1
|
Wiedeman J, Harrison R, Etheridge RD. A limitation lifted: A conditional knockdown system reveals essential roles for Polo-like kinase and Aurora kinase 1 in Trypanosoma cruzi cell division. Proc Natl Acad Sci U S A 2025; 122:e2416009122. [PMID: 40106484 PMCID: PMC11874021 DOI: 10.1073/pnas.2416009122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/20/2024] [Indexed: 03/22/2025] Open
Abstract
While advances in genome editing technologies have simplified gene disruption in many organisms, the study of essential genes requires development of conditional disruption or knockdown systems that are not available in most organisms. Such is the case for Trypanosoma cruzi, a parasite that causes Chagas disease, a severely neglected tropical disease endemic to Latin America that is often fatal. Our knowledge of the identity of essential genes and their functions in T. cruzi has been severely constrained by historical challenges in very basic genetic manipulation and the absence of RNA interference machinery. Here, we describe the development and use of self-cleaving RNA sequences to conditionally regulate essential gene expression in T. cruzi. Using these tools, we identified essential roles for Polo-like and Aurora kinases in T. cruzi cell division, mirroring their functions in Trypanosoma brucei. Importantly, we demonstrate conditional knockdown of essential genes in intracellular amastigotes, the disease-causing stage of the parasite in its human host. This conditional knockdown system enables the efficient and scalable functional characterization of essential genes in T. cruzi and provides a framework for the development of conditional gene knockdown systems for other nonmodel organisms.
Collapse
Affiliation(s)
- Justin Wiedeman
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
- Department of Cellular Biology, University of Georgia, Athens, GA30602
| | - Ruby Harrison
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
- Department of Cellular Biology, University of Georgia, Athens, GA30602
| | - Ronald Drew Etheridge
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
- Department of Cellular Biology, University of Georgia, Athens, GA30602
| |
Collapse
|
2
|
von Känel C, Stettler P, Esposito C, Berger S, Amodeo S, Oeljeklaus S, Calderaro S, Durante IM, Rašková V, Warscheid B, Schneider A. Pam16 and Pam18 were repurposed during Trypanosoma brucei evolution to regulate the replication of mitochondrial DNA. PLoS Biol 2024; 22:e3002449. [PMID: 39146359 PMCID: PMC11349236 DOI: 10.1371/journal.pbio.3002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/27/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.
Collapse
Affiliation(s)
- Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Carmela Esposito
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Stephan Berger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ignacio M. Durante
- Institute of Parasitology, Biology Centre, České Budějovice, Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
4
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
5
|
Cayla M, Nievas YR, Matthews KR, Mottram JC. Distinguishing functions of trypanosomatid protein kinases. Trends Parasitol 2022; 38:950-961. [PMID: 36075845 DOI: 10.1016/j.pt.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| |
Collapse
|
6
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
7
|
Ramanantsalama MR, Landrein N, Casas E, Salin B, Blancard C, Bonhivers M, Robinson DR, Dacheux D. TFK1, a basal body transition fibre protein that is essential for cytokinesis in Trypanosoma brucei. J Cell Sci 2022; 135:275643. [PMID: 35588197 DOI: 10.1242/jcs.259893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
In Trypanosoma brucei, transition fibres (TF) form a nine-bladed pattern-like structure connecting the base of the flagellum to the flagellar pocket membrane. Despite the characterization of two TF proteins, CEP164C and TbRP2, little is known about the organization of these fibres. Here, we report the identification and characterization of the first kinetoplastid-specific TF protein named TFK1 (Tb927.6.1180). Bioinformatics and functional domain analysis identified three TFK1 distinct domains: an N-terminal domain of an unpredicted function, a coiled-coil domain involved in TFK1-TFK1 interaction and a C-terminal intrinsically disordered region potentially involved in protein interaction. Cellular immuno-localization showed that TFK1 is a newly identified basal body maturation marker. Further, using ultrastructure expansion and immuno-electron microscopies we localized CEP164C and TbRP2 at the TF and TFK1 on the distal appendage matrix of the TF. Importantly, RNAi knockdown of TFK1 in bloodstream form cells induced misplacement of basal bodies, a defect in the furrow or fold generation and eventually cell death. We hypothesize that TFK1 is a basal body positioning specific actor and a key regulator of cytokinesis in the bloodstream form Trypanosoma brucei.
