1
|
Zhao Y, Chen Z, Xie S, Xiao F, Hu Q, Ju Z. The emerging role and therapeutical implications of ferroptosis in wound healing. BURNS & TRAUMA 2025; 13:tkae082. [PMID: 39958433 PMCID: PMC11827611 DOI: 10.1093/burnst/tkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025]
Abstract
Wound healing is a complex biological process involving multiple steps, including hemostasis, inflammation, proliferation, and remodeling. A novel form of regulated cell death, ferroptosis, has garnered attention because of its involvement in these processes. Ferroptosis is characterized by the accumulation of lipid peroxides and is tightly regulated by lipid metabolism, iron metabolism, and the lipid-peroxide repair network, all of which exert a significant influence on wound healing. This review highlights the current findings and emerging concepts regarding the multifaceted roles of ferroptosis throughout the stages of normal and chronic wound healing. Additionally, the potential of targeted interventions aimed at modulating ferroptosis to improve wound-healing outcomes is discussed.
Collapse
Affiliation(s)
- Yanan Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Shenghao Xie
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Feng Xiao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
2
|
Rua C, Raman B, Rodgers CT, Newcombe VFJ, Manktelow A, Chatfield DA, Sawcer SJ, Outtrim JG, Lupson VC, Stamatakis EA, Williams GB, Clarke WT, Qiu L, Ezra M, McDonald R, Clare S, Cassar M, Neubauer S, Ersche KD, Bullmore ET, Menon DK, Pattinson K, Rowe JB. Quantitative susceptibility mapping at 7 T in COVID-19: brainstem effects and outcome associations. Brain 2024; 147:4121-4130. [PMID: 39375207 PMCID: PMC7616766 DOI: 10.1093/brain/awae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 10/09/2024] Open
Abstract
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- University of Cambridge Centre for Parkinson-plus, University of
Cambridge, Cambridge CB2 0QQ, UK
- Invicro, Invicro London, Burlington Danes Building, Imperial College
London, London W12 0NN, UK
- Department of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, UK
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and
Oxford University Hospitals NHS Foundation Trust, University of Oxford,
Oxford OX3 9DU, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, UK
| | - Virginia F J Newcombe
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Anne Manktelow
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Doris A Chatfield
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Stephen J Sawcer
- Department of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Victoria C Lupson
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, UK
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - Lin Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - Martyn Ezra
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - Rory McDonald
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - Mark Cassar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and
Oxford University Hospitals NHS Foundation Trust, University of Oxford,
Oxford OX3 9DU, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and
Oxford University Hospitals NHS Foundation Trust, University of Oxford,
Oxford OX3 9DU, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge,
Cambridge CB2 0SZ, UK
- Department of Addictive Behaviour and Addiction Medicine, Central Institute
of Mental Health, University of Heidelberg, Heidelberg
69115, Germany
| | - Edward T Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Department of Psychiatry, University of Cambridge,
Cambridge CB2 0SZ, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, University of Cambridge,
Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge,
Cambridge CB2 0QQ, UK
| | - Kyle Pattinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| | - James B Rowe
- University of Cambridge Centre for Parkinson-plus, University of
Cambridge, Cambridge CB2 0QQ, UK
- Medical Research Council Cognition and Brain Sciences Unit,
Cambridge CB2 7EF, UK
- Cambridge NeuroCOVID Group, University of Cambridge,
Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- CITIID-NIHR COVID-19 BioResource Collaboration, University of
Cambridge, Cambridge CB2 0QQ, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and
Oxford University Hospitals NHS Foundation Trust, University of Oxford,
Oxford OX3 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford OX3
9DA, UK
| |
Collapse
|
3
|
Yadav S, Saini NK, Kulshreshtha D, Mukhopadhyay CK. Lipopolysaccharide inhibits translation of iron chaperone PCBP1 to regulate inflammatory cytokine response in macrophage. Cytokine 2024; 174:156456. [PMID: 38061091 DOI: 10.1016/j.cyto.2023.156456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024]
Abstract
Macrophages play a key role in maintaining systemic iron homeostasis and immunity. During pro-inflammatory stage macrophages retain iron due to the decrease of the unique iron exporter ferroportin. Increased cellular iron is sequestered in to storage protein ferritin by iron chaperone poly(rC)-binding protein 1 (PCBP1). However, the fate of PCBP1 and its interaction with ferritin in pro-inflammatory macrophages has not been studied so far. Here we report that PCBP1 protein level is down-regulated in lipopolysaccharide (LPS) treated macrophages. LPS did not alter PCBP1 mRNA and protein stability suggesting inhibition of translation as a mechanism of PCBP1 down-regulation that was confirmed by 35S-methionine incorporation assay. PCBP1 interacts with ferritin-H (Ft-H) subunit to load iron into ferritin. We detected a decreased interaction between PCBP1 and Ft-H after LPS-stimulation. As a result iron loading in to ferritin was affected with simultaneous increase in labile iron pool (LIP). Pre-treatment of cells with iron chelator dampened LPS-induced expression of TNF-α, IL-1β and IL-6 mRNA. Silencing of PCBP1 increased the magnitude of expression of these cytokines compared to control siRNA transfected LPS-treated macrophages. In contrast, overexpression of PCBP1 resulted a decrease in expression of these cytokines compared to vector transfected macrophages. Our results reveal a novel regulation of PCBP1 and its role in expression of cytokines in LPS-induced pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Sameeksha Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neeraj K Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diksha Kulshreshtha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Cieślicka M, Stankiewicz B, Muszkieta R, Tafil-Klawe M, Klawe J, Skarpańska-Stejnborn A, Ostapiuk-Karolczuk J. Long-Term Bovine Colostrum Supplementation in Football Players. Nutrients 2023; 15:4779. [PMID: 38004173 PMCID: PMC10675434 DOI: 10.3390/nu15224779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Physical exercise, especially of high intensity, is a significant burden on an athlete's body. It should be emphasized that achieving high results in competitive sports requires the use of significant, sometimes extreme, exercise loads during training, which may result in homeostasis disorders, adversely affecting the fitness of athletes. This study aims to investigate the effects of 6 months of bovine colostrum supplementation on indicators of immune system functioning, selected parameters related to iron management, and anabolic/catabolic balance in young football players. Twenty-eight male football players completed a double-blind, placebo-controlled crossover protocol (24 weeks of colostrum/placebo). A standardized exercise test was executed at the beginning of the trial and after 3 and 6 months of supplementation. Blood samples were taken before and after the exercise test and after 3 h of recovery. Markers of iron homeostasis, pro- and anti-inflammatory balance, and hormonal responses were determined. A significant increase in immunoglobulin G concentration was observed, accompanied by a decrease in inflammatory markers in supplemented athletes. Bovine colostrum supplementation had no significant effect on athletes' performance or on iron management and hormonal response. The use of bovine colostrum, which is characterized by a high content of immunologically active compounds, can be an element of a relatively mild and safe intervention for reducing inflammation induced by intense physical exercise.
Collapse
Affiliation(s)
- Mirosława Cieślicka
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (M.T.-K.)
| | - Błażej Stankiewicz
- Department of Physical Education, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Radosław Muszkieta
- Department of Physical Culture, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (M.T.-K.)
| | - Jacek Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland;
| | - Anna Skarpańska-Stejnborn
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland;
| | - Joanna Ostapiuk-Karolczuk
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland;
| |
Collapse
|
5
|
DeVallance ER, Schmidt HM, Seman M, Lewis SE, Wood KC, Vickers SD, Hahn SA, Velayutham M, Hileman EA, Vitturi DA, Leonardi R, Straub AC, Kelley EE. Hemin and iron increase synthesis and trigger export of xanthine oxidoreductase from hepatocytes to the circulation. Redox Biol 2023; 67:102866. [PMID: 37703667 PMCID: PMC10506059 DOI: 10.1016/j.redox.2023.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 μM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 μU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control μU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 μM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.
