1
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Dwivedi J, Kumar P, Sachan P, Singh C, Saxena B, Wal A, Wal P. Phyto-pharmacological Potential of Aegle marmelos (L.) for Neurological Disorders: Progress and Prospects. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2025; 16:12-30. [PMID: 38468524 DOI: 10.2174/012772574x289517240222045916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Aegle marmelos, an Indian plant, has been extensively utilized by the people of the Indian subcontinent over about 5000 years. The leaves, bark, roots, and fruits, including seeds, are widely used to cure a variety of diseases in the Indian traditional system of medicine, Ayurveda, along with numerous folk medicines. By revealing the existence of significant bioactive chemicals, modern research has effectively substantiated the therapeutic effects of bael. OBJECTIVE The objective of this study was to review the literature regarding A. marmelos geographical distribution, morphology, therapeutic benefits, and phytochemicals found in the bael leaves, fruits, and other parts of the plant that offer a wide range of pharmacological applications in neurological disorders. METHODOLOGY A thorough literature search was conducted using five computerized databases, such as PubMed, Google Scholar, ScienceDirect, Elsevier, and Wiley Online Library (WOL), by using standard keywords "A. marmelos," "Geographical distribution," "Morphological description," "Ethnobotanical Uses," "Phytoconstituents" and "Neuroprotective activities" for review papers published between 1975 and 2023. A small number of earlier review articles focused on phyto-pharmacological potential of Aegle marmelos (L.) for neurological disorders. RESULTS According to some research, Aegle marmelos extracts potentially have neuroprotective benefits. This is due to its capacity to alter cellular mechanisms that cause neuronal damage. CONCLUSION Neurodegenerative illnesses usually induce permanent neuronal network loss overall the brain along with the spinal cord (CNS), resulting in chronic functional impairments. The review summarizes the multiple aspects and processes of A. marmelos extract and its components in several models of neurodegenerative diseases such as anxiety, epilepsy, depression, Parkinson's disease, Alzheimer's disease, and others. MDA, nitrite, TNF-, and IL-6 levels were dramatically elevated, whereas glutathione levels were significantly lowered in the hippocampus of STZ-treated rats. Furthermore, STZ-treated rats showed a substantial drop in catalase activity and an increase in AChE activity, indicating cholinergic hypofunction and neuronal injury. The neuroprotective ability of A. marmelos against STZ-induced oxidative stress and cognitive loss in rats suggests that it has therapeutic relevance in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology Pharmacy, Bhauti, Kanpur-209305, UP, India
| | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical sciences, Adesh University, Bathinda, India
| | - Pranjal Sachan
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology Pharmacy, Bhauti, Kanpur-209305, UP, India
| | - Charan Singh
- Department of Pharmacy, Bhartiyam College of Pharmacy, Faridabad, Haryana, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Ankita Wal
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology Pharmacy, Bhauti, Kanpur-209305, UP, India
| | - Pranay Wal
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology Pharmacy, Bhauti, Kanpur-209305, UP, India
| |
Collapse
|
3
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
4
|
Karunarathne K, Kee TR, Jeon H, Cazzaro S, Gamage YI, Pan J, Woo JAA, Kang DE, Muschol M. Crystal Violet Selectively Detects Aβ Oligomers but Not Fibrils In Vitro and in Alzheimer's Disease Brain Tissue. Biomolecules 2024; 14:615. [PMID: 38927020 PMCID: PMC11201545 DOI: 10.3390/biom14060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
Deposition of extracellular Amyloid Beta (Aβ) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aβ and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aβ42 oligomers (AβOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.
Collapse
Affiliation(s)
| | - Teresa R. Kee
- Department of Molecular Medicine, USF Health, Morsani College of Medicine, Tampa, FL 33620, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hanna Jeon
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sara Cazzaro
- Department of Molecular Medicine, USF Health, Morsani College of Medicine, Tampa, FL 33620, USA
| | - Yasith I. Gamage
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Jung-A. A. Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Martin Muschol
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Missawi O, Jeddou IB, Venditti M, Zitouni N, Zaouali MA, Abdennebi HB, Messaoudi I, Reiter RJ, Minucci S, Banni M. Environmental microplastic accumulation exacerbates liver ischemia-reperfusion injury in rat: Protective effects of melatonin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160155. [PMID: 36436653 DOI: 10.1016/j.scitotenv.2022.160155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Ischemia-reperfusion (IR) injury is an inevitable complication of liver transplantation and partial hepatectomy. Although the hazards of environmental microplastics (EMPs) have been well explored, data underlying their impact on IR-induced hepatotoxicity and how to alleviate these damages remain largely undefined. In this study, the involvement of melatonin (MT) in modulating EMPs toxicity in the liver undergoing ischemia-reperfusion injury was investigated. Male Wistar rats were exposed to MPs for 7 days and then subjected to 1 h of partial warm ischemia (70 %) followed by 24 h of reperfusion. We analyzed some parameters as the oxidative stress, the stability of cytoskeleton as well as inflammation, and autophagy. Our data suggested that EMPs elicited liver injury in ischemic animals. Data revealed several histological alterations caused by EMP and IRI, including cellular disorientation, cell necrosis, and microvacuolar steatosis, as well as inflammatory cell infiltration. EMPs increased blood transaminase (AST and ALT) and oxidative stress levels in the ischemic liver. In addition, RT-qPCR, immunofluorescence, and western blot analyses highlighted an increased expression of α-tubulin, IL-18, NFkB, and LC3. However, the ability of MT to reduce MPs and IRI toxicity was consistent with a significant decrease in the evaluated markers. The combined data not only document that melatonin is an effective agent to protect against hepatic IRI but also reduces cellular dysfunction caused by EMPs.
Collapse
Affiliation(s)
- Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Mohamed Amin Zaouali
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Imed Messaoudi
- LR11ES41, Higher Institute of Biotechnology, Monastir University, 5000 Monastir, Tunisia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.
