1
|
Ortiz AM, Castello Casta F, Rahmberg A, Markowitz TE, Brooks K, Simpson J, Brenchley JM. 2-Hydroxypropyl-β-Cyclodextrin Treatment Induces Modest Immune Activation in Healthy Rhesus Macaques. J Virol 2023; 97:e0060023. [PMID: 37338342 PMCID: PMC10373544 DOI: 10.1128/jvi.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-β-cyclodextrin [HPβCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPβCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1β (IL-1β) production-with stimulation varying significantly by HPβCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPβCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPβCD has historically been considered inert, recent findings suggest that HPβCD may contribute to inflammation. Herein, we investigate the contribution of HPβCD to healthy macaque inflammation in vitro and in vivo. We observe that HPβCD causes an induction of sCD14 and IL-1β from myeloid cells in vitro and demonstrate that HPβCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPβCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations.
Collapse
Affiliation(s)
- Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabiola Castello Casta
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Parasar P, Bernard M, Ahn SH, Kshirsagar SK, Nguyen SL, Grzesiak GR, Vettathu M, Martin D, Petroff MG. Isolation and characterization of uterine leukocytes collected using a uterine swab technique. Am J Reprod Immunol 2022; 88:e13614. [PMID: 35997140 PMCID: PMC9787928 DOI: 10.1111/aji.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Leukocytes from the maternal-fetal interface are a valuable tool to study local changes in immune function during pregnancy; however, sampling can be challenging due to inadequate tissue availability and the invasive nature of placental bed biopsy. Here, we aim to purify and characterize leukocytes from paired peripheral and uterine blood samples to assess whether a less invasive method of uterine blood collection could yield a population of enriched uterine leukocytes suitable for ex vivo and in vitro analyses. METHOD OF STUDY Human peripheral blood mononuclear cells (PBMC) and uterine blood mononuclear cells (UBMC) expressed from surgical gauze post C-section were isolated, and immunophenotypic information was acquired by multi-parameter flow cytometry. PBMC and UBMC were stained for markers used to define T and B lymphocytes, macrophages, regulatory T (TReg ) cells, and natural killer (NK) cells. Prime flow was performed to check expression and analysis of CD16- CD56++ and CD16- CD56++ NK transcripts in PBMC and UBMC samples. RESULTS Immunophenotyping revealed that over 95% of both live PBMC and UBMC consisted of CD45+ leukocytes. Higher percentages of CD16- CD56++ , characterized as uterine NK (uNK) cells, were observed in UBMC samples as compared to PBMC samples (18.41% of CD45+ CD3- vs. 2.73%, respectively), suggesting that CD16- CD56++ cells were enriched in these samples. In UBMC, 49.64% of CD3-negative cells were of peripheral NK phenotype (CD16+ CD56++ ), suggesting infiltration of maternal peripheral NK (pNK) cell in the uterine interface. CONCLUSION Intrauterine leukocytes, especially CD16- CD56++ NK cells, can be collected in sufficient numbers with increased purity by sampling the uterine cavity postdelivery with surgical gauze. Our results suggest that this non-invasive protocol is a useful sampling technique for isolating CD16- CD56++ cells, however, due to peripheral blood contamination, the NK cell yield could be lower compared to actual decidual or endometrial samples post-partum which is more invasive.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Pathobiology & Diagnostic InvestigationChildren's Hospital BostonEast LansingMichiganUSA
| | - Matthew Bernard
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Soo Hyun Ahn
- Department of Pathobiology & Diagnostic InvestigationChildren's Hospital BostonEast LansingMichiganUSA
| | - Sarika K. Kshirsagar
- Department of Pathobiology & Diagnostic InvestigationChildren's Hospital BostonEast LansingMichiganUSA
| | - Sean L. Nguyen
- Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMichiganUSA,Institute for Integrative ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Geoffrey R. Grzesiak
- Department of Pathobiology & Diagnostic InvestigationChildren's Hospital BostonEast LansingMichiganUSA
| | - Mathew Vettathu
- Department of Obstetrics & GynecologySparrow HospitalEast LansingMichiganUSA
| | - Denny Martin
- Department of Obstetrics & GynecologySparrow HospitalEast LansingMichiganUSA
| | - Margaret G. Petroff
- Department of Pathobiology & Diagnostic InvestigationChildren's Hospital BostonEast LansingMichiganUSA,Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMichiganUSA,Microbiology & Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Shen M, Child T, Mittal M, Sarodey G, Salim R, Granne I, Southcombe JH. B Cell Subset Analysis and Gene Expression Characterization in Mid-Luteal Endometrium. Front Cell Dev Biol 2021; 9:709280. [PMID: 34447753 PMCID: PMC8383145 DOI: 10.3389/fcell.2021.709280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
The human endometrium is the innermost mucosal membrane of the uterus and is the first point of contact for an implanting blastocyst. A wide variety of immune cells are found amongst the endometrial epithelial layers and stromal cells which both provide host immune responses against pathogens and also assist with placentation and pregnancy establishment, however, B cells have not been characterized, despite being a vital player in both adaptive and mucosal immunity. Through analysis of mid-luteal endometrial biopsies, we find 1–5% of endometrial immune cells are B cells, the majority were naïve or memory B cells, with few plasma cells. Compared with circulating B cells, endometrial B cells had an activated phenotype, with increased expression of CD69, HLA-DR, CD74, and CD83, and IL-10 production capacities. PD1+CXCR5+ICOS+ T follicular helper-like cells and FAS+IgD–BCL6+ germinal center B cells were also present in the endometrium, which may indicate that endometrial B cells are playing an active role through germinal center reactions in the human endometrial environment.
Collapse
Affiliation(s)
- Mengni Shen
- Nuffield Department of Women's and Reproductive Health, L3 Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, L3 Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Oxford Fertility, The Fertility Partnership, Oxford, United Kingdom
| | - Monica Mittal
- Department of Obstetrics and Gynaecology, Wolfson Fertility Center, St Mary's and Hammersmith Hospitals, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Geet Sarodey
- Department of Obstetrics and Gynaecology, Wolfson Fertility Center, St Mary's and Hammersmith Hospitals, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Rehan Salim
- Department of Obstetrics and Gynaecology, Wolfson Fertility Center, St Mary's and Hammersmith Hospitals, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ingrid Granne
- Nuffield Department of Women's and Reproductive Health, L3 Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jennifer H Southcombe
- Nuffield Department of Women's and Reproductive Health, L3 Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Taga H, Dallaire MP, Gervais R, Richard FJ, Ma L, Corl BA, Chouinard PY. Characterization of raft microdomains in bovine mammary tissue during lactation: How they are modulated by fatty acid treatments. J Dairy Sci 2020; 104:2384-2395. [PMID: 33246605 DOI: 10.3168/jds.2020-19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.
Collapse
Affiliation(s)
- H Taga
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - M P Dallaire
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - F J Richard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - L Ma
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - B A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| |
Collapse
|
5
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
6
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
7
|
Katikaneni DS, Jin L. B cell MHC class II signaling: A story of life and death. Hum Immunol 2018; 80:37-43. [PMID: 29715484 DOI: 10.1016/j.humimm.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
MHC class II regulates B cell activation, proliferation, and differentiation during cognate B cell-T cell interaction. This is, in part, due to the MHC class II signaling in B cells. Activation of MHC Class II in human B cells or "primed" murine B cells leads to tyrosine phosphorylation, calcium mobilization, AKT, ERK, JNK activation. In addition, crosslinking MHC class II with monoclonal Abs kill malignant human B cells. Several humanized anti-HLA-DR/MHC class II monoclonal Abs entered clinical trials for lymphoma/leukemia and MHC class II-expressing melanomas. Mechanistically, MHC class II is associated with a wealth of transmembrane proteins including the B cell-specific signaling proteins CD79a/b, CD19 and a group of four-transmembrane proteins including tetraspanins and the apoptotic protein MPYS/STING. Furthermore, MHC class II signals are compartmentalized in the tetraspanin-enriched microdomains. In this review, we discuss our current understanding of MHC class II signaling in B cells focusing on its physiological significance and the therapeutic potential.
