1
|
Wang N, Ma Q, Zhang J, Wang J, Li X, Liang Y, Wu X. Transcriptomics-based anti-tuberculous mechanism of traditional Chinese polyherbal preparation NiuBeiXiaoHe intermediates. Front Pharmacol 2024; 15:1415951. [PMID: 39364045 PMCID: PMC11446850 DOI: 10.3389/fphar.2024.1415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Integrated traditional Chinese medicine and biomedicine is an effective method to treat tuberculosis (TB). In our previous research, traditional Chinese medicine preparation NiuBeiXiaoHe (NBXH) achieved obvious anti-TB effects in animal experiments and clinical practice. However, the action mechanism of NBXH has not been elucidated. Method Peripheral blood mononuclear cells (PBMCs) were collected to extract mRNA and differentially expressed (DE) genes were obtained using gene microarray technology. Finally, GEO databases and RT-qPCR were used to verify the results of expression profile. Result After MTB infection, most upregulated DE genes in mice were immune-related genes, including cxcl9, camp, cfb, c4b, serpina3g, and ngp. Downregulated DE genes included lrrc74b, sult1d1, cxxc4, and grip2. After treatment with NBXH, especially high-dose NBXH, the abnormal gene expression was significantly corrected. Some DE genes have been confirmed in multiple GEO datasets or in pulmonary TB patients through RT-qPCR. Conclusion MTB infection led to extensive changes in host gene expression and mainly caused the host's anti-TB immune responses. The treatment using high-dose NBXH partially repaired the abnormal gene expression, further enhanced the anti-TB immunity included autophagy and NK cell-mediated cytotoxicity, and had a certain inhibitory effect on overactivated immune responses.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xiaojun Li
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Trends Parasitol 2024; 40:805-819. [PMID: 39168720 DOI: 10.1016/j.pt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Toxoplasmosis is a common parasitic zoonosis that can be life-threatening in immunocompromised patients. About one-third of the human population is infected with Toxoplasma gondii. Primary infection triggers an innate immune response wherein IFN-γ-induced host cell GTPases, namely IRG and GBP proteins, serve as a vital component for host cell resistance. In the past decades, interest in elucidating the function of these GTPase families in controlling various intracellular pathogens has emerged. Numerous T. gondii effectors were identified to inactivate particular IRG proteins. T. gondii is re-optimizing its effectors to combat IRG function and in this way secures transmission. We discuss the IRG-specific effectors employed by the parasite in murine infections, contributing to a better understanding of T. gondii virulence.
Collapse
Affiliation(s)
- Mateo Murillo-Léon
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, 79104 Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Aura María Bastidas-Quintero
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
An R, Ni Z, Xie E, Rey FE, Kendziorski C, Thibeault SL. Single-cell view into the role of microbiota shaping host immunity in the larynx. iScience 2024; 27:110156. [PMID: 38974468 PMCID: PMC11225822 DOI: 10.1016/j.isci.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| | - Zijian Ni
- Department of Statistics, College of Letters and Sciences , UW-Madison, Madison, WI, USA
| | - Elliott Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, UW-Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Park HY, Lee GS, Go J, Ryu YK, Lee CH, Moon JH, Kim KS. Angiotensin-converting enzyme inhibition prevents l-dopa-induced dyskinesia in a 6-ohda-induced mouse model of Parkinson's disease. Eur J Pharmacol 2024; 973:176573. [PMID: 38642669 DOI: 10.1016/j.ejphar.2024.176573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Okuma H, Saijo-Hamano Y, Yamada H, Sherif AA, Hashizaki E, Sakai N, Kato T, Imasaki T, Kikkawa S, Nitta E, Sasai M, Abe T, Sugihara F, Maniwa Y, Kosako H, Takei K, Standley DM, Yamamoto M, Nitta R. Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I. Genes Cells 2024; 29:17-38. [PMID: 37984375 PMCID: PMC11448365 DOI: 10.1111/gtc.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.
Collapse
Affiliation(s)
- Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Emi Hashizaki
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | | | - Takaaki Kato
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miwa Sasai
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Hansakon A, Ngamphiw C, Tongsima S, Angkasekwinai P. Arginase 1 Expression by Macrophages Promotes Cryptococcus neoformans Proliferation and Invasion into Brain Microvascular Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:408-419. [PMID: 36548474 DOI: 10.4049/jimmunol.2200592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
7
|
Singh S, Murillo-León M, Endres NS, Arenas Soto AF, Gómez-Marín JE, Melbert F, Kanneganti TD, Yamamoto M, Campos C, Howard JC, Taylor GA, Steinfeldt T. ROP39 is an Irgb10-specific parasite effector that modulates acute Toxoplasma gondii virulence. PLoS Pathog 2023; 19:e1011003. [PMID: 36603017 PMCID: PMC9848475 DOI: 10.1371/journal.ppat.1011003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/18/2023] [Accepted: 11/14/2022] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic apicomplexan parasite that is an important cause of clinical disability in humans. On a global scale, one third of the human population is infected with T. gondii. Mice and other small rodents are believed to be responsible for transmission of T. gondii to the domestic cat, its definitive host. Interferon-inducible Immunity-Related GTPases (IRG proteins) are important for control of murine T. gondii infections. Virulence differences between T. gondii strains are linked to polymorphic rhoptry proteins (ROPs) that cooperate to inactivate individual IRG family members. In particular, the pseudokinase ROP5 isoform B is critically important in laboratory strains of mice. We identified T. gondii ROP39 in complex with ROP5B and demonstrate its contribution to acute T. gondii virulence. ROP39 directly targets Irgb10 and inhibits homodimer formation of the GTPase leading to an overall reduction of IRG protein loading onto the parasitophorous vacuolar membrane (PVM). Maintenance of PVM integrity rescues the parasite from IRG protein-mediated clearance in vitro and in vivo. This study identifies a novel T. gondii effector that is important for specific inactivation of the IRG resistance system. Our data reveal that yet unknown T. gondii effectors can emerge from identification of direct interaction partners of ROP5B.
Collapse
Affiliation(s)
- Shishir Singh
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niklas Sebastian Endres
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ailan Farid Arenas Soto
- Grupo GEPAMOL, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, Quindio, Colombia
| | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, Quindio, Colombia
| | - Florence Melbert
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children´s Research Hospital, Memphis, Tenessee, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Claudia Campos
- Fundacao Calouste Gulbekian, Instituto Gulbekian de Ciencia, Oeiras, Portugal
| | | | - Gregory Alan Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Byrd AL, Qu X, Lukyanchuk A, Liu J, Chen F, Naughton KJ, DuCote TJ, Song X, Bowman HC, Zhao Y, Edgin AR, Wang C, Liu J, Brainson CF. Dysregulated Polycomb Repressive Complex 2 contributes to chronic obstructive pulmonary disease by rewiring stem cell fate. Stem Cell Reports 2022; 18:289-304. [PMID: 36525966 PMCID: PMC9860081 DOI: 10.1016/j.stemcr.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung. Histological and single-cell RNA-sequencing analyses showed that loss of EZH2 in mouse lung organoids led to lowered self-renewal capability, increased squamous morphological development, and marked shifts in progenitor cell populations. Evaluation of in vivo models revealed that heterozygosity of Ezh2 in mice with ovalbumin-induced lung inflammation led to epithelial cell differentiation patterns similar to those in COPD lung. We also identified cystathionine-β-synthase as a possible upstream factor for PRC2 destabilization. Our findings suggest that PRC2 is integral to facilitating proper lung stem cell differentiation in humans and mice.
Collapse
Affiliation(s)
- Aria L. Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Fan Chen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Kassandra J. Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Tanner J. DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Hannah C. Bowman
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Abigail R. Edgin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Christine Fillmore Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Strickland BA, Rajagopala SV, Kamali A, Shilts MH, Pakala SB, Boukhvalova MS, Yooseph S, Blanco JCG, Das SR. Species-specific transcriptomic changes upon respiratory syncytial virus infection in cotton rats. Sci Rep 2022; 12:16579. [PMID: 36195733 PMCID: PMC9531660 DOI: 10.1038/s41598-022-19810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.
