1
|
Rybalka E, Park HJ, Nalini A, Baskar D, Polavarapu K, Durmus H, Xia Y, Wan L, Shieh PB, Moghadaszadeh B, Beggs AH, Mack DL, Smith AST, Hanna-Rose W, Jinnah HA, Timpani CA, Shen M, Upadhyay J, Brault JJ, Hall MD, Baweja N, Kakkar P. Current insights in ultra-rare adenylosuccinate synthetase 1 myopathy - meeting report on the First Clinical and Scientific Conference. 3 June 2024, National Centre for Advancing Translational Science, Rockville, Maryland, the United States of America. Orphanet J Rare Dis 2024; 19:438. [PMID: 39593137 PMCID: PMC11590305 DOI: 10.1186/s13023-024-03429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The inaugural Clinical and Scientific Conference on Adenylosuccinate Synthetase 1 (ADSS1) myopathy was held on June 3, 2024, at the National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS) in Rockville, Maryland, USA. ADSS1 myopathy is an ultra-rare, inherited neuromuscular disease. Features of geographical patient clusters in South Korea, Japan, India and the United States of America were characterised and discussed. Pre-clinical animal and cell-based models were discussed, providing unique insight into disease pathogenesis. The biochemical pathogenesis was discussed, and potential therapeutic targets identified. Potential clinical and pre-clinical biomarkers were discussed. An ADSS1 myopathy consortium was established and a roadmap for therapeutic development created.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science, St Albans, VIC, Australia.
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonshei University College of Medicine, Seoul, Republic of Korea
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health And NeuroSciences (NIMHANS), Bengaluru, India
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health And NeuroSciences (NIMHANS), Bengaluru, India
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 5B2, Canada
| | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yang Xia
- Xiangya Hospital, National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
| | - Linlin Wan
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Perry B Shieh
- Departments of Neurology and Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Centre for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Centre for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alec S T Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, USA
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science, St Albans, VIC, Australia
| | - Min Shen
- Division of Preclinical Innovation, National Centre for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA
| | - Jaymin Upadhyay
- Department of Anaesthesia, Critical Care and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jeffrey J Brault
- Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana School of Medicine, Indianapolis, IN, USA
| | - Matthew D Hall
- Division of Preclinical Innovation, National Centre for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA
| | | | | |
Collapse
|
2
|
Tandon S, Sarkar S. Glutamine stimulates the S6K/4E-BP branch of insulin signalling pathway to mitigate human poly(Q) disorders in Drosophila disease models. Nutr Neurosci 2024; 27:783-794. [PMID: 37658796 DOI: 10.1080/1028415x.2023.2253028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
OBJECTIVE AND METHODS Since, the S6K/4E-BP sub-pathway can be stimulated by various amino acids; we extended our investigation to examine if oral feeding of amino acids delivers rescue against human poly(Q) toxicity in Drosophila. We utilised Drosophila models of two different poly(Q) disorders to test our hypothesis. Glutamine was fed to the test flies orally mixed in the food. Control and treated flies were then tested for different parameters, such as formation of poly(Q) aggregates and neurodegeneration, to evaluate glutamine's proficiency in mitigating poly(Q) neurotoxicity. RESULTS Our study, for the first time, reports that glutamine feeding stimulates the growth promoting S6K/4E-BP branch of insulin signalling pathway and restricts pathogenesis of poly(Q) disorders in Drosophila disease models. We noted that glutamine treatment restricts the formation of neurotoxic poly(Q) aggregates and minimises neuronal deaths. Further, glutamine treatment re-establishes the chromatin architecture by improving the histone acetylation which is otherwise compromised in poly(Q) expressing neuronal cells. DISCUSSION Since, the insulin signalling pathway as well as mechanism of action of glutamine are fairly conserved between human and Drosophila, our finding strongly suggests that glutamine holds immense potential to be developed as an intervention therapy against the incurable human poly(Q) disorders.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Schulman-Geltzer EB, Collins HE, Hill BG, Fulghum KL. Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Curr Heart Fail Rep 2023; 20:441-450. [PMID: 37581772 PMCID: PMC10589193 DOI: 10.1007/s11897-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW Pregnancy and exercise are systemic stressors that promote physiological growth of the heart in response to repetitive volume overload and maintenance of cardiac output. This type of remodeling is distinct from pathological hypertrophy and involves different metabolic mechanisms that facilitate growth; however, it remains unclear how metabolic changes in the heart facilitate growth and if these processes are similar in both pregnancy- and exercise-induced cardiac growth. RECENT FINDINGS The ability of the heart to metabolize a myriad of substrates balances cardiac demands for energy provision and anabolism. During pregnancy, coordination of hormonal status with cardiac reductions in glucose oxidation appears important for physiological growth. During exercise, a reduction in cardiac glucose oxidation also appears important for physiological growth, which could facilitate shuttling of glucose-derived carbons into biosynthetic pathways for growth. Understanding the metabolic underpinnings of physiological cardiac growth could provide insight to optimize cardiovascular health and prevent deleterious remodeling, such as that which occurs from postpartum cardiomyopathy and heart failure. This short review highlights the metabolic mechanisms known to facilitate pregnancy-induced and exercise-induced cardiac growth, both of which require changes in cardiac glucose metabolism for the promotion of growth. In addition, we mention important similarities and differences of physiological cardiac growth in these models as well as discuss current limitations in our understanding of metabolic changes that facilitate growth.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Sawant OB, Meng C, Wu G, Washburn SE. Prenatal alcohol exposure and maternal glutamine supplementation alter the mTOR signaling pathway in ovine fetal cerebellum and skeletal muscle. Alcohol 2020; 89:93-102. [PMID: 32777475 DOI: 10.1016/j.alcohol.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/25/2023]
Abstract
Prenatal alcohol exposure causes fetal neurodevelopmental damage and growth restriction. Among regions of the brain, the cerebellum is the most vulnerable to developmental alcohol exposure. Despite vast research in the field, there is still a need to identify specific mechanisms by which alcohol causes this damage in order to design effective therapeutic interventions. The mammalian target of rapamycin (mTOR) is known to be associated with axonal regeneration, dendritic arborization, synaptic plasticity, cellular growth, autophagy, and many other cellular processes. Glutamine and glutamine-related amino acids play a key role in fetal development and are known to alter the mTOR pathway; recent research has shown that disturbances in their bioavailability and signaling pathways may mediate adverse effects of prenatal alcohol exposure. This study investigated the role of the mTOR signaling pathway in the fetal cerebellum and skeletal muscle after third trimester-equivalent prenatal alcohol exposure and maternal l-glutamine (GLN) supplementation using a sheep model. Fetal cerebella and skeletal muscles were sampled for Western blot analysis of mTOR and its downstream targets S6 kinase and eukaryotic initiation factor 4E-bindin protein (4E-BP1). The expression of cerebellar phosphorylated mTOR relative to the total mTOR was elevated in the alcohol+GLN group compared to the saline and GLN groups. Alcohol exposure increased the ratio of phosphorylated S6K to total S6K in fetal cerebellum, and no significant effect of GLN supplementation was observed. On contrary, maternal GLN supplementation reduced the activation of mTOR and S6K in fetal skeletal muscle, possibly to make GLN and other amino acids available for use by other organs. These findings suggest prenatal alcohol exposure and maternal GLN supplementation during the third trimester-equivalent alter the mTOR signaling cascade, which plays a possible key role in alcohol-induced developmental damage.