Collapse
Affiliation(s)
- Evan R DeVallance
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA; Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Heidi M Schmidt
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Seman
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Sara E Lewis
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26505, USA
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Murugesan Velayutham
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26505, USA
| | - Emily A Hileman
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26505, USA
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Eric E Kelley
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
6
|
Marquez L, Lee Y, Duncan D, Whitesell L, Cowen LE, Quave C. Potent Antifungal Activity of Penta- O-galloyl-β-d-Glucose against Drug-Resistant Candida albicans, Candida auris, and Other Non- albicans Candida Species. ACS Infect Dis 2023; 9:1685-1694. [PMID: 37607350 PMCID: PMC10496123 DOI: 10.1021/acsinfecdis.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 08/24/2023]
Abstract
Among fungal pathogens, infections by drug-resistant Candida species continue to pose a major challenge to healthcare. This study aimed to evaluate the activity of the bioactive natural product, penta-O-galloyl-β-d-glucose (PGG) against multidrug-resistant (MDR) Candida albicans, MDR Candida auris, and other MDR non-albicans Candida species. Here, we show that PGG has a minimum inhibitory concentration (MIC) of 0.25-8 μg mL-1 (0.265-8.5 μM) against three clinical strains of C. auris and a MIC of 0.25-4 μg mL-1 (0.265-4.25 μM) against a panel of other MDR Candida species. Our cytotoxicity studies found that PGG was well tolerated by human kidney, liver, and epithelial cells with an IC50 > 256 μg mL-1 (>272 μM). We also show that PGG is a high-capacity iron chelator and that deletion of key iron homeostasis genes in C. albicans rendered strains hypersensitive to PGG. In conclusion, PGG displayed potent anti-Candida activity with minimal cytotoxicity for human cells. We also found that the antifungal activity of PGG is mediated through an iron-chelating mechanism, suggesting that the compound could prove useful as a topical treatment for superficial Candida infections.
Collapse
Affiliation(s)
- Lewis Marquez
- Molecular
and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, Georgia 30322, United States
- Jones
Center at Ichauway, Newton, Georgia 39870, United States
| | - Yunjin Lee
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Dustin Duncan
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department
of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Luke Whitesell
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E. Cowen
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Cassandra Quave
- Center
for the Study of Human Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Dermatology, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Chen J, Fu J, Zhao S, Zhang X, Chao Y, Pan Q, Sun H, Zhang J, Li B, Xue T, Li J, Liu C. Free Radical and Viral Infection: A Review from the Perspective of Ferroptosis. Vet Sci 2023; 10:456. [PMID: 37505861 PMCID: PMC10384322 DOI: 10.3390/vetsci10070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), play critical roles in various physiological activities such as cell differentiation, apoptosis, and vascular tension when existing in cells at low levels. However, excessive amounts of free radicals are harmful, causing DNA damage, lipid peroxidation, protein degeneration, and abnormal cell death. Certain viral infections induce cells to produce excessive free radicals, which in multiple ways help the virus to replicate, mature, and exit. Iron is a necessary element for many intracellular enzymes, involved in both cellular activities and viral replication. Ferroptosis, a programmed cell death mode distinct from apoptosis, necrosis, and pyroptosis, is characterized by lipid peroxide accumulation and damage to the antioxidant system, affecting many cellular processes. Viral infection commonly manifests as decreased glutathione (GSH) content and down-regulated glutathione peroxidase 4 (GPX4) activity, similar to ferroptosis. Recent studies have suggested a possible relationship among free radicals, viral infections and ferroptosis. This review aims to elucidate the molecular mechanism linking free radicals and ferroptosis during viral infections and provide a new theoretical basis for studying viral pathogenesis and control.
Collapse
Affiliation(s)
- Jun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sha Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoxi Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuyang Chao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qunxing Pan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huawei Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingfeng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao Xue
- College of Medicine, Linyi University, Linyi 276000, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Medicine, Linyi University, Linyi 276000, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Claus MA, Smart L, Raisis AL, Sharp CR, Abraham S, Gummer JPA, Mead MK, Bradley DL, Van Swelm R, Wiegerinck ETG, Litton E. Effect of Deferoxamine on Post-Transfusion Iron, Inflammation, and In Vitro Microbial Growth in a Canine Hemorrhagic Shock Model: A Randomized Controlled Blinded Pilot Study. Vet Sci 2023; 10:vetsci10020121. [PMID: 36851425 PMCID: PMC9962370 DOI: 10.3390/vetsci10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Red blood cell (RBC) transfusion is associated with recipient inflammation and infection, which may be triggered by excessive circulating iron. Iron chelation following transfusion may reduce these risks. The aim of this study was to evaluate the effect of deferoxamine on circulating iron and inflammation biomarkers over time and in vitro growth of Escherichia coli (E. coli) following RBC transfusion in dogs with atraumatic hemorrhage. Anesthetized dogs were subject to atraumatic hemorrhage and transfusion of RBCs, then randomized to receive either deferoxamine or saline placebo of equivalent volume (n = 10 per group) in a blinded fashion. Blood was sampled before hemorrhage and then 2, 4, and 6 h later. Following hemorrhage and RBC transfusion, free iron increased in all dogs over time (both p < 0.001). Inflammation biomarkers interleukin-6 (IL6), CXC motif chemokine-8 (CXCL8), interleukin-10 (IL10), and keratinocyte-derived chemokine (KC) increased in all dogs over time (all p < 0.001). Logarithmic growth of E. coli clones within blood collected 6 h post-transfusion was not different between groups. Only total iron-binding capacity was different between groups over time, being significantly increased in the deferoxamine group at 2 and 4 h post-transfusion (both p < 0.001). In summary, while free iron and inflammation biomarkers increased post-RBC transfusion, deferoxamine administration did not impact circulating free iron, inflammation biomarkers, or in vitro growth of E. coli when compared with placebo.
Collapse
Affiliation(s)
- Melissa A. Claus
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Perth Veterinary Specialists, Osborne Park, WA 6017, Australia
- Correspondence:
| | - Lisa Smart
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Small Animal Specialist Hospital, Tuggerah, NSW 2259, Australia
| | - Anthea L. Raisis
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Claire R. Sharp
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Sam Abraham
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Joel P. A. Gummer
- Forensic Sciences Laboratory, ChemCentre, Resources and Chemistry Precinct, Bentley, WA 6102, Australia
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Martin K. Mead
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Damian L. Bradley
- Intensive Care Unit, Rockingham General Hospital, Cooloongup, WA 6168, Australia
| | - Rachel Van Swelm
- Hepcidinanalysis.com, Department of Laboratory Medicine, Translational Metabolic Laboratory (TML 830), Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Erwin T. G. Wiegerinck
- Hepcidinanalysis.com, Department of Laboratory Medicine, Translational Metabolic Laboratory (TML 830), Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Edward Litton
- Intensive Care Unit, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Genetic Iron Overload Hampers Development of Cutaneous Leishmaniasis in Mice. Int J Mol Sci 2023; 24:ijms24021669. [PMID: 36675185 PMCID: PMC9864902 DOI: 10.3390/ijms24021669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The survival, growth, and virulence of Leishmania spp., a group of protozoan parasites, depends on the proper access and regulation of iron. Macrophages, Leishmania's host cell, may divert iron traffic by reducing uptake or by increasing the efflux of iron via the exporter ferroportin. This parasite has adapted by inhibiting the synthesis and inducing the degradation of ferroportin. To study the role of iron in leishmaniasis, we employed Hjv-/- mice, a model of hemochromatosis. The disruption of hemojuvelin (Hjv) abrogates the expression of the iron hormone hepcidin. This allows unrestricted iron entry into the plasma from ferroportin-expressing intestinal epithelial cells and tissue macrophages, resulting in systemic iron overload. Mice were injected with Leishmania major in hind footpads or intraperitoneally. Compared with wild-type controls, Hjv-/- mice displayed transient delayed growth of L. major in hind footpads, with a significant difference in parasite burden 4 weeks post-infection. Following acute intraperitoneal exposure to L. major, Hjv-/- peritoneal cells manifested increased expression of inflammatory cytokines and chemokines (Il1b, Tnfa, Cxcl2, and Ccl2). In response to infection with L. infantum, the causative agent of visceral leishmaniasis, Hjv-/- and control mice developed similar liver and splenic parasite burden despite vastly different tissue iron content and ferroportin expression. Thus, genetic iron overload due to hemojuvelin deficiency appears to mitigate the early development of only cutaneous leishmaniasis.
