1
|
Zemskaya AS, Arutyunyan AF, Sherman DK, Yanvarev DV, Shuvalov AV, Kalnina LB, Kaluzhny DN, Novikov RA, Solyev PN, Valuev-Elliston VT. Isolation of recombinant HIV-1 Rev protein and investigation of a new class of benzimidazole inhibitors capability to disrupt Rev-RRE complex. Bioorg Chem 2025; 161:108487. [PMID: 40288010 DOI: 10.1016/j.bioorg.2025.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
In the present study, an efficient method for the expression and purification of recombinant HIV Rev protein with a C-terminal hexahistidine tag was proposed. Noteworthy, this method circumvents the precipitation of the protein into inclusion bodies and their subsequent aggregation during purification. It does not necessitate denaturing isolation conditions, in contrast to currently widely used protocols. As a result, protocols for HIV Rev isolation have been developed allowing the production of non-aggregated Rev protein in a good yield, high purity, and free of bacterial RNA impurities. This high-purity result became possible due to high salt extraction buffer usage. Complementary [α-32P]-labeled Rev response element (RRE) RNA has been synthesized and an inhibitor test system was developed based on Rev-RRE complex formation. We were able to reveal a novel class of potential Rev-RRE inhibitors based on dimeric benzimidazole derivatives and used those results to validate the testing system. The proposed protocols for screening and structure-activity relationship for new inhibitors of Rev binding to viral RNA broaden the scope of potential candidates for anti-HIV drug development.
Collapse
Affiliation(s)
- Anastasia S Zemskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia.
| | - Albert F Arutyunyan
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Daria K Sherman
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Dmitry V Yanvarev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Alexey V Shuvalov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Lyudmila B Kalnina
- Ivanovsky Institute of Virology, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 18 Gamaleya St, 123098 Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia.
| | - Vladimir T Valuev-Elliston
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| |
Collapse
|
2
|
Herbine K, Nayak AR, Zamudio-Ochoa A, Temiakov D. Structural Basis for Promoter Recognition and Transcription Factor Binding and Release in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647028. [PMID: 40236250 PMCID: PMC11996575 DOI: 10.1101/2025.04.03.647028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription in human mitochondria is driven by a core apparatus consisting of a Pol A family RNA polymerase (mtRNAP), the initiation factors TFAM and TFB2M, and the elongation factor TEFM. While earlier structures of initiation and elongation complexes provided valuable snapshots, they represent isolated stages of a highly dynamic and multistep process. Critical aspects of mitochondrial transcription-such as DNA recognition and melting, promoter escape, and the release of initiation factors-remain poorly understood. Here, we present a series of cryo-EM structures that capture the transcription complex as it transitions from the initial open promoter complex to the processive elongation complex through intermediate stages. Our data reveal new determinants of promoter specificity, the sequential disengagement of mtRNAP from TFAM and the promoter, the release of TFB2M, and the recruitment of TEFM. Together, these findings provide a detailed molecular mechanism underlying transcription in human mitochondria.
Collapse
|
3
|
High-salt transcription of DNA cotethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA. J Biol Chem 2021; 297:100999. [PMID: 34303704 PMCID: PMC8368030 DOI: 10.1016/j.jbc.2021.100999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
High yields of RNA are routinely prepared following the two-step approach of high-yield in vitro transcription using T7 RNA polymerase followed by extensive purification using gel separation or chromatographic methods. We recently demonstrated that in high-yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer-than-desired, (partially) double-stranded impurities. Current purification methods often fail to fully eliminate these impurities, which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. In this work, we introduce a novel in vitro transcription method that generates high yields of encoded RNA without double-stranded impurities, reducing the need for further purification. Transcription is carried out at high-salt conditions to eliminate RNA product rebinding, while promoter DNA and T7 RNA polymerase are cotethered in close proximity on magnetic beads to drive promoter binding and transcription initiation, resulting in an increase in overall yield and purity of only the encoded RNA. A more complete elimination of double-stranded RNA during synthesis will not only reduce overall production costs, but also should ultimately enable therapies and technologies that are currently being hampered by those impurities.
Collapse
|
4
|
Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β' Subunit. Antimicrob Agents Chemother 2018; 62:AAC.00164-18. [PMID: 29661864 DOI: 10.1128/aac.00164-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a critical threat to human health due to the increased prevalence of rifampin resistance (RMPr). Fitness defects have been observed in RMPr mutants with amino acid substitutions in the β subunit of RNA polymerase (RNAP). In clinical isolates, this fitness defect can be ameliorated by the presence of secondary mutations in the double-psi β-barrel (DPBB) domain of the β' subunit of RNAP. To identify factors contributing to the fitness defects observed in vivo, several in vitro RNA transcription assays were utilized to probe initiation, elongation, termination, and 3'-RNA hydrolysis with the wild-type and RMPrM. tuberculosis RNAPs. We found that the less prevalent RMPr mutants exhibit significantly poorer termination efficiencies relative to the wild type, an important factor for proper gene expression. We also found that several mechanistic aspects of transcription of the RMPr mutant RNAPs are impacted relative to the wild type. For the clinically most prevalent mutant, the βS450L mutant, these defects are mitigated by the presence of secondary/compensatory mutations in the DPBB domain of the β' subunit.