Collapse
|
5
|
Krogsaeter EK, Biel M, Wahl-Schott C, Grimm C. The protein interaction networks of mucolipins and two-pore channels. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1111-1123. [PMID: 30395881 PMCID: PMC7111325 DOI: 10.1016/j.bbamcr.2018.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The endolysosomal, non-selective cation channels, two-pore channels (TPCs) and mucolipins (TRPMLs), regulate intracellular membrane dynamics and autophagy. While partially compensatory for each other, isoform-specific intracellular distribution, cell-type expression patterns, and regulatory mechanisms suggest different channel isoforms confer distinct properties to the cell. SCOPE OF REVIEW Briefly, established TPC/TRPML functions and interaction partners ('interactomes') are discussed. Novel TRPML3 interactors are shown, and a meta-analysis of experimentally obtained channel interactomes conducted. Accordingly, interactomes are compared and contrasted, and subsequently described in detail for TPC1, TPC2, TRPML1, and TRPML3. MAJOR CONCLUSIONS TPC interactomes are well-defined, encompassing intracellular membrane organisation proteins. TRPML interactomes are varied, encompassing cardiac contractility- and chaperone-mediated autophagy proteins, alongside regulators of intercellular signalling. GENERAL SIGNIFICANCE Comprising recently proposed targets to treat cancers, infections, metabolic disease and neurodegeneration, the advancement of TPC/TRPML understanding is of considerable importance. This review proposes novel directions elucidating TPC/TRPML relevance in health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Einar K Krogsaeter
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU) Nussbaumstrasse 26, 80336 Munich
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christian Wahl-Schott
- Hannover Medical School, Institute for Neurophysiology, OE 4230, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU) Nussbaumstrasse 26, 80336 Munich.
| |
Collapse
|
6
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018; 10:nu10111564. [PMID: 30360490 PMCID: PMC6266414 DOI: 10.3390/nu10111564] [Citation(s) in RCA: 649] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
- Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
7
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018. [PMID: 30360490 DOI: 10.20944/preprints201809.0459.v1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia. .,Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
8
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
9
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
10
|
Medras ZJH, El-Sayed NM, Zaitone SA, Toraih EA, Sami MM, Moustafa YM. Glutamine up-regulates pancreatic sodium-dependent neutral aminoacid transporter-2 and mitigates islets apoptosis in diabetic rats. Pharmacol Rep 2017; 70:233-242. [PMID: 29475006 DOI: 10.1016/j.pharep.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/24/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Glutamine aminoacid regulates insulin exocytosis from pancreatic β-cells. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that has fascinated function in inhibiting β-cell apoptosis and preserving pancreatic β-cell mass. The present study investigated the benefit of adding glutamine to a regimen of liraglutide in diabetic rats focusing on their role in increasing insulin production and upregulation of the expression of sodium-dependent neutral aminoacid transporter-2 (SNAT2). METHODS In the present study, diabetes mellitus was induced in rats using streptozotocin (STZ, 50mg/kg, ip). Male rats were allocated into 5 groups, (i) vehicle group, (ii) STZ-diabetic rats, (iii) STZ-diabetic rats treated with liraglutide (150μg/kg, sc), (iv) STZ-diabetic rats treated with glutamine (po) and (v) STZ-diabetic rats treated with a combination of liraglutide and glutamine for four weeks. After finishing the therapeutic courses, the fasting blood glucose value was determined and rats were sacrificed. Pancreases were used for quantification of mRNA expression for SNAT2. Paraffin fixed samples were used for histologic staining and immunohistochemistry for insulin and apoptosis markers (activated caspase-3, BCL2 and BAX). RESULTS Treatment with liraglutide and/or glutamine enhanced insulin production and hence glycemic control in diabetic male rats with favorable effects on apoptosis markers. Treatment with glutamine and its combination with liraglutide significantly increased pancreatic expression of SNAT2 by approximately 30-35 folds. CONCLUSION Addition of glutamine to liraglutide regimen enhances the glycemic control and may have utility in clinical settings.
Collapse
Affiliation(s)
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal M Sami
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
12
|
Abstract
Both clinical and experimental findings at the molecular, cellular, tissue, organ and systematic levels have depicted the presence of a contemporary regulatory machinery namely compensation in various forms of cardiovascular diseases. Compensation is believed to be present and regulated within the scope of a biological entity and represents the initiation of dyshomeostasis. Compensation can be identified in multiple categories and organs in cardiovascular diseases at multiple levels. The capacity to reduce the unfavorable pathological compensation may be a criterion to evaluate the therapeutic effectiveness for cardiovascular diseases. This mini-review tries to take compensation into consideration in the understanding of onset and progression of cardiovascular diseases in particular, and thus, better or optimal therapeutic approaches may be achieved for the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiu-Juan Fan
- China Nepstar Chain Drugstore Ltd., Hangzhou 310003, Zhejiang, China.