Collapse
|
10
|
Lin F, Tuffour A, Hao G, Peprah FA, Huang A, Zhou Y, Zhang H. Distinctive modulation of hepcidin in cancer and its therapeutic relevance. Front Oncol 2023; 13:1141603. [PMID: 36895478 PMCID: PMC9989193 DOI: 10.3389/fonc.2023.1141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Hepcidin, a short peptide synthesized primarily by hepatocytes in response to increased body iron and inflammation, is a crucial iron-regulating factor. Hepcidin regulates intestinal iron absorption and releases iron from macrophages into plasma through a negative iron feedback mechanism. The discovery of hepcidin inspired a torrent of research into iron metabolism and related problems, which have radically altered our understanding of human diseases caused by an excess of iron, an iron deficiency, or an iron disparity. It is critical to decipher how tumor cells manage hepcidin expression for their metabolic requirements because iron is necessary for cell survival, particularly for highly active cells like tumor cells. Studies show that tumor and non-tumor cells express and control hepcidin differently. These variations should be explored to produce potential novel cancer treatments. The ability to regulate hepcidin expression to deprive cancer cells of iron may be a new weapon against cancer cells.
Collapse
Affiliation(s)
- Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Alex Tuffour
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | | | - Aixia Huang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiqi Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
11
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
12
|
Yamane T, Kanamori Y, Sawayama H, Yano H, Nita A, Ohta Y, Hinokuma H, Maeda A, Iwai A, Matsumoto T, Shimoda M, Niimura M, Usuki S, Yasuda-Yoshihara N, Niwa M, Baba Y, Ishimoto T, Komohara Y, Sawa T, Hirayama T, Baba H, Moroishi T. Iron accelerates Fusobacterium nucleatum-induced CCL8 expression in macrophages and is associated with colorectal cancer progression. JCI Insight 2022; 7:156802. [PMID: 36136589 PMCID: PMC9675438 DOI: 10.1172/jci.insight.156802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high levels of Fusobacterium nucleatum in colorectal tumor tissues can be associated with poor prognosis in patients with colorectal cancer (CRC); however, data regarding distinct prognostic subgroups in F. nucleatum-positive CRC remain limited. Herein, we demonstrate that high-iron status was associated with a worse prognosis in patients with CRC with F. nucleatum. Patients with CRC presenting elevated serum transferrin saturation exhibited preferential iron deposition in macrophages in the tumor microenvironment. In addition, F. nucleatum induced CCL8 expression in macrophages via the TLR4/NF-κB signaling pathway, which was inhibited by iron deficiency. Mechanistically, iron attenuated the inhibitory phosphorylation of NF-κB p65 by activating serine/threonine phosphatases, augmenting tumor-promoting chemokine production in macrophages. Our observations indicate a key role for iron in modulating the NF-κB signaling pathway and suggest its prognostic potential as a determining factor for interpatient heterogeneity in F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Taishi Yamane
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Yohei Kanamori
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, and
| | - Akihiro Nita
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Yudai Ohta
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hironori Hinokuma
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Ayato Maeda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Akiko Iwai
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Takashi Matsumoto
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Mayuko Shimoda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Mayumi Niimura
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Gastrointestinal Cancer Biology, International Research Center for Medical Sciences
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, and,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| |
Collapse
|
13
|
Sze SCW, Zhang L, Zhang S, Lin K, Ng TB, Ng ML, Lee KF, Lam JKW, Zhang Z, Yung KKL. Aberrant Transferrin and Ferritin Upregulation Elicits Iron Accumulation and Oxidative Inflammaging Causing Ferroptosis and Undermines Estradiol Biosynthesis in Aging Rat Ovaries by Upregulating NF-Κb-Activated Inducible Nitric Oxide Synthase: First Demonstration of an Intricate Mechanism. Int J Mol Sci 2022; 23:ijms232012689. [PMID: 36293552 PMCID: PMC9604315 DOI: 10.3390/ijms232012689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
We report herein a novel mechanism, unraveled by proteomics and validated by in vitro and in vivo studies, of the aberrant aging-associated upregulation of ovarian transferrin and ferritin in rat ovaries. The ovarian mass and serum estradiol titer plummeted while the ovarian labile ferrous iron and total iron levels escalated with age in rats. Oxidative stress markers, such as nitrite/nitrate, 3-nitrotyrosine, and 4-hydroxy-2-nonenal, accumulated in the aging ovaries due to an aberrant upregulation of the ovarian transferrin, ferritin light/heavy chains, and iron regulatory protein 2(IRP2)-mediated transferrin receptor 1 (TfR1). Ferritin inhibited estradiol biosynthesis in ovarian granulosa cells in vitro via the upregulation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p65/p50-induced oxidative and inflammatory factor inducible nitric oxide synthase (iNOS). An in vivo study demonstrated how the age-associated activation of NF-κB induced the upregulation of iNOS and the tumor necrosis factor α (TNFα). The downregulation of the keap1-mediated nuclear factor erythroid 2-related factor 2 (Nrf2), that induced a decrease in glutathione peroxidase 4 (GPX4), was observed. The aberrant transferrin and ferritin upregulation triggered an iron accumulation via the upregulation of an IRP2-induced TfR1. This culminates in NF-κB-iNOS-mediated ovarian oxi-inflamm-aging and serum estradiol decrement in naturally aging rats. The iron accumulation and the effect on ferroptosis-related proteins including the GPX4, TfR1, Nrf2, Keap1, and ferritin heavy chain, as in testicular ferroptosis, indicated the triggering of ferroptosis. In young rats, an intraovarian injection of an adenovirus, which expressed iron regulatory proteins, upregulated the ovarian NF-κB/iNOS and downregulated the GPX4. These novel findings have contributed to a prompt translational research on the ovarian aging-associated iron metabolism and aging-associated ovarian diseases.
Collapse
Affiliation(s)
- Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Correspondence: (S.C.W.S.); (K.K.L.Y.); Tel.: +852-34112318 (S.C.W.S.); Tel.: +852-34117060 (K.K.L.Y.)
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 999077, China
| | - Kaili Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- School of Public Health, Guangzhou Medical University, Guangzhou 999077, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Man Ling Ng
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, HKU, Pokfulam, Hong Kong SAR 999077, China
| | - Jenny Ka Wing Lam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, HKU, Pokfulam, Hong Kong SAR 999077, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Correspondence: (S.C.W.S.); (K.K.L.Y.); Tel.: +852-34112318 (S.C.W.S.); Tel.: +852-34117060 (K.K.L.Y.)