Collapse
|
5
|
Simple In Vitro Assay To Evaluate the Incorporation Efficiency of Ribonucleotide Analog 5'-Triphosphates into RNA by Human Mitochondrial DNA-Dependent RNA Polymerase. Antimicrob Agents Chemother 2018; 62:AAC.01830-17. [PMID: 29180528 PMCID: PMC5786792 DOI: 10.1128/aac.01830-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
There is a growing body of evidence suggesting that some ribonucleoside/ribonucleotide analogs may be incorporated into mitochondrial RNA by human mitochondrial DNA-dependent RNA polymerase (POLRMT) and disrupt mitochondrial RNA synthesis. An assessment of the incorporation efficiency of a ribonucleotide analog 5′-triphosphate by POLRMT may be used to evaluate the potential mitochondrial toxicity of the analog early in the development process. In this report, we provide a simple method to prepare active recombinant POLRMT. A robust in vitro nonradioactive primer extension assay was developed to assay the incorporation efficiency of ribonucleotide analog 5′-triphosphates. Our results show that many ribonucleotide analogs, including some antiviral compounds currently in various preclinical or clinical development stages, can be incorporated into newly synthesized RNA by POLRMT and that the incorporation of some of them can lead to chain termination. The discrimination (D) values of ribonucleotide analog 5′-triphosphates over those of natural ribonucleotide triphosphates (rNTPs) were measured to evaluate the incorporation efficiency of the ribonucleotide analog 5′-triphosphates by POLRMT. The discrimination values of natural rNTPs under the condition of misincorporation by POLRMT were used as a reference to evaluate the potential mitochondrial toxicity of ribonucleotide analogs. We propose the following criteria for the potential mitochondrial toxicity of ribonucleotide analogs based on D values: a safe compound has a D value of >105; a potentially toxic compound has a D value of >104 but <105; and a toxic compound has a D value of <104. This report provides a simple screening method that should assist investigators in designing ribonucleoside-based drugs having lower mitochondrial toxicity.
Collapse
|
6
|
Velazquez G, Sousa R, Brieba LG. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding. RNA Biol 2016; 12:514-24. [PMID: 25654332 DOI: 10.1080/15476286.2015.1014283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.
Collapse
Affiliation(s)
- Gilberto Velazquez
- a Laboratorio Nacional de Genómica para la Biodiversidad ; Centro de Investigación y de Estudios ; Irapuato , Guanajuato , México
| | | | | |
Collapse
|
7
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
8
|
Tang GQ, Nandakumar D, Bandwar RP, Lee KS, Roy R, Ha T, Patel SS. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation. PLoS One 2014; 9:e91859. [PMID: 24651161 PMCID: PMC3961267 DOI: 10.1371/journal.pone.0091859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 12/02/2022] Open
Abstract
Abortive cycling is a universal feature of transcription initiation catalyzed by DNA-dependent RNA polymerases (RNAP). In bacteriophage T7 RNAP, mutation of proline 266 to leucine (P266L) in the C-linker region connecting the N-terminal promoter binding domain with the C-terminal catalytic domain drastically reduces short abortive products (4–7 nt) while marginally increasing long abortives (9–11 nt). Here we have investigated the transcription initiation pathway of P266L with the goal of understanding the mechanistic basis for short and long abortive synthesis. We show that the P266L mutation does not alter the affinity for the promoter, mildly affects promoter opening, and increases the +1/+2 GTP Kd by 2-fold. However, unlike wild-type T7 RNAP that undergoes stepwise rotation of the promoter binding domain and DNA scrunching during initial transcription, the P266L mutant does not undergo coupled rotational/scrunching movements until 7 nt RNA synthesis. The lack of rotation/scrunching correlates with greater stabilities of the initiation complexes of the P266L and decreased short abortive products. The results indicate that the increased flexibility in the C-linker due to P266L mutation enables T7 RNAP to absorb the stress from the growing RNA:DNA hybrid thereby decreasing short abortive products. Increased C-linker flexibility, however, has an adverse effect of delaying the transition into elongation by 1–2 nt, which gives rise to long abortive products. However, a mutation in the upstream promoter region greatly decreases long abortive products in P266L reactions, rendering the combination of P266L and A-15C promoter a desirable pair for efficient in vitro transcription for RNA production. We conclude that the conformational rigidity in the C-linker region conferred by the proline at position 266 is responsible for the undesirable short abortive products, but the rigidity is critical for efficient promoter clearance and transition into elongation.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rajiv P. Bandwar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kyung Suk Lee
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rahul Roy
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institutes, Urbana, Illinois, United States of America
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Structure of human mitochondrial RNA polymerase elongation complex. Nat Struct Mol Biol 2013; 20:1298-303. [PMID: 24096365 PMCID: PMC4321815 DOI: 10.1038/nsmb.2683] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Abstract
The crystal structure of the human mitochondrial RNA polymerase (mtRNAP) transcription elongation complex was determined at 2.65 Å resolution. The structure reveals a 9–base pair hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related RNAP from bacteriophage T7 indicates conserved mechanisms for substrate binding and nucleotide incorporation, but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without refolding. The intercalating hairpin that melts DNA during T7 RNAP initiation separates RNA from DNA during mtRNAP elongation. Newly synthesized RNA exits towards the PPR domain, a unique feature of mtRNAP with conserved RNA recognition motifs.