| | | |
Collapse
|
13
|
Lauzier B, Vaillant F, Merlen C, Gélinas R, Bouchard B, Rivard ME, Labarthe F, Dolinsky VW, Dyck JRB, Allen BG, Chatham JC, Des Rosiers C. Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. J Mol Cell Cardiol 2012. [PMID: 23201305 DOI: 10.1016/j.yjmcc.2012.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutamine, the most abundant amino acid in plasma, has attracted considerable interest for its cardioprotective properties. The primary effect of glutamine in the heart is commonly believed to be mediated via its anaplerotic metabolism to citric acid cycle (CAC) intermediates; however, there is little direct evidence to support this concept. Another potential candidate is the hexosamine biosynthetic pathway (HBP), which has recently been shown to modulate cardiomyocyte function and metabolism. Therefore, the goal of this study was to evaluate the contribution of anaplerosis and the HBP to the acute metabolic effects of glutamine in the heart. Normoxic ex vivo working rat hearts were perfused with (13)C-labeled substrates to assess relevant metabolic fluxes either with a physiological mixture of carbohydrates and a fatty acid (control) or under conditions of restricted pyruvate anaplerosis. Addition of a physiological concentration of glutamine (0.5mM) had no effect on contractile function of hearts perfused under the control condition, but improved that of hearts perfused under restricted pyruvate anaplerosis. Changes in CAC intermediate concentrations as well as (13)C-enrichment from [U-(13)C]glutamine did not support a major role of glutamine anaplerosis under any conditions. Under the control condition, however, glutamine significantly increased the contribution of exogenous oleate to β-oxidation, 1.6-fold, and triglyceride formation, 2.8-fold. Glutamine had no effect on malonyl-CoA or AMP kinase activity levels; however, it resulted in a higher plasma membrane level of the fatty acid transporter CD36. These metabolic effects of glutamine were reversed by azaserine, which inhibits glucose entry into the HPB. Our results reveal a metabolic role of physiological concentration of glutamine in the healthy working heart beyond anaplerosis. This role appears to involve the HBP and regulation of fatty acid entry and metabolism via CD36. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Benjamin Lauzier
- Montreal Heart Institute and Department of Nutrition and Medicine, Université de Montréal, Canada H1T 1C8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chronic unpredictable mild stress affects myocardial metabolic profiling of SD rats. J Pharm Biomed Anal 2012; 70:534-8. [DOI: 10.1016/j.jpba.2012.04.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
|
15
|
Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 2012; 43:2561-7. [PMID: 22566039 DOI: 10.1007/s00726-012-1312-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023]
Abstract
Glutamine and leucine are important mTORC1 modulators, although their roles are not precisely defined. In HepG2 and HeLa cells glutamine-free incubation lowers mTORC1 activity, although cell leucine is not decreased. mTORC1 activity, suppressed by amino acid-free incubation, is completely rescued only if essential amino acids (EAA) and glutamine are simultaneously restored, although cell leucine is higher in the absence than in the presence of glutamine. Thus, glutamine stimulates mTORC1 independent of cell leucine, suggesting the existence of two distinct stimulatory signals from either glutamine or EAA.
Collapse
|
16
|
Melnik BC. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity. J Obes 2012; 2012:197653. [PMID: 22523661 PMCID: PMC3317169 DOI: 10.1155/2012/197653] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023] Open
Abstract
Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1). Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| |
Collapse
|
17
|
Mok E, Hankard R. Glutamine supplementation in sick children: is it beneficial? J Nutr Metab 2011; 2011:617597. [PMID: 22175008 PMCID: PMC3228321 DOI: 10.1155/2011/617597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.
Collapse
Affiliation(s)
- Elise Mok
- INSERM Centre D'Investigation Clinique 802, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers Cedex, France
| | | |
Collapse
|
18
|
Abstract
The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
19
|
Chen W, Wang R, Xiong XL, Wan HF, Xu J, Peng J. Influence of in ovo injection of disaccharides, glutamine and β-hydroxy-β-methylbutyrate on the development of small intestine in duck embryos and neonates. Br Poult Sci 2010; 51:592-601. [PMID: 21058061 DOI: 10.1080/00071668.2010.520533] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The objective of the present study was to examine the effect of in ovo injection of disaccharides (DS), disaccharides and glutamine (DS + Gln) or disaccharides and β-hydroxy-β-methylbutyrate (DS + HMB) at d 23 of incubation on the development of the small intestine. 2. In DS + Gln-injected ducks, the greatest relative small intestine mass and muscularis layer thickness among 4 treatments was observed from d 25 of incubation to 7 d of age. 3. Jejunal sucrase activity in DS-injected ducks was significantly greater than in controls at hatch and on d 7. 4. In DS + HMB-treated ducks, a tendency toward slightly higher jejunal DNA concentration was observed throughout the experiment. 5. Greater body weight was found in DS + Gln and DS + HMB treated ducks in the first two weeks. However, there was no significant difference in the market weight (35 d) of ducks among the 4 treatments. 6. The results of present study suggest that administering disaccharides and Gln, or disaccharides and HMB, to the duck embryos exerted a beneficial effect on the early development of small intestine and on growth performance.
Collapse
Affiliation(s)
- W Chen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
20
|
Sanchez Canedo C, Demeulder B, Ginion A, Bayascas JR, Balligand JL, Alessi DR, Vanoverschelde JL, Beauloye C, Hue L, Bertrand L. Activation of the cardiac mTOR/p70(S6K) pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation. Am J Physiol Endocrinol Metab 2010; 298:E761-9. [PMID: 20051528 DOI: 10.1152/ajpendo.00421.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70(S6K)) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism independent of PKB/Akt, is more poorly understood. In this study, we investigated whether PDK1 could also participate in the events leading to mTOR/p70(S6K) activation in response to leucine in the heart. In wild-type hearts, both leucine and insulin increased p70(S6K) activity whereas, in contrast to insulin, leucine was unable to activate PKB/Akt. The changes in p70(S6K) activity induced by insulin and leucine correlated with changes in phosphorylation of Thr(389), the mTOR phosphorylation site on p70(S6K), and of Ser(2448) on mTOR, both related to mTOR activity. Leucine also triggered phosphorylation of the proline-rich Akt/PKB substrate of 40 kDa (PRAS40), a new pivotal mTOR regulator. In PDK1 knockout hearts, leucine, similarly to insulin, failed to induce the phosphorylation of mTOR and p70(S6K), leading to the absence of p70(S6K) activation. The loss of leucine effect in absence of PDK1 correlated with the lack of PRAS40 phosphorylation. Moreover, the introduction in PDK1 of the L155E mutation, which is known to preserve the insulin-induced and PKB/Akt-dependent phosphorylation of mTOR/p70(S6K), suppressed all leucine effects, including phosphorylation of mTOR, PRAS40, and p70(S6K). We conclude that the leucine-induced stimulation of the cardiac PRAS40/mTOR/p70(S6K) pathway requires PDK1 in a way that differs from that of insulin.
Collapse
|
21
|
Hwang GS, Yang JY, Ryu DH, Kwon TH. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol 2009; 298:F461-70. [PMID: 19923409 DOI: 10.1152/ajprenal.00389.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lithium (Li) treatment for bipolar affective disorders is associated with a variety of renal side effects. The metabolic response of the kidney to chronic Li treatment has rarely been studied. We applied a novel method of (1)H-nuclear magnetic resonance (NMR)-based metabonomics to integrate metabolic profiling and to identify the changes in the levels of metabolites in the kidney and urine from rats with Li-induced NDI. Metabolic profiles of urine and kidney homogenate [3 different zones (cortex, outer medulla, and inner medulla) or whole kidney] were investigated using high-resolution NMR spectroscopy coupled with pattern recognition methods. The accurate concentrations of metabolites in kidney homogenates and urine were rapidly measured using the target-profiling procedure, and the difference in the levels of metabolites was compared using multivariate analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis. Major endogenous metabolites for kidney homogenates contained products of glycolysis (glucose, lactate) and amino acids, as well as organic osmolytes (e.g., betaine, myo-inositol, taurine, and glycerophosphocholine). Many metabolites revealed changes in their levels, including decreased levels of organic osmolytes and amino acids in the inner medulla. A number of urinary metabolites were changed in Li-induced NDI, and in particular, elevated urinary levels of acetate, lactate, allantoin, trimethylamine, and creatine could suggest Li-induced renal cell stress or injury. Taken together, metabonomics of kidney tissue and urine based on (1)H-NMR spectroscopy could provide insight into the effects of Li-induced renal effects and cell injury.