| |
Collapse
|
14
|
Cutone A, Rosa L, Bonaccorsi di Patti MC, Iacovelli F, Conte MP, Ianiro G, Romeo A, Campione E, Bianchi L, Valenti P, Falconi M, Musci G. Lactoferrin Binding to SARS-CoV-2 Spike Glycoprotein Blocks Pseudoviral Entry and Relieves Iron Protein Dysregulation in Several In Vitro Models. Pharmaceutics 2022; 14:2111. [PMID: 36297546 PMCID: PMC9612385 DOI: 10.3390/pharmaceutics14102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1β and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Federico Iacovelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Alice Romeo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
15
|
Dong T, Zhang B, Zhang R, Wang C, Liu X, Wang F, Hao N, Tan K, Chang YZ. Hepcidin is upregulated and is a potential therapeutic target associated with immunity in glioma. Front Oncol 2022; 12:963096. [PMID: 36237302 PMCID: PMC9552819 DOI: 10.3389/fonc.2022.963096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glioma is the most common primary malignant brain tumor with high mortality and poor prognosis. Hepcidin is a fascinating iron metabolism regulator. However, the prognostic value of hepcidin HAMP in gliomas and its correlation with immune cell infiltration remain unclear. Here, we comprehensively elucidate the prognostic value and potential role of hepcidin in gliomas. Methods Hepcidin gene expression and clinical characteristics in glioma were analyzed using the CGGA, TCGA, Rembrandt and Gravendeel glioma databases. A survival analysis was conducted using Kaplan-Meier and Cox regression analyses. A gene set enrichment analysis (GSEA) was conducted to select the pathways significantly enriched for hepcidin associations. The correlations between hepcidin and immune cell infiltration and immunotherapy were analyzed using network platforms such as CIBERSORT and TIMER. Results In glioma tissues, the expression of hepcidin was significantly increased. High hepcidin expression is related to grade, age, PRS type, IDH mutation, chemotherapy status and 1p19q codeletion status, which significantly indicates the poor prognosis of glioma patients. Hepcidin can be used as an independent prognostic factor for glioma through the multivariate COX regression analysis. The results of Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) and gene set enrichment analysis (GSEA) indicated that hepcidin was involved in the immune response. In addition, hepcidin expression was positively correlated with the degree of immune cell infiltration, the expression of various immune cell markers and the efficacy of immunotherapy. Conclusion Our results indicate that hepcidin can be used as a candidate biomarker to judge the prognosis and immune cell invasion of gliomas.
Collapse
Affiliation(s)
- Tianyu Dong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China,Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Bo Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China
| | - Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaopeng Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fei Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China
| | - Nana Hao
- Department of Neurology, Handan Central Hospital, Handan, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China,*Correspondence: Yan-Zhong Chang, ; Ke Tan,
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei
Normal University, Shijiazhuang, China,*Correspondence: Yan-Zhong Chang, ; Ke Tan,
| |
Collapse
|
16
|
Sadasivam N, Kim YJ, Radhakrishnan K, Kim DK. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022; 27:3159. [PMID: 35630636 PMCID: PMC9147071 DOI: 10.3390/molecules27103159] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Medical School, Chonnam National University, Gwangju 58128, Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| |
Collapse
|
17
|
Li W, Zhou X, Xu S, Cao N, Li B, Chen W, Yang B, Yuan M, Xu D. Lipopolysaccharide-induced Splenic Ferroptosis in Goslings was Alleviated by Polysaccharide of Atractylodes macrocephala Koidz Associated with Pro-inflammatory Factors. Poult Sci 2022; 101:101725. [PMID: 35299067 PMCID: PMC8927836 DOI: 10.1016/j.psj.2022.101725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022] Open
Abstract
Ferroptosis is a newly discovered form of cell death due to iron-dependent lipid peroxidation. In animal breeding, many environmental factors could lead to oxidative stress, which in turn reduce animal immunity and production performance. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) has antioxidation, immunomodulatory, and inflammatory modulating effects. For investigating the effect of PAMK on splenic ferroptosis in gosling caused by lipopolysaccharide (LPS), 40 one-day-old Magang goslings were randomly divided into 4 groups (CON group, LPS group, PAMK group, and LPS+PAMK group). The protein expression of the ferroptosis marker Glutathione Peroxidase 4 (GPX4), the relative mRNA expression of ferroptosis-related genes and cytokines, and the oxidative stress and iron content of spleen tissues were examined. The correlation between ferroptosis and inflammatory factors was further analyzed by principal component analysis. The results showed that, compared with CON group, LPS caused alterations in the expression of the ferroptosis pathway genes and cytokines, which could upregulate levels of ferroptosis and inflammation. However, after treated with PAMK, the inflammation and ferroptosis was alleviated. Meanwhile, PAMK restored the expression and distribution of GPX4. In addition, PAMK alleviated the oxidative stress caused by LPS and reduced the iron content in spleen. Principal component analysis showed that cytokines were more closely related to antioxidant indexes. The CON, PAMK and LPS+PAMK groups had similar effects on the four components, with the LPS and PAMK groups showing the furthest difference in results. The result indicated that PAMK could reduce the level of oxidative stress and inflammatory cytokines in spleen of gosling caused by LPS, and jointly alleviate ferroptosis by regulating genes related to the ferroptosis pathway.
Collapse
Affiliation(s)
- Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Xiangying Zhou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wenbin Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Baohe Yang
- Yunnan Kuaidaduo Animal Husbandry Technology Co., Ltd, Yuxi 653100, China
| | - Mingfeng Yuan
- Yunnan Kuaidaduo Animal Husbandry Technology Co., Ltd, Yuxi 653100, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
18
|
Parella KJ, Manhardt C, Capucilli D, Moyer B, Colegrove H, Moody KJ, Sleeper M, Banas A, Rebbaa A, Wolfe AJ. Fluorescence-Based Detection of Ferrous Iron in Senescent Cells. Rejuvenation Res 2021; 24:456-463. [PMID: 34841899 DOI: 10.1089/rej.2021.0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major limitation in aging research is the lack of reliable biomarkers to assess phenotypic changes with age or monitor response to antiaging interventions. This study investigates the role of intracellular ferrous iron (Fe2+) as a potential biomarker of senescence. Iron is known to accumulate in various tissues with age and recent studies have demonstrated that its level increases dramatically in senescent cells. The current techniques used to measure the accumulation of iron are cumbersome and only measure total iron not specific isotopes such as the redox reactive Fe2+. It is still to be determined whether the damaging form of iron (Fe2+) is specifically elevated in senescent cells. In this study, we assessed the potential use of a newly discovered Fe2+ reactive probe (SiRhoNox-1) for selective labeling of senescent cells in vitro. For this we have generated various senescent cell models and subjected them to SiRhoNox-1 labeling. Our results indicate that SiRhoNox-1 selectivity labels live senescent cells and was more specific and faster than current staining such as SA-βGal or a derived fluorescent probe C12FDG. Together these findings suggest that SiRhoNox-1 may serve as a convenient tool to detect senescent cells based on their ferrous iron level.
Collapse
Affiliation(s)
- Kyle J Parella
- Ichor Life Sciences, Inc., Lafayette, New York, USA.,Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA.,Department of Chemistry, Clarkson University, Potsdam, New York, USA
| | | | | | | | | | - Kelsey J Moody
- Ichor Life Sciences, Inc., Lafayette, New York, USA.,Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA.,Department of Chemistry, Clarkson University, Potsdam, New York, USA.,FoxBio, Inc., Lafayette, New York, USA
| | | | - Andrew Banas
- Ichor Life Sciences, Inc., Lafayette, New York, USA
| | | | - Aaron J Wolfe
- Ichor Life Sciences, Inc., Lafayette, New York, USA.,Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA.,Department of Chemistry, Clarkson University, Potsdam, New York, USA.,FoxBio, Inc., Lafayette, New York, USA
| |
Collapse
|
19
|
The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66:1806-1816. [PMID: 36654387 DOI: 10.1016/j.scib.2021.02.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
The essential trace element iron regulates a wide range of biological processes in virtually all living organisms. Because both iron deficiency and iron overload can lead to various pathological conditions, iron homeostasis is tightly regulated, and understanding this complex process will help pave the way to developing new therapeutic strategies for inflammatory disease. In recent years, significant progress has been made with respect to elucidating the roles of iron and iron-related genes in the development and maintenance of the immune system. Here, we review the timing and mechanisms by which systemic and cellular iron metabolism are regulated during the inflammatory response and during infectious disease, processes in which both the host and the pathogen compete for iron. We also discuss the evidence and implications that immune cells such as macrophages, T cells, and B cells require sufficient amounts of iron for their proliferation and for mediating their effector functions, in which iron serves as a co-factor in toll-like receptor 4 (TLR4) signaling, mitochondrial respiration, posttranslational regulation, and epigenetic modification. In addition, we discuss the therapeutic implications of targeting ferroptosis, iron homeostasis and/or iron metabolism with respect to conferring protection against pathogen infection, controlling inflammation, and improving the efficacy of immunotherapy.