Collapse
Affiliation(s)
- Divya Sai Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
8
|
Association of rituximab with graphene oxide confers direct cytotoxicity for CD20-positive lymphoma cells. Oncotarget 2017; 7:12806-22. [PMID: 26859679 PMCID: PMC4914323 DOI: 10.18632/oncotarget.7230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2016] [Indexed: 11/29/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is one of the most common hematologic malignancies among adults for which the chimeric monoclonal anti-CD20 antibody (Ab) rituximab (RTX) is used as first-line therapy. As RTX itself is not directly cytotoxic but relies on host immune effector mechanisms or chemotherapeutic agents to attack target cells, its therapeutic capacity may become limited when host effector mechanisms are compromised. Currently, refractory disease and relapse with NHL are still common, highlighting the need for novel anti-CD20 antibody strategies with superior therapeutic efficacy over current protocols. We hypothesized that making RTX directly cytotoxic might improve the therapeutic efficacy. Graphene oxide (GO) has recently emerged as a highly attractive nanomaterial for biomedical applications; and several studies have reported cytotoxic effect of GO on benign and malignant cells in vitro. Herein, we report that RTX can be stably associated with GO, and that GO-associated RTX (RTX/GO) demonstrates remarkably high avidity for CD20. Binding of GO-associated RTX to CD20-positive lymphoma cells induces CD20 capping and target cell death through an actin dependent mechanism. In vivo, GO-associated RTX, but not free RTX, quickly eliminates high-grade lymphomas in the absence of host effector mechanisms in a xenograft lymphoma mouse model. Our findings represent the first demonstration of using GO-associated antibody as effective cytotoxic therapy for human B cell malignancies in the absence of chemotherapy, and these findings could have important clinical implications.
Collapse
|
9
|
N-3 vs. n-6 fatty acids differentially influence calcium signalling and adhesion of inflammatory activated monocytes: impact of lipid rafts. Inflamm Res 2016; 65:881-894. [DOI: 10.1007/s00011-016-0971-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
|
10
|
Holmannova D, Kolackova M, Kunes P, Krejsek J, Mandak J, Andrys C. Impact of cardiac surgery on the expression of CD40, CD80, CD86 and HLA-DR on B cells and monocytes. Perfusion 2015; 31:391-400. [PMID: 26503949 DOI: 10.1177/0267659115612905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We measured and compared changes in the percentage of cells expressing CD80, CD86, CD40, HLA-DR and the expression of these molecules on B cells and monocytes of patients who underwent either on-pump, mini on-pump or off-pump cardiac surgery. METHODS Blood samples from patients who underwent either on-pump, mini on-pump or off-pump cardiac surgery were collected before surgery, instantly after surgery and on the 1(st), 3(rd) and 7(th) days after surgery. Surface expression of CD80, CD86, CD40 and HLA-DR molecules was determined by flow cytometry. RESULTS Our results show that all three surgical techniques altered the expression of these molecules, as well as the percentage relative number of specific cell populations. We identified statistically significant differences when comparing different surgical techniques. On-pump surgery revealed a more pronounced impact on the phenotype of immune system cells than the other techniques. Therefore, it is likely that the function of immune cells is changed the most by on-pump surgery. We found a lower decrease in the number of CD80(+) monocytes and a lower drop in the CD40 expression on monocytes in off-pump patients in comparison with on-pump patients. CONCLUSION All the types of cardiac surgical techniques, off-pump, on-pump and modified mini-invasive on-pump, are associated with changes in CD80, CD86, CD40 and HLA-DR expression. We found several significant differences in the expression of the selected molecules when we compared all three groups of patients.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Pavel Kunes
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Jiri Mandak
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Anderson HA, Roche PA. MHC class II association with lipid rafts on the antigen presenting cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:775-80. [PMID: 25261705 DOI: 10.1016/j.bbamcr.2014.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022]
Abstract
MHC class II (MHC-II) molecules function by binding peptides derived from either self or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Howard A Anderson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Biochim Biophys Acta Gen Subj 2014. [DOI: 10.1016/j.bbagen.2013.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Wrobel CM, Geiger TR, Nix RN, Robitaille AM, Weigand S, Cervantes A, Gonzalez M, Martin JM. High molecular weight complex analysis of Epstein-Barr virus Latent Membrane Protein 1 (LMP-1): structural insights into LMP-1's homo-oligomerization and lipid raft association. Virus Res 2013; 178:314-27. [PMID: 24075898 DOI: 10.1016/j.virusres.2013.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
LMP-1 is a constitutively active Tumor Necrosis Factor Receptor analog encoded by Epstein-Barr virus. LMP-1 activation correlates with oligomerization and raft localization, but direct evidence of LMP-1 oligomers is limited. We report that LMP-1 forms multiple high molecular weight native LMP-1 complexes when analyzed by BN-PAGE, the largest of which are enriched in detergent resistant membranes. The largest of these high molecular weight complexes are not formed by purified LMP-1 or by loss of function LMP-1 mutants. Consistent with these results we find a dimeric form of LMP-1 that can be stabilized by disulfide crosslinking. We identify cysteine 238 in the C-terminus of LMP-1 as the crosslinked cysteine. Disulfide crosslinking occurs post-lysis but the dimer can be crosslinked in intact cells with membrane permeable crosslinkers. LMP-1/C238A retains wild type LMP-1 NF-κB activity. LMP-1's TRAF binding, raft association and oligomerization are associated with the dimeric form of LMP-1. Our results suggest the possibility that the observed dimeric species results from inter-oligomeric crosslinking of LMP-1 molecules in adjacent core LMP-1 oligomers.
Collapse
Affiliation(s)
- Christopher M Wrobel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tollip-induced down-regulation of MARCH1. RESULTS IN IMMUNOLOGY 2013; 3:17-25. [PMID: 24600555 DOI: 10.1016/j.rinim.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/31/2022]
Abstract
In addition to their classical antigen presenting functions, MHC class II molecules potentiate the TLR-triggered production of pro-inflammatory cytokines. Here, we have addressed the effect of Tollip and MARCH1 on the regulation of MHC II trafficking and TLR signaling. Our results show that MARCH1-deficient mice splenocytes are impaired in their capacity to produce pro-inflammatory cytokines in response to poly(I:C) and that TLR3 and MHC II molecules interact in the endocytic pathway. Knocking down Tollip expression in human CIITA(+) HeLa cells increased expression of HLA-DR but reduced the proportion of MHC II molecules associated with the CLIP peptide. Truncation of the HLA-DR cytoplasmic tails abrogated the effect of Tollip on MHC class II expression. While overexpression of Tollip did not affect HLA-DR levels, it antagonized the function of co-transfected MARCH1. We found that Tollip strongly reduced MARCH1 protein levels and that the two molecules appear to compete for binding to MHC II molecules. Altogether, our results demonstrate that Tollip regulates MHC class II trafficking and that MARCH1 may represent a new Tollip target.
