1
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Zhu Y, Alqahtani S, Hu X. An Assessment of Dispersion-Corrected DFT Methods for Modeling Nonbonded Interactions in Protein Kinase Inhibitor Complexes. Molecules 2024; 29:304. [PMID: 38257217 PMCID: PMC11154270 DOI: 10.3390/molecules29020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Accurate modeling of nonbonded interactions between protein kinases and their small molecule inhibitors is essential for structure-based drug design. Quantum chemical methods such as density functional theory (DFT) hold significant promise for quantifying the strengths of these key protein-ligand interactions. However, the accuracy of DFT methods can vary substantially depending on the choice of exchange-correlation functionals and associated basis sets. In this study, a comprehensive benchmarking of nine widely used DFT methods was carried out to identify an optimal approach for quantitative modeling of nonbonded interactions, balancing both accuracy and computational efficiency. From a database of 2139 kinase-inhibitor crystal structures, a diverse library of 49 nonbonded interaction motifs was extracted, encompassing CH-π, π-π stacking, cation-π, hydrogen bonding, and salt bridge interactions. The strengths of nonbonded interaction energies for all 49 motifs were calculated at the advanced CCSD(T)/CBS level of theory, which serve as references for a systematic benchmarking of BLYP, TPSS, B97, ωB97X, B3LYP, M062X, PW6B95, B2PLYP, and PWPB95 functionals with D3BJ dispersion correction alongside def2-SVP, def2-TZVP, and def2-QZVP basis sets. The RI, RIJK, and RIJCOSX approximations were used for selected functionals. It was found that the B3LYP/def2-TZVP and RIJK RI-B2PLYP/def2-QZVP methods delivered the best combination of accuracy and computational efficiency, making them well-suited for efficient modeling of nonbonded interactions responsible for molecular recognition of protein kinase inhibitors in their targets.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (Y.Z.); (S.A.)
| | - Saad Alqahtani
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (Y.Z.); (S.A.)
- Department of Chemistry, King Saud University, Riyadh 12372, Saudi Arabia
| | - Xiche Hu
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (Y.Z.); (S.A.)
| |
Collapse
|
3
|
Amorim J, Vásquez V, Cabrera A, Martínez M, Carpio J. In Silico and In Vitro Identification of 1,8-Dihydroxy-4,5-dinitroanthraquinone as a New Antibacterial Agent against Staphylococcus aureus and Enterococcus faecalis. Molecules 2023; 29:203. [PMID: 38202786 PMCID: PMC10779913 DOI: 10.3390/molecules29010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing rates of bacterial resistance to antibiotics are a growing concern worldwide. The search for potential new antibiotics has included several natural products such as anthraquinones. However, comparatively less attention has been given to anthraquinones that exhibit functional groups that are uncommon in nature. In this work, 114 anthraquinones were evaluated using in silico methods to identify inhibitors of the enzyme phosphopantetheine adenylyltransferase (PPAT) of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. Virtual screenings based on molecular docking and the pharmacophore model, molecular dynamics simulations, and free energy calculations pointed to 1,8-dihydroxy-4,5-dinitroanthraquinone (DHDNA) as the most promising inhibitor. In addition, these analyses highlighted the contribution of the nitro group to the affinity of this anthraquinone for the nucleotide-binding site of PPAT. Furthermore, DHDNA was active in vitro towards Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 31.25 µg/mL for S. aureus and 62.5 µg/mL for E. faecalis against both antibiotic-resistant isolates and reference strains but was ineffective against E. coli. Experiments on kill-time kinetics indicated that, at the tested concentrations, DHDNA produced bacteriostatic effects on both Gram-positive bacteria. Overall, our results present DHDNA as a potential PPAT inhibitor, showing antibacterial activity against antibiotic-resistant isolates of S. aureus and E. faecalis, findings that point to nitro groups as key to explaining these results.
Collapse
Affiliation(s)
| | | | | | | | - Juan Carpio
- Unidad de Salud y Bienestar, Facultad de Bioquímica y Farmacia, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010105, Ecuador
| |
Collapse
|
4
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Guo R, Li G, Zhang Z, Peng X. Structures and Biological Activities of Secondary Metabolites from Trichoderma harzianum. Mar Drugs 2022; 20:701. [PMID: 36355024 PMCID: PMC9696559 DOI: 10.3390/md20110701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
The biocontrol fungus Trichoderma harzianum, from both marine and terrestrial environments, has attracted considerable attention. T. harzianum has a tremendous potential to produce a variety of bioactive secondary metabolites (SMs), which are an important source of new herbicides and antibiotics. This review prioritizes the SMs of T. harzianum from 1988 to June 2022, and their relevant biological activities. Marine-derived SMs, especially terpenoids, polyketides, and macrolides compounds, occupy a significant proportion of natural products from T. harzianum, deserving more of our attention.
Collapse
Affiliation(s)
- Rui Guo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhao Zhang
- Department of Hand and Foot Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Fabbian S, Giachin G, Bellanda M, Borgo C, Ruzzene M, Spuri G, Campofelice A, Veneziano L, Bonchio M, Carraro M, Battistutta R. Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate. Front Mol Biosci 2022; 9:906390. [PMID: 35720133 PMCID: PMC9201508 DOI: 10.3389/fmolb.2022.906390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(μ-OH)2(μ-O)4(H2O)4 (γ-SiW10O36)2]10− (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.