Collapse
|
20
|
Lv Y, Chen L, Liang X, Liu X, Gao M, Wang Q, Wei Q, Liu L. Association between iron status and the risk of adverse outcomes in COVID-19. Clin Nutr 2021; 40:3462-3469. [PMID: 33380357 PMCID: PMC7723754 DOI: 10.1016/j.clnu.2020.11.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Iron is an essential trace element to almost all organism, and the delicate balance between host defend system and viral proliferation plays an important role in infective conditions. While the association of the iron metabolism with the prognosis of COVID-19 remains poorly understood. We aimed to estimate the associations of systemic iron metabolism parameters with the severity and risks of adverse outcomes in COVID-19. METHODS In this retrospective cohort study, we included 158 confirmed COVID-19 patients in Tongji Hospital, Wuhan, China (27 January to 5 April, 2020). Demographic data, comorbidities, laboratory examinations, treatments, and clinical outcomes were all collected. Multivariable Poisson regression was used to estimate the association of iron parameter levels with the severity and risks of adverse outcomes in COVID-19 patients. RESULTS We identified 60 (38%) severe cases in 158 COVID-19 patients. The median age was 63 years (interquartile range [IQR]: 54-73) and the median length of hospital stay was 28 days (IQR: 17-40). After adjusting for age, sex, IL-6, and pre-existing comorbidities, all iron parameters were associated with the severity of COVID-19 with adjusted risk ratio of 0.42 [95% CI: 0.22-0.83], 4.38 [95% CI: 1.86-10.33], 0.19 [95% CI: 0.08-0.48], and 0.25 [95% CI: 0.10-0.58] for serum iron, ferritin, transferrin, and total iron-binding capacity, respectively. These iron indices were also related to the risk of ARDS, coagulopathy, acute cardiac injury, acute liver injury, and acute kidney injury in COVID-19 patients and high cytokine concentrations. CONCLUSIONS Patients with low serum iron status likely suffered from severe condition and multiple-organ injury in COVID-19. The iron metabolism parameters might be risk factors and clinical biomarkers for COVID-19 prognosis.
Collapse
Affiliation(s)
- Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Gao
- Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wei
- Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Ayoup MS, Abu-Serie MM, Abdel-Hamid H, Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur J Med Chem 2021; 220:113475. [PMID: 33901898 DOI: 10.1016/j.ejmech.2021.113475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
Harnessing the antioxidant cellular machinery has sparked considerable interest as an efficient anticancer strategy. Activating Nrf2, the master switch of the cellular redox system, suppresses ROS, alleviates oxidative stress, and halts cancer progression. 1,2,4-oxadiazoles are iconic direct Nrf2 activators that disrupt Nrf2 interaction with its endogenous repressor Keap1. This study introduces rationally designed 1,2,4-oxadiazole derivatives that inhibit other Nrf2 suppressors (TrxR1, IKKα, and NF-kB) thus enhancing Nrf2 activation for preventing oxidative stress and carcinogenesis. Preliminary screening showed that the phenolic oxadiazoles 11, 15, and 19 were comparable to ascorbic acid (ROS scavenging) and EDTA (iron chelation), and superior to doxorubicin against HepG-2, MDA-MB231, and Caco-2 cells. They suppressed ROS by 3 folds and activated Nrf2 by 2 folds in HepG-2 cells. Mechanistically, they inhibited TrxR1 (IC50; 13.19, 17.89, and 9.21 nM) and IKKα (IC50; 11.0, 15.94, and 19.58 nM), and downregulated NF-κB (7.6, 1.4 and 1.9 folds in HepG-2), respectively. They inhibited NADPH oxidase (IC50; 16.4, 21.94, and 10.71 nM, respectively) that potentiates their antioxidant activities. Docking studies predicted their important structural features. Finally, they recorded drug-like in silico physicochemical properties, ADMET, and ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, SRTA-City, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
22
|
Liao W, Yang W, Shen Z, Ai W, Pan Q, Sun Y, Guo S. Heme Oxygenase-1 Regulates Ferrous Iron and Foxo1 in Control of Hepatic Gluconeogenesis. Diabetes 2021; 70:696-709. [PMID: 33408127 PMCID: PMC7897351 DOI: 10.2337/db20-0954] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
The liver is a key player for maintaining glucose homeostasis. Excessive hepatic glucose production is considered to be a key for the onset of type 2 diabetes. The primary function of heme oxygenase-1 (HO1) is to catalyze the degradation of heme into biliverdin, ferrous iron, and carbon monoxide. Previous studies have demonstrated that the degradation of heme by HO1 in the liver results in mitochondrial dysfunction and drives insulin resistance. In this study, by overexpressing HO1 in hepatocytes and mice, we showed that HO1 promotes gluconeogenesis in a Foxo1-dependent manner. Importantly, HO1 overexpression increased the generation of ferrous iron in the liver, which further activates nuclear factor-κB and phosphorylates Foxo1 at Ser273 to enhance gluconeogenesis. We further assessed the role of HO1 in insulin-resistant liver-specific knockout of IRS1 and IRS2 genes (L-DKO) mice, which exhibit upregulation of HO1 in the liver and hepatic ferrous iron overload. HO1 knockdown by shRNA or treatment of iron chelator rescued the aberrant gluconeogenesis in L-DKO mice. In addition, we found that systemic iron overload promotes gluconeogenesis by activating the hepatic protein kinase A→Foxo1 axis. Thus, our results demonstrate the role of HO1 in regulating hepatic iron status and Foxo1 to control gluconeogenesis and blood glucose.
Collapse
Affiliation(s)
- Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
23
|
Banchini F. COVID-19 and NF-kB: The Hepcidin paradox and the Iron Storm - Reply. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020137. [PMID: 33525242 PMCID: PMC7927502 DOI: 10.23750/abm.v91i4.10904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Filippo Banchini
- Department of General Surgery, Guglielmo da Saliceto Hospital, Piacenza, Italy.