Collapse
Affiliation(s)
- Geum-Sook Hwang
- Joint Bioanalytical Research Team, Korea Basic Science Institute, Seoul, Korea
| | | | | | | |
Collapse
|
22
|
Baird FE, Bett KJ, MacLean C, Tee AR, Hundal HS, Taylor PM. Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in Xenopus oocytes. Am J Physiol Endocrinol Metab 2009; 297:E822-9. [PMID: 19622785 DOI: 10.1152/ajpendo.00330.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The System L transporter facilitates cellular import of large neutral amino acids (AAs) such as Leu, a potent activator of the intracellular target of rapamycin (TOR) pathway, which signals for cell growth. System L is an AA exchanger, proposed to accumulate certain AAs by coupling to dissipation of concentration gradient(s) of exchange substrates generated by secondary active AA transporters such as System A (SNAT2). We addressed the hypothesis that this type of coupling (termed tertiary active transport) acts as an indirect mechanism to extend the range of AA stimulating TOR to those transported by both Systems A and L (e.g., Gln) through downstream enhancement of Leu accumulation. System A overexpression enabled Xenopus oocytes to accumulate substrate AAs (notably Ser, Gln, Ala, Pro, Met; totaling 2.6 nmol/oocyte) from medium containing a physiological AA mixture at plasma concentrations. Net accumulation of System L (4F2hc-xLAT1) substrates from this medium by System L-overexpressing oocytes was increased by 90% (from 0.7 to 1.35 nmol/oocyte; mainly Leu, Ile) when Systems A and L were coexpressed, coincident with a decline in accumulation of specific System A substrates (Gln, Ser, Met), as expected if the latter were also System L substrates and functional coupling of the transport Systems occurred. AA flux coupling was confirmed as trans-stimulation of Leu influx in System L-expressing oocytes by Gln injection (0.5 nmol/oocyte). The observed changes in Leu accumulation are sufficient to activate the TOR pathway in oocytes, although intracellular AA metabolism limits the potential for AA accumulation by tertiary active transport in this system.
Collapse
Affiliation(s)
- Fiona E Baird
- Div. of Molecular Physiology, College of Life Sciences, Univ. of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|
23
|
Amino acids: metabolism, functions, and nutrition. Amino Acids 2009; 37:1-17. [PMID: 19301095 DOI: 10.1007/s00726-009-0269-0] [Citation(s) in RCA: 1765] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 03/01/2009] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
Collapse
|
24
|
Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 2009; 276:1826-44. [PMID: 19250320 DOI: 10.1111/j.1742-4658.2009.06920.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene transcription remain elusive.
Collapse
Affiliation(s)
- Carole Brasse-Lagnel
- Appareil Digestif, Environnement et Nutrition, EA 4311, Université de Rouen, France
| | | | | |
Collapse
|
25
|
Amino acid transporters: éminences grises of nutrient signalling mechanisms? Biochem Soc Trans 2009; 37:237-41. [PMID: 19143639 DOI: 10.1042/bst0370237] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nutrient signalling by the mTOR (mammalian target of rapamycin) pathway involves upstream sensing of free AA (amino acid) concentrations. Several AA-regulated kinases have recently been identified as putative intracellular AA sensors. Their activity will reflect the balance between AA flows through underlying mechanisms which together determine the size of the intracellular free AA pool. For indispensable AAs, these mechanisms are primarily (i) AA transport across the cell membrane, and (ii) protein synthesis/breakdown. The System L AA transporter is the primary conduit for cellular entry of indispensable neutral AAs (including leucine and phenylalanine) and potentially a key modulator of AA-sensitive mTOR signalling. Coupling of substrate flows through System L and other AA transporters (e.g. System A) may extend the scope for sensing nutrient abundance. Factors influencing AA transporter activity (e.g. hormones) may affect intracellular AA concentrations and hence indirectly mTOR pathway activity. Several AA transporters are themselves regulated by AA availability through 'adaptive regulation', which may help to adjust the gain of AA sensing. The substrate-binding sites of AA transporters are potentially direct sensors of AA availability at both faces of the cell surface, and there is growing evidence that AA transporters of the SNAT (sodium-coupled neutral AA transporter) and PAT (proton-assisted AA transporter) families may operate, at least under some circumstances, as transporter-like sensors (or 'transceptors') upstream of mTOR.
Collapse
|
26
|
Glutamine in neoplastic cells: focus on the expression and roles of glutaminases. Neurochem Int 2009; 55:71-5. [PMID: 19428809 DOI: 10.1016/j.neuint.2009.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 01/21/2023]
Abstract
Glutamine is an important source of energy for neoplastic tissues, and products of its metabolism include, among others, glutamate (Glu) and glutathione (GSH), the two molecules that play a key role in tumor proliferation, invasiveness and resistance to therapy. Glutamine hydrolysis in normal and transforming mammalian tissues alike, is carried out by different isoforms of glutaminases, of which the two major are liver-type glutaminase (LGA) and kidney-type glutaminase (KGA). This brief review summarizes available data on the expression profiles and activities of these isoenzymes in different neoplastic tissues as compared to the tissues of origin, and dwells on recent work demonstrating effects of manipulation of glutaminase expression on tumor growth. A comment is devoted to the emerging evidence that LGA, apart from degrading Gln for metabolic purposes, is involved in gene transcription; its enforced overexpression in glioma cells was found to reduce their proliferation and migration.