Collapse
Key Words
- APCs, antigen presenting cells
- Antigen presentation
- Btk, Bruton tyrosine kinase
- C2, internal protein kinase C conserved region 2
- CIITA, class II trans-activator
- CUE, coupling of ubiquitin to endoplasmic reticulum degradation domain
- DCs, dendritic cells
- IL-1RAcP, IL-1R-associated protein
- IL-1RI, IL-1 receptor
- IRAK, IL-1 receptor-associated kinase
- MARCH, membrane-associated RING-CH
- MARCH1
- MFVs, mean fluorescence values
- MHC II
- MHC II, MHC class II
- MIR, modulator of immune recognition
- PAMPs, pathogen-associated molecular patterns
- SOCS1, suppressor of cytokine signaling 1
- TBD, Tom1-binding domain
- TGFBR1, TGF-beta type I receptor
- TIR, Toll/IL-1 receptor
- TLR, toll-like receptor
- TLR3
- Tfr, transferrin receptor
- Tollip
- Tollip, Toll-interacting protein
- iDCs, immature DCs
Collapse
|
15
|
Finzi A, Perlman M, Bourgeois-Daigneault MC, Thibodeau J, Cohen ÉA. Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the plasma membrane. Cell Microbiol 2012; 15:809-22. [PMID: 23170932 DOI: 10.1111/cmi.12074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 12/15/2022]
Abstract
Productive assembly of human immunodeficiency virus type 1 (HIV-1) takes place, primarily, at the plasma membrane. However, depending on the cell types, a significant proportion of nascent virus particles are internalized and routed to late endosomes. We previously reported that expression of human leucocyte antigen (HLA)-DR promoted a redistribution of Gag in late endosomes and an increased detection of mature virions in these compartments in HeLa and human embryonic kidney 293T model cell lines. Although this redistribution of Gag resulted in a marked decrease of HIV-1 release, the underlying mechanism remained undefined. Here, we provide evidence that expression of HLA-DR at the cell surface induces a redistribution of mature Gag products into late endosomes by enhancing nascent HIV-1 particle internalization from the plasma membrane through a process that relies on the presence of intact HLA-DR α and β-chain cytosolic tails. These findings raise the possibility that major histocompatibility complex class-II molecules might influence endocytic events at the plasma membrane and as a result promote endocytosis of progeny HIV-1 particles.
Collapse
Affiliation(s)
- Andrés Finzi
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
16
|
Benslimane N, Hassan GS, Yacoub D, Mourad W. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events. PLoS One 2012; 7:e43070. [PMID: 22905203 PMCID: PMC3419174 DOI: 10.1371/journal.pone.0043070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 12/22/2022] Open
Abstract
Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.
Collapse
Affiliation(s)
- Nadir Benslimane
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Daniel Yacoub
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Akuthota P, Melo RCN, Spencer LA, Weller PF. MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains. Am J Respir Cell Mol Biol 2011; 46:188-95. [PMID: 21885678 DOI: 10.1165/rcmb.2010-0335oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.
Collapse
Affiliation(s)
- Praveen Akuthota
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
18
|
Nadiri A, Polyak MJ, Jundi M, Alturaihi H, Reyes-Moreno C, Hassan GS, Mourad W. CD40 translocation to lipid rafts: Signaling requirements and downstream biological events. Eur J Immunol 2011; 41:2358-67. [DOI: 10.1002/eji.201041143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/05/2011] [Accepted: 05/06/2011] [Indexed: 12/19/2022]
|
19
|
AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells. Immunol Cell Biol 2011; 89:650-8. [PMID: 21221125 DOI: 10.1038/icb.2010.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) maturation and antigen presentation are regulated by activation of protein kinase A (PKA) signaling pathways, through unknown mechanisms. We have recently shown that interfering with PKA signaling through the use of anchoring inhibitor peptides hinders antigen presentation and DC maturation. These experiments provide evidence that DC maturation and antigen presentation are regulated by A-kinase anchoring proteins (AKAPs). Herein, we determine that the presence of AKAPs and PKA in lipid rafts regulates antigen presentation. Using a combination of western blotting and immuno-cytochemistry, we illustrate the presence of AKAP149, AKAP79, Ezrin and the regulatory subunits of PKA in DC lipid rafts. Incubation of DCs with the type II anchoring inhibitor, AKAP-in silico (AKAP-IS), removes Ezrin and RII from the lipid raft without disrupting raft formation. Addition of a lipid raft disruptor, methyl-β-cyclodextrin, blocks the efficacy of AKAP-IS, suggesting that the lipid raft must be intact for AKAP-IS to inhibit antigen presentation. Ezrin and AKAP79 are present in the lipid raft of stimulated KG1 cells, but Ezrin is not present in the lipid raft of unstimulated KG1 cells and AKAP79 levels are greatly diminished, suggesting that Ezrin and AKAP79 may be the key AKAPs responsible for regulating antigen presentation.
Collapse
|
20
|
Khandelwal S, Roche PA. Distinct MHC class II molecules are associated on the dendritic cell surface in cholesterol-dependent membrane microdomains. J Biol Chem 2010; 285:35303-10. [PMID: 20833718 DOI: 10.1074/jbc.m110.147793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Very small amounts of MHC class II-peptide complexes expressed on the surface of antigen-presenting cells (APCs) are capable of stimulating antigen-specific CD4 T cells. There is intense interest to elucidate the molecular mechanisms by which these small amounts of MHC-II can cluster, cross-link T cell receptors, and promote T cell proliferation. We now demonstrate that a significant fraction of the total pool of MHC-II molecules on the surface of dendritic cells is physically associated in macromolecular aggregates. These MHC-II/MHC-II interactions have been probed by co-immunoprecipitation analysis of the MHC-II I-A molecule with the related I-E molecule. These molecular associations are maintained in gentle detergents but are disrupted in harsh detergents such as Triton X-100. MHC-II I-A/I-E interactions are disrupted when plasma membrane cholesterol is extracted using methyl β-cyclodextrin, suggesting that lipid raft microdomains are important mediators of these MHC-II interactions. Although it has been proposed that tetraspanin proteins regulate molecular clustering, aggregation, and co-immunoprecipitation in APCs, genetic deletion of the tetraspanin family members CD9 or CD81 had no effect on MHC-II I-A/I-E binding. These data demonstrate that the presence of distinct forms of MHC-II with plasma membrane lipid rafts is required for MHC-II aggregation in APCs and provides a molecular mechanism allowing dendritic cells expressing small amounts of MHC-II-peptide complexes to cross-link and stimulate CD4 T cells.
Collapse
Affiliation(s)
- Sanjay Khandelwal
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
21
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
22
|
Smythies LE, White CR, Maheshwari A, Palgunachari MN, Anantharamaiah GM, Chaddha M, Kurundkar AR, Datta G. Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages. Am J Physiol Cell Physiol 2010; 298:C1538-48. [PMID: 20219948 DOI: 10.1152/ajpcell.00467.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HDL and its major protein component apolipoprotein A-I (apoA-I) exert anti-inflammatory effects, inhibit monocyte chemotaxis/adhesion, and reduce vascular macrophage content in inflammatory conditions. In this study, we tested the hypothesis that the apoA-I mimetic 4F modulates the function of monocyte-derived macrophages (MDMs) by regulating the expression of key cell surface receptors on MDMs. Primary human monocytes and THP-1 cells were treated with 4F, apoA-I, or vehicle for 7 days and analyzed for expression of cell surface markers, adhesion to human endothelial cells, phagocytic function, cholesterol efflux capacity, and lipid raft organization. 4F and apoA-I treatment decreased the expression of HLA-DR, CD86, CD11b, CD11c, CD14, and Toll-like receptor-4 (TLR-4) compared with control cells, suggesting the induction of monocyte differentiation. Both treatments abolished LPS-induced mRNA for monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 (MIP-1), regulated on activation, normal T-expressed and presumably secreted (RANTES), IL-6, and TNF-alpha but significantly upregulated LPS-induced IL-10 expression. Moreover, 4F and apoA-I induced a 90% reduction in the expression of CD49d, a ligand for the VCAM-1 receptor, with a concurrent decrease in monocyte adhesion (55% reduction) to human endothelial cells and transendothelial migration (34 and 27% for 4F and apoA-I treatments) compared with vehicle treatment. In addition, phagocytosis of dextran-FITC beads was inhibited by 4F and apoA-I, a response associated with reduced expression of CD32. Finally, 4F and apoA-I stimulated cholesterol efflux from MDMs, leading to cholesterol depletion and disruption of lipid rafts. These data provide evidence that 4F, similar to apoA-I, induces profound functional changes in MDMs, possibly due to differentiation to an anti-inflammatory phenotype.