| |
Collapse
|
24
|
Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020; 9:1569-1584. [PMID: 32953528 PMCID: PMC7481593 DOI: 10.21037/tlcr-20-341] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferroptosis is a novel form of non-apoptotic regulated cell death (RCD), with distinct characteristics and functions in physical conditions and multiple diseases such as cancers. Unlike apoptosis and autophagy, this new RCD is an iron-dependent cell death with features of lethal accumulation of reactive oxygen species (ROS) and over production of lipid peroxidation. Excessive iron from aberrant iron metabolisms or the maladjustment of the two main redox systems thiols and lipid peroxidation role as the major causes of ROS generation, and the redox-acrive ferrous (intracellular labile iron) is a crucial factor for the lipid peroxidation. Regulation of ferrroptosis also involves different pathways such as mevalonate pathway, P53 pathway and p62-Keap1-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Ferroptosis roles as a double-edged sword either suppressing or promoting tumor progression with the release of multiple signaling molecules in the tumor microenvironment. Emerging evidence suggests ferroptosis as a potential target for cancer therapy and ferroptosis inducers including small molecules and nanomaterials have been developed. The application of ferroptosis inducers also relates to overcoming drug resistance and preventing tumor metastasis, and may become a promising strategy combined with other anti-cancer therapies. Here, we summarize the ferroptosis characters from its underlying basis and role in cancer, followed by its possible applications in cancer therapies and challenges maintained.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Liu W, Zhang S, Nekhai S, Liu S. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:13-19. [PMID: 32318324 PMCID: PMC7169647 DOI: 10.1007/s40588-020-00140-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW The ongoing outbreak of novel coronavirus pneumonia (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) in China is lifting widespread concerns. Thus, therapeutic options are urgently needed, and will be discussed in this review. RECENT FINDINGS Iron-containing enzymes are required for viruses most likely including coronaviruses (CoVs) to complete their replication process. Moreover, poor prognosis occurred in the conditions of iron overload for patients upon infections of viruses. Thus, limiting iron represents a promising adjuvant strategy in treating viral infection through oral uptake or venous injection of iron chelators, or through the manipulation of the key iron regulators. For example, treatment with iron chelator deferiprone has been shown to prolong the survival of acquired immunodeficiency syndrome (AIDS) patients. Increasing intracellular iron efflux via increasing iron exporter ferroportin expression also exhibits antiviral effect on human immunodeficiency virus (HIV). The implications of other metals besides iron are also briefly discussed. SUMMARY For even though we know little about iron regulation in COVID-19 patients thus far, it could be deduced from other viral infections that iron chelation might be an alternative beneficial adjuvant in treating COVID-19.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuping Zhang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062 China
- Shandong Medicinal Biotechnology Center, Jinan, 250062 China
- University Creative Research Initiatives Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062 China
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059 USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
26
|
Iron Status in Elderly Women Impacts Myostatin, Adiponectin and Osteocalcin Levels Induced by Nordic Walking Training. Nutrients 2020; 12:nu12041129. [PMID: 32316589 PMCID: PMC7231223 DOI: 10.3390/nu12041129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/26/2023] Open
Abstract
Impaired iron metabolism is associated with increased risk of many morbidities. Exercise was shown to have a beneficial role; however, the mechanism is not well understood. The purpose of this study was to assess the relationship between exerkines and iron metabolism in elderly women before and after 12 weeks of Nordic Walking (NW) training. Exerkines like myostatin, adiponectin, and osteocalcin have been shown to have several positive effects on metabolism. Thirty-six post-menopausal women (66 ± 5 years old, mean ± SD) were randomly assigned to a NW intervention group (n = 18; body mass, 68.8 ± 11.37 kg; fat, 23.43 ± 7.5 kg; free fat mass, 45.37 ± 5.92 kg) or a control group (n = 18; body mass, 68.34 ± 11.81 kg; fat, 23.61 ± 10.03 kg; free fat mass, 44.73 ± 3.9 kg). The training was performed three times a week for 12 weeks, with the intensity adjusted to 70% of the individual maximum ability. Before and one day after the 12-weeks intervention, performance indices were assessed using a senior fitness test. Blood samples (5 mL) were obtained from the participants between 7 and 8 AM, following an overnight fast, at baseline and one day immediately after the 12-week training program. A significant and large time × group interaction was observed for iron (NW: 98.6 ± 26.68 to 76.1 ± 15.31; CON: 100.6 ± 25.37 to 99.1 ± 27.2; p = 0.01; ηp2 = 0.21), myostatin (NW: 4.42 ± 1.97 to 3.83 ± 1.52; CON: 4.11 ± 0.95 to 4.84 ± 1.19; p = 0.00; ηp2 = 0.62), adiponectin (NW: 12.0 ± 9.46 to 14.6 ± 10.64; CON: 12.8 ± 8.99 to 11.9 ± 8.53; p = 0.00; ηp2 = 0.58), and osteocalcin (NW: 38.9 ± 26.04 to 41.6 ± 25.09; CON: 37.1 ± 33.2 to 37.2 ± 32.29; p = 0.03; ηp2 = 0.13). Furthermore, we have observed the correlations: basal ferritin levels were inversely correlated with changes in myostatin (r = −0.51, p = 0.05), change in adiponectin, and change in serum iron (r = −0.45, p = 0.05), basal iron, and osteocalcin after training (r = -0.55, p = 0.04). These findings indicate that iron modulates NW training-induced changes in exerkine levels.
Collapse
|
27
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Laboratory, Anti Doping Laboratory Qatar, Doha, Qatar;
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Suzana Borovic Sunjic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| |
Collapse
|
28
|
Yu B, Wang Z, Almutairi L, Huang S, Kim MH. Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102158. [PMID: 31982615 DOI: 10.1016/j.nano.2020.102158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/20/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been increasingly used in various biomedical applications in preclinical and clinical settings. Although the interactions of IONPs with macrophages have been well-reported in the context of nanoparticle toxicity, harnessing the capacity of IONPs in reprograming macrophages towards bactericidal activity has not been explored. Here, using an in vitro culture model of macrophages and an in vivo mouse model of skin wound infection by Staphylococcus aureus (S. aureus), we demonstrated that IONPs in combination with a strategy to trigger the Fenton reaction could significantly enhance bactericidal effects of macrophages against intracellular S. aureus by inducing a M1 macrophage polarization that stimulates the production of reactive oxygen species. Our study supports that harnessing the characteristic of IONPs to tune macrophage polarization to exhibit a bactericidal activity may provide a new strategy for treating infectious diseases.
Collapse
Affiliation(s)
- Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zhongxia Wang
- Department of Chemistry, Kent State University, Kent, OH, USA
| | - Layla Almutairi
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Songping Huang
- Department of Chemistry, Kent State University, Kent, OH, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
29
|
Iron homeostasis and oxidative stress: An intimate relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118535. [DOI: 10.1016/j.bbamcr.2019.118535] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
|
30
|
Wang F, Lv H, Zhao B, Zhou L, Wang S, Luo J, Liu J, Shang P. Iron and leukemia: new insights for future treatments. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:406. [PMID: 31519186 PMCID: PMC6743129 DOI: 10.1186/s13046-019-1397-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
Iron, an indispensable element for life, is involved in all kinds of important physiological activities. Iron promotes cell growth and proliferation, but it also causes oxidative stress damage. The body has a strict regulation mechanism of iron metabolism due to its potential toxicity. As a cancer of the bone marrow and blood cells, leukemia threatens human health seriously. Current studies suggest that dysregulation of iron metabolism and subsequent accumulation of excess iron are closely associated with the occurrence and progress of leukemia. Specifically, excess iron promotes the development of leukemia due to the pro-oxidative nature of iron and its damaging effects on DNA. On the other hand, leukemia cells acquire large amounts of iron to maintain rapid growth and proliferation. Therefore, targeting iron metabolism may provide new insights for approaches to the treatment of leukemia. This review summarizes physiologic iron metabolism, alternations of iron metabolism in leukemia and therapeutic opportunities of targeting the altered iron metabolism in leukemia, with a focus on acute leukemia.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huanhuan Lv
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bin Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liangfu Zhou
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Luo
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junyu Liu
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China. .,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
31
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration. Front Neurosci 2019; 13:575. [PMID: 31231185 PMCID: PMC6560079 DOI: 10.3389/fnins.2019.00575] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Iron homeostasis is an essential prerequisite for metabolic and neurological functions throughout the healthy human life, with a dynamic interplay between intracellular and systemic iron metabolism. The development of different neurodegenerative diseases is associated with alterations of the intracellular transport of iron and heavy metals, principally mediated by Divalent Metal Transporter 1 (DMT1), responsible for Non-Transferrin Bound Iron transport (NTBI). In addition, DMT1 regulation and its compartmentalization in specific brain regions play important roles during aging. This review highlights the contribution of DMT1 to the physiological exchange and distribution of body iron and heavy metals during aging and neurodegenerative diseases. DMT1 also mediates the crosstalk between central nervous system and peripheral tissues, by systemic diffusion through the Blood Brain Barrier (BBB), with the involvement of peripheral iron homeostasis in association with inflammation. In conclusion, a survey about the role of DMT1 and iron will illustrate the complex panel of interrelationship with aging, neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
33
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Aversa I, Chirillo R, Chiarella E, Zolea F, Di Sanzo M, Biamonte F, Palmieri C, Costanzo F. Chemoresistance in H-Ferritin Silenced Cells: The Role of NF-κB. Int J Mol Sci 2018; 19:ijms19102969. [PMID: 30274235 PMCID: PMC6213748 DOI: 10.3390/ijms19102969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications.