Collapse
Affiliation(s)
- Britton A Strickland
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Arash Kamali
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Meghan H Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Suman B Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Dockterman J, Coers J. How did we get here? Insights into mechanisms of immunity-related GTPase targeting to intracellular pathogens. Curr Opin Microbiol 2022; 69:102189. [PMID: 35963099 PMCID: PMC9745802 DOI: 10.1016/j.mib.2022.102189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
The cytokine gamma-interferon activates cell-autonomous immunity against intracellular bacterial and protozoan pathogens by inducing a slew of antimicrobial proteins, some of which hinge upon immunity-related GTPases (IRGs) for their function. Three regulatory IRG clade M (Irgm) proteins chaperone about approximately 20 effector IRGs (GKS IRGs) to localize to pathogen-containing vacuoles (PVs) within mouse cells, initiating a cascade that results in PV elimination and killing of PV-resident pathogens. However, the mechanisms that allow IRGs to identify and traffic specifically to 'non-self' PVs have remained elusive. Integrating recent findings demonstrating direct interactions between GKS IRGs and lipids with previous work, we propose that three attributes mark PVs as GKS IRG targets: the absence of membrane-bound Irgm proteins, Atg8 lipidation, and the presence of specific lipid species. Combinatorial recognition of these three distinct signals may have evolved as a mechanism to ensure safe delivery of potent host antimicrobial effectors exclusively to PVs.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Zhang Z, Xun Y, Rong S, Yan L, SoRelle JA, Li X, Tang M, Keller K, Ludwig S, Moresco EMY, Beutler B. Loss of immunity-related GTPase GM4951 leads to nonalcoholic fatty liver disease without obesity. Nat Commun 2022; 13:4136. [PMID: 35842425 PMCID: PMC9288484 DOI: 10.1038/s41467-022-31812-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity and diabetes are well known risk factors for nonalcoholic fatty liver disease (NAFLD), but the genetic factors contributing to the development of NAFLD remain poorly understood. Here we describe two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicted gene 4951 (Gm4951) identified from a forward genetic screen in mice. GM4951 deficient mice developed NAFLD on high fat diet (HFD) with no changes in body weight or glucose metabolism. Moreover, HFD caused a reduction in the level of Gm4951, which in turn promoted the development of NAFLD. Predominantly expressed in hepatocytes, GM4951 was verified as an interferon inducible GTPase. The NAFLD in Gm4951 knockout mice was associated with decreased lipid oxidation in the liver and no defect in hepatic lipid secretion. After lipid loading, hepatocyte GM4951 translocated to lipid droplets (LDs), bringing with it hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), which in the absence of GM4951 did not undergo this translocation. We identified a rare non-obese mouse model of NAFLD caused by GM4951 deficiency and define a critical role for GTPase-mediated translocation in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Xun
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Shunxing Rong
- grid.267313.20000 0000 9482 7121Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Lijuan Yan
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jeffrey A. SoRelle
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Xiaohong Li
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Miao Tang
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Katie Keller
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Sara Ludwig
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Eva Marie Y. Moresco
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
13
|
Pradipta A, Sasai M, Motani K, Ma JS, Lee Y, Kosako H, Yamamoto M. Cell-autonomous Toxoplasma killing program requires Irgm2 but not its microbe vacuolar localization. Life Sci Alliance 2021; 4:4/7/e202000960. [PMID: 34078740 PMCID: PMC8200298 DOI: 10.26508/lsa.202000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Interferon-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), are essential for cell-autonomous immunity against a wide variety of intracellular pathogens including Toxoplasma IRGs comprise regulatory and effector subfamily proteins. Regulatory IRGs Irgm1 and Irgm3 play important roles in anti-Toxoplasma immunity by globally controlling effector IRGs and GBPs. There is a remaining regulatory IRG, called Irgm2, which highly accumulates on parasitophorous vacuole membranes (PVMs). Very little is known about the mechanism of the unique localization on Toxoplasma PVMs. Here, we show that Irgm2 is important to control parasite killing through recruitment of Gbp1 and Irgb6, which does not require Irgm2 localization at Toxoplasma PVMs. Ubiquitination of Irgm2 in the cytosol, but not at the PVM, is also important for parasite killing through recruitment of Gbp1 to the PVM. Conversely, PVM ubiquitination and p62/Sqstm1 loading at later time points post-Toxoplasma infection require Irgm2 localization at the PVM. Irgm2-deficient mice are highly susceptible to Toxoplasma infection. Taken together, these data indicate that Irgm2 selectively controls accumulation of anti-Toxoplasma effectors to the vacuole in a manner dependent or independent on Irgm2 localization at the Toxoplasma PVM, which mediates parasite killing.
Collapse
Affiliation(s)
- Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kou Motani
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Youngae Lee
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan .,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Molecular basis of IRGB10 oligomerization and membrane association for pathogen membrane disruption. Commun Biol 2021; 4:92. [PMID: 33469160 PMCID: PMC7815755 DOI: 10.1038/s42003-020-01640-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Immunity-related GTPase B10 (IRGB10) belongs to the interferon (IFN)-inducible GTPases, a family of proteins critical to host defense. It is induced by IFNs after pathogen infection, and plays a role in liberating pathogenic ligands for the activation of the inflammasome by directly disrupting the pathogen membrane. Although IRGB10 has been intensively studied owing to its functional importance in the cell-autonomous immune response, the molecular mechanism of IRGB10-mediated microbial membrane disruption is still unclear. In this study, we report the structure of mouse IRGB10. Our structural study showed that IRGB10 bound to GDP forms an inactive head-to-head dimer. Further structural analysis and comparisons indicated that IRGB10 might change its conformation to activate its membrane-binding and disruptive functions. Based on this observation, we propose a model of the working mechanism of IRGB10 during pathogen membrane disruption. Ha et al. present a crystal structure of mouse IRGB10, a mouse interferon-inducible GTPase that mediates bacteriolysis in cell autonomous immunity. With further mutagenesis studies, they show that IRGB10 bound to GDP forms an inactive head-to-head dimer, which changes its conformation to activate its membrane-binding and disruptive functions.
Collapse
|
15
|
Interferon-Inducible GTPase 1 Impedes the Dimerization of Rabies Virus Phosphoprotein and Restricts Viral Replication. J Virol 2020; 94:JVI.01203-20. [PMID: 32796066 DOI: 10.1128/jvi.01203-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could interact with RABV phosphoprotein (P protein). Mutation and immunoprecipitation analyses revealed that the Y128 site of P protein is critical for its interaction with IIGP1. Further study demonstrated that this interaction impeded the dimerization of P protein and thus suppressed RABV replication. Collectively, our findings for the first reveal a novel role of IIGP1 in restricting a typical neurotropic virus, RABV, which will provide fresh insight into the function of this mouse-specific ISG.IMPORTANCE Interferon and its downstream products, ISGs, are essential in defending against pathogen invasion. One of the ISGs, IIGP1, has been found to constrain intracellular parasite infection by disrupting their vacuole membranes. However, the role of IIGP1 in limiting viral infection is unclear. In this study, we show that infection with a typical neurotropic virus, RABV, can induce upregulation of IIGP1, which, in turn, suppresses RABV by interacting with its phosphoprotein (P protein) and thus blocking the dimerization of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.
Collapse
|
16
|
Song LY, Wu YZ, Pei XX, Li R, Chen HT, Sun XZ. Pulmonary toxicity and RNA sequencing analyses of mouse in response to exposure to cellulose nanofibrils. Inhal Toxicol 2020; 32:388-401. [PMID: 33043732 DOI: 10.1080/08958378.2020.1831112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The growing applications of nanocelluloses in the fields of advanced nanocomposites, electronics, and medical devices necessitate investigation of their potential adverse effects on human health. The lungs are the primary and the most important route for the entry of nanocelluloses into the human body in occupational settings. However, data on the pulmonary toxicity of cellulose nanofibrils (CNFs) and its molecular mechanism are limited. This study investigated the pulmonary toxicity of CNFs and its genomic expression using the RNA sequencing approach. MATERIALS AND METHODS Female C57BL/6 mice were administered CNFs at 50 μg/mouse by oropharyngeal aspiration. Samples were collected at 3 and 14 days after exposure to CNFs (DAEC). RESULTS At three DAEC, the microscopic sections of lungs revealed a significant inflammatory response. In terms of gene expression alterations, 94 genes were up-regulated, and 107 genes were down-regulated. Most of these differentially expressed genes were involved in the inflammatory and immune responses, including chemokines, NK cells, killer cell lectin-like receptors, CD antigens, T cell-specific GTPases, immunity-related GTPase family M members, and interferon-induced proteins encoding genes. However, only 9 and 26 genes at 14 DAEC were significantly up- and down-regulated, respectively. CONCLUSIONS The pathological analysis of lung sections and the analysis of sequencing data suggested that the homeostasis of mice lungs was restored at 14 DAEC. The findings of this study provide insights into the pulmonary toxicity, and underlying toxicological mechanisms, caused by exposure to CNFs, and are useful for the assessment of the potential toxicity of nanocelluloses.