Collapse
Affiliation(s)
- Simone Fabbian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Giacomo Spuri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ambra Campofelice
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Laura Veneziano
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| |
Collapse
|
7
|
Gul S, Aslam K, Pirzada Q, Rauf A, Khalil AA, Semwal P, Bawazeer S, Al-Awthan YS, Bahattab OS, Al Duais MA, Thiruvengadam M. Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential. Curr Top Med Chem 2022; 22:1930-1949. [PMID: 36056870 DOI: 10.2174/1568026622666220901145002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Xanthones (9H xanthen-9-one) are an important class of heterocyclic compounds containing oxygen and a moiety of gamma-pirone, dense with a two-benzene ring structure, distributed widely in nature. Naturally occurring xanthones are found in micro-organisms and higher plants as secondary metabolites in fungi and lichens. Compounds of the family Caryophyllaceae, Guttiferae and Gentianaceae, are the most common natural source of xanthones. The structure of the xanthones nucleus, coupled with its biogenetic source, imposes that the carbons are numbered according to the biosynthetic pact. The characteristics oxygenation pattern of xanthones earlier is mixed shikimateacetate biogenesis. The major class of xanthones includes simple oxygenated, non-oxygenated, xanthonolignoids, bisxanthones, prenylated and related xanthones, miscellaneous xanthones. Their great pharmacological importance and interesting scaffolds were highly encouraged by scientists to investigate either the synthesis design or natural products for cancer treatment. Because currently used antitumor drugs possess high toxicity and low selectivity, efficacious treatment may be compromised. This review is limited to the antitumor activity of xanthones and the chemistry of xanthone core, which may help provide fundamental knowledge to the medicinal chemist for new and advanced research in drug development.
Collapse
Affiliation(s)
- Somia Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Khadija Aslam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Quratulain Pirzada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yahya Saleh Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Omar Salem Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Ali Al Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
8
|
Liu Y, Bi M, Zhang X, Zhang N, Sun G, Zhou Y, Zhao L, Zhong R. Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors. Processes (Basel) 2021; 9:2074. [DOI: 10.3390/pr9112074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Casein kinase 2 (CK2) is considered an important target for anti-cancer drugs. Given the structural diversity and broad spectrum of pharmaceutical activities of natural products, numerous studies have been performed to prove them as valuable sources of drugs. However, there has been little study relevant to identifying structural factors responsible for their inhibitory activity against CK2 with machine learning methods. In this study, classification studies were conducted on 115 natural products as CK2 inhibitors. Seven machine learning methods along with six molecular fingerprints were employed to develop qualitative classification models. The performances of all models were evaluated by cross-validation and test set. By taking predictive accuracy(CA), the area under receiver operating characteristic (AUC), and (MCC)as three performance indicators, the optimal models with high reliability and predictive ability were obtained, including the Extended Fingerprint-Logistic Regression model (CA = 0.859, AUC = 0.826, MCC = 0.520) for training test andPubChem fingerprint along with the artificial neural model (CA = 0.826, AUC = 0.933, MCC = 0.628) for test set. Meanwhile, the privileged substructures responsible for their inhibitory activity against CK2 were also identified through a combination of frequency analysis and information gain. The results are expected to provide useful information for the further utilization of natural products and the discovery of novel CK2 inhibitors.
Collapse
Affiliation(s)
- Yuting Liu
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengzhou Bi
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xuewen Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhou
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijiao Zhao
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
10
|
Valarmathi T, Premkumar R, Franklin Benial AM. Spectroscopic and molecular docking studies on 1-Hydroxyanthraquinone: A potent ovarian cancer drug. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
12
|
Kufareva I, Bestgen B, Brear P, Prudent R, Laudet B, Moucadel V, Ettaoussi M, Sautel CF, Krimm I, Engel M, Filhol O, Borgne ML, Lomberget T, Cochet C, Abagyan R. Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Sci Rep 2019; 9:15893. [PMID: 31685885 PMCID: PMC6828666 DOI: 10.1038/s41598-019-52141-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 01/06/2023] Open
Abstract
CK2 is a constitutively active protein kinase overexpressed in numerous malignancies. Interaction between CK2α and CK2β subunits is essential for substrate selectivity. The CK2α/CK2β interface has been previously targeted by peptides to achieve functional effects; however, no small molecules modulators were identified due to pocket flexibility and open shape. Here we generated numerous plausible conformations of the interface using the fumigation modeling protocol, and virtually screened a compound library to discover compound 1 that suppressed CK2α/CK2β interaction in vitro and inhibited CK2 in a substrate-selective manner. Orthogonal SPR, crystallography, and NMR experiments demonstrated that 4 and 6, improved analogs of 1, bind to CK2α as predicted. Both inhibitors alter CK2 activity in cells through inhibition of CK2 holoenzyme formation. Treatment with 6 suppressed MDA-MB231 triple negative breast cancer cell growth and induced apoptosis. Altogether, our findings exemplify an innovative computational-experimental approach and identify novel non-peptidic inhibitors of CK2 subunit interface disclosing substrate-selective functional effects.
Collapse
Affiliation(s)
- Irina Kufareva
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA
| | - Benoit Bestgen
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, 8 avenue Rockefeller, F-69373, Lyon, cedex 8, France.,Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.,Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.,Ecrins Therapeutics, 5 Avenue du Grand Sablon, 38700, La Tronche, France
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Renaud Prudent
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.,Cellipse MINATEC, 7 Parvis Louis Néel, 38000, Grenoble, cedex 9, France
| | - Béatrice Laudet
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.,CHU Toulouse, Emergency Department, F-31000, Toulouse, France
| | - Virginie Moucadel
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.,BioMérieux SA, Centre Christophe Mérieux, 5 rue des Berges, 38024, Grenoble, cedex 1, France
| | - Mohamed Ettaoussi
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, 8 avenue Rockefeller, F-69373, Lyon, cedex 8, France
| | - Celine F Sautel
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.,DERMADIS, 218 avenue Marie Curie, 74160, Archamps, France
| | - Isabelle Krimm
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Odile Filhol
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France
| | - Marc Le Borgne
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, 8 avenue Rockefeller, F-69373, Lyon, cedex 8, France
| | - Thierry Lomberget
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, 8 avenue Rockefeller, F-69373, Lyon, cedex 8, France
| | - Claude Cochet
- Univ. Grenoble Alpes, Inserm U1036, CEA, BCI Laboratory, IRIG, F-38000, Grenoble, France.