| |
Collapse
|
6
|
Kim YM, Park S, Choi SY, Oh SB, Jung M, Pack CG, Hwang JJ, Tak E, Lee JY. Clusterin Binding Modulates the Aggregation and Neurotoxicity of Amyloid-β(1-42). Mol Neurobiol 2022; 59:6228-6244. [PMID: 35904715 DOI: 10.1007/s12035-022-02973-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) aggregates in the brain. Clusterin (CLU), also known as apolipoprotein J, is a potent risk factor associated with AD pathogenesis, in which Aβ aggregation is essentially involved. We observed close colocalization of CLU and Aβ(1-42) (Aβ42) in parenchymal amyloid plaques or vascular amyloid deposits in the brains of human amyloid precursor protein (hAPP)-transgenic Tg2576 mice. Therefore, to elucidate the binding interaction between CLU and Aβ42 and its impact on amyloid aggregation and toxicity, the two synthetic proteins were incubated together under physiological conditions, and their structural and morphological variations were investigated using biochemical, biophysical, and microscopic analyses. Synthetic CLU spontaneously bound to different possible variants of Aβ42 aggregates with very high affinity (Kd = 2.647 nM) in vitro to form solid CLU-Aβ42 complexes. This CLU binding prevented further aggregation of Aβ42 into larger oligomers or fibrils, enriching the population of smaller Aβ42 oligomers and protofibrils and monomers. CLU either alleviated or augmented Aβ42-induced cytotoxicity and apoptosis in the neuroblastoma-derived SH-SY5Y and N2a cells, depending on the incubation period and the molar ratio of CLU:Aβ42 involved in the reaction before addition to the cells. Thus, the effects of CLU on Aβ42-induced cytotoxicity were likely determined by the extent to which it bound and sequestered toxic Aβ42 oligomers or protofibrils. These findings suggest that CLU could influence amyloid neurotoxicity and pathogenesis by modulating Aβ aggregation.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - SuJi Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Shin Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - MinKyo Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Hosseinzadeh M, Alizadeh A, Heydari P, Kafami M, Hosseini M, Beheshti F, Marefati N, Ghanbarabadi M. Effect of vitamin E on cisplatin-induced memory impairment in male rats. Acta Neuropsychiatr 2021; 33:43-48. [PMID: 33054896 DOI: 10.1017/neu.2020.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Neurotoxicity is an adverse effect caused by cisplatin due to inflammation and oxidative stress in the central nervous system. The present study aimed to assess the effects of vitamin E injection on the learning and memory of rats with cisplatin-induced cognitive impairment. METHODS Male rats were administered with cisplatin (2 mg/kg/7 day; intraperitoneally [i i.p.]) and/or vitamin E (200 mg/kg/7 day; i.p.) for 1 week, and the control group received saline solution. Spatial memory was evaluated using Morris water maze (MWM). In addition, the hippocampal concentrations of malondialdehyde (MDA), thiol, and superoxide dismutase (SOD) were measured using biochemical methods. RESULTS According to the findings, cisplatin significantly increased the escape latency, while decreasing the time spent and travelled pathway in the target quadrant on the final trial day compared to the control group. Furthermore, pre-treatment with vitamin E significantly reversed all the results in the spatial memory test. The biochemical data indicated that vitamin E could decrease MDA activity and increase thiol and SOD activity compared to the control group. CONCLUSION According to the results, vitamin E could improve cisplatin-induced memory impairment possibly through affecting the hippocampal oxidative status.
Collapse
Affiliation(s)
- Masoud Hosseinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Alizadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Parnian Heydari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marzieh Kafami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moustafa Ghanbarabadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
8
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
9
|
Rozema NB, Procissi D, Bertolino N, Viola KL, Nandwana V, Abdul N, Pribus S, Dravid V, Klein WL, Disterhoft JF, Weiss C. Aβ oligomer induced cognitive impairment and evaluation of ACU193-MNS-based MRI in rabbit. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2020; 6:e12087. [PMID: 33072847 PMCID: PMC7547311 DOI: 10.1002/trc2.12087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Introduction Amyloid‐beta oligomers (AβOs) accumulate in Alzheimer's disease and may instigate neuronal pathology and cognitive impairment. We examined the ability of a new probe for molecular magnetic resonance imaging (MRI) to detect AβOs in vivo, and we tested the behavioral impact of AβOs injected in rabbits, a species with an amino acid sequence that is nearly identical to the human sequence. Methods Intracerebroventricular (ICV) injection with stabilized AβOs was performed. Rabbits were probed for AβO accumulation using ACUMNS (an AβO‐selective antibody [ACU193] coupled to magnetic nanostructures). Immunohistochemistry was used to verify AβO presence. Cognitive impairment was evaluated using object location and object recognition memory tests and trace eyeblink conditioning. Results AβOs in the entorhinal cortex of ICV‐injected animals were detected by MRI and confirmed by immunohistochemistry. Injections of AβOs also impaired hippocampal‐dependent, but not hippocampal‐independent, tasks and the area fraction of bound ACUMNs correlated with the behavioral impairment. Discussion Accumulation of AβOs can be visualized in vivo by MRI of ACUMNS and the cognitive impairment induced by the AβOs can be followed longitudinally with the novel location memory test.
Collapse
Affiliation(s)
- Nicholas B Rozema
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Daniele Procissi
- Department of Radiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Nicola Bertolino
- Department of Radiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Kirsten L Viola
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Vikas Nandwana
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| | - Nafay Abdul
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Sophia Pribus
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Vinayak Dravid
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| | - William L Klein
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - John F Disterhoft
- Department of Physiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Craig Weiss
- Department of Physiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| |
Collapse
|
10
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
11
|
Razzaghi-Asl N, Ebadi A. In silico design of peptide inhibitors of tubulin: amyloid-β as a lead compound. J Biomol Struct Dyn 2020; 39:2189-2198. [PMID: 32189582 DOI: 10.1080/07391102.2020.1745691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microtubule is one of the most studied targets in cancer research. Stabilizing and destabilizing of the microtubule by targeting its building block tubulin are common mechanisms of microtubule targeting agents. Cancer associates inversely with Alzheimer's disease (AD). So the rate of developing AD is significantly slower in patients with cancer and vice versa. Amyloid-β (Aβ) peptide inhibits tubulin polymerization and induces apoptotic death of cancer cells. We studied the interactions of Aβ with tubulin using protein-protein docking and MD simulation. Aβ bond to the vicinity of the vinblastine binding site and interacted with the H6-H7 loop. Interaction of Aβ with H6-H7 loop blocked nucleotide exchange and may be attributed as a possible reason for blocking of tubulin polymerization. We designed new Aβ-based peptidic inhibitors of tubulin using visual inspection and alanine scanning method. P1 (FRHYHHFFELV) and P9 (HYHHF) bound efficiently to tubulin and also interacted with the H6-H7 loop. Obtained results indicated that proposed peptides could potentially inhibit nucleotide exchange as Aβ.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 603] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
13
|
Pradhan K, Das G, Gupta V, Mondal P, Barman S, Khan J, Ghosh S. Discovery of Neuroregenerative Peptoid from Amphibian Neuropeptide That Inhibits Amyloid-β Toxicity and Crosses Blood-Brain Barrier. ACS Chem Neurosci 2019; 10:1355-1368. [PMID: 30408415 DOI: 10.1021/acschemneuro.8b00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Development of potential therapeutics for Alzheimer's disease (AD) requires a multifaceted strategy considering the high levels of complexity of the human brain and its mode of function. Here, we adopted an advanced strategy targeting two key pathological hallmarks of AD: senile plaques and neurofibrillary tangles. We derived a lead short tetrapeptide, Ser-Leu-Lys-Pro (SLKP), from a dodeca-neuropeptide of amphibian (frog) brain. Results suggested that the SLKP peptide had a superior effect compared to the dodecapeptide in neuroprotection. This result encouraged us to adopt peptidomimetic approach to synthesize an SLKP peptoid. Remarkably, we found that the SLKP peptoid is more potent than its peptide analogue, which significantly inhibits Aβ fibrillization, moderately binds with tubulin, and promotes tubulin polymerization as well as stabilization of microtubule networks. Further, we found that SLKP peptoid is stable in serum, shows significant neuroprotection against Aβ mediated toxicity, promotes significant neurite outgrowth, maintains healthy morphology of rat primary cortical neurons and crosses the blood-brain barrier (BBB). To the best of our knowledge, our SLKP peptoid is the first and shortest peptoid to show significant neuroprotection and neuroregeneration against Aβ toxicity, as well as to cross the BBB offering a potential lead for AD therapeutics.