Collapse
|
10
|
Ramírez-Tapia LE, Martin CT. New insights into the mechanism of initial transcription: the T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type. J Biol Chem 2012; 287:37352-61. [PMID: 22923611 DOI: 10.1074/jbc.m112.370643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases undergo substantial structural and functional changes in transitioning from sequence-specific initial transcription to stable and relatively sequence-independent elongation. Initially, transcribing complexes are characteristically unstable, yielding short abortive products on the path to elongation. However, protein mutations have been isolated in RNA polymerases that dramatically reduce abortive instability. Understanding these mutations is essential to understanding the energetics of initial transcription and promoter clearance. We demonstrate here that the P266L point mutation in T7 RNA polymerase, which shows dramatically reduced abortive cycling, also transitions to elongation later, i.e. at longer lengths of RNA. These two properties of the mutant are not necessarily coupled, but rather we propose that they both derive from a weakening of the barrier to RNA-DNA hybrid-driven rotation of the promoter binding N-terminal platform, a motion necessary to achieve programmatically timed release of promoter contacts in the transition to elongation. Parallels in the multisubunit RNA polymerases are discussed.
Collapse
Affiliation(s)
- Luis E Ramírez-Tapia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
11
|
Love RP, Xu H, Chelico L. Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A. J Biol Chem 2012; 287:30812-22. [PMID: 22822074 DOI: 10.1074/jbc.m112.393181] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and nucleus, not only restricts HIV but can also initiate catabolism of cellular DNA. Despite being ascribed these roles, there is a paucity of data available on the biochemical mechanism by which APOBEC3A deaminates ssDNA. Here we assessed APOBEC3A deamination activity on ssDNA and in dynamic systems modeling HIV replication (cytoplasmic event) and DNA transcription (nuclear event). We find that APOBEC3A, unlike the highly processive APOBEC3G, exhibits low or no processivity when deaminating synthetic ssDNA substrates with two cytosines located 5-63 nucleotides apart, likely because of an apparent K(d) in the micromolar range (9.1 μm). APOBEC3A was able to deaminate nascently synthesized (-)DNA in an in vitro model HIV replication assay but induced fewer mutations overall in comparison to APOBEC3G. However, the data indicate that the target deamination motif (5'-TC for APOBEC3A and 5'-CC for APOBEC3G) and not the number of mutations best predicted the ability to mutationally inactivate HIV. We further assessed APOBEC3A for the ability to deaminate dsDNA undergoing transcription, which could allow for collateral deaminations to occur in genomic DNA similar to the action of activation-induced cytidine deaminase. That APOBEC3A was able to deaminate dsDNA undergoing transcription suggests a genomic cost of a deamination-based retroviral restriction system.
Collapse
Affiliation(s)
- Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
12
|
Limanskaya O, Limanskii A. Study of elongation complexes for T7 RNA polymerase. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:948-60. [PMID: 22551784 DOI: 10.1016/j.bbagrm.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
Abstract
Transcription of the human mitochondrial genome is required for the expression of 13 subunits of the respiratory chain complexes involved in oxidative phosphorylation, which is responsible for meeting the cells' energy demands in the form of ATP. Also transcribed are the two rRNAs and 22 tRNAs required for mitochondrial translation. This process is accomplished, with the help of several accessory proteins, by the human mitochondrial RNA polymerase (POLRMT, also known as h-mtRNAP), a nuclear-encoded single-subunit DNA-dependent RNA polymerase (DdRp or RNAP) that is distantly related to the bacteriophage T7 class of single-subunit RNAPs. In addition to its role in transcription, POLRMT serves as the primase for mitochondrial DNA replication. Therefore, this enzyme is of fundamental importance for both expression and replication of the human mitochondrial genome. Over the past several years rapid progress has occurred in understanding POLRMT and elucidating the molecular mechanisms of mitochondrial transcription. Important accomplishments include development of recombinant systems that reconstitute human mitochondrial transcription in vitro, determination of the X-ray crystal structure of POLRMT, identification of distinct mechanisms for promoter recognition and transcription initiation, elucidation of the kinetic mechanism for POLRMT-catalyzed nucleotide incorporation and discovery of unique mechanisms of mitochondrial transcription inhibition including the realization that POLRMT is an off target for antiviral ribonucleoside analogs. This review summarizes the current understanding of POLRMT structure-function, mechanism and inhibition. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
14
|
Smidansky ED, Arnold JJ, Reynolds SL, Cameron CE. Human mitochondrial RNA polymerase: evaluation of the single-nucleotide-addition cycle on synthetic RNA/DNA scaffolds. Biochemistry 2011; 50:5016-32. [PMID: 21548588 PMCID: PMC3698222 DOI: 10.1021/bi200350d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed.
Collapse
Affiliation(s)
- Eric D. Smidansky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shelley L. Reynolds
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Broxson C, Beckett J, Tornaletti S. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry 2011; 50:4162-72. [PMID: 21469677 DOI: 10.1021/bi2002136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.