| | - Ruben Abagyan
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Qi X, Zhang N, Zhao L, Hu L, Cortopassi WA, Jacobson MP, Li X, Zhong R. Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents. Biochem Biophys Res Commun 2019; 512:208-212. [PMID: 30878184 DOI: 10.1016/j.bbrc.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 11/15/2022]
Abstract
Protein kinase CK2 has emerged as an attractive cancer therapeutic target. Previous studies have highlighted the challenge of optimizing CK2 ATP-competitive inhibitors that have low druggability due to their polycyclic ring scaffolds. Therefore the development of novel inhibitors with non-polycyclic scaffolds emerges as a promising strategy for drug discovery targeting CK2. In this current study, based on the similar predicted binding poses of the linear 2-propenone scaffold of isoliquiritigenin with that of the polycyclic inhibitor CX-4945, a series of 2-propenone derivatives containing an amine-substituted five-membered heterocycle and a benzoic acid were designed, synthesized and evaluated for their in vitro CK2 inhibition and anti-cancer activity. Compound 8b was found to be the most potent CK2 inhibitor (IC50 = 0.6 μM) with the anti-proliferative activity on HepG2 cancer cells (IC50 = 14 μM), compared to the activity of isoliquiritigenin (IC50 = 17 μM and 51 μM, respectively). Molecular docking was performed to understand the binding modes of the newly designed 2-propenone derivatives with CK2. Compound 8b formed the most favorable network of hydrogen bonds with both the hinge region and positive area. Our results indicate that CK2 derivatives with a linear 2-propenone scaffold are promising candidates for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Xiaoqian Qi
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Liming Hu
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, United States
| | - Xitao Li
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
14
|
Kabir A, Tilekar K, Upadhyay N, Ramaa C. Novel Anthraquinone Derivatives as Dual Inhibitors of Topoisomerase 2 and Casein Kinase 2: In Silico Studies, Synthesis and Biological Evaluation on Leukemic Cell Lines. Anticancer Agents Med Chem 2019; 18:1551-1562. [DOI: 10.2174/1871520618666180423111309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/22/2022]
Abstract
Background:
Cancer being a complex disease, single targeting agents remain unsuccessful. This calls
for “multiple targeting”, wherein a single drug is so designed that it will modulate the activity of multiple protein
targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication,
Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the
present work, we have tried to develop dual inhibitors of Top2 and CK2.
Objective:
With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve
the anti-proliferative effects.
Methods:
Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures
were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and
Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the
Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for
Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis.
Results:
The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell
line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y
have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more
cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1
phase.
Conclusion:
We have successfully designed, synthesized, purified and structurally characterized 1-
acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase
enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.
Collapse
Affiliation(s)
- Abbas Kabir
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Kalpana Tilekar
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Neha Upadhyay
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - C.S. Ramaa
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| |
Collapse
|
15
|
Shahraki A, Ebrahimi A. Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. NEW J CHEM 2019. [DOI: 10.1039/c9nj03508g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using three-layer ONIOM and molecular docking calculations to investigate the binding of urolithins to the active site of the CK2 protein.
Collapse
Affiliation(s)
- Asiyeh Shahraki
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| |
Collapse
|
16
|
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel) 2017; 10:ph10010026. [PMID: 28230762 PMCID: PMC5374430 DOI: 10.3390/ph10010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Collapse
|
17
|
P R KR, Fernandez A, Laila SP, B A, C S S, V S V. Synthesis, spectral characterization, crystal structure, cytotoxicity and apoptosis-Inducing activity of two derivatives of 2-hydroxy-1,4-naphthaquinone. Photodiagnosis Photodyn Ther 2017; 17:250-259. [PMID: 28122250 DOI: 10.1016/j.pdpdt.2017.01.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/03/2016] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
A phenaxazone compound [5H-Benzo[a]phenoxazin-5-one (BP)] along with an aminoquinone[2-[(o-hydroxyphenyl)amino]-1,4-naphthaquinone (HAN)] derivatives were synthesized from lawsone using ultrasound irradiation technique. The structure of the compounds were characterized by elemental analysis and various spectral studies. Optoelectronic properties were studied using Schrodinger material science suit (2015). The compounds exhibit fluorescence emission in longer wave length it may find applications in photodynamic therapy. Single crystal X-ray diffraction studies reveals that the compound BP crystallizes in monoclinic space group. The antioxidant activity of HAN and BP were determined using DPPH radical scavenging assay and the results indicate that both the compounds have good antioxidant capacity, HAN having more scavenging activity than BP. Lead molecules were identified using in silico molecular docking studies as a green chemistry approach. iGEMDOCK, GOLD and Schrödinger softwares were used for these studies. The docking studies reveal that the structural modification of the parent compound gave more active compounds making them promising lead molecules. The lead molecules were subjected to in vitro studies. The cytotoxicity of BP and HAN was studied using human breast cancer (SKBR3) cell lines. The IC50 value of HAN was found to be 19.8μM while BP was found to have cell viability, less than 10% even at 25μM concentration. The chemotherapeutic agents kill the cancer cells mainly through apoptosis. HAN and BP were subjected to apoptosis studies. BP was found to more active than HAN. Thus it can be suggested that the mechanism of cell death may be through apoptosis.