Collapse
Affiliation(s)
- Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
14
|
Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 2019; 11:59. [PMID: 30941031 PMCID: PMC6433753 DOI: 10.3389/fnagi.2019.00059] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the largest glial cell population in the central nervous system (CNS), play a key function in several events of brain development and function, such as synapse formation and function, control of neurotransmitters release and uptake, production of trophic factors and control of neuronal survival. Initially described as a homogenous population, several evidences have pointed that astrocytes are highly heterogeneous, both morphologically and functionally, within the same region, and across different brain regions. Recent findings suggest that the heterogeneity in the expression profile of proteins involved in astrocyte function may predict the selective vulnerability of brain regions to specific diseases, as well as to the age-related cognitive decline. However, the molecular mechanisms underlying these changes, either in aging as well as in brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative diseases and aging, is reported to have a dubious impact on glial activation, as these cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free radicals, and neurotrophic factors. Despite the emerging evidences supporting that reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective properties, depending on the age and stimuli, the underlying mechanisms of their activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a matter of discussion. In this review article, we will summarize recent findings on astrocyte heterogeneity and phenotypes, as well as their likely impact for the brain function during aging and neural diseases. We will focus on the molecules and mechanisms triggered by astrocyte to control synapse formation in different brain regions. Finally, we will discuss new evidences on how the modulation of astrocyte phenotype and function could impact the synaptic deficits and glial dysfunction present in aging and pathological states.
Collapse
Affiliation(s)
- Isadora Matias
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
W. Pilkington IV A, Legleiter J. Challenges in understanding the structure/activity relationship of Aβ oligomers. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Pradhan K, Das G, Mondal P, Khan J, Barman S, Ghosh S. Genesis of Neuroprotective Peptoid from Aβ30-34 Inhibits Aβ Aggregation and AChE Activity. ACS Chem Neurosci 2018; 9:2929-2940. [PMID: 30036464 DOI: 10.1021/acschemneuro.8b00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aβ peptide and hyper-phosphorylated microtubule associated protein (Tau) aggregation causes severe damage to both the neuron membrane and key signal processing microfilament (microtubule) in Alzheimer's disease (AD) brains. To date, the key challenge is to develop nontoxic, proteolytically stable amyloid inhibitors, which can simultaneously target multiple pathways involved in AD. Various attempts have been made in this direction; however, clinical outcomes of those attempts have been reported to be poor. Thus, we choose development of peptoid (N-substituted glycine oligomers)-based leads as potential AD therapeutics, which are easy to synthesize, found to be proteolytically stable, and exhibit excellent bioavailability. In this paper, we have designed and synthesized a new short peptoid for amyloid inhibition from 30-34 hydrophobic pocket of amyloid beta (Aβ) peptide. The peptoid selectively binds with 17-21 hydrophobic region of Aβ and inhibits Aβ fibril formation. Various in vitro assays suggested that our AI peptoid binds with tubulin/microtubule and promotes its polymerization and stability. This peptoid also inhibits AChE-induced Aβ fibril formation and provides significant neuroprotection against toxicity generated by nerve growth factor (NGF) deprived neurons derived from rat adrenal pheochromocytoma (PC12) cell line. Moreover, this peptoid shows serum stability and is noncytotoxic to primary rat cortical neurons.
Collapse
Affiliation(s)
- Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Gomi F, Uchida Y, Endo S. Up-regulation of NSP3 by Oligomeric Aβ Accelerates Neuronal Death Through Cas-independent Rap1A Activation. Neuroscience 2018; 386:182-193. [PMID: 29966723 DOI: 10.1016/j.neuroscience.2018.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
β-Amyloid (Aβ) plays an important role in the early pathogenesis of Alzheimer's disease (AD). In vitro studies have demonstrated that Aβ oligomers induce hippocampal and neocortical neuronal death. However the neurotoxic mechanisms by which soluble Aβ oligomers cause neuronal damage and death remain to be fully elucidated. To this end, we analyzed the gene expression profile of rat cerebral cortical neurons treated with Aβ oligomers in vitro. Aβ treatment induced the expression of novel SH2-containing protein 3 (NSP3), an adaptor molecule interacting with Cas family proteins. NSP3 expression was upregulated not only in oligomeric-Aβ-treated cultured neurons but also in the neocortex of aged Tg2576 mice. NSP3 overexpression in cultured cortical neurons accelerated neuronal death. The C-terminal region of NSP3 unbound to a Cas protein was necessary for the NSP3-induced acceleration of neuronal death, as was Cas-independent Rap1A activation downstream of NSP3. Moreover, NSP3 RNAi knockdown partially rescued Aβ-oligomer-treated neurons. These results indicate that NSP3 upregulation by soluble Aβ oligomers may accelerate neuronal death via Cas-independent Rap1A activation, implicating NSP3 in the pathogenesis of AD.
Collapse
Affiliation(s)
- Fujiya Gomi
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Yoko Uchida
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Shogo Endo
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
18
|
Che H, Fu X, Zhang L, Gao X, Wen M, Du L, Xue C, Xu J, Wang Y. Neuroprotective Effects of n-3 Polyunsaturated Fatty Acid-Enriched Phosphatidylserine Against Oxidative Damage in PC12 Cells. Cell Mol Neurobiol 2018; 38:657-668. [PMID: 28689275 PMCID: PMC11481886 DOI: 10.1007/s10571-017-0516-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
Abstract
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure-effect relationships.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xueyuan Fu
- Marine Biomedical Research Institute of Qingdao, No. 23 Hong Kong East Road, Qingdao, Shandong, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiang Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lei Du
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan, 250012, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
19
|
Pandareesh MD, Chauhan V, Chauhan A. Walnut Supplementation in the Diet Reduces Oxidative Damage and Improves Antioxidant Status in Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 64:1295-1305. [PMID: 30040727 PMCID: PMC6087457 DOI: 10.3233/jad-180361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 01/07/2023]
Abstract
Our previous study has shown beneficial effects of walnuts on memory and learning skills in transgenic mouse model of Alzheimer's disease (AD-tg). To understand underlying mechanism, we studied here whether walnuts can reduce oxidative stress in AD. From 4 months of age, experimental AD-tg mice were fed diets containing 6% (T6) or 9% walnuts (T9) (equivalent to 1 or 1.5 oz, of walnuts per day in humans) for 5, 10, or 15 months. The control groups, i.e., AD-tg (T0) and wild-type (Wt) mice, were fed diets without walnuts. Free radicals, i.e., reactive oxygen species (ROS), lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed in these mice at different ages. AD-tg mice on control diet (T0) showed significant age-dependent increase in ROS levels, lipid peroxidation, and protein oxidation coupled with impaired activities of antioxidant enzymes [superoxide dismutase, catalase, and glutathione peroxidase] compared to Wt mice. Oxidative stress was significantly reduced in AD-tg mice on diets with walnuts (T6, T9), as evidenced by decreased levels of ROS, lipid peroxidation, and protein oxidation, as well as by enhanced activities of antioxidant enzymes compared to T0 mice. Long-term supplementation with walnuts for 10 or 15 months was more effective in reducing oxidative stress in AD-tg mice. Our findings indicate that walnuts can reduce oxidative stress, not only by scavenging free radicals, but also by protecting antioxidant status, thus leading to reduced oxidative damage to lipids and proteins in AD. Therefore, by reducing oxidative stress, a walnut-enriched diet may help reduce the risk or delay the onset and progression of AD.