Collapse
Affiliation(s)
- Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Roberta Chirillo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Fabiana Zolea
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Maddalena Di Sanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
35
|
Sun Z, Lin Y, Li Y, Ren T, Du G, Wang J, Jin X, Yang LC. The effect of dexmedetomidine on inflammatory inhibition and microglial polarization in BV-2 cells. Neurol Res 2018; 40:838-846. [DOI: 10.1080/01616412.2018.1493849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhiheng Sun
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Yi Lin
- Department of Anesthesiology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Guicheng Du
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jia Wang
- Qibao Community Health Service Centre, Shanghai, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Li-Chao Yang
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Riško P, Pláteník J, Buchal R, Potočková J, Kraml PJ. Long-term donors versus non-donor men: Iron metabolism and the atherosclerotic process. Atherosclerosis 2018; 272:14-20. [PMID: 29544084 DOI: 10.1016/j.atherosclerosis.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/24/2018] [Accepted: 03/02/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS The increased iron level and the labile iron pool (LIP) in circulating monocytes are connected to a higher frequency of cardiovascular events. METHODS The study investigates the relationship between LIP in circulating monocytes and markers of iron metabolism and atherosclerosis (inflammation, oxidative stress, endothelial dysfunction and arterial elasticity) in long-term blood donors and non-donor volunteers. RESULTS We found that donors had significantly higher LIP values than the control group (1.89 ± 0.47 μM vs. 1.50 ± 0.41 μM, p = 0.007). Despite the observed tendency for the donor group to have higher blood pressure, cholesterol, glucose and HOMAR-IR (homeostasis model assessment of insulin resistance), the groups did not differ in inflammatory markers, markers of endothelial dysfunction and markers of impaired arterial elasticity. The donor group had significant changes in iron metabolism (higher serum Fe, ceruloplasmin, and TfR/Ft ratio (transferrin receptor/ferritin ratio) and lower hepcidin, ferritin, and CD163), indicating depletion of body iron stores and activation of iron turnover. CONCLUSIONS LIP seems to be a good marker of iron turnover activity in these individuals despite the lack of a decrease in the hemoglobin concentration. We did not find a significant correlation between LIP levels and atherosclerosis progression in the two groups. However, further studies are needed to assess long-term donorship as a protective factor against atherosclerosis.
Collapse
Affiliation(s)
- Peter Riško
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jan Pláteník
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Richard Buchal
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Potočková
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel J Kraml
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
37
|
Abstract
Ferritin and increased iron stores first appeared on the list of cardiovascular risk factors more than 30 years ago and their causal role in the pathogenesis of atherosclerosis has been heavily discussed since the early 1990s. It seems that besides traditional factors such as hyperlipoproteinemia, hypertension, diabetes mellitus, obesity, physical inactivity, smoking and family history, high iron stores represent an additional parameter that could modify individual cardiovascular risk. The role of iron in the pathogenesis of atherosclerosis was originally primarily associated with its ability to catalyze the formation of highly reactive free oxygen radicals and the oxidation of atherogenic lipoproteins. Later, it became clear that the mechanism is more complex. Atherosclerosis is a chronic fibroproliferative inflammatory process and iron, through increased oxidation stress as well as directly, can control both native and adaptive immune responses. Within the arterial wall, iron affects all of the cell types that participate in the atherosclerotic process (monocytes/macrophages, endothelial cells, vascular smooth muscle cells and platelets). Most intracellular iron is bound in ferritin, whereas redox-active iron forms labile iron pool. Pro-inflammatory and anti-inflammatory macrophages within arterial plaque differ with regard to the amount of intracellular iron and most probably with regard to their labile iron pool. Yet, the relation between plasma ferritin and intracellular labile iron pool has not been fully clarified. Data from population studies document that the consumption of meat and lack of physical activity contribute to increased iron stores. Patients with hereditary hemochromatosis, despite extreme iron storage, do not show increased manifestation of atherosclerosis probably due to the low expression of hepcidin in macrophages.
Collapse
Affiliation(s)
- P Kraml
- Second Department of Internal Medicine, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic.
| |
Collapse
|
38
|
Meng FX, Hou JM, Sun TS. In vivo evaluation of microglia activation by intracranial iron overload in central pain after spinal cord injury. J Orthop Surg Res 2017; 12:75. [PMID: 28521818 PMCID: PMC5437601 DOI: 10.1186/s13018-017-0578-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent microglia activate in the remodeling of the brain after SCI. Methods An SCI-induced CP model was established in Sprague-Dawley rats that were randomly assigned to SCI, sham operation, deferoxamine (DFX), minocycline, and nitric oxide synthase inhibitor treatment groups. At 12 weeks, pain behavior and thermal pain threshold were evaluated in each group, and iron transferrin receptor (TfR)1 and ferritin (Fn) mRNA, as well as iron-regulatory protein (IRP)1, FN, lactoferrin, and nuclear factor (NF)-κB protein levels in the rat brains were measured. Microglia proliferation and differentiation and IRP1 expression were evaluated by immunohistochemistry. Results Autophagy was observed in rats after SCI, accompanied by reduced latency of thermal pain, increased iron content and IRP1 and NF-κB levels in the hindlimb sensory area, hippocampus, and thalamus, and decreased Fn levels in the hindlimb sensory area. TfR1 mRNA expression was upregulated in activated microglia. Treatment with an iron-chelating agent, or inhibitors of nitric oxide synthase or microglia suppressed microglia proliferation. Conclusions SCI may induce intracranial iron overload, which activates microglia via NF-κB signaling. Microglia secrete inflammatory factors that induce neuronal damage and lead to CP. Treatment with an iron-chelating agent or NF-κB or microglia inhibitors can relieve CP resulting from SCI.
Collapse
Affiliation(s)
- Fan Xing Meng
- Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China.,Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, Beijing, 100700, China
| | - Jing Ming Hou
- Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, Beijing, 100700, China.,Department of Rehabilitation, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Tian Sheng Sun
- Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China. suntiansheng-@163.com.,Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, Beijing, 100700, China. suntiansheng-@163.com
| |
Collapse
|
39
|
Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease. Blood Adv 2016; 1:170-183. [PMID: 28203649 DOI: 10.1182/bloodadvances.2016000745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.
Collapse
|
40
|
Mantzaris MD, Bellou S, Skiada V, Kitsati N, Fotsis T, Galaris D. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic Biol Med 2016; 97:454-465. [PMID: 27387771 DOI: 10.1016/j.freeradbiomed.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.
Collapse
Affiliation(s)
- M D Mantzaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - S Bellou
- Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - V Skiada
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - N Kitsati
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - T Fotsis
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece; Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - D Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece.
| |
Collapse
|
41
|
Peluso I, Cavaliere A, Palmery M. Plasma total antioxidant capacity and peroxidation biomarkers in psoriasis. J Biomed Sci 2016; 23:52. [PMID: 27377373 PMCID: PMC4932672 DOI: 10.1186/s12929-016-0268-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
Systemic biomarkers of oxidative stress can be relevant for assessment of psoriasis severity, for prediction of the outcome of therapy and of the development of comorbidities. In this review we aimed to evaluate the relationship between plasma total antioxidant capacity (TAC) and peroxidation biomarkers, as well as their association with dyslipidemia and systemic inflammation in psoriasis. The review of 59 case–control comparisons (from 41 studies) and 17 interventions (from 13 studies) suggests that peroxidation markers are more sensitive than TAC in the evaluation of oxidative stress in psoriasis. Although few studies investigated the effect of treatment on oxidative stress, it seems that biological drugs could be the better choice in the treatment of psoriasis. However, considering the limitations of TAC and plasma peroxidation markers, this review suggests that new methods should be developed in order to evaluate systemic oxidative stress in psoriasis.