Collapse
Affiliation(s)
- Li-Ying Song
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Yun-Zhou Wu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xi-Xiang Pei
- Harbin Botai Biological Technology Co., Ltd, Harbin, China
| | - Rui Li
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Hai-Tao Chen
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Xiao-Zheng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Single-Cell RNA-seq Reveals Obesity-Induced Alterations in the Brca1-Mutated Mammary Gland Microenvironment. Cancers (Basel) 2020; 12:cancers12082235. [PMID: 32785175 PMCID: PMC7464292 DOI: 10.3390/cancers12082235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Clinical and experimental studies have shown that obesity increases the development and progression of breast cancer. The impact of obesity on the tumor microenvironment plays an important role in tumorigenesis, yet the precise mechanisms underlying obesity-mediated effects on cell-to-cell communication within the tumor microenvironment have been difficult to define. In this study, we conducted single-cell RNA sequencing (scRNA-seq) studies to investigate the impact of high-fat diet (HFD)-induced obesity on transcriptomic landscapes of stromal and immune cells in mammary glands of Brca1−/−; p53+/− mice, an animal breast cancer model. Hierarchical clustering and gene pathway enrichment analyses of scRNA-seq data showed that five different subtypes of stromal fibroblasts existed in mouse Brca1-mutated mammary glands. HFD-induced obesity led to upregulated expression of extracellular matrix (ECM) genes (Col3a1, Col6a3, Eln, and Sparc) and downregulated expression of immunoregulatory genes (Iigp1 and Cxcl10) in these stromal subtype cells. These findings, taken together, suggest that obesity alters the ECM composition and immune ecosystem through modulating the functionality of mammary stromal fibroblasts. Moreover, scRNA-seq analysis of mammary immune cells indicated that HFD-induced obesity promoted the generation and/or recruiting of pro-tumorigenic M2 macrophages in mammary glands. Our studies provide new insight into a mechanistic paradigm wherein obesity modulates the functions of stromal and immune cells to create the tumorigenic microenvironment for promoting breast tumorigenesis.
Collapse
|
18
|
Lee Y, Yamada H, Pradipta A, Ma JS, Okamoto M, Nagaoka H, Takashima E, Standley DM, Sasai M, Takei K, Yamamoto M. Initial phospholipid-dependent Irgb6 targeting to Toxoplasma gondii vacuoles mediates host defense. Life Sci Alliance 2019; 3:3/1/e201900549. [PMID: 31852733 PMCID: PMC6925386 DOI: 10.26508/lsa.201900549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite capable of infecting warm-blooded animals by ingestion. The organism enters host cells and resides in the cytoplasm in a membrane-bound parasitophorous vacuole (PV). Inducing an interferon response enables IFN-γ-inducible immunity-related GTPase (IRG protein) to accumulate on the PV and to restrict parasite growth. However, little is known about the mechanisms by which IRG proteins recognize and destroy T. gondii PV. We characterized the role of IRG protein Irgb6 in the cell-autonomous response against T. gondii, which involves vacuole ubiquitination and breakdown. We show that Irgb6 is capable of binding a specific phospholipid on the PV membrane. Furthermore, the absence of Irgb6 causes reduced targeting of other effector IRG proteins to the PV. This suggests that Irgb6 has a role as a pioneer in the process by which multiple IRG proteins access the PV. Irgb6-deficient mice are highly susceptible to infection by a strain of T. gondii avirulent in wild-type mice.
Collapse
Affiliation(s)
- Youngae Lee
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan .,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Ford MGJ, Chappie JS. The structural biology of the dynamin-related proteins: New insights into a diverse, multitalented family. Traffic 2019; 20:717-740. [PMID: 31298797 DOI: 10.1111/tra.12676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Dynamin-related proteins are multidomain, mechanochemical GTPases that self-assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X-ray crystallography and cryo-electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.
Collapse
Affiliation(s)
- Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
20
|
Ong JWJ, Tan KS, Ler SG, Gunaratne J, Choi H, Seet JE, Chow VTK. Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics. Cells 2019; 8:cells8090975. [PMID: 31455003 PMCID: PMC6769472 DOI: 10.3390/cells8090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
During influenza pneumonia, the alveolar epithelial cells of the lungs are targeted by the influenza virus. The distal airway stem cells (DASCs) and proliferating alveolar type II (AT2) cells are reported to be putative lung repair cells. However, their relative spatial and temporal distribution is still unknown during influenza-induced acute lung injury. Here, we investigated the distribution of these cells, and concurrently performed global proteomic analysis of the infected lungs to elucidate and link the cellular and molecular events during influenza pneumonia recovery. BALB/c mice were infected with a sub-lethal dose of influenza H1N1 virus. From 5 to 25 days post-infection (dpi), mouse lungs were subjected to histopathologic and immunofluorescence analysis to probe for global distribution of lung repair cells (using P63 and KRT5 markers for DASCs; SPC and PCNA markers for AT2 cells). At 7 and 15 dpi, infected mouse lungs were also subjected to protein mass spectrometry for relative protein quantification. DASCs appeared only in the damaged area of the lung from 7 dpi onwards, reaching a peak at 21 dpi, and persisted until 25 dpi. However, no differentiation of DASCs to AT2 cells was observed by 25 dpi. In contrast, AT2 cells began proliferating from 7 dpi to replenish their population, especially within the boundary area between damaged and undamaged areas of the infected lungs. Mass spectrometry and gene ontology analysis revealed prominent innate immune responses at 7 dpi, which shifted towards adaptive immune responses by 15 dpi. Hence, proliferating AT2 cells but not DASCs contribute to AT2 cell regeneration following transition from innate to adaptive immune responses during the early phase of recovery from influenza pneumonia up to 25 dpi.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore 119228, Singapore
| | - Siok Ghee Ler
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore 119074, Singapore
| | - Vincent Tak-Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| |
Collapse
|
21
|
Wachter S, Jung J, Shafiq S, Basquin J, Fort C, Bastin P, Lorentzen E. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J 2019; 38:e101251. [PMID: 30940671 PMCID: PMC6484408 DOI: 10.15252/embj.2018101251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intraflagellar transport (IFT) relies on motor proteins and the IFT complex to construct cilia and flagella. The IFT complex subunit IFT22/RabL5 has sequence similarity with small GTPases although the nucleotide specificity is unclear because of non-conserved G4/G5 motifs. We show that IFT22 specifically associates with G-nucleotides and present crystal structures of IFT22 in complex with GDP, GTP, and with IFT74/81. Our structural analysis unravels an unusual GTP/GDP-binding mode of IFT22 bypassing the classical G4 motif. The GTPase switch regions of IFT22 become ordered upon complex formation with IFT74/81 and mediate most of the IFT22-74/81 interactions. Structure-based mutagenesis reveals that association of IFT22 with the IFT complex is essential for flagellum construction in Trypanosoma brucei although IFT22 GTP-loading is not strictly required.