Collapse
|
27
|
Deldicque L, Sanchez Canedo C, Horman S, De Potter I, Bertrand L, Hue L, Francaux M. Antagonistic effects of leucine and glutamine on the mTOR pathway in myogenic C2C12 cells. Amino Acids 2007; 35:147-55. [DOI: 10.1007/s00726-007-0607-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022]
|
28
|
Nishikawa T, Tomiya T, Ohtomo N, Inoue Y, Ikeda H, Tejima K, Watanabe N, Tanoue Y, Omata M, Fujiwara K. Stimulation by glutamine and proline of HGF production in hepatic stellate cells. Biochem Biophys Res Commun 2007; 363:978-82. [DOI: 10.1016/j.bbrc.2007.09.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/20/2007] [Indexed: 12/15/2022]
|
29
|
Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes. BMC Mol Biol 2007; 8:23. [PMID: 17371596 PMCID: PMC1845170 DOI: 10.1186/1471-2199-8-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/19/2007] [Indexed: 02/02/2023] Open
Abstract
Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA), relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p < 0.05). The proteasome inhibitor MG132 blocked the rise in proteolysis observed in the 0.2 × PC AA media. Addition of insulin to the medium inhibited proteolysis at both 0.2 and 1.0× PC AA and the expression of 14-kDa E2 proteins and C2 sub unit of 20 S proteasome (p < 0.05). Incubation of myotubes with increasing concentrations of leucine in the 0.2 × PC AA media inhibited proteolysis but only in the presence of insulin. Incubation of rapamycin (inhibitor of mTOR) inhibited amino acid or insulin-dependent p70 S6 kinase phosphorylation, blocked (P < 0.05) the inhibitory effects of 1.0 × PC AA on protein degradation, but did not alter the inhibitory effects of insulin or leucine Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.
Collapse
|
30
|
Lima NL, Soares AM, Mota RMS, Monteiro HSA, Guerrant RL, Lima AAM. Wasting and intestinal barrier function in children taking alanyl-glutamine-supplemented enteral formula. J Pediatr Gastroenterol Nutr 2007; 44:365-74. [PMID: 17325559 DOI: 10.1097/mpg.0b013e31802eecdd] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE We examined the effect of a diet supplemented with alanyl-glutamine (AG) or placebo glycine (G) on intestinal barrier function and growth in children in northeastern Brazil. PATIENTS AND METHODS One hundred seven children ages 7.9 to 82.2 months with a weight-for-age (WAZ), height-for-age (HAZ), or weight-for-height (WHZ) z-score less than -1 were studied. From July 2003 to November 2004, 51 study patients received AG (24 g/d) and 56 received G (25 g/d; isonitrogenic concentration) control for 10 days. Lactulose/mannitol excretion ratio was used as a measure of intestinal permeability and was performed on days 1 and 10 of nutritional supplementation. Weight and height were measured on days 1, 10, 30, and 120 of the protocol. RESULTS The patients were similar on admission with regard to age, sex, birth weight, nutritional status, lactulose/mannitol ratio, and serum concentrations of glutamine and arginine. The percentage of lactulose urinary excretion significantly improved (decreased) in children receiving AG for 10 days but not in those receiving glycine controls. AG significantly increased cumulative change over 120 days in WHZ and WAZ scores but not HAZ scores after adjustment for age and season in comparison with the placebo glycine group. CONCLUSIONS Children tolerated AG-supplemented enteral formula well, and it significantly improved cumulative WHZ and WAZ over 120 days in comparison with children in the placebo glycine group. The data also suggested a beneficial effect of AG in the barrier function paracellular pathway, albeit with reduced mannitol excretion. Thus, although the effect of AG on reduced mannitol concentration requires clarification, AG appears to improve nutrition and barrier function.
Collapse
Affiliation(s)
- Noélia L Lima
- Clinical Research Unit & Institute of Biomedicine/Center for Global Health, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Watatani Y, Kimura N, Shimizu YI, Akiyama I, Tonaki D, Hirose H, Takahashi S, Takahashi Y. Amino acid limitation induces expression of ATF5 mRNA at the post-transcriptional level. Life Sci 2006; 80:879-85. [PMID: 17140605 DOI: 10.1016/j.lfs.2006.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/23/2006] [Accepted: 11/07/2006] [Indexed: 01/21/2023]
Abstract
ATF5 is a transcription factor in the cAMP response element (CRE)-binding protein/activating transcription factor (CREB/ATF) family. We studied the effect of amino acid limitation on ATF5 mRNA levels in a mammalian cell line. Northern-blot analysis demonstrated that limitation of a single amino acid, glutamine, methionine, or leucine, resulted in increased ATF5 mRNA levels in HeLaS3 cells. This resulted, at least in part, from increased half-life of the ATF5 mRNA transcript. Cycloheximide inhibited the increase in ATF5 mRNA expression induced by glutamine limitation, indicating that it was dependent on de novo protein synthesis. Moreover, rapamycin had no effect on basal ATF5 mRNA expression or on increased expression induced by glutamine limitation. These results indicate that amino acid limitation regulates ATF5 mRNA expression during post-transcription in a rapamycin-independent manner. The potential role for ATF5 in protecting cells from amino acid-limitation is of considerable interest.
Collapse
Affiliation(s)
- Yujiro Watatani
- Laboratory of Environmental Molecular Physiology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Guérin PJ, Furtak T, Eng K, Gauthier ER. Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells. Eur J Cell Biol 2006; 85:355-65. [PMID: 16412532 DOI: 10.1016/j.ejcb.2005.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/17/2005] [Accepted: 11/20/2005] [Indexed: 11/24/2022] Open
Abstract
L-glutamine (Gln) withdrawal rapidly triggers apoptosis in the murine hybridoma cell line Sp2/0-Ag14 (Sp2/0). In this report, we examined the possibility that Gln deprivation of Sp2/0 cells triggers an oxidative stress which would contribute to the activation of apoptotic pathways. Gln withdrawal triggered an oxidative stress in Sp2/0 cells, as indicated by an increased accumulation of reactive oxygen species (ROS) and an increase in the intracellular content in protein carbonyl groups. Gln starvation also caused a decrease in the intracellular levels of glutathione (GSH). However, a decrease in GSH was not sufficient to induce Sp2/0 cell death since reducing GSH levels with DL-buthionine-[S,R]-sulfoximine did not affect cell viability. The antioxidant N-acetyl-L-cysteine (NAC), while effective in inhibiting ROS accumulation and oxidative stress, did not prevent the loss in cell viability or the processing and activation of caspase-3 triggered by Gln starvation. On the other hand, NAC did reduce the formation of apoptotic bodies in dying cells. Altogether these results indicate that in Sp2/0 cells, Gln deprivation leads to the induction of an oxidative stress which, while involved in the formation of apoptotic bodies, is not essential to the activation of the cell death program.