Collapse
Affiliation(s)
- Christopher Broxson
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine and UF Genetics Institute, Gainesville, Florida 32610, United States
| | | | | |
Collapse
|
16
|
Tang GQ, Anand VS, Patel SS. Fluorescence-based assay to measure the real-time kinetics of nucleotide incorporation during transcription elongation. J Mol Biol 2011; 405:666-78. [PMID: 21035457 PMCID: PMC3053063 DOI: 10.1016/j.jmb.2010.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 11/15/2022]
Abstract
Understanding the mechanism and fidelity of transcription by the RNA polymerase (RNAP) requires measurement of the dissociation constant (K(d)) of correct and incorrect NTPs and their incorporation rate constants (k(pol)). Currently, such parameters are obtained from radiometric-based assays that are both tedious and discontinuous. Here, we report a fluorescence-based assay for measuring the real-time kinetics of single-nucleotide incorporation during transcription elongation. The fluorescent adenine analogue 2-aminopurine was incorporated at various single positions in the template or the nontemplate strand of the promoter-free elongation substrate. On addition of the correct NTP to the T7 RNAP-DNA, 2-aminopurine fluorescence increased rapidly and exponentially with a rate constant similar to the RNA extension rate obtained from the radiometric assay. The fluorescence stopped-flow assay, therefore, provides a high-throughput way to measure the kinetic parameters of RNA synthesis. Using this assay, we report the k(pol) and K(d) of all four correct NTP additions by T7 RNAP, which showed a range of values of 145-190 s(-1) and 28-124 μM, respectively. The fluorescent elongation substrates were used to determine the misincorporation kinetics as well, which showed that T7 RNAP discriminates against incorrect NTP both at the nucleotide binding and incorporation steps. The fluorescence-based assay should be generally applicable to all DNA-dependent RNAPs, as they use similar elongation substrates. It can be used to elucidate the mechanism, fidelity, and sequence dependency of transcription and is a rapid means to screen for inhibitors of RNAPs for therapeutic purposes.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854
| | - Vasanti S. Anand
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854
| | - Smita S. Patel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854
| |
Collapse
|
17
|
Lee BH, Seo HJ, Kim SH, Jung W, Kim DW, Yeo WS, Kim DE. RNA Polymerase Activity Assay on Biochips: Correlation between Template DNA Density and RNA Synthesis. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.7.2107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Hirtreiter A, Grohmann D, Werner F. Molecular mechanisms of RNA polymerase--the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res 2009; 38:585-96. [PMID: 19906731 PMCID: PMC2811020 DOI: 10.1093/nar/gkp928] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation in vitro is affected by the interactions between RNA polymerase (RNAP) subunits and the nucleic acid scaffold of the ternary elongation complex (TEC, RNAP-DNA–RNA). We have investigated the role of the RNAP subunits F/E (homologous to eukaryotic RPB4/7) during transcription elongation and termination using a wholly recombinant archaeal RNAP and synthetic nucleic acid scaffolds. The F/E complex greatly stimulates the processivity of RNAP, it enhances the formation of full length products, reduces pausing, and increases transcription termination facilitated by weak termination signals. Mutant variants of F/E that are defective in RNA binding show that these activities correlate with the nucleic acid binding properties of F/E. However, a second RNA-binding independent component also contributes to the stimulatory activities of F/E. In summary, our results suggest that interactions between RNAP subunits F/E and the RNA transcript are pivotal to the molecular mechanisms of RNAP during transcription elongation and termination.
Collapse
Affiliation(s)
- Angela Hirtreiter
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
19
|
Rhee AC, Somerlot BH, Parimi N, Gott JM. Distinct roles for sequences upstream of and downstream from Physarum editing sites. RNA (NEW YORK, N.Y.) 2009; 15:1753-1765. [PMID: 19605532 PMCID: PMC2743052 DOI: 10.1261/rna.1668309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/06/2009] [Indexed: 05/28/2023]
Abstract
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within approximately 9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.
Collapse
Affiliation(s)
- Amy C Rhee
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
20
|
Kent T, Kashkina E, Anikin M, Temiakov D. Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases. J Biol Chem 2009; 284:13497-13504. [PMID: 19321439 DOI: 10.1074/jbc.m901898200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During transcription elongation the nascent RNA remains base-paired to the template strand of the DNA before it is displaced and the two strands of the DNA reanneal, resulting in the formation of a transcription "bubble" of approximately 10 bp. To examine how the length of the RNA-DNA hybrid is maintained, we assembled transcription elongation complexes on synthetic nucleic acid scaffolds that mimic the situation in which transcript displacement is compromised and the polymerase synthesizes an extended hybrid. We found that in such complexes bacterial RNA polymerase exhibit an intrinsic endonucleolytic cleavage activity that restores the hybrid to its normal length. Mutations in the region of the RNA polymerase near the site of RNA-DNA separation result in altered RNA displacement and translocation functions and as a consequence in different patterns of proofreading activities. Our data corroborate structural findings concerning the elements involved in the maintenance of the length of the RNA-DNA hybrid and suggest interplay between polymerase translocation, DNA strand separation, and intrinsic endonucleolytic activity.
Collapse
Affiliation(s)
- Tatyana Kent
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Ekaterina Kashkina
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Michael Anikin
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084.
| |
Collapse
|
21
|
Datta K, von Hippel PH. Direct spectroscopic study of reconstituted transcription complexes reveals that intrinsic termination is driven primarily by thermodynamic destabilization of the nucleic acid framework. J Biol Chem 2008; 283:3537-3549. [PMID: 18070878 PMCID: PMC2645038 DOI: 10.1074/jbc.m707998200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in near UV circular dichroism (CD) and fluorescence spectra of site-specifically placed pairs of 2-aminopurine residues have been used to probe the roles of the RNA hairpin and the RNA-DNA hybrid in controlling intrinsic termination of transcription. Functional transcription complexes were assembled directly by mixing preformed nucleic acid scaffolds of defined sequence with T7 RNA polymerase (RNAP). Scaffolds containing RNA hairpins immediately upstream of a GC-rich hybrid formed complexes of reduced stability, whereas the same hairpins adjacent to a hybrid of rU-dA base pairs triggered complex dissociation and transcript release. 2-Aminopurine probes at the upstream ends of the hairpin stems show that the hairpins open on RNAP binding and that stem re-formation begins after one or two RNA bases on the downstream side of the stem have emerged from the RNAP exit tunnel. Hairpins directly adjacent to the RNA-DNA hybrid weaken RNAP binding, decrease elongation efficiency, and disrupt the upstream end of the hybrid as well as interfere with the movement of the template base at the RNAP active site. Probing the edges of the DNA transcription bubble demonstrates that termination hairpins prevent translocation of the RNAP, suggesting that they transiently "lock" the polymerase to the nucleic acid scaffold and, thus, hold the RNA-DNA hybrid "in frame." At intrinsic terminators the weak rU-dA hybrid and the adjacent termination hairpin combine to destabilize the elongation complex sufficiently to permit significant transcript release, whereas hairpin-dependent pausing provides time for the process to go to completion.