Collapse
Affiliation(s)
- Stefanie Wachter
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jamin Jung
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Shahaan Shafiq
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
22
|
Fernández-Gayol O, Sanchis P, Aguilar K, Navarro-Sempere A, Comes G, Molinero A, Giralt M, Hidalgo J. Different Responses to a High-Fat Diet in IL-6 Conditional Knockout Mice Driven by Constitutive GFAP-Cre and Synapsin 1-Cre Expression. Neuroendocrinology 2019; 109:113-130. [PMID: 30636247 DOI: 10.1159/000496845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, at least in part through actions in the central nervous system (CNS) from local sources. METHODS We herewith report results obtained in conditional IL-6 KO mice for brain cells (Il6ΔGfap and Il6ΔSyn). RESULTS The reporter RiboTag mouse line demonstrated specific astrocytic expression of GFAP-dependent Cre in the hypothalamus but not in other brain areas, whereas that of synapsin 1-dependent Cre was specific for neurons. Feeding a high-fat diet (HFD) or a control diet showed that Il6ΔGfap and Il6ΔSyn mice were more prone and resistant, respectively, to HFD-induced obesity. Energy intake was not altered in HFD experiments, but it was reduced in Il6ΔSyn male mice following a 24-h fast. HFD increased circulating insulin, leptin, and cholesterol levels, decreased triglycerides, and caused impaired responses to the insulin and glucose tolerance tests. In Il6ΔGfap mice, the only significant difference observed was an increase in insulin levels of females, whereas in Il6ΔSyn mice the effects of HFD were decreased. Hypothalamic Agrp expression was significantly decreased by HFD, further decreased in Il6ΔGfap, and increased in Il6ΔSyn female mice. Hypothalamic Il-6 mRNA levels were not decreased in Il6ΔSyn mice and even increased in Il6ΔGfapmale mice. Microarray analysis of hypothalamic RNA showed that female Il6ΔGfap mice had increased interferon-related pathways and affected processes in behavior, modulation of chemical synaptic transmission, learning, and memory. CONCLUSION The present results demonstrate that brain production of IL-6 regulates body weight in the context of caloric excess and that the cellular source is critical.
Collapse
Affiliation(s)
- Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kevin Aguilar
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alicia Navarro-Sempere
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain,
| |
Collapse
|
23
|
Praefcke GJK. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol 2017; 308:237-245. [PMID: 29174633 DOI: 10.1016/j.ijmm.2017.10.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Division of Haematology / Transfusion Medicine, Paul-Ehrlich-Institut, Langen, Germany; Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proc Natl Acad Sci U S A 2017. [PMID: 28645896 DOI: 10.1073/pnas.1620959114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamin-like proteins (DLPs) mediate various membrane fusion and fission processes within the cell, which often require the polymerization of DLPs. An IFN-inducible family of DLPs, the guanylate-binding proteins (GBPs), is involved in antimicrobial and antiviral responses within the cell. Human guanylate-binding protein 1 (hGBP1), the founding member of GBPs, is also engaged in the regulation of cell adhesion and migration. Here, we show how the GTPase cycle of farnesylated hGBP1 (hGBP1F) regulates its self-assembly and membrane interaction. Using vesicles of various sizes as a lipid bilayer model, we show GTP-dependent membrane binding of hGBP1F In addition, we demonstrate nucleotide-dependent tethering ability of hGBP1F Furthermore, we report nucleotide-dependent polymerization of hGBP1F, which competes with membrane binding of the protein. Our results show that hGBP1F acts as a nucleotide-controlled molecular switch by modulating the accessibility of its farnesyl moiety, which does not require any supportive proteins.
Collapse
|
25
|
Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase Complex Binds IFT-B to Initiate Intraflagellar Transport at the Ciliary Base. Dev Cell 2017. [PMID: 28625565 DOI: 10.1016/j.devcel.2017.05.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Highly conserved intraflagellar transport (IFT) protein complexes direct both the assembly of primary cilia and the trafficking of signaling molecules. IFT complexes initially accumulate at the base of the cilium and periodically enter the cilium, suggesting an as-yet-unidentified mechanism that triggers ciliary entry of IFT complexes. Using affinity-purification and mass spectrometry of interactors of the centrosomal and ciliopathy protein, CEP19, we identify CEP350, FOP, and the RABL2B GTPase as proteins organizing the first known mechanism directing ciliary entry of IFT complexes. We discover that CEP19 is recruited to the ciliary base by the centriolar CEP350/FOP complex and then specifically captures GTP-bound RABL2B, which is activated via its intrinsic nucleotide exchange. Activated RABL2B then captures and releases its single effector, the intraflagellar transport B holocomplex, from the large pool of pre-docked IFT-B complexes, and thus initiates ciliary entry of IFT.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keene Louis Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie Ann Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward Douglas Plowey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter Kent Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Ho CH, Tsai SF. Functional and biochemical characterization of a T cell-associated anti-apoptotic protein, GIMAP6. J Biol Chem 2017; 292:9305-9319. [PMID: 28381553 DOI: 10.1074/jbc.m116.768689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
GTPases of immunity-associated proteins (GIMAPs) are expressed in lymphocytes and regulate survival/death signaling and cell development within the immune system. We found that human GIMAP6 is expressed primarily in T cell lines. By sorting human peripheral blood mononuclear cells and performing quantitative RT-PCR, GIMAP6 was found to be expressed in CD3+ cells. In Jurkat cells that had been knocked down for GIMAP6, treatment with hydrogen peroxide, FasL, or okadaic acid significantly increased cell death/apoptosis. Exogenous expression of GMAP6 protected Huh-7 cells from apoptosis, suggesting that GIMAP6 is an anti-apoptotic protein. Furthermore, knockdown of GIMAP6 not only rendered Jurkat cells sensitive to apoptosis but also accelerated T cell activation under phorbol 12-myristate 13-acetate/ionomycin treatment conditions. Using this experimental system, we also observed a down-regulation of p65 phosphorylation (Ser-536) in GIMAP6 knockdown cells, indicating that GIMAP6 might display anti-apoptotic function through NF-κB activation. The conclusion from the study on cultured T cells was corroborated by the analysis of primary CD3+ T cells, showing that specific knockdown of GIMAP6 led to enhancement of phorbol 12-myristate 13-acetate/ionomycin-mediated activation signals. To characterize the biochemical properties of GIMAP6, we purified the recombinant GIMAP6 to homogeneity and revealed that GIMAP6 had ATPase as well as GTPase activity. We further demonstrated that the hydrolysis activity of GIMAP6 was not essential for its anti-apoptotic function in Huh-7 cells. Combining the expression data, biochemical properties, and cellular features, we conclude that GIMAP6 plays a role in modulating immune function and that it does this by controlling cell death and the activation of T cells.
Collapse
Affiliation(s)
- Ching-Huang Ho
- From the Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan and
| | - Shih-Feng Tsai
- From the Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan and .,the Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| |
Collapse
|
27
|
Schmidt EA, Fee BE, Henry SC, Nichols AG, Shinohara ML, Rathmell JC, MacIver NJ, Coers J, Ilkayeva OR, Koves TR, Taylor GA. Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. J Biol Chem 2017; 292:4651-4662. [PMID: 28154172 PMCID: PMC5377780 DOI: 10.1074/jbc.m116.770735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.
Collapse
Affiliation(s)
| | - Brian E Fee
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Stanley C Henry
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Amanda G Nichols
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Mari L Shinohara
- From the Departments of Molecular Genetics and Microbiology
- the Department of Immunology
| | - Jeffrey C Rathmell
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, Tennessee 37232
| | - Nancie J MacIver
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Jörn Coers
- From the Departments of Molecular Genetics and Microbiology
| | | | - Timothy R Koves
- the Duke Molecular Physiology Institute, and
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| | - Gregory A Taylor
- From the Departments of Molecular Genetics and Microbiology,
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
- the Department of Immunology
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
28
|
Lereim RR, Oveland E, Xiao Y, Torkildsen Ø, Wergeland S, Myhr KM, Sun SC, Berven FS. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis. ACTA ACUST UNITED AC 2016; 9:209-219. [PMID: 27746629 PMCID: PMC5061044 DOI: 10.4172/jpb.1000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.
Collapse
Affiliation(s)
- Ragnhild Reehorst Lereim
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway; Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway
| | - Eystein Oveland
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway; Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, Shanghai 200031, China
| | - Øivind Torkildsen
- Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway; Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway; Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway; Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway; Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen Norway; Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Daumke O, Praefcke GJK. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers 2016; 105:580-93. [PMID: 27062152 PMCID: PMC5084822 DOI: 10.1002/bip.22855] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/29/2022]
Abstract
Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016.