Collapse
|
23
|
Frei R, Steinle J, Birchler T, Loeliger S, Roduit C, Steinhoff D, Seibl R, Büchner K, Seger R, Reith W, Lauener RP. MHC class II molecules enhance Toll-like receptor mediated innate immune responses. PLoS One 2010; 5:e8808. [PMID: 20098705 PMCID: PMC2808354 DOI: 10.1371/journal.pone.0008808] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 12/30/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class II molecules play crucial roles in immune activation by presenting foreign peptides to antigen-specific T helper cells and thereby inducing adaptive immune responses. Although adaptive immunity is a highly effective defense system, it takes several days to become fully operational and needs to be triggered by danger-signals generated during the preceding innate immune response. Here we show that MHC class II molecules synergize with Toll-like receptor (TLR) 2 and TLR4 in inducing an innate immune response. METHODOLOGY/PRINCIPAL FINDINGS We found that co-expression of MHC class II molecules and TLR2 or TLR4 in human embryonic kidney (HEK) cells 293 leads to enhanced production of the anti-microbial peptide human-beta-defensin (hBD) 2 after treatment with TLR2 stimulus bacterial lipoprotein (BLP) or TLR4 ligand lipopolysaccharide (LPS), respectively. Furthermore, we found that peritoneal macrophages of MHC class II knock-out mice show a decreased responsiveness to TLR2 and TLR4 stimuli compared to macrophages of wild-type mice. Finally, we show that MHC class II molecules are physically and functionally associated with TLR2 in lipid raft domains of the cell membrane. CONCLUSIONS/SIGNIFICANCE These results demonstrate that MHC class II molecules are, in addition to their central role in adaptive immunity, also implicated in generating optimal innate immune responses.
Collapse
Affiliation(s)
- Remo Frei
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
- * E-mail: (RF); (RPL)
| | - Johanna Steinle
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Thomas Birchler
- Section of Clinical Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Loeliger
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Caroline Roduit
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Dirk Steinhoff
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Reinhart Seibl
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Katja Büchner
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Reinhard Seger
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Roger P. Lauener
- Division of Immunology/Allergology, University of Zurich, Children's Hospital, Zurich, Switzerland
- * E-mail: (RF); (RPL)
| |
Collapse
|
24
|
Wang SH, Yuan SG, Peng DQ, Zhao SP. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy. Clin Exp Immunol 2010; 160:137-42. [PMID: 20059478 DOI: 10.1111/j.1365-2249.2009.04068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.
Collapse
Affiliation(s)
- S-H Wang
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
25
|
Tobin E, Denardo G, Zhang N, Epstein AL, Liu C, Denardo S. Combination immunotherapy with anti-CD20 and anti-HLA-DR monoclonal antibodies induces synergistic anti-lymphoma effects in human lymphoma cell lines. Leuk Lymphoma 2009; 48:944-56. [PMID: 17487739 DOI: 10.1080/10428190701272272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rituximab is effective in about one half of patients with indolent lymphoma. Even these patients relapse and develop rituximab resistance. To increase potency and circumvent resistance, the anti-lymphoma effects of rituximab, an anti-CD20 MAb(1), combined with chLym-1(2), an anti-HLA-DR MAb, were assessed in human lymphoma cell lines by examining growth inhibition and cell death, apoptosis induction, ADCC(3) and CDC(4). There were additive effects in all assays and synergism in cell lines, such as B35M, which displayed resistance to either MAb alone. In B35M cells, combined rituximab and chLym-1 induced a 27-fold direct reduction in viable cells, whereas equivalent concentrations of rituximab or chLym-1 alone induced only a 1-fold and 10-fold reduction in viable cells, respectively. Because these results occurred at MAb concentrations readily achievable in patients, they suggest that this combination immunotherapy regimen may increase the potency and range of effectiveness of these MAbs in lymphoma patients.
Collapse
Affiliation(s)
- Evan Tobin
- Department of Internal Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Knorr R, Karacsonyi C, Lindner R. Endocytosis of MHC molecules by distinct membrane rafts. J Cell Sci 2009; 122:1584-94. [PMID: 19383725 DOI: 10.1242/jcs.039727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In B-lymphocytes, endocytosis of MHC I and MHC II molecules is important for the cross-priming and presentation of labile antigens, respectively. Here, we report that MHC I and MHC II were internalized by separate endocytic carriers that lacked transferrin receptor. Cholera toxin B was co-internalized with MHC II, but not with MHC I, suggesting that the CLIC/GEEC pathway is involved in the uptake of MHC II. Endocytosis of MHC I and MHC II was inhibited by filipin, but only MHC II showed a strong preference for a membrane raft environment in a co-clustering analysis with G(M)1. By using a novel method for the extraction of detergent-resistant membranes (DRMs), we observed that MHC I and MHC II associate with two distinct types of DRMs. These differ in density, protein content, lipid composition, and ultrastructure. The results of cell surface biotinylation and subsequent DRM isolation show that precursors for both DRMs coexist in the plasma membrane. Moreover, clustering of MHC proteins at the cell surface resulted in shifts of the respective DRMs, revealing proximity-induced changes in the membrane environment. Our results suggest that the preference of MHC I and MHC II for distinct membrane rafts directs them to different cellular entry points.
Collapse
Affiliation(s)
- Ruth Knorr
- Department of Cell Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
27
|
Sasseville' M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard FJ. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins, and lipid rafts. Mol Endocrinol 2009; 23:700-10. [PMID: 19228792 DOI: 10.1210/me.2008-0320] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gap-junctional communication (GJC) plays a central role in oocyte growth. However, little is known about the regulation of connexin 43 (Cx43)-based gap-junction channels in cumulus-oocyte complexes (COCs) during in vitro maturation. We show that rupture of COCs from mural granulosa cells up-regulates Cx43-mediated GJC and that gonadotropins signal GJC breakdown by recruiting Cx43 to lipid rafts when oocyte meiosis resumes. Oocyte calcein uptake through gap junctions increases during early in vitro oocyte maturation and remains high until 18 h, when it falls simultaneously with the oocyte germinal vesicle breakdown. Immunodetection of Cx43 and fluorescence recovery after photobleaching assays revealed that the increase of GJC is independent of gonadotropins but requires RNA transcription, RNA polyadenylation, and translation. GJC rupture, in contrast, is achieved by a gonadotropin-dependent mechanism involving recruitment of Cx43 to clustered lipid rafts. These results show that GJC up-regulation in COCs in in vitro culture is independent of gonadotropins and transcriptionally regulated. However, GJC breakdown is gonadotropin dependent and mediated by the clustering of Cx43 in lipid raft microdomains. In conclusion, this study supports a functional role of lipid raft clustering of Cx43 in GJC breakdown in the COCs during in vitro maturation.