Collapse
Affiliation(s)
- Paul J Guérin
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ont., Canada P3E 2C6
| | | | | | | |
Collapse
|
33
|
Sharma S, Ying J, Razeghi P, Stepkowski S, Taegtmeyer H. Atrophic remodeling of the transplanted rat heart. Cardiology 2006; 105:128-36. [PMID: 16391472 DOI: 10.1159/000090550] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 11/19/2005] [Indexed: 01/25/2023]
Abstract
We have previously shown that the common feature of both pressure overload-induced hypertrophy and atrophy is a reactivation of the fetal gene program. Although gene expression profiles and signal transduction pathways in pressure overload hypertrophy have been well studied, little is known about the mechanisms underlying atrophic remodeling of the unloaded heart. Here, we induced atrophic remodeling by heterotopic transplantation of the rat heart. The activity parameters of three signal transduction pathways important in hypertrophy, i.e. mitogen-activated protein (MAP) kinase, mammalian target of rapamycin (mTOR), and Janus kinase/signal transducers and activators of transcription (JAK/STAT), were interrogated. Gene expression of upstream stimuli--insulin-like growth factor 1 (IGF-1) and fibroblast growth factor 2 (FGF-2)--and metabolic correlates, i.e. peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARalpha-regulated genes, of these pathways were also measured. In addition, we measured transcript levels of genes known to regulate skeletal muscle atrophy, all of which are negatively regulated by IGF-1 (Mafbx/Atrogin-1, MuRF-1). Atrophic remodeling of the heart was associated with increased expression of IGF-1 and FGF-2. Transcript levels of the nuclear receptor PPARalpha were decreased, as were the levels of PPARalpha-regulated genes. Furthermore, there was phosphorylation of ERK1, STAT3, and p70S6K with unloading. Consistent with the increase in IGF-1, we found a decrease in Mafbx/Atrogin-1 and MuRF-1 transcript levels. Rapamycin administration at 0.8 mg/kg/day for 7 days resulted in enhanced atrophy and attenuated the phosphorylation of ERK1, STAT3, and p70S6K without altering gene expression. We conclude that there is significant crosstalk between the mTOR, MAP kinase, and JAK/STAT signaling cascades. Furthermore, ubiquitin ligases, known to be essential for skeletal muscle atrophy, decrease in unloading-induced cardiac atrophy.
Collapse
Affiliation(s)
- Saumya Sharma
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Abbasi S, Su B, Kellems RE, Yang J, Xia Y. The Essential Role of MEKK3 Signaling in Angiotensin II-induced Calcineurin/Nuclear Factor of Activated T-cells Activation. J Biol Chem 2005; 280:36737-46. [PMID: 16126726 DOI: 10.1074/jbc.m506493200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes, such as T-cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. We determined that active MEKK3 was capable of activating calcineurin/nuclear factor of activated T-cells (NFAT) signaling in cardiac myocytes and reprogramming cardiac gene expression. In contrast, small interference RNA directed against MEKK3 and a dominant negative form of MEKK3 caused the reduction of NFAT activation in response to angiotensin II in cardiac myocytes. Genetic studies showed that MEKK3-deficient mouse embryo fibroblasts failed to activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring MEKK3 to the MEKK3-deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. We determined that angiotensin II induced MEKK3 phosphorylation. Thus, MEKK3 functions downstream of the AT1 receptor and is essential for calcineurin/NFAT activation. Finally, we determined that MEKK3-mediated activation of calcineurin/NFAT signaling was associated with the phosphorylation of modulatory calcineurin-interacting protein 1 at Ser(108) and Ser(112). Taken together, our studies reveal a previously unrecognized novel essential regulatory role of MEKK3 signaling in calcineurin/NFAT activation.
Collapse
Affiliation(s)
- Shahrzad Abbasi
- Department of Biochemistry and Molecular Biology, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P. Molecular mechanisms of glutamine action. J Cell Physiol 2005; 204:392-401. [PMID: 15795900 DOI: 10.1002/jcp.20339] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glutamine is the most abundant free amino acid in the body and is known to play a regulatory role in several cell specific processes including metabolism (e.g., oxidative fuel, gluconeogenic precursor, and lipogenic precursor), cell integrity (apoptosis, cell proliferation), protein synthesis, and degradation, contractile protein mass, redox potential, respiratory burst, insulin resistance, insulin secretion, and extracellular matrix (ECM) synthesis. Glutamine has been shown to regulate the expression of many genes related to metabolism, signal transduction, cell defense and repair, and to activate intracellular signaling pathways. Thus, the function of glutamine goes beyond that of a simple metabolic fuel or protein precursor as previously assumed. In this review, we have attempted to identify some of the common mechanisms underlying the regulation of glutamine dependent cellular functions.
Collapse
Affiliation(s)
- R Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The proliferation and differentiation of trophoblast cells is under the control of a variety of hormones and growth factors and is influenced by nutrient availability. The intracellular signaling pathways acting downstream of these mitogenic factors and nutrients to regulate trophoblast proliferation and placental development are poorly understood. Immortalized human trophoblast cells were used (HTR-8/SVneo) to investigate trophoblast proliferation in response to angiopoietin-2 (Ang-2), a major angiogenic factor and glucose (a major nutrient). Trophoblast cell proliferation was induced through activation of the phosphatidylinositol-3 (PI-3) kinase and the mammalian target of rapamycin (mTOR) signaling pathways, following Tie-2 receptor activation. Glucose also stimulated trophoblast cell proliferation through mTOR signaling. Ang-2 activated mTOR via PI-3 kinase-dependent signaling; whereas glucose-mediated mTOR activation was PI-3 kinase-independent and involved a novel nutrient sensor, glutamine fructose-6-phosphate amidotransferase (GFAT). Metabolites of the GFAT reaction acted upstream of mTOR and functioned as a nutrient sensor to regulate trophoblast cell proliferation in response to glucose. Overall, the results show that growth factor and nutrient signaling converge at tuberin, an upstream regulator of mTOR and that mTOR functions as an important placental growth signaling sensor. These results are the first to link mTOR with GFAT metabolites as nutrient sensors for trophoblast cell proliferation.