Collapse
Affiliation(s)
- Oliver Daumke
- Kristallographie, Max-Delbrück Centrum Für Molekulare Medizin, Robert-Rössle-Straße 10, Berlin, 13125, Germany
- Institut Für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Gerrit J K Praefcke
- Abteilung Hämatologie/Transfusionsmedizin, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, Langen, 63225, Germany
| |
Collapse
|
30
|
Grussendorf KA, Trezza CJ, Salem AT, Al-Hashimi H, Mattingly BC, Kampmeyer DE, Khan LA, Hall DH, Göbel V, Ackley BD, Buechner M. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics 2016; 203:1789-806. [PMID: 27334269 PMCID: PMC4981278 DOI: 10.1534/genetics.116.192559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.
Collapse
Affiliation(s)
- Kelly A Grussendorf
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Christopher J Trezza
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Alexander T Salem
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hikmat Al-Hashimi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Brendan C Mattingly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Drew E Kampmeyer
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - David H Hall
- Department of Neuroscience, Center for Caenorhabditis elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
31
|
Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: More than a membrane story. World J Transplant 2016; 6:69-90. [PMID: 27011906 PMCID: PMC4801806 DOI: 10.5500/wjt.v6.i1.69] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 12/20/2015] [Indexed: 02/05/2023] Open
Abstract
At present, proven clinical treatments but no cures are available for diabetes, a global epidemic with a huge economic burden. Transplantation of islets of Langerhans by their infusion into vascularized organs is an experimental clinical protocol, the first approach to attain cure. However, it is associated with lifelong use of immunosuppressants. To overcome the need for immunosuppression, islets are encapsulated and separated from the host immune system by a permselective membrane. The lead material for this application is alginate which was tested in many animal models and a few clinical trials. This review discusses all aspects related to the function of transplanted encapsulated islets such as the basic requirements from a permselective membrane (e.g., allowable hydrodynamic radii, implications of the thickness of the membrane and relative electrical charge). Another aspect involves adequate oxygen supply, which is essential for survival/performance of transplanted islets, especially when using large retrievable macro-capsules implanted in poorly oxygenated sites like the subcutis. Notably, islets can survive under low oxygen tension and are physiologically active at > 40 Torr. Surprisingly, when densely crowded, islets are fully functional under hyperoxic pressure of up to 500 Torr (> 300% of atmospheric oxygen tension). The review also addresses an additional category of requirements for optimal performance of transplanted islets, named auxiliary technologies. These include control of inflammation, apoptosis, angiogenesis, and the intra-capsular environment. The review highlights that curing diabetes with a functional bio-artificial pancreas requires optimizing all of these aspects, and that significant advances have already been made in many of them.
Collapse
|
32
|
Schulte K, Pawlowski N, Faelber K, Fröhlich C, Howard J, Daumke O. The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion. BMC Biol 2016; 14:14. [PMID: 26934976 PMCID: PMC4774019 DOI: 10.1186/s12915-016-0236-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/12/2016] [Indexed: 11/12/2022] Open
Abstract
Background The immunity-related GTPases (IRGs) constitute a powerful cell-autonomous resistance system against several intracellular pathogens. Irga6 is a dynamin-like protein that oligomerizes at the parasitophorous vacuolar membrane (PVM) of Toxoplasma gondii leading to its vesiculation. Based on a previous biochemical analysis, it has been proposed that the GTPase domains of Irga6 dimerize in an antiparallel fashion during oligomerization. Results We determined the crystal structure of an oligomerization-impaired Irga6 mutant bound to a non-hydrolyzable GTP analog. Contrary to the previous model, the structure shows that the GTPase domains dimerize in a parallel fashion. The nucleotides in the center of the interface participate in dimerization by forming symmetric contacts with each other and with the switch I region of the opposing Irga6 molecule. The latter contact appears to activate GTP hydrolysis by stabilizing the position of the catalytic glutamate 106 in switch I close to the active site. Further dimerization contacts involve switch II, the G4 helix and the trans stabilizing loop. Conclusions The Irga6 structure features a parallel GTPase domain dimer, which appears to be a unifying feature of all dynamin and septin superfamily members. This study contributes important insights into the assembly and catalytic mechanisms of IRG proteins as prerequisite to understand their anti-microbial action. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0236-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Schulte
- Max-Delbrueck-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Nikolaus Pawlowski
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Cologne, Germany.,Present address: Bayer Pharma AG, Global Biologics Research, Nattermannallee 1, 50829, Cologne, Germany
| | - Katja Faelber
- Max-Delbrueck-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Chris Fröhlich
- Max-Delbrueck-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Jonathan Howard
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Cologne, Germany. .,Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciência, 2781-156, Oeiras, Portugal.
| | - Oliver Daumke
- Max-Delbrueck-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
33
|
Hermanns T, Müller UB, Könen-Waisman S, Howard JC, Steinfeldt T. The Toxoplasma gondii rhoptry protein ROP18 is an Irga6-specific kinase and regulated by the dense granule protein GRA7. Cell Microbiol 2015; 18:244-59. [PMID: 26247512 PMCID: PMC5061101 DOI: 10.1111/cmi.12499] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
Abstract
In mice, avirulent strains (e.g. types II and III) of the protozoan parasite Toxoplasma gondii are restricted by the immunity‐related GTPase (IRG) resistance system. Loading of IRG proteins onto the parasitophorous vacuolar membrane (PVM) is required for vacuolar rupture resulting in parasite clearance. In virulent strain (e.g. type I) infections, polymorphic effector proteins ROP5 and ROP18 cooperate to phosphorylate and thereby inactivate mouse IRG proteins to preserve PVM integrity. In this study, we confirmed the dense granule protein GRA7 as an additional component of the ROP5/ROP18 kinase complex and identified GRA7 association with the PVM by direct binding to ROP5. The absence of GRA7 results in reduced phosphorylation of Irga6 correlated with increased vacuolar IRG protein amounts and attenuated virulence. Earlier work identified additional IRG proteins as targets of T. gondii ROP18 kinase. We show that the only specific target of ROP18 among IRG proteins is in fact Irga6. Similarly, we demonstrate that GRA7 is strictly an Irga6‐specific virulence effector. This identifies T. gondii GRA7 as a regulator for ROP18‐specific inactivation of Irga6. The structural diversity of the IRG proteins implies that certain family members constitute additional specific targets for other yet unknown T. gondii virulence effectors.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Urs B Müller
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | - Jonathan C Howard
- Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
34
|
Wang Y, Tian Q, Xu X, Yang X, Luo J, Mo W, Peng J, Niu X, Luo Y, Guo X. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity. Virology 2014; 468-470:621-630. [PMID: 25310498 DOI: 10.1016/j.virol.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022]
Abstract
Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage.
Collapse
Affiliation(s)
- Yifei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianfeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiyu Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuefeng Niu
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
35
|
Reese ML, Shah N, Boothroyd JC. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. J Biol Chem 2014; 289:27849-58. [PMID: 25118287 DOI: 10.1074/jbc.m114.567057] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Red Queen hypothesis proposes that there is an evolutionary arms race between host and pathogen. One possible example of such a phenomenon could be the recently discovered interaction between host defense proteins known as immunity-related GTPases (IRGs) and a family of rhoptry pseudokinases (ROP5) expressed by the protozoan parasite, Toxoplasma gondii. Mouse IRGs are encoded by an extensive and rapidly evolving family of over 20 genes. Similarly, the ROP5 family is highly polymorphic and consists of 4-10 genes, depending on the strain of Toxoplasma. IRGs are known to be avidly bound and functionally inactivated by ROP5 proteins, but the molecular basis of this interaction/inactivation has not previously been known. Here we show that ROP5 uses a highly polymorphic surface to bind adjacent to the nucleotide-binding domain of an IRG and that this produces a profound allosteric change in the IRG structure. This has two dramatic effects: 1) it prevents oligomerization of the IRG, and 2) it alters the orientation of two threonine residues that are targeted by the Toxoplasma Ser/Thr kinases, ROP17 and ROP18. ROP5s are highly specific in the IRGs that they will bind, and the fact that it is the most highly polymorphic surface of ROP5 that binds the IRG strongly supports the notion that these two protein families are co-evolving in a way predicted by the Red Queen hypothesis.