Collapse
Affiliation(s)
- Maxime Sasseville'
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Girouard J, Frenette G, Sullivan R. Compartmentalization of proteins in epididymosomes coordinates the association of epididymal proteins with the different functional structures of bovine spermatozoa. Biol Reprod 2009; 80:965-72. [PMID: 19164173 DOI: 10.1095/biolreprod.108.073551] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epididymosomes are small membranous vesicles secreted by epithelial cells within the luminal compartment of the epididymis. In bovine, many proteins are associated with epididymosomes, and some of them, such as the glycosylphosphatidylinositol (GPI)-anchored protein P25b, macrophage migration inhibitory factor (MIF), and aldose reductase (AKR1B1), are transferred to spermatozoa during the epididymal maturation process. P25b is associated with detergent-resistant membrane (DRM) domains of epididymal spermatozoa, whereas MIF and AKR1B1 are cytosolic proteins associated with detergent-soluble fractions. In this study, we tested the hypothesis that DRM domains are also present in the epididymosomes and that P25b DRM-associated proteins in these vesicles are transferred to the DRMs of spermatozoa. The presence of DRMs in epididymosomes was confirmed by their insolubility in cold Triton X-100 and their low buoyant density in sucrose gradient. Furthermore, DRMs isolated from epididymosomes are characterized by the exclusive presence of ganglioside GM1 and by high levels of cholesterol and sphingomyelin. Biochemical analysis indicated that P25b is linked to DRM in epididymosomes, whereas MIF and AKR1B1 are completely excluded from these membrane domains. Proteolytic treatment of epididymosomes and immunoblotting studies showed that P25b is affected by trypsin or pronase proteolysis. In contrast, MIF and AKR1B1 are not degraded by proteases, suggesting that they are localized within epididymosomes. Interaction studies between epididymosomes and epididymal spermatozoa demonstrated that P25b is transferred from the DRM of epididymosomes to the DRM of the caput epididymal spermatozoa as a GPI-anchored protein. Together, these data suggest that specific localization and compartmentalization of proteins in the epididymosomes coordinate the association of epididymal proteins with the different functional structures of spermatozoa.
Collapse
Affiliation(s)
- Julie Girouard
- Département d'Obstétrique-Gynécologie, Université Laval, Québec City, Québec, Canada
| | | | | |
Collapse
|
29
|
Sasseville M, Côté N, Gagnon MC, Richard FJ. Up-regulation of 3'5'-cyclic guanosine monophosphate-specific phosphodiesterase in the porcine cumulus-oocyte complex affects steroidogenesis during in vitro maturation. Endocrinology 2008; 149:5568-76. [PMID: 18669600 DOI: 10.1210/en.2008-0547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 3'5'-cyclic GMP (cGMP) pathway is known to influence ovarian functions, including steroidogenesis, ovulation, and granulosa cell proliferation. We show here that cGMP-phosphodiesterase (PDE) activity increased in a gonadotropin-dependent manner more than 3-fold in the cumulus-oocyte complex (COC) after 24 h in vitro maturation (IVM) and up to 5-fold after 48 h. Further characterization of this increase demonstrated that the activity was located primarily in cumulus cells, and was sensitive to sildenafil and zaprinast, two inhibitors specific to both type 5 and 6 PDEs. RT-PCR experiments showed that the mRNAs for cGMP-degrading PDEs 5A and 6C are present in the COC before and after 30 h IVM. Western blotting confirmed the presence of PDE 5A in the COC. Western blotting of PDE 6C revealed a significant up-regulation in the COC during IVM. Isolation and analysis of detergent-resistant membranes suggested that PDE 6C protein, along with half of the total sildenafil-sensitive cGMP-degradation activity, is associated with detergent-resistant membrane in the COC after 30 h IVM. Treatment of porcine COC with sildenafil during IVM caused a significant decrease in gonadotropin-stimulated progesterone secretion. Together, these results constitute the first report exploring the contribution of cGMP-PDE activity in mammalian COC, supporting a functional clustering of the enzyme, and providing the first evidence of its role in steroidogenesis.
Collapse
Affiliation(s)
- Maxime Sasseville
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
30
|
Abram CL, Lowell CA. The diverse functions of Src family kinases in macrophages. FRONT BIOSCI-LANDMRK 2008; 13:4426-50. [PMID: 18508521 DOI: 10.2741/3015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
31
|
Girouard J, Frenette G, Sullivan R. Seminal Plasma Proteins Regulate the Association of Lipids and Proteins Within Detergent-Resistant Membrane Domains of Bovine Spermatozoa1. Biol Reprod 2008; 78:921-31. [DOI: 10.1095/biolreprod.107.066514] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
32
|
Gombos I, Steinbach G, Pomozi I, Balogh A, Vámosi G, Gansen A, László G, Garab G, Matkó J. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 2008; 73:220-9. [PMID: 18163467 DOI: 10.1002/cyto.a.20516] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lipid rafts are cholesterol- and glycosphingolipid-rich plasma membrane microdomains, which control signal transduction, cellular contacts, pathogen recognition, and internalization processes. Their stability/lifetime, heterogeneity remained still controversial, mostly due to the high diversity of raft markers and cellular models. The correspondence of the rafts of living cells to liquid ordered (Lo) domains of model membranes and the effect of modulating rafts on the structural dynamics of their bulk membrane environment are also yet unresolved questions. Spatial overlap of various lipid and protein raft markers on live cells was studied by confocal laser scanning microscopy, while fluorescence polarization of DiIC18(3) and Bodipy-phosphatidylcholine was imaged with differential polarization CLSM (DP-CLSM). Mobility of the diI probe under different conditions was assessed by fluorescence correlation spectroscopic (FCS). GM1 gangliosides highly colocalized with GPI-linked protein markers of rafts and a new anti-cholesterol antibody (AC8) in various immune cells. On the same cells, albeit not fully excluded from rafts, diI colocalized much less with raft markers of both lipid and protein nature, suggesting the Lo membrane regions are not equivalents to lipid rafts. The DP-CLSM technique was capable of imaging probe orientation and heterogeneity of polarization in the plasma membrane of live cells, reflecting differences in lipid order/packing. This property--in accordance with diI mobility assessed by FCS--was sensitive to modulation of rafts either through their lipids or proteins. Our complex imaging analysis demonstrated that two lipid probes--G(M1) and a new anti-cholesterol antibody--equivocally label the membrane rafts on a variety of cell types, while some raft-associated proteins (MHC-II, CD48, CD59, or CD90) do not colocalize with each other. This indicates the compositional heterogeneity of rafts. Usefulness of the DP-CLSM technique in imaging immune cell surface, in terms of lipid order/packing heterogeneities, was also shown together with its sensitivity to monitor biological modulation of lipid rafts.
Collapse
Affiliation(s)
- Imre Gombos
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sloma I, Zilber MT, Vasselon T, Setterblad N, Cavallari M, Mori L, De Libero G, Charron D, Mooney N, Gelin C. Regulation of CD1a surface expression and antigen presentation by invariant chain and lipid rafts. THE JOURNAL OF IMMUNOLOGY 2008; 180:980-7. [PMID: 18178838 DOI: 10.4049/jimmunol.180.2.980] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In immature dendritic cells (DCs), CD1a is almost exclusively expressed at the cell surface and its membrane organization is poorly understood. In this study, we report that MHC class II, invariant chain (Ii), and CD9 molecules are coimmunoprecipitated with CD1a in immature DCs, and that CD1a/Ii colocalization is dependent on lipid raft integrity. In HeLa-CIITA cells CD1a expression leads to increased Ii trafficking to the cell surface, confirming the relevance of this association. Furthermore, silencing of Ii in DCs induces significant CD1a accumulation on the plasma membrane whereas the total CD1a expression remains similar to that of control cells. These data suggest that CD1a recycling is facilitated by the association with the Ii. The CD1a localization in lipid rafts has functional relevance as demonstrated by inhibition of CD1a-restricted presentation following raft disruption. Overall, these findings identify Ii and lipid rafts as key regulators of CD1a organization on the surface of immature DCs and of its immunological function as Ag-presenting molecule.