Collapse
Affiliation(s)
- Kavitha Rani P R
- Dept. of Chemistry, SFR College for Women, Sivakasi, 626123, Tamilnadu, India.
| | - Annette Fernandez
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| | - Shiny P Laila
- Dept. of Chemistry, University College, Trivandrum, 695014, Kerala, India
| | - Arunkumar B
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| | - Sreelakshmi C S
- Dept. of Chemistry, Mohandas College of Engineering and Technology, Thiruvananthapuram, 695544, Kerala, India
| | - Vishnu V S
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| |
Collapse
|
18
|
Kim K, Min M, Hong S. Efficient Synthesis of Anthraquinones from Diaryl Carboxylic Acids via Palladium(II)-Catalyzed and Visible Light-Mediated Transformations. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kiho Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Korea
| | - Minsik Min
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Korea
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| |
Collapse
|
19
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
20
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
21
|
Shchekotikhin AE, Dezhenkova LG, Tsvetkov VB, Luzikov YN, Volodina YL, Tatarskiy VV, Kalinina AA, Treshalin MI, Treshalina HM, Romanenko VI, Kaluzhny DN, Kubbutat M, Schols D, Pommier Y, Shtil AA, Preobrazhenskaya MN. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur J Med Chem 2016; 112:114-129. [PMID: 26890118 DOI: 10.1016/j.ejmech.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/30/2023]
Abstract
Anthraquinones and their analogues, in particular heteroarene-fused anthracendiones, are prospective scaffolds for new compounds with improved antitumor characteristics. We herein report the use of a 'scaffold hopping' approach for the replacement of the core structure in the previously discovered hit compound naphtho[2,3-f]indole-5,10-dione 2 with an alternative anthra[2,3-b]furan-5,10-dione scaffold. Among 13 newly synthesized derivatives the majority of 4,11-dihydroxy-2-methyl-5,10-dioxoanthra[2,3-b]furan-3-carboxamides demonstrated a high antiproliferative potency against a panel of wild type and drug resistant tumor cell lines, a property superior over the reference drug doxorubicin or lead naphtho[2,3-f]indole-5,10-dione 2. At low micromolar concentrations the selected derivative of (R)-3-aminopyrrolidine 3c and its stereoisomer (S)-3-aminopyrrolidine 3d caused an apoptotic cell death preceded by an arrest in the G2/M phase. Studies of intracellular targets showed that 3c and 3d formed stable intercalative complexes with the duplex DNA as determined by spectral analysis and molecular docking. Both 3c and 3d attenuated topoisomerase 1 and 2 mediated unwinding of the supercoiled DNA via a mechanism different from conventional DNA-enzyme tertiary complex formation. Furthermore, 3d decreased the activity of selected human protein kinases in vitro, indicating multiple targeting by the new chemotype. Finally, 3d demonstrated an antitumor activity in a model of murine intraperitoneally transplanted P388 leukemia, achieving the increase of animal life span up to 262% at tolerable doses. Altogether, the 'scaffold hopping' demonstrated its productivity for obtaining new perspective antitumor drug candidates.
Collapse
Affiliation(s)
- Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia.
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Vladimir B Tsvetkov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, 119991 Moscow, Russia; Institute for Physical-Chemical Medicine, 1A M. Pirogovskaya Street, Moscow 119435, Russia
| | - Yuri N Luzikov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Yulia L Volodina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Victor V Tatarskiy
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anastasia A Kalinina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Michael I Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Helen M Treshalina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Vladimir I Romanenko
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, 37 Convent Drive, 37-5068, Bethesda, MD 20892, USA
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | | |
Collapse
|
22
|
Morooka S, Hoshina M, Kii I, Okabe T, Kojima H, Inoue N, Okuno Y, Denawa M, Yoshida S, Fukuhara J, Ninomiya K, Ikura T, Furuya T, Nagano T, Noda K, Ishida S, Hosoya T, Ito N, Yoshimura N, Hagiwara M. Identification of a Dual Inhibitor of SRPK1 and CK2 That Attenuates Pathological Angiogenesis of Macular Degeneration in Mice. Mol Pharmacol 2015; 88:316-25. [PMID: 25993998 DOI: 10.1124/mol.114.097345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/20/2015] [Indexed: 12/28/2022] Open
Abstract
Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serine-arginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of age-related macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF.
Collapse
Affiliation(s)
- Satoshi Morooka
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Mitsuteru Hoshina
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Isao Kii
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Takayoshi Okabe
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Hirotatsu Kojima
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Naoko Inoue
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Yukiko Okuno
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Masatsugu Denawa
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Suguru Yoshida
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Junichi Fukuhara
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Kensuke Ninomiya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Teikichi Ikura
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Toshio Furuya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Tetsuo Nagano
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Kousuke Noda
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Susumu Ishida
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Takamitsu Hosoya
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Nobutoshi Ito
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| | - Masatoshi Hagiwara
- Department of Ophthalmology and Visual Sciences (S.M., N.Y.), Department of Anatomy and Developmental Biology (S.M., I.K., Ke.N., Ma.H.), and Medical Research Support Center (Y.O., M.D.), Graduate School of Medicine, Kyoto University, Kyoto, Japan; Laboratory of Structural Biology, Medical Research Institute (Mi.H., No.I., T.I.), and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering (S.Y., T.H.), Tokyo Medical and Dental University, Tokyo, Japan; Open Innovation Center for Drug Discovery, The University of Tokyo, Tokyo, Japan (T.O., H.K., T.N.); PharmaDesign, Inc., Tokyo, Japan (Na.I., T.F.); and Department of Ophthalmology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (J.F., Ko.N., S.I.)
| |
Collapse
|
23
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
24
|
Abstract
Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.