Collapse
Affiliation(s)
| | - Niket Shah
- the Molecular and Cellular Physiology, and Structural Biology, Stanford University, Stanford, California 94305
| | | |
Collapse
|
36
|
Henry SC, Schmidt EA, Fessler MB, Taylor GA. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission. PLoS One 2014; 9:e95021. [PMID: 24751652 PMCID: PMC3994021 DOI: 10.1371/journal.pone.0095021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/22/2014] [Indexed: 12/01/2022] Open
Abstract
The Immunity-Related GTPases (IRG) are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.
Collapse
Affiliation(s)
- Stanley C. Henry
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina, United States of America
| | - Elyse A. Schmidt
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael B. Fessler
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Gregory A. Taylor
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina, United States of America
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proc Natl Acad Sci U S A 2014; 111:1126-31. [PMID: 24390541 DOI: 10.1073/pnas.1313501111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii enjoys a wide host range and is adept at surviving in both naive and activated macrophages. Previous studies have emphasized the importance of the active serine-threonine protein kinase rhoptry protein 18 (ROP18), which targets immunity-related GTPases (IRGs), in mediating macrophage survival and acute virulence of T. gondii in mice. Here, we demonstrate that ROP18 exists in a complex with the pseudokinases rhoptry proteins 8 and 2 (ROP8/2) and dense granule protein 7 (GRA7). Individual deletion mutant gra7 or rop18 was partially attenuated for virulence in mice, whereas the combined gra7rop18 mutant was avirulent, suggesting these proteins act together in the same pathway. The virulence defect of the double mutant was mirrored by increased recruitment of IRGs and clearance of the parasite in IFN-γ-activated macrophages in vitro. GRA7 was shown to recognize a conserved feature of IRGs, binding directly to the active dimer of immunity-related GTPase a6 in a GTP-dependent manner. Binding of GRA7 to immunity-related GTPase a6 led to enhanced polymerization, rapid turnover, and eventual disassembly. Collectively, these studies suggest that ROP18 and GRA7 act in a complex to target IRGs by distinct mechanisms that are synergistic.
Collapse
|
38
|
Abstract
From plants to humans, the ability to control infection at the level of an individual cell-a process termed cell-autonomous immunity-equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell's interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic, and inflammasome-related antimicrobial activities within the cytosol, as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of guanylate binding proteins (GBPs) with tuberculosis susceptibility and Crohn's colitis.
Collapse
|
39
|
Fleckenstein MC, Reese ML, Könen-Waisman S, Boothroyd JC, Howard JC, Steinfeldt T. A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins. PLoS Biol 2012; 10:e1001358. [PMID: 22802726 PMCID: PMC3393671 DOI: 10.1371/journal.pbio.1001358] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/24/2012] [Indexed: 02/06/2023] Open
Abstract
The ability of mice to resist infection with the protozoan parasite, Toxoplasma gondii, depends in large part on the function of members of a complex family of atypical large GTPases, the interferon-gamma-inducible immunity-related GTPases (IRG proteins). Nevertheless, some strains of T. gondii are highly virulent for mice because, as recently shown, they secrete a polymorphic protein kinase, ROP18, from the rhoptries into the host cell cytosol at the moment of cell invasion. Depending on the allele, ROP18 can act as a virulence factor for T. gondii by phosphorylating and thereby inactivating mouse IRG proteins. In this article we show that IRG proteins interact not only with ROP18, but also strongly with the products of another polymorphic locus, ROP5, already implicated as a major virulence factor from genetic crosses, but whose function has previously been a complete mystery. ROP5 proteins are members of the same protein family as ROP18 kinases but are pseudokinases by sequence, structure, and function. We show by a combination of genetic and biochemical approaches that ROP5 proteins act as essential co-factors for ROP18 and present evidence that they work by enforcing an inactive GDP-dependent conformation on the IRG target protein. By doing so they prevent GTP-dependent activation and simultaneously expose the target threonines on the switch I loop for phosphorylation by ROP18, resulting in permanent inactivation of the protein. This represents a novel mechanism in which a pseudokinase facilitates the phosphorylation of a target by a partner kinase by preparing the substrate for phosphorylation, rather than by upregulation of the activity of the kinase itself.
Collapse
Affiliation(s)
| | - Michael L. Reese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jonathan C. Howard
- Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| | | |
Collapse
|
40
|
Kravets E, Degrandi D, Weidtkamp-Peters S, Ries B, Konermann C, Felekyan S, Dargazanli JM, Praefcke GJK, Seidel CAM, Schmitt L, Smits SHJ, Pfeffer K. The GTPase activity of murine guanylate-binding protein 2 (mGBP2) controls the intracellular localization and recruitment to the parasitophorous vacuole of Toxoplasma gondii. J Biol Chem 2012; 287:27452-66. [PMID: 22730319 DOI: 10.1074/jbc.m112.379636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the most abundantly IFN-γ-induced protein families in different cell types is the 65-kDa guanylate-binding protein family that is recruited to the parasitophorous vacuole of the intracellular parasite Toxoplasma gondii. Here, we elucidate the relationship between biochemistry and cellular host defense functions of mGBP2 in response to Toxoplasma gondii. The wild type protein exhibits low affinities to guanine nucleotides, self-assembles upon GTP binding, forming tetramers in the activated state, and stimulates the GTPase activity in a cooperative manner. The products of the two consecutive hydrolysis reactions are both GDP and GMP. The biochemical characterization of point mutants in the GTP-binding motifs of mGBP2 revealed amino acid residues that decrease the GTPase activity by orders of magnitude and strongly impair nucleotide binding and multimerization ability. Live cell imaging employing multiparameter fluorescence image spectroscopy (MFIS) using a Homo-FRET assay shows that the inducible multimerization of mGBP2 is dependent on a functional GTPase domain. The consistent results indicate that GTP binding, self-assembly, and stimulated hydrolysis activity are required for physiological localization of the protein in infected and uninfected cells. Ultimately, we show that the GTPase domain regulates efficient recruitment to T. gondii in response to IFN-γ.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University, D-40225 Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hong LZ, Li J, Schmidt-Küntzel A, Warren WC, Barsh GS. Digital gene expression for non-model organisms. Genome Res 2011; 21:1905-15. [PMID: 21844123 DOI: 10.1101/gr.122135.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6-8 million reads. EDGE exhibits very little technical noise, reveals a large (10(6)) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions.
Collapse
Affiliation(s)
- Lewis Z Hong
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
42
|
Traver MK, Henry SC, Cantillana V, Oliver T, Hunn JP, Howard JC, Beer S, Pfeffer K, Coers J, Taylor GA. Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy. J Biol Chem 2011; 286:30471-30480. [PMID: 21757726 DOI: 10.1074/jbc.m111.251967] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunity-related GTPases (IRGs) are a family of proteins induced by interferon-γ that play a crucial role in innate resistance to intracellular pathogens. The M subfamily of IRG proteins (IRGM) plays a profound role in this context, in part because of the ability of its members to regulate the localization and expression of other IRG proteins. We present here evidence that IRGM proteins affect the localization of the guanylate-binding proteins (GBPs), a second family of interferon-induced GTP-binding proteins that also function in innate immunity. Absence of Irgm1 or Irgm3 led to accumulation of Gbp2 in intracellular compartments that were positive for both the macroautophagy (hereafter referred to as autophagy) marker LC3 and the autophagic adapter molecule p62/Sqstm1. Gbp2 was similarly relocalized in cells in which autophagy was impaired because of the absence of Atg5. Both in Atg5- and IRGM-deficient cells, the IRG protein Irga6 relocalized to the same compartments as Gbp2, raising the possibility of a common regulatory mechanism. However, other data indicated that Irga6, but not Gbp2, was ubiquitinated in IRGM-deficient cells. Similarly, coimmunoprecipitation studies indicated that although Irgm3 did interact directly with Irgb6, it did not interact with Gbp2. Collectively, these data suggest that IRGM proteins indirectly modulate the localization of GBPs through a distinct mechanism from that through which they regulate IRG protein localization. Further, these results suggest that a core function of IRGM proteins is to regulate autophagic flux, which influences the localization of GBPs and possibly other factors that instruct cell-autonomous immune resistance.