Collapse
Affiliation(s)
- H Y Wen
- Department of Biochemistry and Molecular Biology, University of Texas, Houston Medical School, Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Fumarola C, La Monica S, Guidotti GG. Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage. J Cell Physiol 2005; 204:155-65. [PMID: 15605414 DOI: 10.1002/jcp.20272] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) mediates a signaling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth rate, participating to a versatile checkpoint that inspects the energy status of the cell. The pathway is activated by branched-chain amino acids (BCAA), leucine being the most effective, whereas amino acid dearth and ATP shortage lead to its deactivation. Glutamine- or amino acid-deprivation and hyperosmotic stress induce a fast cell shrinkage (with marked decrease of the intracellular water volume) associated to mTOR-dependent S6K1 dephosphorylation. Using cultured Jurkat cells, we have measured the changes of cell content and intracellular concentration of ATP, of relevant amino acids (BCAA) and of ninhydrin-positive substances (NPS, as measure of NH(2)-bearing organic osmolytes) under conditions that deactivate (leucine-deprivation, glutamine-deprivation, amino acid withdrawal, sorbitol-induced hyperosmotic stress) or reactivate a previously deactivated, mTOR-S6K1 pathway. We have also assessed the mitochondrial function by measurements of mitochondrial transmembrane potential in cells subjected to hypertonic stress. Our results indicate that diverse control signals converge on the mTOR-S6K1 signaling pathway. In the presence of adequate energy resources, the pathway senses the amino acid availability as inward transport of effective amino acids (as BCAA and especially leucine), but its activation occurs only in the presence of an extracellular amino acid complement, with glutamine as obligatory component, and does not tolerate decrements of cell water volume incapable of maintaining adequate intracellular physicochemical conditions.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Experimental Medicine, Division of Molecular Pathology and Immunology, University of Parma, Parma, Italy
| | | | | |
Collapse
|
38
|
Vary T, Lynch C. Nutrient Signaling to Muscle and Adipose Tissue by Leucine. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028362.pt2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC. Glutamine-dependent changes in gene expression and protein activity. Cell Biochem Funct 2005; 23:77-84. [PMID: 15386529 DOI: 10.1002/cbf.1165] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The functions of glutamine are many and include, substrate for protein synthesis, anabolic precursor for muscle growth, acid-base balance in the kidney, substrate for ureogenesis in the liver, substrate for hepatic and renal gluconeogenesis, an oxidative fuel for intestine and cells of the immune system, inter-organ nitrogen transport, precursor for neurotransmitter synthesis, precursor for nucleotide and nucleic acid synthesis and precursor for glutathione production. In the present review information on the mechanism of glutamine action is presented. This amino acid has been shown to regulate the expression of several genes (such as p47phox, p22phox, gp91phox, alpha-actin and fibronectin) and activate several proteins (such as ASK1, c-myc, c-jun and p70s6k).
Collapse
Affiliation(s)
- R Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122-8. [PMID: 15467718 DOI: 10.1038/ncb1183] [Citation(s) in RCA: 1618] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/01/2004] [Indexed: 12/12/2022]
Abstract
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.
Collapse
Affiliation(s)
- Estela Jacinto
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47:1592-601. [PMID: 15365617 DOI: 10.1007/s00125-004-1498-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/02/2004] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are secreted from enteroendocrine L cells in response to nutrient ingestion. As glutamine is an important metabolic fuel for the gut, the aim of this study was to investigate the effect of glutamine on the GLP-1-secreting cell line, GLUTag. METHODS GLP-1 release was measured following incubation of GLUTag cells under a range of conditions. Single cells were studied by electrophysiology, calcium imaging and cytosolic ATP measurement using recombinant luciferase. RESULTS Glutamine was a more potent GLP-1 secretagogue than glucose or other amino acids, increasing GLP-1 release 7.1+/-0.7-fold ( n=19) at 10 mmol/l, with an estimated median effective concentration of between 0.1 and 1 mmol/l. Glutamine (10 mmol/l) induced a sodium-dependent inward current of 3.2+/-1.2 pA per cell ( n=9), which triggered membrane depolarisation and an increase in intracellular calcium. Asparagine and alanine produced electrophysiological and calcium changes that were at least as large as those caused by glutamine, but they were less effective GLP-1 secretagogues, suggesting that glutamine also potentiates secretion downstream of the calcium signal. This was confirmed by measuring secretion in the presence of 30 mmol/l KCl + diazoxide, or in alpha-haemolysin-permeabilised cells. Glutamine increased cytosolic ATP, but was less effective than glucose. CONCLUSIONS/INTERPRETATION Glutamine acts as a trigger and potentiator of GLP-1 release, consistent with its role as the major metabolic fuel for the gut. The results suggest that nutritional agents like glutamine might have beneficial effects in diabetes and obesity.
Collapse
Affiliation(s)
- F Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
42
|
Paquette JC, Guérin PJ, Gauthier ER. Rapid induction of the intrinsic apoptotic pathway byL-glutamine starvation. J Cell Physiol 2004; 202:912-21. [PMID: 15389638 DOI: 10.1002/jcp.20194] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the amino acid L-glutamine is known to play a role in the survival of several cell types, the underlying molecular mechanisms are still poorly defined. We show in this report that L-glutamine starvation rapidly triggered apoptosis in Sp2/0-Ag14 hybridoma cells. This process involved the activation of both caspases-9 and -3, suggesting that L-glutamine deprivation initiated an intrinsic apoptotic pathway in Sp2/0-Ag14 cells. Supporting this idea, the cytosolic release of the mitochondrial proteins SMAC/DIABLO and cytochrome c (Cyt c) was observed, with an initial limited leakage occurring during the first 30 min of L-glutamine deprivation, followed by a greater release after 60 min. The latter occurred simultaneously with the translocation of the pro-apoptotic protein Bax to the mitochondria. Finally, a decline in XIAP levels and the activation of caspases-3 and -9 were observed. Thus, L-glutamine deprivation of Sp2/0-Ag14 cells rapidly triggers intracellular events, which target the mitochondria, leading to the cytosolic release of apoptogenic factors, the activation of caspases-9 and -3, and the commitment to the death program. This work introduces the Sp2/0Ag14 hybridoma as a unique model for the study of the molecular events underlying the pro-survival function of L-glutamine.
Collapse
Affiliation(s)
- Julie C Paquette
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | | | | |
Collapse
|
43
|
Chan AYM, Soltys CLM, Young ME, Proud CG, Dyck JRB. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 2004; 279:32771-9. [PMID: 15159410 DOI: 10.1074/jbc.m403528200] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled at the levels of both translation initiation and elongation. Eukaryotic elongation factor-2 (eEF2) mediates the translocation step of peptide-chain elongation and is inhibited through phosphorylation by eEF2 kinase. In addition, p70S6 kinase can regulate protein synthesis by phosphorylating eEF2 kinase or via phosphorylation of ribosomal protein S6. We have recently shown that eEF2 kinase is also controlled by phosphorylation by AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis. Moreover, the mammalian target of rapamycin has also been shown to be inhibited, indirectly, by AMPK, thus leading to the inhibition of p70S6 kinase. Although AMPK activation has been shown to modulate protein synthesis, it is unknown whether AMPK could also be a regulator of cardiac hypertrophic growth. Therefore, we investigated the role of AMPK activation in regulating protein synthesis during both phenylephrine- and Akt-induced cardiac hypertrophy. Metformin and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside were used to activate AMPK in neonatal rat cardiac myocytes. Activation of AMPK significantly decreased protein synthesis induced by phenylephrine treatment or by expression of constitutively active Akt. Activation of AMPK also resulted in decreased p70S6 kinase phosphorylation and increased phosphorylation of eEF2, suggesting that inhibition of protein synthesis involves the eEF2 kinase/eEF2 axis and/or the p70S6 kinase pathway. Together, our data suggest that the inhibition of protein synthesis by pharmacological activation of AMPK may be a key regulatory mechanism by which hypertrophic growth can be controlled.