Collapse
Affiliation(s)
- Kausiki Datta
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229.
| |
Collapse
|
22
|
Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, Franco D, Smidansky ED, Paul AV, Peterson BR, Brown DM, Loakes D, Cameron CE. Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol 2007; 81:11256-66. [PMID: 17686844 PMCID: PMC2045539 DOI: 10.1128/jvi.01028-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/26/2007] [Indexed: 12/30/2022] Open
Abstract
Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses.
Collapse
Affiliation(s)
- Jason D Graci
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nayak D, Guo Q, Sousa R. Functional architecture of T7 RNA polymerase transcription complexes. J Mol Biol 2007; 371:490-500. [PMID: 17580086 PMCID: PMC1986751 DOI: 10.1016/j.jmb.2007.05.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 11/29/2022]
Abstract
Bacteriophage T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here, we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysine residues (K711/K713/K714) are present during both elongation and initiation, where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability.
Collapse
Affiliation(s)
- Dhananjaya Nayak
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Qing Guo
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Rui Sousa
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
24
|
Bandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT. The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem 2007; 282:22879-86. [PMID: 17548349 PMCID: PMC3311160 DOI: 10.1074/jbc.m702589200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the transition from an initiation complex to an elongation complex (EC), T7 RNA polymerase undergoes major conformational changes that involve reorientation of a "core" subdomain as a rigid body and extensive refolding of other elements in the 266 residue N-terminal domain. The pathway and timing of these events is poorly understood. To examine this, we introduced proline residues into regions of the N-terminal domain that become alpha-helical during the reorganization and changed the charge of a key residue that interacts with the RNA:DNA hybrid 5 bp upstream of the active site in the EC but not in the initiation complex. These alterations resulted in a diminished ability to make products >5-7 nt and/or a slow transition through this point. The results indicate that the transition to an EC is a multistep process and that the movement of the core subdomain and reorganization of certain elements in the N-terminal domain commence prior to promoter release (at 8-9 nt).
Collapse
Affiliation(s)
- Rajiv P. Bandwar
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Na Ma
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, New York 11203
- Graduate Program in Molecular and Cellular Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Steven A. Emanuel
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Michael Anikin
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294
| | - Smita S. Patel
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - William T. McAllister
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084
| |
Collapse
|
25
|
Kashkina E, Anikin M, Brueckner F, Lehmann E, Kochetkov SN, McAllister WT, Cramer P, Temiakov D. Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site. J Biol Chem 2007; 282:21578-82. [PMID: 17526498 DOI: 10.1074/jbc.c700098200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To extend the nascent transcript, RNA polymerases must melt the DNA duplex downstream from the active site to expose the next acceptor base for substrate binding and incorporation. A number of mechanisms have been proposed to account for the manner in which the correct substrate is selected, and these differ in their predictions as to how far the downstream DNA is melted. Using fluorescence quenching experiments, we provide evidence that cellular RNA polymerases from bacteria and yeast melt only one DNA base pair downstream from the active site. These data argue against a model in which multiple NTPs are lined up downstream of the active site.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Limanskii AP. Visualization of RNA transcripts by atomic force microscopy. CYTOL GENET+ 2007. [DOI: 10.3103/s0095452707020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Kashkina E, Anikin M, Brueckner F, Pomerantz RT, McAllister WT, Cramer P, Temiakov D. Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell 2006; 24:257-66. [PMID: 17052459 DOI: 10.1016/j.molcel.2006.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/27/2022]
Abstract
Recent work showed that the single-subunit T7 RNA polymerase (RNAP) can generate misincorporation errors by a mechanism that involves misalignment of the DNA template strand. Here, we show that the same mechanism can produce errors during transcription by the multisubunit yeast RNAP II and bacterial RNAPs. Fluorescence spectroscopy reveals a reorganization of the template strand during this process, and molecular modeling suggests an open space above the polymerase active site that could accommodate a misaligned base. Substrate competition assays indicate that template misalignment, not misincorporation, is the preferred mechanism for substitution errors by cellular RNAPs. Misalignment could account for data previously taken as evidence for additional NTP binding sites downstream of the active site. Analysis of the effects of different template topologies on misincorporation indicates that the duplex DNA immediately downstream of the active site plays an important role in transcription fidelity.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT. A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol Cell 2006; 24:245-55. [PMID: 17052458 PMCID: PMC2810628 DOI: 10.1016/j.molcel.2006.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/15/2006] [Accepted: 08/17/2006] [Indexed: 12/22/2022]
Abstract
Transcription errors by T7 RNA polymerase (RNAP) may occur as the result of a mechanism in which the template base two positions downstream of the 3' end of the RNA (the TSn+1 base) is utilized during two consecutive nucleotide-addition cycles. In the first cycle, misalignment of the template strand leads to incorporation of a nucleotide that is complementary to the TSn+1 base. In the second cycle, the template is realigned and the mismatched primer is efficiently extended, resulting in a substitution error. Proper organization of the transcription bubble is required for maintaining the correct register of the DNA template, as the presence of a complementary nontemplate strand opposite the TSn+1 base suppresses template misalignment. Our findings for T7 RNAP are in contrast to related DNA polymerases of the Pol I type, which fail to extend mismatches efficiently and generate predominantly deletion errors as a result of template-strand misalignment.