Collapse
Affiliation(s)
- Mirazkar D. Pandareesh
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Ved Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
20
|
Gugliandolo A, Bramanti P, Mazzon E. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models. Int J Mol Sci 2017; 18:ijms18122504. [PMID: 29168797 PMCID: PMC5751107 DOI: 10.3390/ijms18122504] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS) production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
21
|
Colin J, Allouche A, Chauveau F, Corbier C, Pauron-Gregory L, Lanhers MC, Claudepierre T, Yen FT, Oster T, Malaplate-Armand C. Improved Neuroprotection Provided by Drug Combination in Neurons Exposed to Cell-Derived Soluble Amyloid-β Peptide. J Alzheimers Dis 2017; 52:975-87. [PMID: 27163806 DOI: 10.3233/jad-151110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oligomeric amyloid-β (Aβ) peptide contributes to impaired synaptic connections and neurodegenerative processes, and as such, represents a primary therapeutic target for Alzheimer's disease (AD)-modifying approaches. However, the lack of efficacy of drugs that inhibit production of Aβ demonstrates the need for a better characterization of its toxic effects, both on synaptic and neuronal function. Here, we used conditioned medium obtained from recombinant HEK-AβPP cells expressing the human amyloid-β protein precursor (Aβ-CM), to investigate Aβ-induced neurotoxic and synaptotoxic effects. Characterization of Aβ-CM revealed that it contained picomolar amounts of cell-secreted Aβ in its soluble form. Incubation of primary cortical neurons with Aβ-CM led to significant decreases in synaptic protein levels as compared to controls. This effect was no longer observed in neurons incubated with conditioned medium obtained from HEK-AβPP cells grown in presence of the γ-secretase inhibitor, Semagacestat or LY450139 (LY-CM). However, neurotoxic and pro-apoptotic effects of Aβ-CM were only partially prevented using LY-CM, which could be explained by other deleterious compounds related to chronic oxidative stress that were released by HEK-AβPP cells. Indeed, full neuroprotection was observed in cells exposed to LY-CM by additional treatment with the antioxidant resveratrol, or with the pluripotent n-3 polyunsaturated fatty acid docosahexaenoic acid. Inhibition of Aβ production appeared necessary but insufficient to prevent neurodegenerative effects associated with AD due to other neurotoxic compounds that could exert additional deleterious effects on neuronal function and survival. Therefore, association of various types of protective agents needs to be considered when developing strategies for AD treatment.
Collapse
Affiliation(s)
- Julie Colin
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Ahmad Allouche
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Fabien Chauveau
- Université de Lyon 1, Lyon Neuroscience Research Center; CNRS UMR5292; INSERM U1028; Lyon, France
| | - Catherine Corbier
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Lynn Pauron-Gregory
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | | | - Thomas Claudepierre
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Frances T Yen
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Thierry Oster
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Catherine Malaplate-Armand
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France.,Laboratoire de Biochimie, Hôpital Central, CHU de Nancy, CO n°34, Nancy, France
| |
Collapse
|
22
|
Lian Q, Nie Y, Zhang X, Tan B, Cao H, Chen W, Gao W, Chen J, Liang Z, Lai H, Huang S, Xu Y, Jiang W, Huang P. Effects of grape seed proanthocyanidin on Alzheimer's disease in vitro and in vivo. Exp Ther Med 2016; 12:1681-1692. [PMID: 27588088 PMCID: PMC4998082 DOI: 10.3892/etm.2016.3530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/21/2016] [Indexed: 11/09/2022] Open
Abstract
Grape seed proanthocyanidin (GSPA) consists of catechin, epicatechin and epicatechin gallate, which are strong antioxidants that are beneficial to health and may attenuate or prevent Alzheimer's disease (AD). In the present study, the effects of GSPA on pheochromocytoma (PC12) cell viability were determined using cell counting kit-8 and lactate dehydrogenase (LDH) assays, whereas apoptosis and mitochondrial membrane potential (Ψm) were measured via flow cytometry analysis. The effect of GSPA administration on the behavior and memory of amyloid precursor protein (APP)/presenilin-1 (PS-1) double transgenic mice was assessed using a Morris water maze. APP Aβ peptides and tau hyperphosphorylation were examined by western blotting; whereas the expression levels of PS-1 were evaluated by reverse transcription-quantitative polymerase chain reaction and compared with pathological sections stained with hematoxylin-eosin and Congo red. Data from the in vitro experiments demonstrated that GSPA significantly alleviated Aβ25–35 cytotoxicity and LDH leakage ratio, inhibited apoptosis and increased Ψm. The findings from the in vivo experiments showed a significant enhancement in cognition and spatial memory ability, an improvement in the pathology of APP and tau protein and a decrease in PS-1 mRNA expression levels. Therefore, the results of the present study indicated that GSPA may be a novel therapeutic strategy for the treatment of AD or may, at the very least, improve the quality of life of patients with AD.
Collapse
Affiliation(s)
- Qingwang Lian
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yongsheng Nie
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoyou Zhang
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Bo Tan
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongying Cao
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenling Chen
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Weiming Gao
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Jiayi Chen
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhijian Liang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Huangling Lai
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Siming Huang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yifei Xu
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Weiwen Jiang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ping Huang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
23
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
24
|
Saha A, Mohapatra S, Kurkute P, Jana B, Mondal P, Bhunia D, Ghosh S, Ghosh S. Interaction of Aβ peptide with tubulin causes an inhibition of tubulin polymerization and the apoptotic death of cancer cells. Chem Commun (Camb) 2015; 51:2249-52. [PMID: 25567764 DOI: 10.1039/c4cc09390a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report in this work that the Aβ peptide directly interacts with tubulin close to the vinblastine and GTP/GDP binding site, inhibits the tubulin polymerization rate, induces tubulin aggregation, causes cell shrinking, enhances Mad2, BubR1, p53, and p21 activation in MCF7 cells and induces the apoptotic death of A549, HeLa and MCF7 cells.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Roby MH, Allouche A, Dahdou L, De Castro VC, Alves da Silva PH, Targino BN, Huguet M, Paris C, Chrétien F, Guéant RM, Desobry S, Oster T, Humeau C. Enzymatic production of bioactive docosahexaenoic acid phenolic ester. Food Chem 2015; 171:397-404. [DOI: 10.1016/j.foodchem.2014.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
|
26
|
Fu Q, Gao N, Yu J, Ma G, Du Y, Wang F, Su Q, Che F. Diazoxide pretreatment prevents Aβ1-42 induced oxidative stress in cholinergic neurons via alleviating NOX2 expression. Neurochem Res 2014; 39:1313-21. [PMID: 24771316 DOI: 10.1007/s11064-014-1313-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
The aggregation and accumulation of amyloid-β (Aβ) plays a significant role in the pathogenesis of Alzheimer's disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Diazoxide (DZ), a highly selective drug capable of opening mitochondrial ATP-sensitive potassium channels, has neuroprotective effects against neuronal cell death. However, the mechanism through which DZ protects cholinergic neurons against Aβ-induced oxidative injury is still unclear. The present study was designed to investigate the effects of DZ pretreatment against Aβ1-42 induced oxidative damage and cytotoxicity. Through measures of DZ effects on Aβ1-42 induced cellular damage, reactive oxygen species (ROS) and MDA generation and expressions of gp91phox and p47phox in cholinergic neurons, new insights into the neuroprotective mechanisms can be derived. Aβ1-42 significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide levels and increased ROS and MDA production; all effects were attenuated by pretreatment with DZ or diphenyleneiodonium chloride (a NOX2 inhibitor). Pretreatment with DZ also attenuated the upregulation of NOX2 subunits (gp91phox and p47phox) induced by Aβ1-42. Since NOX2 is one of the main sources of free radicals, these results suggest that DZ can counteract Aβ1-42 induced oxidative stress and associated cell death by reducing the level of ROS and MDA, in part, by alleviating NOX2 expression.