Collapse
Affiliation(s)
- Anita Y M Chan
- Cardiovascular Research Group, Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
44
|
Kalamidas SA, Kondomerkos DJ, Kotoulas OB, Hann AC. Electron microscopic and biochemical study of the effects of rapamycin on glycogen autophagy in the newborn rat liver. Microsc Res Tech 2004; 63:215-9. [PMID: 14988919 DOI: 10.1002/jemt.20032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of rapamycin on glycogen autophagy in the newborn rat liver were studied using biochemical determinations, electron microscopy, and morphometric analysis. Rapamycin increased the fractional volume of hepatocytic autophagic vacuoles, the liver lysosomal glycogen-hydrolyzing activity of acid glucosidase, the degradation of glycogen inside the autophagic vacuoles, and decreased the activity of acid mannose 6-phosphatase. These findings suggest that rapamycin, a known inhibitor of the mammalian target of rapamycin (mTOR) signaling, induces glycogen autophagy in the newborn rat hepatocytes. mTOR may participate in the regulation of this process.
Collapse
Affiliation(s)
- S A Kalamidas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
45
|
Manipulation de l’anabolisme au cours des états d’agression. NUTR CLIN METAB 2004. [DOI: 10.1016/j.nupar.2004.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Abstract
Glycogen autophagy, which includes the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective process under conditions of demand for the massive hepatic production of glucose, as in the postnatal period. It represents a link between autophagy and glycogen metabolism. The formation of autophagic vacuoles in the hepatocytes of newborn animals is spatially and biochemically related to the degradation of cell glycogen. Many molecular elements and signaling pathways including the cyclic AMP/cyclic AMP-dependent protein kinase and the phosphoinositides/TOR pathways are implicated in the control of this process. These two pathways may converge on the same target to regulate glycogen autophagy.
Collapse
Affiliation(s)
- Othon B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina 451 10, Greece.
| | | | | |
Collapse
|
47
|
Schmelzle T, Beck T, Martin DE, Hall MN. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 2004; 24:338-51. [PMID: 14673167 PMCID: PMC303340 DOI: 10.1128/mcb.24.1.338-351.2004] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/18/2003] [Accepted: 10/01/2003] [Indexed: 11/20/2022] Open
Abstract
The TOR (target of rapamycin) and RAS/cyclic AMP (cAMP) signaling pathways are the two major pathways controlling cell growth in response to nutrients in yeast. In this study we examine the functional interaction between TOR and the RAS/cAMP pathway. First, activation of the RAS/cAMP signaling pathway confers pronounced resistance to rapamycin. Second, constitutive activation of the RAS/cAMP pathway prevents several rapamycin-induced responses, such as the nuclear translocation of the transcription factor MSN2 and induction of stress genes, the accumulation of glycogen, the induction of autophagy, the down-regulation of ribosome biogenesis (ribosomal protein gene transcription and RNA polymerase I and III activity), and the down-regulation of the glucose transporter HXT1. Third, many of these TOR-mediated responses are independent of the previously described TOR effectors TAP42 and the type 2A-related protein phosphatase SIT4. Conversely, TOR-controlled TAP42/SIT4-dependent events are not affected by the RAS/cAMP pathway. Finally, and importantly, TOR controls the subcellular localization of both the protein kinase A catalytic subunit TPK1 and the RAS/cAMP signaling-related kinase YAK1. Our findings suggest that TOR signals through the RAS/cAMP pathway, independently of TAP42/SIT4. Therefore, the RAS/cAMP pathway may be a novel TOR effector branch.
Collapse
Affiliation(s)
- Tobias Schmelzle
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
48
|
Shamji AF, Nghiem P, Schreiber SL. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell 2003; 12:271-80. [PMID: 14536067 DOI: 10.1016/j.molcel.2003.08.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Signaling networks that promote cell growth are frequently dysregulated in cancer. One regulatory network, which converges on effectors such as 4EBP1 and S6K1, leads to growth by promoting protein synthesis. Here, we discuss how this network is regulated by both extracellular signals, such as growth factors, and intracellular signals, such as nutrients. We discuss how mutations amplifying either type of signal can lead to tumor formation. In particular, we focus on the recent discovery that a tumor suppressor complex whose function is lost in tuberous sclerosis patients regulates the nutrient signal carried by the critical signaling protein TOR to the effectors 4EBP1 and S6K1. Finally, we describe how the small molecule rapamycin, which inhibits TOR and thereby the activation of these effectors, could be useful to treat tumors that have become dependent upon this pathway for growth.
Collapse
Affiliation(s)
- Alykhan F Shamji
- Harvard Biophysics Program, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
49
|
Razeghi P, Sharma S, Ying J, Li YP, Stepkowski S, Reid MB, Taegtmeyer H. Atrophic Remodeling of the Heart In Vivo Simultaneously Activates Pathways of Protein Synthesis and Degradation. Circulation 2003; 108:2536-41. [PMID: 14610007 DOI: 10.1161/01.cir.0000096481.45105.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Mechanical unloading of the heart results in atrophic remodeling. In skeletal muscle, atrophy is associated with inactivation of the mammalian target of rapamycin (mTOR) pathway and upregulation of critical components of the ubiquitin proteosome proteolytic (UPP) pathway. The hypothesis is that mechanical unloading of the mammalian heart has differential effects on pathways of protein synthesis and degradation.
Methods and Results—
In a model of atrophic remodeling induced by heterotopic transplantation of the rat heart, we measured gene transcription, protein expression, polyubiquitin content, and regulators of the mTOR pathway at 2, 4, 7, and 28 days. In atrophic hearts, there was an increase in polyubiquitin content that peaked at 7 days and decreased by 28 days. Furthermore, gene and protein expression of UbcH2, a ubiquitin conjugating enzyme, was also increased early in the course of unloading. Transcript levels of TNF-α, a known regulator of UbcH2-dependent ubiquitin conjugating activity, were upregulated early and transiently in the atrophying rat heart. Unexpectedly, p70S6K and 4EBP1, downstream components of mTOR, were activated in atrophic rat heart. This activation was independent of Akt, a known upstream regulator of mTOR. Rapamycin treatment of the unloaded rat hearts inhibited the activation of p70S6K and 4EBP1 and subsequently augmented atrophy in these hearts compared with vehicle-treated, unloaded hearts.
Conclusions—
Atrophy of the heart, secondary to mechanical unloading, is associated with early activation of the UPP. The simultaneous activation of the mTOR pathway suggests active remodeling, involving both protein synthesis and degradation.
Collapse
Affiliation(s)
- Peter Razeghi
- Division of Cardiology, University of Texas Houston-Medical School, Houston, Tex 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Heinrich Taegtmeyer
- University of Texas Houston Medical School, Department of Medicine, Division of Cardiology, Houston, TX, USA
| |
Collapse
|