Collapse
Affiliation(s)
- Richard T. Pomerantz
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, New York 11203, USA
- Graduate Program in Molecular and Cellular Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, New York 11203, USA
| | - Dmitry Temiakov
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| | - Michael Anikin
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 434 Kaul Genetics Building, 720 20 Street South, Birmingham, AL 35294, USA
| | - William T. McAllister
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, 42 East Laurel Road, Stratford, New Jersey 08084, USA
| |
Collapse
|
29
|
Anand VS, Patel SS. Transient state kinetics of transcription elongation by T7 RNA polymerase. J Biol Chem 2006; 281:35677-85. [PMID: 17005565 DOI: 10.1074/jbc.m608180200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.
Collapse
|
30
|
Kashkina E, Anikin M, Tahirov TH, Kochetkov SN, Vassylyev DG, Temiakov D. Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res 2006; 34:4036-45. [PMID: 16914440 PMCID: PMC1557819 DOI: 10.1093/nar/gkl559] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We have characterized elongation complexes (ECs) of RNA polymerase from the extremely thermophilic bacterium, Thermus thermophilus. We found that complexes assembled on nucleic acid scaffolds are transcriptionally competent at high temperature (50–80°C) and, depending upon the organization of the scaffold, possess distinct translocation conformations. ECs assembled on scaffolds with a 9 bp RNA:DNA hybrid are highly stable, resistant to pyrophosphorolysis, and are in the posttranslocated state. ECs with an RNA:DNA hybrid longer or shorter than 9 bp appear to be in a pretranslocated state, as evidenced by their sensitivity to pyrophosphorolysis, GreA-induced cleavage, and exonuclease footprinting. Both pretranslocated (8 bp RNA:DNA hybrid) and posttranslocated (9 bp RNA:DNA hybrid) complexes were crystallized in distinct crystal forms, supporting the homogeneity of the conformational states in these complexes. Crystals of a posttranslocated complex were used to collect diffraction data at atomic resolution.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic MedicineStratford, NJ 08084, USA
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991, Moscow, Russian Federation
| | - Michael Anikin
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic MedicineStratford, NJ 08084, USA
| | - Tahir H. Tahirov
- APCG RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-choSayo Hyogo 679-5148 Japan
- Lied Transplant Center Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center 10737A986805 Nebraska Medical Center Omaha, Nebraska 68198
| | - Sergei N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991, Moscow, Russian Federation
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and DentistryBirmingham, AL 35294, USA
- Structural and Molecular Biology Laboratory, RIKEN Harima Institute at SPring-81-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | - Dmitry Temiakov
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic MedicineStratford, NJ 08084, USA
- To whom correspondence should be addressed. Tel: 856 566 6274; Fax: 856 566 2881;
| |
Collapse
|
31
|
Datta K, Johnson NP, von Hippel PH. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy. J Mol Biol 2006; 360:800-13. [PMID: 16784751 DOI: 10.1016/j.jmb.2006.05.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/19/2006] [Accepted: 05/20/2006] [Indexed: 11/28/2022]
Abstract
The bacteriophage T7 elongation complex is an excellent model system in which to characterize the fundamental steps of transcription. We have formed functional elongation complexes, by mixing preassembled and RNA-primed DNA "bubble" constructs with T7 RNA polymerase and by initiating transcription at promoters, and have monitored the low-energy CD and fluorescence spectra of pairs of 2-aminopurine residues that have been inserted at defined sites within the DNA and RNA scaffold of the complex. In this way, we have been able to probe specific changes in the local conformations of the bases and base-pairs at these positions as the elongation complex goes through the various steps of the nucleotide addition cycle. The advantage of using pairs of 2-aminopurine residues, inserted at defined nucleic acid positions, as probes, is that the rest of the complex is spectrally "transparent" at wavelengths >300 nm. Thus, by combining CD and fluorescence measurements we obtain both structural and dynamic information that applies uniquely at each position within the functioning complex. In this way, we have mapped the details of steps central to transcription, including the formation and translocation of the transcription bubble, the formation and unwinding of the RNA-DNA hybrid, the passage of the nascent RNA through the exit channel of the polymerase, and the events of the template-controlled NTP selection process that controls transcriptional fidelity. This approach defines specific structural aspects of the elongation process under physiological conditions, and can be extended to examine other key aspects of transcriptional regulation, such as termination, editing, pausing, etc., that involve conformational rearrangements within the nucleic acid framework of the transcription complex.
Collapse
Affiliation(s)
- Kausiki Datta
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
32
|
Bandwar RP, Tang GQ, Patel SS. Sequential release of promoter contacts during transcription initiation to elongation transition. J Mol Biol 2006; 360:466-83. [PMID: 16780876 DOI: 10.1016/j.jmb.2006.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/17/2022]
Abstract
Bacteriophage T7 RNA polymerase undergoes major conformational changes as transcription proceeds from initiation to elongation. Using limited trypsin digestion and stopped-flow fluorescence kinetic methods, we have monitored promoter release, initial bubble collapse, and refolding of the 152-205 region (subdomain H), the latter being important for RNA channel formation. The kinetic studies show that the conformational changes are temporally coupled, commencing at the synthesis of 9 nt and completing by the synthesis of 12 nt of RNA. The temporal coupling of initial bubble collapse and RNA channel formation is proposed to facilitate proper binding of the RNA dissociated from the late initiation complexes into the RNA channel. Using promoter mutations, we have determined that promoter contacts are broken sequentially during transition from initiation to elongation. The specificity loop interactions are broken after synthesis of 8 nt or 9 nt of RNA, whereas the upstream promoter contacts persists up to synthesis of 12 nt of RNA. Both promoter contacts need to be broken for transition into elongation. The A-15C mutation resulted in efficient transition to elongation by synthesis of 9 nt of RNA, whereas the C-9A mutation resulted in early transition to elongation by synthesis of 7-8 nt of RNA. The effect of early promoter clearance in the mutant promoters was observed as reduced production of long abortive products.