Collapse
Affiliation(s)
- Qingxi Fu
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Asaduzzaman M, Uddin MJ, Kader MA, Alam AHMK, Rahman AA, Rashid M, Kato K, Tanaka T, Takeda M, Sadik G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics 2014; 14:1-10. [PMID: 24646308 DOI: 10.1111/psyg.12031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/18/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder clinically characterized by loss of memory and cognition. The effective therapeutic options for AD are limited and thus there is a demand for new drugs. Aegle marmelos (Linn.) (A. marmelos) leaves have been used in traditional medicine to promote intellect and enhance memory. In this study, we evaluated A. marmelos for its acetylcholinesterase (AChE) inhibitory activity and antioxidant property in vitro in the treatment of AD. METHODS A crude methanol extract and four fractions (petroleum ether, chloroform, ethyl acetate and aqueous) were prepared from the leaves of A. marmelos. The preparations were assessed for AChE inhibitory activity by the Ellman method, and their antioxidant properties were assessed by several assays: reducing power, scavenging of 1,1-diphenyl-2-picrylhydrazyl free radical and hydroxyl radical, and inhibition of lipid peroxidation. Qualitative and quantitative analyses of endogenous substances in A. marmelos were performed by the standard phytochemical methods. RESULTS Among the different extracts tested, the ethyl acetate fraction exhibited the highest inhibition of AChE activity. In the same way, ethyl acetate fraction showed the highest reducing activity and radical scavenging ability towards the 1,1-diphenyl-2-picrylhydrazyl (half maximal inhibitory concentration = 3.84 μg/mL) and hydroxyl free radicals (half maximal inhibitory concentration = 5.68 μg/mL). The antiradical activity of the ethyl acetate fraction appeared to be similar to that of the reference standard butylated hydroxytoluene and catechin used in this study. In addition, the ethyl acetate fraction displayed higher inhibition of brain lipid peroxidation. Phytochemical screening of different extractives of A. marmelos showed the presence of phenols and flavonoids, alkaloid, saponin, glycoside, tannin and steroids. Quantitative analysis revealed higher contents of phenolics (58.79-mg gallic acid equivalent/g dried extract) and flavonoids (375.73-mg gallic acid equivalent/g dried extract) in the ethyl acetate fraction. CONCLUSION The results suggest that the ethyl acetate fraction of A. marmelos is a significant source of polyphenolic compounds with potential AChE inhibitory property and antioxidant activity and, thus, may be useful in the treatment of AD.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang C, Zheng Y, Chen L, Chen M, Liang S, Lin M, Luo D. Regulation of basal lateral membrane mobility and permeability to divalent cations by membrane associated-protein kinase C. PLoS One 2013; 8:e80291. [PMID: 24260363 PMCID: PMC3832666 DOI: 10.1371/journal.pone.0080291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Biological membrane stabilization is essential for maintenance of cellular homeostasis, functionality and appropriate response to various stimuli. Previous studies have showed that accumulation of PKCs in the cell membrane significantly downregulates the membrane fluidity and Ca2+ influxes through the membranes in activated cells. In addition, membrane-inserted form of PKCs has been found in a variety of resting mammalian cells and tissues. This study is aimed to investigate possible role of the endogenous membrane-associated PKCs in the modulation of basal membrane fluidity. Here, we showed that interfering PKC expression by chronic activation of PKC with phorbol myristate acetate (PMA) or shRNA targeting at PKCα lowered the levels of PKCα in cytosol, peripheral membrane and integral membrane pools, while short-term activation of PKC with PMA induced accumulation of PKCα in the membrane pool accompanied by a dramatic decrease in the cytosol fraction. The lateral membrane mobility increased or decreased in accordance with the abundance alterations in the membrane-associated PKCα by these treatments. In addition, membrane permeability to divalent cations including Ca2+, Mn2+ and Ba2+ were also potentiated or abrogated along with the changes in PKC expression on the plasma membrane. Membrane stabilizer ursodeoxycholate abolished both of the enhanced lateral membrane mobility and permeability to divalent cations due to PKCα deficiency, whereas Gö6983, a PKC antagonist, or Gd3+ and 2-aminoethyoxydipheyl borne, two Ca2+ channels blockers, showed no effect, suggesting that this PKC-related regulation is independent of PKC activation or a modulation of specific divalent cation channel. Thus, these data demonstrate that the native membrane-associated PKCα is involved in the maintenance of basal membrane stabilization in resting cells.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Lihong Chen
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Min Chen
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Shenxuan Liang
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Mosi Lin
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
| | - Dali Luo
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
29
|
Sagy-Bross C, Hadad N, Levy R. Cytosolic phospholipase A2α upregulation mediates apoptotic neuronal death induced by aggregated amyloid-β peptide1-42. Neurochem Int 2013; 63:541-50. [PMID: 24044897 DOI: 10.1016/j.neuint.2013.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Increased cytosolic phospholipase A2α (cPLA2α) immunoreactivity and transcript were observed in Alzheimer's disease (AD) brain associated with amyloid deposits. Thus, the present study examined whether cPLA2α upregulation participate in cortical neuron damage induced by aggregated Aβ1-42 and determined its role in the signaling events leading to damage, using an antisense technology. Exposure of primary cortical neurons to 1μM aggregated Aβ1-42 for 24h induced up-regulation and activation of cPLA2α and apoptotic cell death of about 30% as detected by: cell count, MTT reduction, caspases-3 and -8 activation, DAPI and TUNEL staining, that were prevented by inhibition of cPLA2α up-regulation and activity in the presence of antisense against cPLA2α (AS). cPLA2α was rapidly activated upon addition of aggregated Aβ1-42, as determined by its phosphorylated form on serine 505, and this activity was dependent on NADPH oxidase activity. NOX2- and NOX4-NADPH oxidase upregulation at 24h of aggregated Aβ1-42 exposure was not affected by the presence of AS, but superoxide production was reduced, probably due to NOX2 inhibition. cPLA2α upregulation led to activation of neutral sphingomyelinase (N-SMase) as its activity was inhibited in the presence of AS, and could be restored by addition of arachidonic acid. Addition of ceramide analog induced caspase-8 activation leading to caspase-3 activation and apoptotic neuronal death. In conclusion, our results suggest that cPLA2α activity plays a crucial role in the signaling cascade leading to apoptotic neuronal death by aggregated Aβ1-42 probably via activation of N-SMase, ceramide production and caspases-3 and -8.