Collapse
Affiliation(s)
- Maria K Traver
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Stanley C Henry
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina 27705
| | - Viviana Cantillana
- Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina 27710
| | - Tim Oliver
- Cell Biology, and Medicine, Division of Geriatrics, Duke University, Medical Center, Durham, North Carolina 27710
| | - Julia P Hunn
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Cologne 50674, Germany
| | - Jonathan C Howard
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Cologne 50674, Germany
| | - Sandra Beer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina 27710; Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina 27705; Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina 27710; Immunology, Duke University, Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
43
|
Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E. Crystal structure of the intraflagellar transport complex 25/27. EMBO J 2011; 30:1907-18. [PMID: 21505417 DOI: 10.1038/emboj.2011.110] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 01/12/2023] Open
Abstract
The cilium is an important organelle that is found on many eukaryotic cells, where it serves essential functions in motility, sensory reception and signalling. Intraflagellar transport (IFT) is a vital process for the formation and maintenance of cilia. We have determined the crystal structure of Chlamydomonas reinhardtii IFT25/27, an IFT sub-complex, at 2.6 Å resolution. IFT25 and IFT27 interact via a conserved interface that we verify biochemically using structure-guided mutagenesis. IFT27 displays the fold of Rab-like small guanosine triphosphate hydrolases (GTPases), binds GTP and GDP with micromolar affinity and has very low intrinsic GTPase activity, suggesting that it likely requires a GTPase-activating protein (GAP) for robust GTP turnover. A patch of conserved surface residues contributed by both IFT25 and IFT27 is found adjacent to the GTP-binding site and could mediate the binding to other IFT proteins as well as to a potential GAP. These results provide the first step towards a high-resolution structural understanding of the IFT complex.
Collapse
Affiliation(s)
- Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
44
|
Hunn JP, Feng CG, Sher A, Howard JC. The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Mamm Genome 2011; 22:43-54. [PMID: 21052678 PMCID: PMC3438224 DOI: 10.1007/s00335-010-9293-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
The immunity-related GTPases (IRGs) belong to the family of large, interferon-inducible GTPases and constitute a cell-autonomous resistance system essential for the control of vacuolar pathogens like Toxoplasma gondii in mice. Recent results demonstrated that numerous IRG members accumulate collaboratively at the parasitophorous vacuole of invading T. gondii leading to the destruction of the vacuole and the parasite and subsequent necrotic host cell death. Complex regulatory interactions between different IRG proteins are necessary for these processes. Disturbance of this finely balanced system, e.g., by single genetic deficiency for the important negative regulator Irgm1 or the autophagic regulator Atg5, leads to spontaneous activation of the effector IRG proteins when induced by IFNγ. This activation has cytotoxic consequences resulting in a severe lymphopenia, macrophage defects, and failure of the adaptive immune system in Irgm1-deficient mice. However, alternative functions in phagosome maturation and induction of autophagy have been proposed for Irgm1. The IRG system has been studied primarily in mice, but IRG genes are present throughout the mammalian lineage. Interestingly, the number, type, and diversity of genes present differ greatly even between closely related species, probably reflecting intimate host-pathogen coevolution driven by an armed race between the IRG resistance proteins and pathogen virulence factors. IRG proteins are targets for polymorphic T. gondii virulence factors, and genetic variation in the IRG system between different mouse strains correlates with resistance and susceptibility to virulent T. gondii strains.
Collapse
Affiliation(s)
- Julia P. Hunn
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Carl G. Feng
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan C. Howard
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
45
|
Pawlowski N, Khaminets A, Hunn JP, Papic N, Schmidt A, Uthaiah RC, Lange R, Vopper G, Martens S, Wolf E, Howard JC. The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii. BMC Biol 2011; 9:7. [PMID: 21276251 PMCID: PMC3042988 DOI: 10.1186/1741-7007-9-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interferon-inducible immunity-related GTPases (IRG proteins/p47 GTPases) are a distinctive family of GTPases that function as powerful cell-autonomous resistance factors. The IRG protein, Irga6 (IIGP1), participates in the disruption of the vacuolar membrane surrounding the intracellular parasite, Toxoplasma gondii, through which it communicates with its cellular hosts. Some aspects of the protein's behaviour have suggested a dynamin-like molecular mode of action, in that the energy released by GTP hydrolysis is transduced into mechanical work that results in deformation and ultimately rupture of the vacuolar membrane. RESULTS Irga6 forms GTP-dependent oligomers in vitro and thereby activates hydrolysis of the GTP substrate. In this study we define the catalytic G-domain interface by mutagenesis and present a structural model, of how GTP hydrolysis is activated in Irga6 complexes, based on the substrate-twinning reaction mechanism of the signal recognition particle (SRP) and its receptor (SRα). In conformity with this model, we show that the bound nucleotide is part of the catalytic interface and that the 3'hydroxyl of the GTP ribose bound to each subunit is essential for trans-activation of hydrolysis of the GTP bound to the other subunit. We show that both positive and negative regulatory interactions between IRG proteins occur via the catalytic interface. Furthermore, mutations that disrupt the catalytic interface also prevent Irga6 from accumulating on the parasitophorous vacuole membrane of T. gondii, showing that GTP-dependent Irga6 activation is an essential component of the resistance mechanism. CONCLUSIONS The catalytic interface of Irga6 defined in the present experiments can probably be used as a paradigm for the nucleotide-dependent interactions of all members of the large family of IRG GTPases, both activating and regulatory. Understanding the activation mechanism of Irga6 will help to explain the mechanism by which IRG proteins exercise their resistance function. We find no support from sequence or G-domain structure for the idea that IRG proteins and the SRP GTPases have a common phylogenetic origin. It therefore seems probable, if surprising, that the substrate-assisted catalytic mechanism has been independently evolved in the two protein families.
Collapse
Affiliation(s)
- Nikolaus Pawlowski
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 2010; 8:e1000576. [PMID: 21203588 PMCID: PMC3006384 DOI: 10.1371/journal.pbio.1000576] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022] Open
Abstract
GTPases of the mouse IRG protein family, mediators of resistance against Toxoplasma gondii in the mouse, are inactivated by a polymorphic kinase of the parasite, resulting in enhanced parasite virulence. Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level, involving the widespread intracellular protozoan pathogen Toxoplasma gondii and one of its most important natural hosts, the house mouse (Mus musculus). Natural polymorphism in virulence of Eurasian T. gondii strains for mice has been correlated in genetic screens with the expression of polymorphic rhoptry kinases (ROP kinases) secreted into the host cell during infection. We show that the molecular targets of the virulent allelic form of ROP18 kinase are members of a family of cellular GTPases, the interferon-inducible IRG (immunity-related GTPase) proteins, known from earlier work to be essential resistance factors in mice against avirulent strains of T. gondii. Virulent T. gondii strain ROP18 kinase phosphorylates several mouse IRG proteins. We show that the parasite kinase phosphorylates host Irga6 at two threonines in the nucleotide-binding domain, biochemically inactivating the GTPase and inhibiting its accumulation and action at the T. gondii parasitophorous vacuole membrane. Our analysis identifies the conformationally active switch I region of the GTP-binding site as an Achilles' heel of the IRG protein pathogen-resistance mechanism. The polymorphism of ROP18 in natural T. gondii populations indicates the existence of a dynamic, rapidly evolving ecological relationship between parasite virulence factors and host resistance factors. This system should be unusually fruitful for analysis at both ecological and molecular levels since both T. gondii and the mouse are widespread and abundant in the wild and are well-established model species with excellent analytical tools available. Many pathogens manipulate the immune system of their hosts to facilitate infection and ensure transmission to subsequent hosts. The intracellular protozoan Toxoplasma gondii, a relative of the malaria parasite, is able to infect and persist in a remarkable variety of warm-blooded hosts. Indeed roughly a third of the human race carry live Toxoplasma cysts in their brains with no overt effects. Toxoplasma infection is kept at bay in many mammals (but not in humans) by a resistance system based on a family of proteins known as the immunity-related GTPase (IRG) family. IRG proteins accumulate in infected cells on the vacuoles containing the parasite and ultimately destroy them. In this paper, we show that, in the mouse, Toxoplasma can oppose the IRG system by secreting an enzyme called ROP18 into infected cells, which phosphorylates key amino acids on the IRG proteins, rendering them inactive. Not all strains of Toxoplasma can produce an active form of ROP18, but those strains that do are more virulent. We propose that individual hosts control Toxoplasma with differing efficiency, and the variation we see in ROP18 kinase activity produced by different Toxoplasma strains is an evolutionary response to this. Thus, in different mammalian hosts, each strain seeks a balance between an excess of virulence (resulting in premature death of the host) and resistance that is too efficient (resulting in clearance of the parasite and sterile immunity).