Collapse
Affiliation(s)
- Ivan Sloma
- Institut National de la Santé et de la Recherche Médicale U662, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kriegel MA, Adam-Klages S, Gabler C, Blank N, Schiller M, Scheidig C, Kalden JR, Lorenz HM. Anti-HLA-DR-triggered monocytes mediate in vitro T cell anergy. Int Immunol 2008; 20:601-13. [DOI: 10.1093/intimm/dxn019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
35
|
Doisne JM, Castaigne JG, Deruyffelaere C, Dieu-Nosjean MC, Chamot C, Alcaide-Loridan C, Charron D, Al-Daccak R. The context of HLA-DR/CD18 complex in the plasma membrane governs HLA-DR-derived signals in activated monocytes. Mol Immunol 2008; 45:709-18. [PMID: 17719638 DOI: 10.1016/j.molimm.2007.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 07/11/2007] [Accepted: 07/16/2007] [Indexed: 02/04/2023]
Abstract
HLA-DR-derived signals in activated monocytes mediate both pro-inflammatory cytokine production and caspase-independent death, and have been postulated to play a role in inflammation and in its resolution, respectively. Herein, using the monocytic/macrophagic human cell line THP-1 primed with IFNgamma (IFNgamma-primed THP-1), we investigated how HLA-DR may integrate both signals. Our inhibition studies demonstrated that if cell death is dependent on PKCbeta activation, the induction of TNFalpha gene expression relies on PTK activation, in particular the Src family of kinases, but both cell responses implicate the beta2-integrin CD18. Accordingly, sequential immunoprecipitation experiments demonstrated that following engagement of HLA-DR on IFNgamma-primed THP-1 cells, the HLA-DR/CD18 complex physically associates with PKCbeta and with PTK. Pharmacological disruption of lipid rafts microdomains abolished the assembly of HLA-DR/CD18/PTK signaling complex, HLA-DR-mediated tyrosine activation, and the PTK-dependent TNFalpha expression in IFNgamma-primed THP-1 cells. In contrast, HLA-DR/CD18/PKCbeta complex was still formed and able to mediate cell death after cholesterol depletion of these cells. These results indicate that while the integrity of lipid rafts is necessary for the transduction of cytokine gene expression through the HLA-DR/CD18 complex, it is not necessary for the induction of the HLA-DR/CD18-dependent cell death. Thus, our study provides experimental evidence indicating the compartmentalization of HLA-DR/CD18 complex within or outside lipid rafts as a mechanism through which HLA-DR can integrate both PTK and PKCbeta signals leading to activation and death, respectively, of activated monocytes. This might provide new insights into how MHC class II signaling may regulate inflammatory response.
Collapse
Affiliation(s)
- Jean-Marc Doisne
- INSERM U662, Réponses Immunes: Régulation et Développement, Institut Universitaire d'Hématologie, Université Paris 7, Hôpital St. Louis, 1 Av Claude Vellefaux, 75010 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang N, Khawli LA, Hu P, Epstein AL. Lym-1-induced apoptosis of non-Hodgkin's lymphomas produces regression of transplanted tumors. Cancer Biother Radiopharm 2007; 22:342-56. [PMID: 17651040 DOI: 10.1089/cbr.2007.359.a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lym-1 was one of the first antibodies to be used successfully for the radioimmunotherapy of the human malignant lymphomas. This antibody, which recognizes the HLA-DR10 antigen preferentially expressed in B-cell lymphomas, was recently shown to induce apoptosis upon binding to lymphoma cells. In this study, Lym-1-induced apoptosis was studied to identify the potential molecular pathways of programmed cell death and to demonstrate the clinical potential of this antibody in the treatment of the human malignant lymphomas. Immunofluorescence microscopy revealed that Lym-1 stained focal areas of the cell surface, consistent with the fact that the HLA-DR10 antigen is associated with lipid rafts, a known prerequisite for apoptosis signaling. Likewise, Annexin V/propidium iodide staining and TUNEL assays demonstrated that both murine Lym-1 and chimeric Lym-1 induced both early and late apoptosis, respectively, unlike anti-CD20 rituximab. Furthermore, Lym-1 was found to produce a rapid loss of mitochondrial membrane potential and mitochondrial release of cytochrome C 14 hours post-Lym-1 treatment. Although it was found to activate caspase-3, inhibitors of caspase pathways showed that the Lym-1-induced apoptosis in lymphoma cell lines is independent of caspase induction. Finally, treatment studies in vivo demonstrated that, compared with murine anti-CD20 (2B8), Lym-1 was more effective in inducing the regression of human lymphoma xenografts. Based upon these results, chimeric Lym-1 should be especially effective in treating lymphoma patients, as, in addition to being able to elicit immune effector functions such as chimeric anti-CD20, it can also induce apoptosis directly upon cell binding.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
37
|
Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol 2007; 18:616-26. [PMID: 17719248 PMCID: PMC2169358 DOI: 10.1016/j.semcdb.2007.07.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 12/12/2022]
Abstract
B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, United States.
| | | |
Collapse
|
38
|
|
39
|
Reyes-Moreno C, Sharif-Askari E, Girouard J, Léveillé C, Jundi M, Akoum A, Lapointe R, Darveau A, Mourad W. Requirement of Oxidation-dependent CD40 Homodimers for CD154/CD40 Bidirectional Signaling. J Biol Chem 2007; 282:19473-80. [PMID: 17504764 DOI: 10.1074/jbc.m701076200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that the CD154/CD40 interaction is required for T cell-dependent B cell differentiation and maturation. However, the early molecular and structural mechanisms that orchestrate CD154 and CD40 signaling at the T cell/APC contact site are not well understood. We demonstrated that CD40 engagement induces the formation of disulfide-linked (dl) CD40 homodimers that predominantly associate with detergent-resistant membrane microdomains. Mutagenesis and biochemical analyses revealed that (a) the integrity of the detergent-resistant membranes is necessary for dl-CD40 homodimer formation, (b) the cytoplasmic Cys(238) of CD40 is the target for the de novo disulfide oxidation induced by receptor oligomerization, and (c) dl-CD40 homodimer formation is required for CD40-induced interleukin-8 secretion. Stimulation of CD154-positive T cells with staphylococcal enterotoxin E superantigen that mimics nominal antigen in initiating cognate T cell/APC interaction revealed that dl-CD40 homodimer formation is required for interleukin-2 production by T cells. These findings indicate that dl-CD40 homodimer formation has a physiological role in regulating bidirectional signaling.
Collapse
Affiliation(s)
- Carlos Reyes-Moreno
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier de l'Université Laval, Québec City, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gombos I, Kiss E, Detre C, László G, Matkó J. Cholesterol and sphingolipids as lipid organizers of the immune cells’ plasma membrane: Their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death. Immunol Lett 2006; 104:59-69. [PMID: 16388855 DOI: 10.1016/j.imlet.2005.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 11/20/2005] [Accepted: 11/20/2005] [Indexed: 12/11/2022]
Abstract
The possible regulatory mechanisms by which glycosphingolipid- and cholesterol-rich membrane microdomains, caveolar and non-caveolar lipid rafts, control the immune response are continuously expanding. In the present overview we will focus on how these membrane-organizing lipids are involved, in collaboration with tetraspanin proteins, in the formation of distinct MHC-I and MHC-II microdomains at the cell surface and will analyze the possible roles of MHC compartmentation in the processes of antigen presentation and regulation of various stages of the cellular immune response. Some basic, lipid raft- and tetraspan mediated mechanisms involved in the formation and function of immunological synapses between various APCs and T-cells will also be discussed. Finally, a new aspect of immune regulation by sphingolipids will be briefly described, namely how can the death or stress signals, leading to ceramide accumulation, result in raft-associated regulatory platforms controlling cell death or antigen-induced, TCRmediated signaling of T-lymphocytes. The influence of these signals and their cross-talk on the fate (death or survival) of T-cells and the outcome of T-cell response will also be discussed.