Collapse
Affiliation(s)
- Chen Sagy-Bross
- Immunology and Infectious Diseases Laboratory, Clinical Biochemistry Department, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Center, Beer-Sheva, Israel
| | - Nurit Hadad
- Immunology and Infectious Diseases Laboratory, Clinical Biochemistry Department, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Center, Beer-Sheva, Israel
| | - Rachel Levy
- Immunology and Infectious Diseases Laboratory, Clinical Biochemistry Department, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
30
|
FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharm Res 2013; 31:255-70. [DOI: 10.1007/s11095-013-1146-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
|
31
|
Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV, Tan M, Zhang A. MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3787-802. [PMID: 23956414 PMCID: PMC3745737 DOI: 10.1093/jxb/ert215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brassinosteroid (BR)-induced antioxidant defence has been shown to enhance stress tolerance. In this study, the role of the maize 65 kDa microtubule-associated protein (MAP65), ZmMAP65-1a, in BR-induced antioxidant defence was investigated. Treatment with BR increased the expression of ZmMAP65-1a in maize (Zea mays) leaves and mesophyll protoplasts. Transient expression and RNA interference silencing of ZmMAP65-1a in mesophyll protoplasts further revealed that ZmMAP65-1a is required for the BR-induced increase in expression and activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Both exogenous and BR-induced endogenous H2O2 increased the expression of ZmMAP65-1a. Conversely, transient expression of ZmMAP65-1a in maize mesophyll protoplasts enhanced BR-induced H2O2 accumulation, while transient silencing of ZmMAP65-1a blocked the BR-induced expression of NADPH oxidase genes and inhibited BR-induced H2O2 accumulation. Inhibiting the activity and gene expression of ZmMPK5 significantly prevented the BR-induced expression of ZmMAP65-1a. Likewise, transient expression of ZmMPK5 enhanced BR-induced activities of the antioxidant defence enzymes SOD and APX in a ZmMAP65- 1a-dependent manner. ZmMPK5 directly interacted with ZmMAP65-1a in vivo and phosphorylated ZmMAP65-1a in vitro. These results suggest that BR-induced antioxidant defence in maize operates through the interaction of ZmMPK5 with ZmMAP65-1a. Furthermore, ZmMAP65-1a functions in H2O2 self-propagation via regulation of the expression of NADPH oxidase genes in BR signalling.
Collapse
Affiliation(s)
- Yuan Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingxing Zuo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yali Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianhua Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Henrik Vibe Scheller
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
- * To whom correspondence should be addressed.
| |
Collapse
|
32
|
Liu J, Chi N, Chen H, Zhang J, Bian Y, Cui G, Xiu C. Resistin protection against endogenous Aβ neuronal cytotoxicity from mitochondrial pathway. Brain Res 2013; 1523:77-84. [PMID: 23747409 DOI: 10.1016/j.brainres.2013.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/08/2023]
Abstract
Neurotoxicity of amyloid β (Aβ) plays an important role in Alzheimer's disease (AD) pathogenesis. In this study, we researched the potential protective effects of resistin against Aβ neurotoxicity in mouse Neuro2a (N2a) cells transfected with the Swedish amyloid precursor protein (Sw-APP) mutant and Presenilin exon 9 deletion mutant (N2a/D9), which overproduced Aβ with abnormal intracellular Aβ accumulation. The results show increased levels of ROS, NO, protein carbonyls, and 4HNE in N2a/D9 cells, which were attenuated by resistin treatment in a dose dependent manner. We also found that resistin could improve mitochondrial function in N2a/D9 cells through increasing the level of ATP and mitochondrial membrane potential. MTT and LDH assay indicated that N2a/D9 cells show increased vulnerability to H2O2-induced insult, which could be ameliorated by resistin. Mechanically, we found that resistin prevented apoptosis signals through reducing the ratio of Bax/Bcl2, the level of cleaved caspase-3, and attenuating cytochrome C release. Finally, the results demonstrated that resistin did not change the production of Aβ1-40 and Aβ1-42 in N2a/D9 cells, which suggests that the protective effects of resistin are independent of APP metabolism. This raises the possibility of novel AD therapies using resistin.
Collapse
Affiliation(s)
- Jie Liu
- The Department of Neurosurgery, Yantai Yu Huang Ding Hospital, Yantai 264000, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:467245. [PMID: 23762139 PMCID: PMC3665219 DOI: 10.1155/2013/467245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/15/2023]
Abstract
Decursin (D), purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed that D reduced A β 25 ‒ 35-induced cytotoxicity in PC12 cells. Our study explored the underlying mechanisms by which D mediates its therapeutic effects in vitro. Pretreatment of cells with D diminished intracellular generation of ROS in response to A β 25 ‒ 35. Western blot revealed that D significantly increased the expression and activity of HO-1, which was correlated with its protection against A β 25 ‒ 35-induced injury. Addition of ZnPP, an HO-1 competitive inhibitor, significantly attenuated its protective effect in A β 25 ‒ 35-treated cells, indicating the vital role of HO-1 resistance to oxidative injury. Moreover, D induced Nrf2 nuclear translocation, the upstream of HO-1 expression. While investigating the signaling pathways responsible for HO-1 induction, D activated ERK and dephosphorylated p38 in PC12 cells. Addition of U0126, a selective inhibitor of ERK, blocked D-induced Nrf2 activation and HO-1 induction and meanwhile reversed the protection of D against A β 25 ‒ 35-induced cell death. These findings suggest D augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of MAPK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction, thereby protecting the PC12 cells from A β 25 ‒ 35-induced oxidative cytotoxicity.
Collapse
|
34
|
Zhao B, Pan BS, Shen SW, Sun X, Hou ZZ, Yan R, Sun FY. Diabetes-induced central neuritic dystrophy and cognitive deficits are associated with the formation of oligomeric reticulon-3 via oxidative stress. J Biol Chem 2013; 288:15590-9. [PMID: 23592790 DOI: 10.1074/jbc.m112.440784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a high risk factor to dementia. To investigate the molecular mechanism of diabetic dementia, we induced type 2 diabetes in rats and examined potential changes in their cognitive functions and the neural morphology of the brains. We found that the diabetic rats with an impairment of spatial learning and memory showed the occurrence of RTN3-immunoreactive dystrophic neurites in the cortex. Biochemical examinations revealed the increase of a high molecular weight form of RTN3 (HW-RTN3) in diabetic brains. The corresponding decrease of monomeric RTN3 was correlated with the reduction of its inhibitory effects on the activity of β-secretase (BACE1), a key enzyme for generation of β-amyloid peptides. The results from immunoprecipitation combined with protein carbonyl detection showed that carbonylated RTN3 was significantly higher in cortical tissues of diabetic rats compared with control rats, indicating that diabetes-induced oxidative stress led to RTN3 oxidative damage. In neuroblastoma SH-SY5Y cells, high glucose and/or H2O2 treatment significantly increased the amounts of carbonylated proteins and HW-RTN3, whereas monomeric RTN3 was reduced. Hence, we conclude that diabetes-induced cognitive deficits and central neuritic dystrophy are correlated with the formation of aggregated RTN3 via oxidative stress. We provided the first evidence that oxidative damage caused the formation of toxic RTN3 aggregates, which participated in the pathogenesis of central neuritic dystrophy in diabetic brain. Present findings may offer a new therapeutic strategy to prevent or reduce diabetic dementia.