Collapse
|
47
|
Liu X, Lu R, Xia Y, Sun J. Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo. BMC Genomics 2010; 11:722. [PMID: 21172007 PMCID: PMC3022924 DOI: 10.1186/1471-2164-11-722] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/20/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acute enteritis caused by Salmonella is a public health concern. Salmonella infection is also known to increase the risk of inflammatory bowel diseases and cancer. Therefore, it is important to understand how Salmonella works in targeting eukaryotic pathways in intestinal infection. However, the global physiological function of Salmonella typhimurium in intestinal mucosa in vivo is unclear. In this study, a whole genome approach combined with bioinformatics assays was used to investigate the in vivo genetic responses of the mouse colon to Salmonella. We focused on the intestinal responses in the early stage (8 hours) and late stage (4 days) after Salmonella infection. RESULTS Of the 28,000 genes represented on the array, our analysis of mRNA expression in mouse colon mucosa showed that a total of 856 genes were expressed differentially at 8 hours post-infection. At 4 days post-infection, a total of 7558 genes were expressed differentially. 23 differentially expressed genes from the microarray data was further examined by real-time PCR. Ingenuity Pathways Analysis identified that the most significant pathway associated with the differentially expressed genes in 8 hours post-infection is oxidative phosphorylation, which targets the mitochondria. At the late stage of infection, a series of pathways associated with immune and inflammatory response, proliferation, and apoptosis were identified, whereas the oxidative phosphorylation was shut off. Histology analysis confirmed the biological role of Salmonella, which induced a physiological state of inflammation and proliferation in the colon mucosa through the regulation of multiple signaling pathways. Most of the metabolism-related pathways were targeted by down-regulated genes, and a general repression process of metabolic pathways was observed. Network analysis supported IFN-γ and TNF-α function as mediators of the immune/inflammatory response for host defense against pathogen. CONCLUSION Our study provides novel genome-wide transcriptional profiling data on the mouse colon mucosa's response to the Salmonella typhimurium infection. Building the pathways and networks of interactions between these genes help us to understand the complex interplay in the mice colon during Salmonella infection, and further provide new insights into the molecular cascade, which is mobilized to combat Salmonella-associated colon infection in vivo.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Medicine, Gastroenterology & Hepatology Division, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
48
|
Shand JC, Jansson J, Hsu YC, Campbell A, Mullen CA. Differential gene expression in acute lymphoblastic leukemia cells surviving allogeneic transplant. Cancer Immunol Immunother 2010; 59:1633-44. [PMID: 20602231 PMCID: PMC11030998 DOI: 10.1007/s00262-010-0889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/18/2010] [Indexed: 12/11/2022]
Abstract
The effectiveness of allogeneic graft-versus-leukemia (GVL) activity in control of acute lymphoblastic leukemia is generally regarded as poor. One possible factor is dynamic adaptation of the leukemia cell to the allogeneic environment. This work tested the hypothesis that the pattern of gene expression in acute lymphoblastic leukemia cells in an allogeneic environment would differ from that in a non-allogeneic environment. Expression microarray studies were performed in murine B lineage acute lymphoblastic leukemia cells recovered from mice that had undergone allogeneic MHC-matched but minor histocompatibility antigen mismatched transplants. A limited number of genes were found to be differentially expressed in ALL cells surviving in the allogeneic environment. Functional analysis demonstrated that genes related to immune processes, antigen presentation, ubiquitination and GTPase function were significantly enriched. Several genes with known immune activities potentially relevant to leukemia survival (Ly6a/Sca-1, TRAIL and H2-T23) were examined in independent validation experiments. Increased expression in vivo in allogeneic hosts was observed, and could be mimicked in vitro with soluble supernatants of mixed lymphocyte reactions or interferon-gamma. The changes in gene expression were reversible when the leukemia cells were removed from the allogeneic environment. These findings suggest that acute lymphoblastic leukemia cells respond to cytokines present after allogeneic transplantation and that these changes may reduce the effectiveness of GVL activity.
Collapse
Affiliation(s)
- Jessica C. Shand
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Johan Jansson
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
- School of Pure and Applied Natural Sciences, University of Kalmar, 391 82 Kalmar, Sweden
| | - Yu-Chiao Hsu
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Andrew Campbell
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Craig A. Mullen
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| |
Collapse
|
49
|
Pawlowski N. Dynamin self-assembly and the vesicle scission mechanism: how dynamin oligomers cleave the membrane neck of clathrin-coated pits during endocytosis. Bioessays 2010; 32:1033-9. [PMID: 20957720 DOI: 10.1002/bies.201000086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, Gao et al. and Chappie et al. elucidated the crystal structures of the polytetrameric stalk domain of the dynamin-like virus resistance protein, MxA, and of the G-domain dimer of the large, membrane-deforming GTPase, dynamin, respectively. Combined, they provide a hypothetical oligomeric structure for the complete dynamin protein. Here, it is discussed how the oligomers are expected to form and how they participate in dynamin mediated vesicle fission during the process of endocytosis. The proposed oligomeric structure is compared with the novel mechanochemical model of dynamin function recently proposed by Bashkirov et al. and Pucadyil and Schmid. In conclusion, the new model of the dynamin oligomer has the potential to explain how short self-limiting fissogenic dynamin assemblies are formed and how concerted GTP hydrolysis is achieved. The oligomerisation of two other dynamin superfamily proteins, the guanylate binding proteins (GBPs) and the immunity-related GTPases (IRGs), is addressed briefly.
Collapse
Affiliation(s)
- Nikolaus Pawlowski
- Department of Cell Genetics, Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, Cologne, Germany.
| |
Collapse
|
50
|
Brest P, Corcelle E, Cesaro A, Chargui A, Belaïd A, Klionsky D, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 2010; 10:486-502. [PMID: 20540703 PMCID: PMC3655526 DOI: 10.2174/156652410791608252] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/13/2009] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBD) are common inflammatory disorders of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD are high in North America and Europe, affecting as many as one in 500 people. These diseases are associated with high morbidity and mortality. Colorectal cancer risk is also increased in IBD, correlating with inflammation severity and duration. IBD are now recognized as complex multigenetic disorders involving at least 32 different risk loci. In 2007, two different autophagy-related genes, ATG16L1 (autophagy-related gene 16-like 1) and IRGM (immunity-related GTPase M) were shown to be specifically involved in CD susceptibility by three independent genome-wide association studies. Soon afterwards, more than forty studies confirmed the involvement of ATG16L1 and IRGM variants in CD susceptibility and gave new information on the importance of macroautophagy (hereafter referred to as autophagy) in the control of infection, inflammation, immunity and cancer. In this review, we discuss how such findings have undoubtedly changed our understanding of CD pathogenesis. A unifying autophagy model then emerges that may help in understanding the development of CD from bacterial infection, to inflammation and finally cancer. The Pandora's box is now open, releasing a wave of hope for new therapeutic strategies in treating Crohn's disease.
Collapse
Affiliation(s)
- P. Brest
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - E.A. Corcelle
- Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - A. Cesaro
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - A. Chargui
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - A. Belaïd
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - D.J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan, USA
| | - V. Vouret-Craviari
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| | - X. Hebuterne
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet II, Nice, France
| | - P. Hofman
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - B. Mograbi
- Inserm ERI-21/EA 4319, Faculty of Medicine, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|