Collapse
Affiliation(s)
- Rajiv P Bandwar
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
33
|
Ma K, Temiakov D, Anikin M, McAllister WT. Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages. Proc Natl Acad Sci U S A 2005; 102:17612-7. [PMID: 16301518 PMCID: PMC1308916 DOI: 10.1073/pnas.0508865102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Indexed: 11/18/2022] Open
Abstract
During the transition from an initiation complex to an elongation complex (EC), the single-subunit bacteriophage T7 RNA polymerase (RNAP) undergoes dramatic conformational changes. To explore the significance of these changes, we constructed mutant RNAPs that are able to form disulfide bonds that limit the mobility of elements that are involved in the transition (or its reversal) and examined the effects of the crosslinks on initiation and termination. A crosslink that is specific to the initiation complex conformation blocks transcription at 5-6 nt, presumably by preventing isomerization to an EC. A crosslink that is specific to the EC conformation has relatively little effect on elongation or on termination at a class I terminator (T), which involves the formation of a stable stem-loop structure in the RNA. Crosslinked ECs also pause and resume transcription normally at a class II pause site (concatamer junction) but are deficient in termination at a class II terminator (PTH, which is found in human preparathyroid hormone gene), both of which involve a specific recognition sequence. The crosslinked amino acids in the EC lie close to the upstream end of the RNA-DNA hybrid and may prevent a movement of the polymerase that would assist in displacing or releasing RNA from a relatively unstable DNA-RNA hybrid in the paused PTH complex.
Collapse
Affiliation(s)
- Kaiyu Ma
- Department of Microbiology and Immunology, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | | | | | | |
Collapse
|
34
|
Jiang M, Ma N, Vassylyev DG, McAllister WT. RNA displacement and resolution of the transcription bubble during transcription by T7 RNA polymerase. Mol Cell 2004; 15:777-88. [PMID: 15350221 DOI: 10.1016/j.molcel.2004.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 06/07/2004] [Accepted: 06/17/2004] [Indexed: 11/26/2022]
Abstract
Unlike DNA polymerases, RNA polymerases (RNAPs) must displace the nascent product from the template and restore the DNA to duplex form after passage of the transcription complex. To accomplish this, RNAPs establish a locally denatured "bubble" that encloses a short RNA:DNA hybrid. As the polymerase advances along the template, the RNA is displaced at the trailing edge of the bubble and the two DNA strands are reannealed. Structural analyses have revealed a number of elements that are likely to be involved in this process in T7 RNAP. In this work, we used genetic and biochemical methods to explore the roles of these elements during the transition from an initiation complex to an elongation complex. The results indicate that the transition is a multistep process and reveal a critical role for the nontemplate strand of the DNA.
Collapse
Affiliation(s)
- Manli Jiang
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
35
|
Gong P, Esposito EA, Martin CT. Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymerase. J Biol Chem 2004; 279:44277-85. [PMID: 15337752 DOI: 10.1074/jbc.m409118200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases bind to specific sequences in DNA, melt open duplex DNA around the start site, and start transcription within the initially melted bubble. The initially transcribing complex is relatively unstable, releasing short abortive products. After synthesis of a minimal length of RNA (approximately 10-12 bases in the T7 system), RNA polymerases complete the transition to a processive (highly stable) elongation phase and lose the initial promoter contacts. The current study strongly supports a model for T7 RNA polymerase in which initial bubble collapse from position -4 to position +3 is responsible for initiating RNA displacement in the transition process. More specifically, collapse of the bubble from position -4 to position -1 indirectly and energetically facilitates the direct strand invasion offered by collapse at positions +1 to +3. Parallel work shows that promoter release, another key event occurring during this stage of transcription, begins after translocation to position +8 and is largely complete upon translocation to about position +12. The timing of promoter release agrees with the timing of initial bubble collapse determined by our previous fluorescence studies, suggesting that these two events are closely related.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003-9336, USA
| | | | | |
Collapse
|
36
|
Esposito EA, Martin CT. Cross-linking of promoter DNA to T7 RNA polymerase does not prevent formation of a stable elongation complex. J Biol Chem 2004; 279:44270-6. [PMID: 15304497 DOI: 10.1074/jbc.m407688200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T7 RNA polymerase recognizes a small promoter, binds DNA, and begins the process of transcription by synthesizing short RNA products without releasing promoter contacts. To determine whether the promoter contact must be released to make longer RNA products and at what position the promoter must be released, a mutant RNA polymerase was designed that allows cross-linking to a modified promoter via a covalent disulfide bond. The modifications individually have no measurable effect on transcription. Under oxidizing conditions that produce the protein-DNA cross-link, the complex is able to synthesize short RNA products, strongly supporting a model in which promoter contacts are not lost on translocation through at least position +6. However, cross-linked complexes are impaired in promoter escape in that only about one in four can escape to make full-length RNA. The remainder release 12- and 13-mer RNA transcripts, suggesting an increased energetic barrier in the transition from an initial transcribing complex to a fully competent elongation complex. The results are discussed in the context of a model in which promoter release helps drive initial collapse of the upstream edge of the bubble, which, in turn, drives initial displacement of the 5'-end of the RNA.