Collapse
Affiliation(s)
- Imre Gombos
- Institute of Biology, Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
41
|
Eren E, Yates J, Cwynarski K, Preston S, Dong R, Germain C, Lechler R, Huby R, Ritter M, Lombardi G. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand J Immunol 2006; 63:7-16. [PMID: 16398696 DOI: 10.1111/j.1365-3083.2006.01700.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The existence of major histocompatibility complex (MHC) class II molecules in lipid rafts has been described in dendritic cells (DC); however, the importance of rafts in T-cell activation has not been clarified. In this study, the distribution of the lipid raft components (CD59 and GM1 ganglioside) in human monocyte-derived DC was investigated. DC had an even distribution of these components at the cell surface. In addition, raft-associated GM1 ganglioside colocalized with cross-linked MHC class II. This implies coaggregation of raft components with these MHC molecules, which may be important in the interaction between T cells and antigen-presenting cells. In studies carried out to investigate the effect of the DC : T-cell interaction on raft distribution, we found a clustering of the lipid raft component CD59 on DC at the synaptic interface, with associated activation of the interacting T cell. In an antigen-specific response between DC and CD4+ T-cell clones, disruption of lipid rafts resulted in inhibition of both CD59 clustering and T-cell activation. This was most pronounced when limiting amounts of cognate peptide were used. Together, these data demonstrate the association of MHC class II with lipid rafts during DC : T-cell interaction and suggest an important role for DC lipid rafts in T-cell activation.
Collapse
Affiliation(s)
- E Eren
- Department of Immunology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Masserini M, Pitto M, Raimondo F, Cazzaniga E, Sesana S, Bellini T. Methyl-beta-cyclodextrin treatment affects the thermotropic behaviour of membranes and detergent-resistant membrane fractions of cultured A431 cells. Biol Pharm Bull 2005; 28:2185-8. [PMID: 16327146 DOI: 10.1248/bpb.28.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membranes and detergent-resistant membrane fractions isolated from human epidermoid carcinoma A431 cells after treatment with methyl-beta-cyclodextrin, a compound commonly used in pharmaceutical applications and in manipulation of membrane cholesterol content, display thermotropic transitions at about 15 degrees C and above 37 degrees C, respectively, when analyzed by differential scanning calorimetry. The transitions, absent in untreated cells, were reversible upon cycling through heating and cooling scans, and attributable to lipid components of the membranes, possibly sphingolipids. These results suggest that, after treatment with methyl-beta-cyclodextrin, membranes may show thermotropic transitions, an unusual feature for cellular bilayers, which is likely to influence biological functions.
Collapse
Affiliation(s)
- Massimo Masserini
- Department of Experimental, Environmental Medicine and Biotechnology, University of Milano-Bicocca, via Cadore 48, 20052 Monza, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N, Gelin C. MHC class II/CD38/CD9: a lipid-raft–dependent signaling complex in human monocytes. Blood 2005; 106:3074-81. [PMID: 15941914 DOI: 10.1182/blood-2004-10-4094] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractDespite a lack of signaling motifs in their cytoplasmic domain, major histocompatibility complex (MHC) class II molecules trigger a variety of intracellular signals that regulate antigen-presenting cell function. They thus may use associated effector molecules as demonstrated on B cells and dendritic cells. The starting point of this study comes from our previous work, which demonstrated that the ecto-enzyme CD38 is functionally linked to MHC class II molecules. We report that CD38 and human leukocyte antigen-DR (HLA-DR) are functionally and physically associated in lipid rafts microdomains of cellsurface monocytes and that the integrity of these domains is necessary for the HLA-DR and CD38 signaling events. Moreover, we identified the tetraspanin CD9 molecule as a partner of the CD38/HLA-DR complex and demonstrated that HLA-DR, CD38, and CD9 share a common pathway of tyrosine kinase activation in human monocytes. The analysis of conjugate formation between monocytes presenting superantigen and T cells shows the active participation of CD9 and HLA-DR on the monocyte surface. Together, these observations demonstrate the presence of a CD38 and HLA-DR signaling complex within tetraspanin-containing lipid rafts and the functional impact of their molecular partner CD9 in antigen presentation.
Collapse
Affiliation(s)
- Marie-Thérèse Zilber
- Institut National de la Santé et de la Recherche Médicale (INSERM) U662, and Service Commun d'Imagerie, Institut d'Hématologie, Hôpital SaintLouis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Karacsonyi C, Bedke T, Hinrichsen N, Schwinzer R, Lindner R. MHC II molecules and invariant chain reside in membranes distinct from conventional lipid rafts. J Leukoc Biol 2005; 78:1097-105. [PMID: 16204642 DOI: 10.1189/jlb.0405189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) peptide complexes can associate with lipid rafts, and this is a prerequisite for their recruitment to the immunological synapse and for efficient T cell stimulation. One of the most often used criterion for raft association is the resistance to extraction by the detergent Triton X-100 (TX-100) at low temperature. For MHC II, a variety of detergents have been used under different conditions, leading to variable and often conflicting conclusions about the association of MHC II with detergent-resistant membranes (DRMs). To clarify whether these inconsistencies were caused by variations in the isolation protocols or reflect different biochemical properties of MHC II lipid complexes, we used two standardized procedures for the isolation of membranes resistant to TX-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), or Brij 98. Our results suggest that some of the reported variations in the association of MHC II with DRMs are caused by differences in the methods. We also show that in our hands, specific and efficient flotation of MHC II and the MHC II-associated invariant chain from mouse B-lymphoma cells was only achieved with Brij 98, but not with TX-100 and CHAPS. We furthermore used DRMs prepared from hen egg lysozyme-fed B-lymphoma cells to activate the T cell hybridoma 3A9. In agreement with our biochemical data, T cell activation could only be achieved with Brij 98- but not with TX-100-resistant membranes. Thus, MHC II and also the invariant chain belong to a set of proteins comprising the T cell receptor, prominin, and the prion protein, which reside in membrane environments distinct from conventional lipid rafts.
Collapse
Affiliation(s)
- Claudia Karacsonyi
- Department of Cell Biology in the Center of Anatomy, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
45
|
Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis 2005; 35:1-10. [PMID: 15893944 DOI: 10.1016/j.bcmd.2005.03.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Even tough differentiated spermatozoa are unable of transcriptional or translational activity; the sperm surface undergoes major modifications in macromolecules composition during the transit along the male reproductive tract. This is the result of sequential, well orchestrated interactions between the male reproductive tract secretions and the transiting male gamete. This is particularly true when spermatozoa transit along the epididymis. The epididymis is a long convoluted tubules in which the spermatozoa leaving the testis have to transit. The unraveled epididymal tubule can be as long as 80 m in stallion, and the transit time of spermatozoa is of 3-12 days depending on the species. The epididymis is usually divided in three segments: the caput (proximal part), the corpus, and cauda. While the cauda epididymides acts as a sperm reservoir, the caput and corpus are responsible for sperm maturation. This means that, under androgen control, the epididymal epithelium secretes proteins that will interact sequentially with sperm surface. Some of the sperm proteins acquired during maturation along the excurrent duct behave as integral membrane proteins. In fact, some epididymal originating proteins are glycosylphosphatidylinositol (GPI)-anchored to the sperm plasma membrane. Our laboratory has shown that some of these proteins are secreted in an apocrine manner by the epididymal epithelium and are associated to exosomes, called epididymosomes. Epididymosomes are rich in sphingomyelin and are characterized by a high cholesterol/phospholipids ratio. Many proteins are associated to epididymosomes, some of which are selectively transferred to spermatozoa during the epididymal transit. We have identified some of these exosomes associated proteins transferred to the maturing spermatozoa. These include two enzymes involved in the polyol pathway: an aldose reductase and a sorbitol dehydrogenase. A cytokine named MIF (macrophage migration inhibitory factor) is another protein associated to exosomes who is transferred to spermatozoa during the epididymal transit. We hypothesized that both the polyol pathway and MIF secreted in an apocrine fashion by the epididymal epithelium modulate sperm motility during the transit along the male reproductive tract. Finally, P25b, belonging to a family of sperm surface proteins (P26h/P34H) necessary for the binding to the surface of the egg, is also acquired through the interaction between epididymosomes and the male gamete. In vitro studies have defined the conditions of protein transfer when epididymal spermatozoa are co-incubated with epididymosomes. The transfer of selected proteins to specific membrane domains of spermatozoa is saturable, temperature and pH-dependent, being optimal at pH 6.5. The presence of zinc in the incubation medium, but not of calcium neither magnesium, significantly increases the efficiency of protein transfer. These results show that exosomes play a role in sperm epididymal maturation which is an essential event to produce male gametes with optimal fertilizing ability.