Collapse
Affiliation(s)
- P Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA,
| |
Collapse
|
25
|
Sivasakthi V, Anbarasu A, Ramaiah S. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochem Biophys 2013; 67:853-63. [DOI: 10.1007/s12013-013-9573-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG. In Vitro and in Vivo Anticancer Activity of Copper Bis(thiosemicarbazone) Complexes. J Med Chem 2013; 56:722-34. [DOI: 10.1021/jm300938r] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Duraippandi Palanimuthu
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Sridevi Vijay Shinde
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Kumaravel Somasundaram
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Ashoka G. Samuelson
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
27
|
Structural and functional analysis of the flexible regions of the catalytic α-subunit of protein kinase CK2. J Struct Biol 2012; 177:382-91. [DOI: 10.1016/j.jsb.2011.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/27/2023]
|
28
|
Sarno S, Mazzorana M, Traynor R, Ruzzene M, Cozza G, Pagano MA, Meggio F, Zagotto G, Battistutta R, Pinna LA. Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A. Cell Mol Life Sci 2012; 69:449-60. [PMID: 21720886 PMCID: PMC11114634 DOI: 10.1007/s00018-011-0758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 11/27/2022]
Abstract
8-hydroxy-4-methyl-9-nitrobenzo(g)chromen-2-one (NBC) has been found to be a fairly potent ATP site-directed inhibitor of protein kinase CK2 (Ki = 0.22 μM). Here, we show that NBC also inhibits PIM kinases, especially PIM1 and PIM3, the latter as potently as CK2. Upon removal of the nitro group, to give 8-hydroxy-4-methyl-benzo(g)chromen-2-one (here referred to as "denitro NBC", dNBC), the inhibitory power toward CK2 is almost entirely lost (IC(50) > 30 μM) whereas that toward PIM1 and PIM3 is maintained; in addition, dNBC is a potent inhibitor of a number of other kinases that are weakly inhibited or unaffected by NBC, with special reference to DYRK1A whose IC(50) values with NBC and dNBC are 15 and 0.60 μM, respectively. Therefore, the observation that NBC, unlike dNBC, is a potent inducer of apoptosis is consistent with the notion that this effect is mediated by inhibition of endogenous CK2. The structural features underlying NBC selectivity have been revealed by inspecting its 3D structure in complex with the catalytic subunit of Z. mays CK2. The crucial role of the nitro group is exerted both through a direct electrostatic interaction with the side chain of Lys68 and, indirectly, by enhancing the acidic dissociation constant of the adjacent hydroxyl group which interacts with a conserved water molecule in the deepest part of the cavity. By contrast, the very same nitro group is deleterious for the binding to the active site of DYRK1A, as disclosed by molecular docking. This provides the rationale for preferential inhibition of DYRK1A by dNBC.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| | - Marco Mazzorana
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
- Present Address: Diamond Light Source Ltd—Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Ryan Traynor
- Medical Research Council Protein Phosphorylation Unit, University of Dundee, Dundee, DD1 5EH Scotland, UK
| | - Maria Ruzzene
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| | - Giorgio Cozza
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Mario A. Pagano
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Flavio Meggio
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padua, via Marzolo 5, 35131 Padova, Italy
| | - Roberto Battistutta
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Lorenzo A. Pinna
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| |
Collapse
|
29
|
Balintová J, Pohl R, Horáková P, Vidláková P, Havran L, Fojta M, Hocek M. Anthraquinone as a redox label for DNA: synthesis, enzymatic incorporation, and electrochemistry of anthraquinone-modified nucleosides, nucleotides, and DNA. Chemistry 2011; 17:14063-73. [PMID: 22095665 DOI: 10.1002/chem.201101883] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Indexed: 11/11/2022]
Abstract
Modified 2'-deoxynucleosides and deoxynucleoside triphosphates (dNTPs) bearing anthraquinone (AQ) attached through an acetylene or propargylcarbamoyl linker at the 5-position of pyrimidine (C) or at the 7-position of 7-deazaadenine were prepared by Sonogashira cross-coupling of halogenated dNTPs with 2-ethynylanthraquinone or 2-(2-propynylcarbamoyl)anthraquinone. Polymerase incorporations of the AQ-labeled dNTPs into DNA by primer extension with KOD XL polymerase have been successfully developed. The electrochemical properties of the AQ-labeled nucleosides, nucleotides, and DNA were studied by cyclic and square-wave voltammetry, which show a distinct reversible couple of peaks around -0.4 V that make the AQ a suitable redox label for DNA.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
30
|
Cozza G, Gianoncelli A, Bonvini P, Zorzi E, Pasquale R, Rosolen A, Pinna LA, Meggio F, Zagotto G, Moro S. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. ChemMedChem 2011; 6:2273-86. [PMID: 21972104 DOI: 10.1002/cmdc.201100338] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Indexed: 11/12/2022]
Abstract
Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase; its abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other relevant diseases. Previously, using different in silico screening approaches, two potent and selective CK2 inhibitors were identified by our group: ellagic acid, a naturally occurring tannic acid derivative (K(i)=20 nM) and 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC, K(i)=60 nM). Comparing the crystallographic binding modes of both ellagic acid and DBC, an X-ray structure-driven merging approach was taken to design novel CK2 inhibitors with improved target affinity. A urolithin moiety is proposed as a possible bridging scaffold between the two known CK2 inhibitors, ellagic acid and DBC. Optimization of urolithin A as the bridging moiety led to the identification of 4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one as a novel, potent and selective CK2 inhibitor, which shows a K(i) value of 7 nM against the protein kinase, representing a significant improvement in affinity for the target compared with the two parent fragments.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biological Chemistry, University of Padova, Viale Giuseppe Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY. Study on the Anticancer Activity of Coumarin Derivatives by Molecular Modeling. Chem Biol Drug Des 2011; 78:651-8. [DOI: 10.1111/j.1747-0285.2011.01195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Structural and functional determinants of protein kinase CK2α: facts and open questions. Mol Cell Biochem 2011; 356:67-73. [PMID: 21739155 DOI: 10.1007/s11010-011-0939-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/24/2023]
Abstract
Ser/Thr protein kinase CK2 is involved in several fundamental processes that regulate the cell life, such as cell cycle progression, gene expression, cell growth, and differentiation and embryogenesis. In various cancers, CK2 shows a markedly elevated activity that has been associated with conditions that favor the onset of the tumor phenotype. This prompts to numerous studies aimed at the identification of compounds that are able to inhibit the catalytic activity of this oncogenic kinase, in particular, of ATP-competitive inhibitors. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility which were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix αD. This study attempts to unveil the structural bases of this characteristic of CK2. We also analyze some controversial issues concerning the functional interpretation of structural data on maize and human CK2 and try to recognize what is reasonably established and what is still unclear about this enzyme. This analysis can be useful also to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors.
