitment of signaling pathways involved in EGFR regulation of epithelial ion transport. Our findings furthermore establish how divergent signaling outcomes can arise from the activation of a single receptor.
Collapse
Affiliation(s)
- Declan F McCole
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
49
|
Carlos MA, Nwagwu C, Ao M, Venkatasubramanian J, Boonkaewwan C, Prasad R, Chowdhury SAK, Vidyasagar D, Rao MC. Epidermal growth factor stimulates chloride transport in primary cultures of weanling and adult rabbit colonocytes. J Pediatr Gastroenterol Nutr 2007; 44:300-11. [PMID: 17325549 DOI: 10.1097/mpg.0b013e31802fca72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES We have shown that Ca2+-dependent regulation of Cl- secretion in the mammalian colon exhibits age dependence. Because epidermal growth factor (EGF) has a well-established role in growth and can increase intracellular calcium [Ca2+]i, it is conceivable that its developmental influence may extend to the regulation of intestinal ion transport. In this study, we examined the role of EGF in the regulation of Cl- transport in the developing rabbit distal colon. MATERIALS AND METHODS Because serum contains growth factors, which could have confounded our studies, we first established an optimal milieu for testing EGF in primary cultures of adult rabbit distal colonocytes by culturing them for 24 h in media containing 0%, 1%, 5%, and 20% serum. Chloride transport (millimoles per second) and [Ca2+]i were measured with use of the fluorescent indicator N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) and Fura-2AM, respectively. RESULTS Serum depletion had no effect on cell number, DNA content, or basal Cl- transport, but it significantly affected cell viability. In media with 0%, 1%, or 20% serum, bethanechol, 8BrcAMP, taurodeoxycholate, and EGF stimulated Cl- transport to a similar extent. EGF maximally stimulated Cl- transport at 16.3 nmol/L and 20 minutes. Bethanechol, but not EGF, increased [Ca2+]i. EGF did not alter bethanechol-stimulated Cl- transport or [Ca2+]i. EGF acts via an EGF-receptor and mitogen activated protein kinase (MAPK) signaling pathway, since stimulation of Cl- transport was abolished by genistein, AG1478, and PD98059. Weanling and adult colonocytes, cultured in 1% serum, showed similar basal and EGF-stimulated Cl- transport. CONCLUSIONS EGF stimulates rabbit colonic Cl- transport via a Ca2+-independent, tyrosine kinase- and MAPK-dependent pathway, and its effects are not age dependent.
Collapse
Affiliation(s)
- Maria A Carlos
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen J, Chen JK, Falck JR, Guthi JS, Anjaiah S, Capdevila JH, Harris RC. Mitogenic activity and signaling mechanism of 2-(14,15- epoxyeicosatrienoyl)glycerol, a novel cytochrome p450 arachidonate metabolite. Mol Cell Biol 2007; 27:3023-34. [PMID: 17283047 PMCID: PMC1899952 DOI: 10.1128/mcb.01482-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arachidonic acid is an essential constituent of cell membranes that is esterified to the sn-2 position of glycerophospholipids and is released from selected phospholipid pools by tightly regulated phospholipase cleavage. Metabolism of the released arachidonic acid by the cytochrome P450 enzyme system (cP450) generates biologically active compounds, including epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids. Here we report that 2-(14,15-epoxyeicosatrienoyl)glycerol (2-14,15-EG), a novel cP450 arachidonate metabolite produced in the kidney, is a potent mitogen for renal proximal tubule cells. This effect is mediated by activation of tumor necrosis factor alpha-converting enzyme (ADAM17), which cleaves membrane-bound transforming growth factor alpha (proTGF-alpha) and releases soluble TGF-alpha as a ligand that binds and activates epidermal growth factor receptor (EGFR). The present studies additionally demonstrate that the structurally related 14,15-EET stimulates release of soluble heparin-binding EGF-like growth factor as an EGFR ligand by activation of ADAM9, another member of the ADAM family. Thus, in addition to the characterization of 2-14,15-EG's mitogenic activity and signaling mechanism, our study provides the first example that two structurally related biologically active lipid mediators can activate different metalloproteinases and release different EGFR ligands in the same cell type to activate EGFR and stimulate cell proliferation.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacology
- ADAM Proteins/genetics
- ADAM Proteins/metabolism
- ADAM17 Protein
- Animals
- Arachidonic Acid/metabolism
- Cell Line
- Cytochrome P-450 Enzyme System/metabolism
- Down-Regulation/drug effects
- Enzyme Activation/drug effects
- Epidermal Growth Factor/metabolism
- Epithelial Cells/drug effects
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Glycerol/chemistry
- Glycerol/pharmacology
- Heparin-binding EGF-like Growth Factor
- Intercellular Signaling Peptides and Proteins
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitogens/pharmacology
- Models, Biological
- Monoglycerides/chemistry
- Monoglycerides/pharmacology
- RNA, Small Interfering
- Receptors, Cannabinoid/metabolism
- Signal Transduction/drug effects
- Swine
- Transforming Growth Factor alpha/metabolism
Collapse
Affiliation(s)
- Jianchun Chen
- C-3121 Medical Center North, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|