Collapse
Affiliation(s)
- Robert Sullivan
- Département d'Obstétrique-Gynécologie, Centre de Recherche en Biologie de la Reproduction, Faculté de Médecine, Université Laval, Canada.
| | | | | | | |
Collapse
|
46
|
Kuipers HF, Biesta PJ, Groothuis TA, Neefjes JJ, Mommaas AM, van den Elsen PJ. Statins Affect Cell-Surface Expression of Major Histocompatibility Complex Class II Molecules by Disrupting Cholesterol-Containing Microdomains. Hum Immunol 2005; 66:653-65. [PMID: 15993711 DOI: 10.1016/j.humimm.2005.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 04/07/2005] [Accepted: 04/11/2005] [Indexed: 11/18/2022]
Abstract
Statins, the main therapy for hypercholesterolemia, are currently considered as possible immunomodulatory agents. Statins inhibit the production of proinflammatory cytokines and reduce the expression of several immunoregulatory molecules, including major histocompatibility complex class II (MHC-II) molecules. In this study, we investigated the mechanism by which simvastatin reduces the membrane expression of MHC-II molecules on several human cell types. We demonstrate that the reduction of MHC-II membrane expression by simvastatin correlates with disruption of cholesterol-containing microdomains, which transport and concentrate MHC-II molecules to the cell surface. In addition, we demonstrate that statins reduce cell-surface expression of other immunoregulatory molecules, which include MHC-I, CD3, CD4, CD8, CD28, CD40, CD80, CD86, and CD54. Our observations indicate that the downregulation of MHC-II at the cell surface contributes to the immunomodulatory properties of statins and is achieved through disruption of cholesterol-containing microdomains, which are involved in their intracellular transport.
Collapse
Affiliation(s)
- Hedwich F Kuipers
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Park YK, Lee JW, Ko YG, Hong S, Park SH. Lipid rafts are required for efficient signal transduction by CD1d. Biochem Biophys Res Commun 2005; 327:1143-54. [PMID: 15652515 DOI: 10.1016/j.bbrc.2004.12.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 12/13/2022]
Abstract
Plasma membranes of eukaryotic cells are not uniform, possessing distinct cholesterol- and sphingolipid-rich lipid raft microdomains which constitute critical sites for signal transduction through various immune cell receptors and their co-receptors. CD1d is a conserved family of major histocompatibility class I-like molecules, which has been established as an important factor in lipid antigen presentation to natural killer T (NKT) cells. Unlike conventional T cells, recognition of CD1d by the T cell receptor (TCR) of NKT cells does not require CD4 or CD8 co-receptors, which are critical for efficient TCR signaling. We found that murine CD1d (mCD1d) was constitutively present in the plasma membrane lipid rafts on antigen presenting cells, and that this restricted localization was critically important for efficient signal transduction to the target NKT cells, at low ligand densities, even without the involvement of co-receptors. Further our results indicate that there may be additional regulatory molecule(s), co-located in the lipid raft with mCD1d for NKT cell signaling.
Collapse
Affiliation(s)
- Yoon-Kyung Park
- Graduate School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Wu SS, Yamauchi K, Rozengurt E. Bombesin and angiotensin II rapidly stimulate Src phosphorylation at Tyr-418 in fibroblasts and intestinal epithelial cells through a PP2-insensitive pathway. Cell Signal 2005; 17:93-102. [PMID: 15451029 DOI: 10.1016/j.cellsig.2004.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
Src is activated in response to a variety of growth factors and hormones that bind G protein-coupled receptors (GPCRs), and its activity is regulated by phosphorylation at key sites, including the autophosphorylation site Tyr-418 and the inhibitory site Tyr-529. To better understand the mechanisms controlling Src activation, we examined Src phosphorylation in Swiss 3T3 fibroblasts stimulated with bombesin and in IEC-18 intestinal epithelial cells stimulated with angiotensin II (Ang II). Phosphorylation at Src Tyr-418, the activation loop site, was rapidly and markedly increased after GPCR agonist addition in both cell types. However, treatment of intact cells with the selective Src family kinase inhibitor PP2, at concentrations which abolished Src-mediated phosphorylation of focal adhesion kinase (FAK) at Tyr-577, unexpectedly led to increased phosphorylation at Src Tyr-418 and diminished phosphorylation at Tyr-529. In Swiss 3T3 cells, PP2 enhanced Tyr-418 phosphorylation after 1 min of bombesin stimulation, while in IEC-18 cells, PP2 increased Ang II-stimulated Tyr-418 phosphorylation at all times tested. These results imply that a distinct, non-Src family kinase may be responsible for phosphorylating Src at Tyr-418 in intact fibroblasts and epithelial cells stimulated by GPCR agonists.
Collapse
Affiliation(s)
- Steven S Wu
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
49
|
Poloso NJ, Muntasell A, Roche PA. MHC class II molecules traffic into lipid rafts during intracellular transport. THE JOURNAL OF IMMUNOLOGY 2004; 173:4539-46. [PMID: 15383586 DOI: 10.4049/jimmunol.173.7.4539] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There have been many studies demonstrating that a portion of MHC class II molecules reside in detergent-insoluble membrane domains (commonly referred to as lipid rafts). We have proposed that the function of raft association is to concentrate specific MHC class II-peptide complexes in plasma membrane microdomains that can facilitate efficient T cell activation. We now show that MHC class II becomes lipid raft associated before binding antigenic peptides. Using pulse-chase radiolabeling techniques, we find that newly synthesized MHC class II and MHC class II-invariant chain complexes initially reside in a detergent-soluble membrane fraction and acquire detergent insolubility as they traffic to lysosomal Ag processing compartments. Monensin, an inhibitor of protein transport through the Golgi apparatus, blocks association of newly synthesized MHC class II with lipid rafts. Treatment of cells with leupeptin, which inhibits invariant chain degradation, leads to the accumulation of MHC class II in lipid rafts within the lysosome-like Ag-processing compartments. Raft fractionation of lysosomal membranes confirmed the presence of MHC class II in detergent-insoluble microdomains in Ag-processing compartments. These findings indicate that newly synthesized MHC class II complexes are directed to detergent-insoluble lipid raft microdomains before peptide loading, a process that may facilitate the loading of similar peptides on MHC class II complexes in these microdomains.
Collapse
Affiliation(s)
- Neil J Poloso
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
50
|
Abstract
Tumour-necrosis factor receptor (TNFR)-associated factors (TRAFs) are cytoplasmic adaptor proteins that are important in lymphocyte activation and apoptosis. Many studies of TRAFs have used models of exogenous overexpression by non-lymphoid cells. However, the actions of TRAFs present at normal levels in lymphoid cells often differ considerably from those that have been established in non-lymphocyte overexpression models. As I discuss here, information obtained from studying these molecules in physiological settings in B cells reveals that they have several roles, which are both unique and overlapping. These include activation of kinases and transcription factors, and interactions with other signalling proteins, culminating in the induction or inhibition of biological functions.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, The University of Iowa, Veterans' Affairs Medical Center, Iowa City, Iowa 52242, USA.
| |
Collapse
|