Collapse
|
33
|
Sun HP, Zhu J, Chen FH, You QD. Structure-Based Pharmacophore Modeling from Multicomplex: a Comprehensive Pharmacophore Generation of Protein Kinase CK2 and Virtual Screening Based on it for Novel Inhibitors. Mol Inform 2011; 30:579-92. [DOI: 10.1002/minf.201000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/03/2011] [Indexed: 11/07/2022]
|
34
|
Shchekotikhin AE, Glazunova VA, Dezhenkova LG, Shevtsova EK, Traven’ VF, Balzarini J, Huang HS, Shtil AA, Preobrazhenskaya MN. The first series of 4,11-bis[(2-aminoethyl)amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proliferative characteristics. Eur J Med Chem 2011; 46:423-8. [DOI: 10.1016/j.ejmech.2010.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/08/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
35
|
Bogen KT. Generic Hockey-Stick Model for Estimating Benchmark Dose and Potency: Performance Relative to BMDS and Application to Anthraquinone. Dose Response 2010; 9:182-208. [PMID: 21731536 DOI: 10.2203/dose-response.10-018.bogen] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Benchmark Dose Model software (BMDS), developed by the U.S. Environmental Protection Agency, involves a growing suite of models and decision rules now widely applied to assess noncancer and cancer risk, yet its statistical performance has never been examined systematically. As typically applied, BMDS also ignores the possibility of reduced risk at low doses ("hormesis"). A simpler, proposed Generic Hockey-Stick (GHS) model also estimates benchmark dose and potency, and additionally characterizes and tests objectively for hormetic trend. Using 100 simulated dichotomous-data sets (5 dose groups, 50 animals/group), sampled from each of seven risk functions, GHS estimators performed about as well or better than BMDS estimators, and a surprising observation was that BMDS mis-specified all of six non-hormetic sampled risk functions most or all of the time. When applied to data on rodent tumors induced by the genotoxic chemical carcinogen anthraquinone (AQ), the GHS model yielded significantly negative estimates of net potency exhibited by the combined rodent data, suggesting that-consistent with the anti-leukemogenic properties of AQ and structurally similar quinones-environmental AQ exposures do not likely increase net cancer risk. In addition to its simplicity and flexibility, the GHS approach offers a unified, consistent approach to quantifying environmental chemical risk.
Collapse
|
36
|
Abstract
CK2 is a pleiotropic, ubiquitous, and constitutively active protein kinase (PK), with both cytosolic and nuclear localization in most mammalian cells. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. CK2 catalyzes the phosphorylation of more than 300 substrates characterized by multiple acidic residues surrounding the phosphor-acceptor amino acid, and, consequently, it plays a key role in several physiological and pathological processes. But how can one kinase orchestrate all these tasks faithfully? How is it possible that one kinase can, despite all pleiotropic characteristics of PKs in general, be involved in so many different biochemical events? Is CK2 a druggable target? Several questions are still to be clearly answered, and this review is an occasion for a fruitful discussion.
Collapse
Affiliation(s)
- Giorgio Cozza
- Molecular Modeling Section, Dipartimento di Scienze Farmaceutiche, Università di Padova, via Marzolo 5, Padova, Italy
| | | | | |
Collapse
|
37
|
Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 2010; 31:924-54. [DOI: 10.1002/med.20207] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Zhang N, Zhong R. Structural basis for decreased affinity of Emodin binding to Val66-mutated human CK2 alpha as determined by molecular dynamics. J Mol Model 2009; 16:771-80. [PMID: 19821123 DOI: 10.1007/s00894-009-0582-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 08/22/2009] [Indexed: 11/30/2022]
Abstract
Protein kinase CK2 (casein kinase 2) is a multifunctional serine/threonine kinase that is involved in a broad range of physiological events. The decreased affinity of Emodin binding to human CK2 alpha resulting from single-point mutation of Val66 to Ala (V66A) has been demonstrated by experimental mutagenesis. Molecular dynamics (MD) simulations and energy analysis were performed on wild type (WT) and V66A mutant CK2 alpha-Emodin complexes to investigate the subtle influences of amino acid replacement on the structure of the complex. The structure of CK2 alpha and the orientation of Emodin undergo changes to different degrees in V66A mutant. The affected positions in CK2 alpha are mainly distributed over the glycine-rich loop (G-loop), the alpha-helix and the loop located at the portion between G-loop and alpha-helix (C-loop). Based on the coupling among these segments, an allosteric mechanism among the C-loop, the G-loop and the deviated Emodin is proposed. Additionally, an estimated energy calculation and residue-based energy decomposition also indicate the lower instability of V66A mutant in contrast to WT, as well as the unfavorable energetic influences on critical residue contributions.
Collapse
Affiliation(s)
- Na Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | | |
Collapse
|
39
|
Colli-Dulá R, Zúñiga-Aguilar JJ, Albores-Medina A, Zapata-Perez O. Identification of genes expressed as a result of lindane exposure in Oreochromis niloticus using differential display. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1406-1412. [PMID: 19403169 DOI: 10.1016/j.ecoenv.2009.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 05/27/2023]
Abstract
In order to assess the effect of lindane exposure on gene expression in tilapia (Oreochromis niloticus), twenty male fish were individually weighted and injected intraperitoneally with a single dose of lindane (19.09 mg/kg bw) using corn oil as a carrier vehicle, while a second group of twenty male fish (controls) was only injected with the carrier vehicle. Groups of four fish each were then sacrificed at 3, 6, 12, 18 and 24h after treatment application and total RNA was extracted from liver tissue. The differential display (DD) technique was then used to identify differentially expressed cDNA fragments between treatment and control fish. A total of fifty cDNA fragments were isolated and sequenced, from which only four showed homology with genes previously described in other fish species, namely the immunoglobulin heavy chain (IgH), coagulation factor V (FV), casein kinase 2 alpha (CK2a), and the receptor protein-tyrosine-like phosphatase (RPT-LP). The expression of such genes was confirmed using quantitative real time-polymerase chain reaction (QRT-PCR). Results showed that lindane exposure triggered the differential expression of these genes during the first 6, 18 and 24h subsequent to treatment application, suggesting that lindane exposure can trigger a rapid immune system response in tilapias.