Collapse
Affiliation(s)
- Bei Zhao
- Institutes for Biomedical Science and Department of Neurobiology of the School of Basic Medical Sciences, Shanghai 200032
| | | | | | | | | | | | | |
Collapse
|
35
|
Protective effect of edaravone against Alzheimer's disease-relevant insults in neuroblastoma N2a cells. Neurosci Lett 2012; 531:160-5. [DOI: 10.1016/j.neulet.2012.10.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
|
36
|
Clemmensen C, Aznar S, Knudsen GM, Klein AB. The microtubule-associated protein 1A (MAP1A) is an early molecular target of soluble Aβ-peptide. Cell Mol Neurobiol 2012; 32:561-6. [PMID: 22252785 PMCID: PMC11498442 DOI: 10.1007/s10571-011-9796-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022]
Abstract
A progressive accumulation of amyloid β-protein (Aβ) is widely recognized as a pathological hallmark of Alzheimer's disease (AD). Substantial progress has been made toward understanding the neurodegenerative cascade initiated by small soluble species of Aβ and recent evidence supports the notion that microtubule rearrangements may be proximate to neuritic degeneration and deficits in episodic declarative memory. Here, we examined primary cortical neurons for changes in markers associated with synaptic function following exposure to sublethal concentrations of non-aggregated Aβ-peptide. This data show that soluble Aβ species at a sublethal concentration induce degradation of the microtubule-associated protein 1A (MAP1A) without concurrently affecting dendritic marker MAP2 and/or the pre-synaptic marker synaptophysin. In addition, MAP1A was found to highly co-localize with the postsynaptic density-95 (PSD-95) protein, proposing that microtubule perturbations might be central for the Aβ-induced neuronal dysfunctions as PSD-95 plays a key role in synaptic plasticity. In conclusion, this study suggests that disruption of MAP1A could be a very early manifestation of Aβ-mediated synaptic dysfunction-one that presages the clinical onset of AD by years. Moreover, our data support the notion of microtubule-stabilizing agents as effective AD drugs.
Collapse
Affiliation(s)
- C. Clemmensen
- Neurobiology Research Unit 9201, Center for Integrated Molecular Brain Imaging (CIMBI), Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - S. Aznar
- Neurobiology Research Unit 9201, Center for Integrated Molecular Brain Imaging (CIMBI), Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - G. M. Knudsen
- Neurobiology Research Unit 9201, Center for Integrated Molecular Brain Imaging (CIMBI), Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - A. B. Klein
- Neurobiology Research Unit 9201, Center for Integrated Molecular Brain Imaging (CIMBI), Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
37
|
Cognitive and histological disturbances after chlorpyrifos exposure and chronic Aβ(1–42) infusions in Wistar rats. Neurotoxicology 2011; 32:836-44. [DOI: 10.1016/j.neuro.2011.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/21/2022]
|
38
|
Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem 2011; 96:529-43. [PMID: 21914486 PMCID: PMC4390395 DOI: 10.1016/j.nlm.2011.08.003] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the 3rd most costly disease and the leading cause of dementia. It can linger for many years, but ultimately is fatal, the 6th leading cause of death. Alzheimer's disease (AD) is fatal and affected individuals can sometimes linger many years. Current treatments are palliative and transient, not disease modifying. This article reviews progress in the search to identify the primary AD-causing toxins. We summarize the shift from an initial focus on amyloid plaques to the contemporary concept that AD memory failure is caused by small soluble oligomers of the Aβ peptide, toxins that target and disrupt particular synapses. Evidence is presented that links Aβ oligomers to pathogenesis in animal models and humans, with reference to seminal discoveries from cell biology and new ideas concerning pathogenic mechanisms, including relationships to diabetes and Fragile X. These findings have established the oligomer hypothesis as a new molecular basis for the cause, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil,
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, IL 60208,
| |
Collapse
|
39
|
Lemire J, Appanna VD. Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders. J Inorg Biochem 2011; 105:1513-7. [PMID: 22099161 DOI: 10.1016/j.jinorgbio.2011.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/21/2011] [Accepted: 07/08/2011] [Indexed: 12/21/2022]
Abstract
Aluminum (Al) has been implicated in a variety of neurological diseases. However, the molecular mechanisms that enable Al to be involved in these disorders have yet to be fully delineated. Using astrocytes as a model of the cerebral cellular system, we have uncovered the biochemical networks that are affected by Al toxicity. In this review, we reveal how the inhibitory influence of Al on ATP production and on mitochondrial functions help generate globular astrocytes that are fat producing machines. These biological events may be the contributing factors to Al-triggered brain disorders.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | | |
Collapse
|
40
|
Muthaiyah B, Essa MM, Chauhan V, Chauhan A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 2011; 36:2096-103. [PMID: 21706234 PMCID: PMC3183245 DOI: 10.1007/s11064-011-0533-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2011] [Indexed: 11/30/2022]
Abstract
Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death.
Collapse
Affiliation(s)
- Balu Muthaiyah
- Department of Neurochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
41
|
Landino LM, Hagedorn TD, Kim SB, Hogan KM. Inhibition of tubulin polymerization by hypochlorous acid and chloramines. Free Radic Biol Med 2011; 50:1000-8. [PMID: 21256958 PMCID: PMC3051002 DOI: 10.1016/j.freeradbiomed.2011.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 02/05/2023]
Abstract
Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187–8795, USA.
| | | | | | | |
Collapse
|
42
|
Hernández-Enríquez B, Guemez-Gamboa A, Morán J. Reactive oxygen species are related to ionic fluxes and volume decrease in apoptotic cerebellar granule neurons: role of NOX enzymes. J Neurochem 2011; 117:654-64. [PMID: 21371036 DOI: 10.1111/j.1471-4159.2011.07231.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are produced early during apoptosis of cerebellar granule neurons induced by low potassium (K5) and staurosporine (Sts). In addition, K5 and Sts activate NADPH oxidases (NOX). Recently, we described that K5 and Sts induce apoptotic volume decrease (AVD) at a time when ROS generation and NOX activity occur. In the present study, we evaluated the relationship between ROS generation and ionic fluxes during AVD. Here, we showed that K5- and Sts-induced AVD was inhibited by antioxidants and that direct ROS production induced AVD. Moreover, NOX inhibitors eliminated AVD induced by both K5 and Sts. Sts, but not K5, failed to induce AVD in cerebellar granule neurons from NOX2 knockout mice. These findings suggest that K5- and Sts-induced AVD is largely mediated by ROS produced by NOX. On the other hand, we also found that the blockage of ionic fluxes involved in AVD inhibited both ROS generation and NOX activity. These findings suggest that ROS generation and NOX activity are involved in ionic fluxes activation, which in turn could maintain ROS generation by activating NOX, leading to a self-amplifying cycle.