Collapse
Affiliation(s)
- Edward A Esposito
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003-9336, USA
| | | |
Collapse
|
37
|
Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG. Structural basis for substrate selection by t7 RNA polymerase. Cell 2004; 116:381-91. [PMID: 15016373 DOI: 10.1016/s0092-8674(04)00059-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/12/2003] [Accepted: 12/22/2003] [Indexed: 01/22/2023]
Abstract
The mechanism by which nucleotide polymerases select the correct substrate is of fundamental importance to the fidelity of DNA replication and transcription. During the nucleotide addition cycle, pol I DNA polymerases undergo the transition from a catalytically inactive "open" to an active "closed" conformation. All known determinants of substrate selection are associated with the "closed" state. To elucidate if this mechanism is conserved in homologous single subunit RNA polymerases (RNAPs), we have determined the structure of T7 RNAP elongation complex with the incoming substrate analog. Surprisingly, the substrate specifically binds to RNAP in the "open" conformation, where it is base paired with the acceptor template base, while Tyr639 provides discrimination of ribose versus deoxyribose substrates. The structure therefore suggests a novel mechanism, in which the substrate selection occurs prior to the isomerization to the catalytically active conformation. Modeling of multisubunit RNAPs suggests that this mechanism might be universal for all RNAPs.
Collapse
Affiliation(s)
- Dmitry Temiakov
- Morse Institute for Molecular Genetics, Department of Microbiology, SUNY Health Science Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jung Y, Lippard SJ. Multiple states of stalled T7 RNA polymerase at DNA lesions generated by platinum anticancer agents. J Biol Chem 2003; 278:52084-92. [PMID: 14534300 DOI: 10.1074/jbc.m310120200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transcription inhibition by DNA adducts of cisplatin is considered to be one of the major routes by which this anticancer drug kills cancer cells. Stalled RNA polymerases at platinum-DNA lesions evoke various cellular responses such as nucleotide excision repair, polymerase degradation, and apoptosis. T7 RNA polymerase and site-specifically platinated DNA templates immobilized on a solid support were used to study stalled transcription elongation complexes. In vitro transcription studies were performed in both a promoter-dependent and -independent manner. An elongation complex is strongly blocked by cisplatin 1,2-intrastrand d(GpG) and 1,3-intrastrand d(GpTpG) cross-links located on the template strand. Polymerase action is inhibited at multiple sites in the vicinity of the platinum lesion, the nature of which can be altered by the choice and concentration of NTPs. The [(1R,2R-diaminocyclohexane)Pt]2+ DNA adducts formed by oxaliplatin, which carries a stereochemically more demanding spectator ligand than the ammine groups in cisplatin, also strongly block the polymerase with measurable differences compared with cis-[(NH3)2Pt]2+ lesions. Elongation complexes stopped at sites of platinum damage were isolated and characterized. The stalled polymerase can be dissociated from the DNA by subsequent polymerases initiated from the same template. We also discovered that a polymerase stalled at the platinum-DNA lesion can resume transcription after the platinum adduct is chemically removed from the template.
Collapse
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
39
|
Schwartz A, Rahmouni AR, Boudvillain M. The functional anatomy of an intrinsic transcription terminator. EMBO J 2003; 22:3385-94. [PMID: 12840000 PMCID: PMC165636 DOI: 10.1093/emboj/cdg310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To induce dissociation of the transcription elongation complex, a typical intrinsic terminator forms a G.C-rich hairpin structure upstream from a U-rich run of approximately eight nucleotides that define the transcript 3' end. Here, we have adapted the nucleotide analog interference mapping (NAIM) approach to identify the critical RNA atoms and functional groups of an intrinsic terminator during transcription with T7 RNA polymerase. The results show that discrete components within the lower half of the hairpin stem form transient termination-specific contacts with the RNA polymerase. Moreover, disruption of interactions with backbone components of the transcript region hybridized to the DNA template favors termination. Importantly, comparative NAIM of termination events occurring at consecutive positions revealed overlapping but distinct sets of functionally important residues. Altogether, the data identify a collection of RNA terminator components, interactions and spacing constraints that govern efficient transcript release. The results also suggest specific architectural rearrangements of the transcription complex that may participate in allosteric control of intrinsic transcription termination.
Collapse
Affiliation(s)
- Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | |
Collapse
|
40
|
Temiakov D, Anikin M, Ma K, Jiang M, McAllister WT. Probing the organization of transcription complexes using photoreactive 4-thio-substituted analogs of uracil and thymidine. Methods Enzymol 2003; 371:133-43. [PMID: 14712696 DOI: 10.1016/s0076-6879(03)71009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dmitri Temiakov
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Downstate 450 Clarkson Avenue, Brooklyn, New York 11203-2098, USA
| | | | | | | | | |
Collapse
|
41
|
Sohn Y, Shen H, Kang C. Stepwise Walking and Cross-Linking of RNA with Elongating T7 RNA Polymerase. Methods Enzymol 2003; 371:170-9. [PMID: 14712699 DOI: 10.1016/s0076-6879(03)71012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Younghee Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
42
|
Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 2002; 420:43-50. [PMID: 12422209 DOI: 10.1038/nature01129] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/19/2002] [Indexed: 01/22/2023]
Abstract
The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA-DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130 degrees rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA-DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.
Collapse
Affiliation(s)
- Tahir H Tahirov
- High Throughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|