Collapse
Affiliation(s)
- Reyna Colli-Dulá
- Departamento de Recursos del Mar, Cinvestav Unidad Merida, Merida, Yucatan, Mexico
| | | | | | | |
Collapse
|
40
|
Qian K, Wang L, Cywin CL, Farmer BT, Hickey E, Homon C, Jakes S, Kashem MA, Lee G, Leonard S, Li J, Magboo R, Mao W, Pack E, Peng C, Prokopowicz A, Welzel M, Wolak J, Morwick T. Hit to Lead Account of the Discovery of a New Class of Inhibitors of Pim Kinases and Crystallographic Studies Revealing an Unusual Kinase Binding Mode. J Med Chem 2009; 52:1814-27. [DOI: 10.1021/jm801242y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kevin Qian
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Lian Wang
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Charles L. Cywin
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Bennett T. Farmer
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Eugene Hickey
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Carol Homon
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Scott Jakes
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Mohammed A. Kashem
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - George Lee
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Scott Leonard
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Jun Li
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Ronald Magboo
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Wang Mao
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Edward Pack
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Charlene Peng
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Anthony Prokopowicz
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Morgan Welzel
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - John Wolak
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Tina Morwick
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| |
Collapse
|
41
|
A structural insight into CK2 inhibition. Mol Cell Biochem 2008; 316:57-62. [PMID: 18626746 DOI: 10.1007/s11010-008-9822-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 02/04/2023]
Abstract
The acidophilic Ser/Thr protein kinase CK2 displays some unique properties such as high pleiotropicity and constitutive activity. CK2 is involved in many fundamental aspects of the normal cell life, for instance it promotes cell survival and enhances the tumour phenotype under special circumstances. This makes CK2 an appealing target for the development of inhibitors with pharmacological potential. Here we present an overview of our recent studies on inhibitors directed to the CK2 ATP-binding site whose distinctive features are highlighted by the ability to use both ATP and GTP as co-substrates and by its low susceptibility to staurosporine inhibition. We discuss the effects of the binding of different chemical families of fairly selective inhibitors with potency in the nanomolar or low micromolar range. An important common energetic contribution to the binding is due to the hydrophobic interaction with the apolar surface region of the CK2 binding cleft. The analysis of the known CK2 crystal structures reveals the presence of some highly conserved water molecules in this region. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and of two unique bulky residues, Ile66 and Ile174, responsible for the reduced dimension of the CK2 active site, play a critical role in determining ligand orientation and binding selectivity.
Collapse
|
42
|
Sarno S, Pinna LA. Protein kinase CK2 as a druggable target. MOLECULAR BIOSYSTEMS 2008; 4:889-94. [PMID: 18704226 DOI: 10.1039/b805534c] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CK2 is probably the most pleiotropic Ser/Thr protein kinase with hundreds of endogenous substrates already known, which are implicated in a variety of cellular functions. At variance with most protein kinases whose activity is turned on only in response to specific stimuli, and whose genetic alterations often underlie pathological situations, CK2 is not susceptible to tight regulation and there are no mutations known to affect its constitutive activity. Nevertheless an abnormally high level of CK2 is invariably found in tumours, and solid arguments have accumulated suggesting that CK2 plays a global pro-survival function, which under special circumstances creates a cellular environment particularly favourable to the development and potentiation of the tumour phenotype. Therefore any strategy aimed at attenuating CK2 activity may represent a "master key" for the treatment of different neoplastic diseases. Waiting for the clarification of the epigenetic mechanisms promoting the rise of CK2 in cells predisposed to develop a tumour phenotype, a useful pharmacological aid can come from the improvement of a number of fairly potent and selective CK2 inhibitors already available.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padua and Venetian Institute for Molecular Medicine (VIMM), Padua, Italy
| | | |
Collapse
|
43
|
Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G, Mazzorana M, Zagotto G, Uriarte E, Guiotto A, Pinna LA, Meggio F, Moro S. Coumarin as Attractive Casein Kinase 2 (CK2) Inhibitor Scaffold: An Integrate Approach To Elucidate the Putative Binding Motif and Explain Structure–Activity Relationships. J Med Chem 2008; 51:752-9. [DOI: 10.1021/jm070909t] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Battistutta R, Mazzorana M, Cendron L, Bortolato A, Sarno S, Kazimierczuk Z, Zanotti G, Moro S, Pinna LA. The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem 2008; 8:1804-9. [PMID: 17768728 DOI: 10.1002/cbic.200700307] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CK2 is a highly pleiotropic Ser/Thr protein kinase that is able to promote cell survival and enhance the tumour phenotype under specific circumstances. We have determined the crystal structure of three new complexes with tetrabromobenzimidazole derivatives that display K(i) values between 0.15 and 0.30 microM. A comparative analysis of these data with those of four other inhibitors of the same family revealed the presence of some highly conserved water molecules in the ATP-binding site. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and two unique bulky residues that are typical of CK2, Ile66 and Ile174, play a critical role in determining the ligand orientation and binding selectivity.
Collapse
Affiliation(s)
- Roberto Battistutta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy. roberto.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Raaf J, Klopffleisch K, Issinger OG, Niefind K. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin. J Mol Biol 2008; 377:1-8. [PMID: 18242640 DOI: 10.1016/j.jmb.2008.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/20/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022]
Abstract
The Ser/Thr kinase CK2 (former name: casein kinase 2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha) attached to a dimer of noncatalytic subunits. Together with the cyclin-dependent kinases and the mitogen-activated protein kinases, CK2alpha belongs to the CMGC family of the eukaryotic protein kinases. CK2 is an important survival and stability factor in eukaryotic cells: its catalytic activity is elevated in a wide variety of tumors while its down-regulation can lead to apoptosis. Thus, CK2 is a valuable target for drug development and for chemical biology approaches of cell biological research, and small organic inhibitors addressing CK2 are of considerable interest. We describe here the complex structure between a C-terminal deletion mutant of human CK2alpha and the ATP-competitive inhibitor emodin (1,3,8-trihydroxy-6-methylanthraquinone, International Union of Pure and Applied Chemistry name: 1,3,8-trihydroxy-6-methylanthracene-9,10-dione) and compare it with a previously published complex structure of emodin and maize CK2alpha. With a resolution of 1.5 A, the human CK2alpha/emodin structure has a much better resolution than its maize counterpart (2.6 A). Even more important, in spite of a sequence identity of more than 77% between human and maize CK2alpha, the two structures deviate significantly in the orientation, in which emodin is trapped by the enzyme, and in the local conformations around the ligand binding site: maize CK2alpha shows its largest adaptations in the ATP-binding loop, whereas human CK2alpha shows its largest adaptations in the hinge region connecting the two main domains of the protein kinase core. These observations emphasize the importance of local plasticity for ligand binding and demonstrate that two orthologues of an enzyme can behave quite different in this respect.