Collapse
Affiliation(s)
- Ilaria Peluso
- Center of Nutrition, Council for Agricultural Research and Economics (CREA-NUT), Via Ardeatina 546, Rome, 00178, Italy.
| | - Arturo Cavaliere
- Dermopathic Institute of the Immaculate IDI-IRCCS, Via dei Monti di Creta, 104, Rome, 00167, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University of Rome, P.le Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
42
|
Zhou H, Jiang C, Gu L, Liu YE, Sun L, Xu Q. Influence of melatonin on IL-1Ra gene and IL-1 expression in rats with liver ischemia reperfusion injury. Biomed Rep 2016; 4:667-672. [PMID: 27284404 PMCID: PMC4887919 DOI: 10.3892/br.2016.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the influence of melatonin (MT) on rats with liver ischemia reperfusion injury (IRI) and its mechanism. A total of 66 male Sprague-Dawley rats were randomly divided into 3 groups: i) Normal control group, ii) ischemia reperfusion group (IR group) and iii) melatonin treatment group (MT group). Rats in the MT group were administered an intraperitoneal injection of MT (10 mg/kg, 1 ml) at 70 and 35 min before ischemia, early reperfusion, and 1 and 2 h after reperfusion, respectively. Blood was removed at the normal time-point (prior to any processes), 35 min before ischemia, 2, 4, 8 and 24 h after reperfusion. Subsequently the rats were sacrificed. The pathological changes of liver tissues, interleukin-1 receptor antagonist (IL-1Ra) gene and IL-1 expression levels were detected. There were no evident differences between the immediate reperfusion and 2 h IR group and MT group. The liver structure injury of the 4, 8 and 24 h MT groups were improved to various differences compared to the corresponding IR group; liver IL-1β of the MT group at 35 min after ischemia, and 2, 4, 8 and 24 h after reperfusion was evidently lower than that of the IR group (P<0.05); IL-1Ra mRNA expression in the 2 h MT group was higher compared to the 2 h IR group by 4.85-fold; and IL-1Ra mRNA expression in the 4 h MT group was higher compared to the 4 h IR group by 9.34-fold. Differences between two groups at other time-points were <2-fold. In conclusion, MT can upregulate IL-1Ra gene expression by reducing generation of IL-1 thus reducing IRI.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Y E Liu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
43
|
Role of heme Oxygenase-1 in low dose Radioadaptive response. Redox Biol 2016; 8:333-40. [PMID: 26966892 PMCID: PMC4789341 DOI: 10.1016/j.redox.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023] Open
Abstract
Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. The critical role of HO-1 in low dose Radioadaptive response is proposed. Low dose irradiation activates Nrf2 Translocation and HO-1 expression. Nrf2/HO-1 pathway mediates Radioadaptive response via regulating ROS production.
Collapse
|
44
|
Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci 2016; 1368:149-61. [PMID: 26890363 DOI: 10.1111/nyas.13008] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer.
Collapse
Affiliation(s)
- David H Manz
- Department of Molecular Biology and Biophysics.,School of Dental Medicine
| | | | | | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | | |
Collapse
|
45
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016; 17:ijms17010100. [PMID: 26784172 PMCID: PMC4730342 DOI: 10.3390/ijms17010100] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/06/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016. [PMID: 26784172 DOI: 10.3390/ijmsl17010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Kortas J, Prusik K, Flis D, Prusik K, Ziemann E, Leaver N, Antosiewicz J. Effect of Nordic Walking training on iron metabolism in elderly women. Clin Interv Aging 2015; 10:1889-96. [PMID: 26664101 PMCID: PMC4669095 DOI: 10.2147/cia.s90413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite several, well-documented pro-healthy effects of regular physical training, its influence on body iron stores in elderly people remains unknown. At the same time, body iron accumulation is associated with high risk of different morbidities. PURPOSE We hypothesized that Nordic Walking training would result in pro-healthy changes in an elderly group of subjects by reducing body iron stores via shifts in iron metabolism-regulating proteins. METHODS Thirty-seven women aged 67.7±5.3 years participated in this study. They underwent 32 weeks of training, 1-hour sessions three times a week, between October 2012 and May 2013. Fitness level, blood morphology, CRP, vitamin D, ferritin, hepcidin, and soluble Hjv were assessed before and after the training. RESULTS The training program caused a significant decrease in ferritin, which serves as a good marker of body iron stores. Simultaneously, the physical cardiorespiratory fitness had improved. Furthermore, blood hepcidin was positively correlated with the ferritin concentration after the training. The concentration of blood CRP dropped, but the change was nonsignificant. The applied training resulted in a blood Hjv increase, which was inversely correlated with the vitamin D concentration. CONCLUSION Overall the Nordic Walking training applied in elderly people significantly reduced blood ferritin concentration, which explains the observed decrease in body iron stores.
Collapse
Affiliation(s)
- Jakub Kortas
- Department of Recreation and Tourism, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Katarzyna Prusik
- Department of Biomedical Basis of Health, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Damian Flis
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Prusik
- Department of Recreation and Tourism, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Neil Leaver
- The Immunosuppression monitoring service (IMS) Laboratory, Royal Brompton & Harefield NHS Foundation Trust, Heart Science Centre, Harefield Hospital, Harefield, UK
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
48
|
Tsukamoto H. Metabolic reprogramming and cell fate regulation in alcoholic liver disease. Pancreatology 2015; 15:S61-5. [PMID: 25800177 PMCID: PMC4515387 DOI: 10.1016/j.pan.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) should be defined as a life-style metabolic disease. Its pathogenesis is driven by altered cell fate of both parenchymal and non-parenchymal liver cell types, contributing to different pathologic spectra. A critical turning point in progression of ALD is chronic alcoholic steatohepatitis (ASH) or alcoholic neutrophilic hepatitis (AH), which markedly predisposes patients to most devastating ALD sequela, cirrhosis and liver cancer. RESULTS Our research identifies the pivotal roles of unique metabolic reprogramming in M1 activation of hepatic macrophages (HM) and myofibroblastic activation (MF) of hepatic stellate cells (HSC) in the genesis of inflammation and fibrosis, the two key histological features of chronic ASH and neutrophilic AH. For M1 HM activation, heightened proinflammatory iron redox signaling in endosomes or caveosomes results from altered iron metabolism and storage, promoting IKK/NF-kB activation via interactive activation of p21ras, TAK1, and PI3K. For MF cell fate regulation of HSC, activation of the morphogen Wnt pathway caused by the nuclear protein NECDIN or the single-pass trans-membrane protein DLK1, reprograms lipid metabolism via MeCP2-mediated epigenetic repression of the key HSC quiescence gene Ppar-γ. CONCLUSIONS The findings from these studies re-enforce the importance of metabolic reprogramming in cell fate regulation required for the pathogenesis of ALD.
Collapse
Affiliation(s)
- Hidekazu Tsukamoto
- Southern California Research Center ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| |
Collapse
|
49
|
Iron overload-modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertil Steril 2014; 103:439-47. [PMID: 25500022 DOI: 10.1016/j.fertnstert.2014.10.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate the effect of iron overload on nuclear factor kappa-B (NF-κB) activation in human endometrial stromal cells (ESCs). DESIGN Experimental study. SETTING University hospital research laboratory. PATIENT(S) Ten healthy women. INTERVENTION(S) Isolated ESCs from endometrial biopsies were incubated with 50 μM FeSO(4) or vehicle. The NF-κB inhibitor [5-(p-fluorophenyl)-2-ureido] thiophene-3-carboxamide (TPCA-1), which inhibits IKKβ, the kinase of IκBα (inhibitory protein of NF-κB), was used to prevent iron overload-stimulated NF-κB changes in ESCs. MAIN OUTCOME MEASURE(S) NF-κB activation was assessed by p65:DNA-binding activity immunodetection assay. IκBα, p65, and intercellular adhesion molecule (ICAM)-1 proteins expression was evaluated by Western blots. ESC soluble ICAM (sICAM)-1 secretion was measured by ELISA using conditioned medium. RESULT(S) Iron overload increased p65:DNA-binding activity and decreased IκBα and p65 cytoplasmic expression in ESCs after 30 minutes of incubation as compared with the basal condition. ESC ICAM-1 expression and sICAM-1 secretion were higher after 24 hours of iron overload treatment than in the absence of treatment. TPCA-1 prevented the iron overload-induced increase of p65:DNA binding and IκBα degradation. CONCLUSION(S) Iron overload activates IKKβ in ESCs, stimulating the NF-κB pathway and increasing ICAM-1 expression and sICAM-1 secretion. These results suggest that iron overload induces a proendometriotic phenotype on healthy ESCs, which could participate in endometriosis pathogenesis and development.
Collapse
|
50
|
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20:12908-12933. [PMID: 25278688 PMCID: PMC4177473 DOI: 10.3748/wjg.v20.i36.12908] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α.
Collapse
|