Collapse
Affiliation(s)
- Berenice Hernández-Enríquez
- División de Neurociencias, Departamento de Neurodesarrollo y Fisiología, Universidad Nacional Autónoma de México, México, DF, México
| | | | | |
Collapse
|
43
|
A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells. Cell Signal 2010; 23:497-505. [PMID: 21062642 DOI: 10.1016/j.cellsig.2010.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/19/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux.
Collapse
|
44
|
Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease. J Neurosci 2010; 30:7516-27. [PMID: 20519526 DOI: 10.1523/jneurosci.4182-09.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Abeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.
Collapse
|
45
|
Wang PY, Chen JJ, Su HM. Docosahexaenoic acid supplementation of primary rat hippocampal neurons attenuates the neurotoxicity induced by aggregated amyloid beta protein42 and up-regulates cytoskeletal protein expression. J Nutr Biochem 2010; 21:345-50. [DOI: 10.1016/j.jnutbio.2009.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
|
46
|
Nitrous oxide plus isoflurane induces apoptosis and increases beta-amyloid protein levels. Anesthesiology 2010; 111:741-52. [PMID: 19741497 DOI: 10.1097/aln.0b013e3181b27fd4] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. METHODS The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. RESULTS Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. CONCLUSION These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.
Collapse
|
47
|
Desino KE, Ansar S, Georg GI, Himes RH, Michaelis ML, Powell DR, Reiff EA, Telikepalli H, Audus KL. (3R,5S,7as)-(3,5-Bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol, a novel neuroprotective agent. J Med Chem 2009; 52:7537-43. [PMID: 19728715 PMCID: PMC2788673 DOI: 10.1021/jm900254k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compounds that interact with microtubules, such as paclitaxel, have been shown to possess protective properties against beta-amyloid (Abeta) induced neurodegeneration associated with Alzheimer's disease. In this work, the novel agent (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol was investigated for effectiveness in protecting neurons against several toxic stimuli and its interaction with the microtubule network. Exposure of neuronal cultures to Abeta peptide in the presence of 5 nM (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol resulted in a 50% increase in survival. Neuronal cultures treated with other toxic stimuli such as staurosporine, thapsigargin, paraquat, and H(2)O(2) showed significantly enhanced survival in the presence of (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol. Microtubule binding and tubulin assembly studies revealed differences compared to paclitaxel but confirmed the interaction of (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol with microtubules. Furthermore, in vitro studies using bovine brain microvessel endothelial cells experiments suggest that (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol can readily cross the blood-brain barrier in a passive manner.
Collapse
Affiliation(s)
- Kelly E. Desino
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047
| | - Sabah Ansar
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Gunda I. Georg
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Richard H. Himes
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045
| | - Mary Lou Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Douglas R. Powell
- X-Ray Crystallography Laboratory, The University of Kansas, 1251 Wescoe Hall Drive Lawrence, Kansas 66045
| | - Emily A. Reiff
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Hanumaiah Telikepalli
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Kenneth L. Audus
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047
| |
Collapse
|
48
|
Cell-derived soluble oligomers of human amyloid-β peptides disturb cellular homeostasis and induce apoptosis in primary hippocampal neurons. J Neural Transm (Vienna) 2009; 116:1561-9. [DOI: 10.1007/s00702-009-0311-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 09/04/2009] [Indexed: 12/30/2022]
|
49
|
Melo JB, Sousa C, Garção P, Oliveira CR, Agostinho P. Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci 2009; 29:455-64. [PMID: 19222556 DOI: 10.1111/j.1460-9568.2009.06612.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galantamine is currently used in the treatment of patients with mild-to-moderate Alzheimer's disease (AD). Although its action is mostly directed at the regulation of cholinergic transmission, galantamine can also afford neuroprotection against amyloid-beta peptide (Abeta), which is involved in AD pathogenesis. In this study, we used cultured rat cortical neurons treated with two forms of Abeta(1-40), fresh and previously aged (enriched in fibrils). First, we confirmed that galantamine prevented neurodegeneration induced by both peptide forms in a concentration-dependent manner. Moreover, we observed that when neurons were co-incubated with fresh Abeta(1-40) plus galantamine, the amount of amyloid aggregates was reduced. As oxidative conditions influence Abeta aggregation, we investigated whether galantamine prevents oxidative stress induced by this peptide. The data show that either fresh or aged Abeta(1-40) significantly increased the amount of reactive oxygen species and lipoperoxidation, these effects being prevented by galantamine. In Abeta(1-40)-treated neurons, the depletion of reduced glutathione (GSH) seems to be related to the decrease in glutathione peroxidase and glutathione reductase activities(.) These alterations in the GSH antioxidant system were prevented by galantamine. Overall, these results constitute the first evidence that galantamine can prevent the neuronal oxidative damage induced by Abeta, providing an in vitro basis for the beneficial actions of galantamine in the AD neurodegenerative process.
Collapse
Affiliation(s)
- Joana B Melo
- Center for Neurosciences and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
50
|
Prieto-Gómez B, Velázquez-Paniagua M, Cisneros LO, Reyes-Vázquez C, Jiménez-Trejo F, Reyes ME, Mendoza-Torreblanca J, Gutiérrez-Ospina G. Melatonin attenuates the decrement of dendritic protein MAP-2 immuno-staining in the hippocampal CA1 and CA3 fields of the aging male rat. Neurosci Lett 2008; 448:56-61. [PMID: 18951952 DOI: 10.1016/j.neulet.2008.10.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/10/2008] [Accepted: 10/11/2008] [Indexed: 11/30/2022]
Abstract
Neuronal death during brain aging results, at least in part, from the disruption of synaptic connectivity caused by oxidative stress. Synaptic elimination might be caused by increased instability of the neuronal processes. In vitro evidence shows that melatonin increases MAP-2 expression, a protein that improves the stability of the dendritic cytoskeleton, opening the possibility that melatonin could prevent synaptic elimination by increasing dendritic stability. One way to begin exploring this issue in vivo is to evaluate whether long-term melatonin treatment changes the intensity of MAP-2 immuno-staining in areas commonly afflicted by aging that are rich in dendritic processes. Accordingly, we evaluated the effects of administering melatonin for 6 or 12 months on the intensity of MAP-2 immuno-staining in the strata oriens and lucidum of the hippocampal CA1 and CA3 fields of aging male rats, through semi-quantitative densitometry. Melatonin treated rats showed a relative increment in the intensity of MAP-2 immuno-staining in both regions after 6 or 12 months of treatment, as compared with age matched control rats. Although melatonin untreated and treated rats showed a decrease of MAP-2 immuno-staining in the hippocampus with increasing age, such decrement was less pronounced following melatonin treatment. These findings were confirmed by qualitative Western blot analyses. The melatonin effect seems specific because MAP-2 staining in the primary somatosensory cortex was not affected by the treatment. Thus, chronic melatonin administration increases MAP-2 immuno-staining and attenuates its decay in the adult aging hippocampus. These results are compatible with the idea that melatonin could improve dendritic stability and thus diminish synaptic elimination in the aging brain.
Collapse
Affiliation(s)
- Bertha Prieto-Gómez
- Departamento de Fisiología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México City 04510, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|