Collapse
Affiliation(s)
- Jennifer Raaf
- Universität zu Köln, Institut für Biochemie, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
46
|
Hu X, Prehna G, Stebbins CE. Targeting plague virulence factors: a combined machine learning method and multiple conformational virtual screening for the discovery of Yersinia protein kinase A inhibitors. J Med Chem 2007; 50:3980-3. [PMID: 17676727 PMCID: PMC2538798 DOI: 10.1021/jm070645a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Yersinia spp. is currently an antibiotic resistance concern and a re-emerging disease. The essential virulence factor Yersinia protein kinase A (YpkA) contains a Ser/Thr kinase domain whose activity modulates pathogenicity. Here, we present an approach integrating a machine learning method, homology modeling, and multiple conformational high-throughput docking for the discovery of YpkA inhibitors. These first reported inhibitors of YpkA may facilitate studies of the pathogenic mechanism of YpkA and serve as a starting point for development of anti-plague drugs.
Collapse
|
47
|
Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA, Ruzzene M. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 2007; 26:6915-26. [PMID: 17486073 DOI: 10.1038/sj.onc.1210495] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase CK2 is an ubiquitous and constitutively active kinase, which phosphorylates many cellular proteins and is implicated in the regulation of cell survival, proliferation and transformation. We investigated its possible involvement in the multidrug resistance phenotype (MDR) by analysing its level in two variants of CEM cells, namely S-CEM and R-CEM, normally sensitive or resistant to chemical apoptosis, respectively. We found that, while the CK2 regulatory subunit beta was equally expressed in the two cell variants, CK2alpha catalytic subunit was higher in R-CEM and this was accompanied by a higher phosphorylation of endogenous protein substrates. Pharmacological downregulation of CK2 activity by a panel of specific inhibitors, or knockdown of CK2alpha expression by RNA interference, were able to induce cell death in R-CEM. CK2 inhibitors could promote an increased uptake of chemotherapeutic drugs inside the cells and sensitize them to drug-induced apoptosis in a co-operative manner. CK2 blockade was also effective in inducing cell death of a different MDR line (U2OS). We therefore conclude that inhibition of CK2 can be considered as a promising tool to revert the MDR phenotype.
Collapse
Affiliation(s)
- G Di Maira
- Department of Biological Chemistry and CNR Neuroscience Institute, University of Padova, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Pagano MA, Poletto G, Di Maira G, Cozza G, Ruzzene M, Sarno S, Bain J, Elliott M, Moro S, Zagotto G, Meggio F, Pinna LA. Tetrabromocinnamic acid (TBCA) and related compounds represent a new class of specific protein kinase CK2 inhibitors. Chembiochem 2007; 8:129-39. [PMID: 17133643 DOI: 10.1002/cbic.200600293] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormally high constitutive activity of protein kinase CK2, levels of which are elevated in a variety of tumours, is suspected to underlie its pathogenic potential. The most widely employed CK2 inhibitor is 4,5,6,7-tetrabromobenzotriazole (TBB), which exhibits a comparable efficacy toward another kinase, DYRK1 a. Here we describe the development of a new class of CK2 inhibitors, conceptually derived from TBB, which have lost their potency toward DYRK1 a. In particular, tetrabromocinnamic acid (TBCA) inhibits CK2 five times more efficiently than TBB (IC50 values 0.11 and 0.56 microM, respectively), without having any comparable effect on DYRK1 a (IC50 24.5 microM) or on a panel of 28 protein kinases. The usefulness of TBCA for cellular studies has been validated by showing that it reduces the viability of Jurkat cells more efficiently than TBB through enhancement of apoptosis. Collectively taken, the reported data support the view that suitably derivatized tetrabromobenzene molecules may provide powerful reagents for dissecting the cellular functions of CK2 and counteracting its pathogenic potentials.
Collapse
Affiliation(s)
- Mario A Pagano
- Department of Biological Chemistry and CNR Institute of Neurosciences, University of Padova viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu SY, Lo CT, Chen C, Liu MY, Chen JH, Peng KC. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. ACTA ACUST UNITED AC 2006; 70:391-5. [PMID: 17067682 DOI: 10.1016/j.jbbm.2006.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/07/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Anthraquinone-derivatives, chrysophanol and pachybasin, were purified by a silica column chromatography with two different solvent systems from Trichoderma harzianum ETS 323. The fungus was incubated in sugarcane bagasse solid medium at room temperature without rotation. Structure of chrysophanol was solved by X-ray diffraction and pachybasin by NMR spectra. About 233+/-13 mg of pure chrysophanol and 773+/-40 mg of pure pachybasin were recovered per kg of solid cultural medium, with yields 1.7+/-0.2% and 5.6+/-0.5%, respectively.
Collapse
Affiliation(s)
- Shu-Ying Liu
- Department of Molecular Biotechnology, Da-Yeh University, Changhua 51591, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
3D comparative structural study of 6-hydroxy-4-methyl-5,7-dinitrocoumarin using experimental and theoretical approaches. Struct Chem 2006. [DOI: 10.1007/s11224-006-9097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|