Collapse
Affiliation(s)
| | - Nicolas Landrein
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Elina Casas
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Bénédicte Salin
- University of Bordeaux, CNRS, Microscopy Department IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, CNRS, Microscopy Department IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Mélanie Bonhivers
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Derrick R Robinson
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Denis Dacheux
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France.,Bordeaux INP, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| |
Collapse
|
8
|
Hegedűsová E, Maršalová V, Kulkarni S, Paris Z. Trafficking and/or division: Distinct roles of nucleoporins based on their location within the nuclear pore complex. RNA Biol 2022; 19:650-661. [PMID: 35491934 PMCID: PMC9067531 DOI: 10.1080/15476286.2022.2067711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nuclear pore complex (NPC) facilitates the trafficking of proteins and RNA between the nucleus and cytoplasm. The role of nucleoporins (Nups) in transport in the context of the NPC is well established, yet their function in tRNA export has not been fully explored. We selected several nucleoporins from different parts of the NPC to investigate their potential role in tRNA trafficking in Trypanosoma brucei. We show that while all of the nucleoporins studied are essential for cell viability, only TbNup62 and TbNup53a function in tRNA export. In contrast to homologs in yeast TbNup144 and TbNup158, which are part of the inner and outer ring of the NPC, have no role in nuclear tRNA trafficking. Instead, TbNup144 plays a critical role in nuclear division, highlighting the role of nucleoporins beyond nucleocytoplasmic transport. These results suggest that the location of nucleoporins within the NPC is crucial to maintaining various cellular processes.
Collapse
Affiliation(s)
- Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Veronika Maršalová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nat Commun 2021; 12:5268. [PMID: 34489460 PMCID: PMC8421343 DOI: 10.1038/s41467-021-25607-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Developmental steps in the trypanosome life-cycle involve transition between replicative and non-replicative forms specialised for survival in, and transmission between, mammalian and tsetse fly hosts. Here, using oligopeptide-induced differentiation in vitro, we model the progressive development of replicative 'slender' to transmissible 'stumpy' bloodstream form Trypanosoma brucei and capture the transcriptomes of 8,599 parasites using single cell transcriptomics (scRNA-seq). Using this framework, we detail the relative order of biological events during asynchronous development, profile dynamic gene expression patterns and identify putative regulators. We additionally map the cell cycle of proliferating parasites and position stumpy cell-cycle exit at early G1 before progression to a distinct G0 state. A null mutant for one transiently elevated developmental regulator, ZC3H20 is further analysed by scRNA-seq, identifying its point of failure in the developmental atlas. This approach provides a paradigm for the dissection of differentiation events in parasites, relevant to diverse transitions in pathogen biology.
Collapse
|
10
|
Saldivia M, Wollman AJM, Carnielli JBT, Jones NG, Leake MC, Bower-Lepts C, Rao SPS, Mottram JC. A CLK1-KKT2 Signaling Pathway Regulating Kinetochore Assembly in Trypanosoma brucei. mBio 2021; 12:e0068721. [PMID: 34128702 PMCID: PMC8262961 DOI: 10.1128/mbio.00687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 01/17/2023] Open
Abstract
During mitosis, eukaryotic cells must duplicate and separate their chromosomes in a precise and timely manner. The apparatus responsible for this is the kinetochore, which is a large protein structure that links chromosomal DNA and spindle microtubules to facilitate chromosome alignment and segregation. The proteins that comprise the kinetochore in the protozoan parasite Trypanosoma brucei are divergent from yeast and mammals and comprise an inner kinetochore complex composed of 24 distinct proteins (KKT1 to KKT23, KKT25) that include four protein kinases, CLK1 (KKT10), CLK2 (KKT19), KKT2, and KKT3. We recently reported the identification of a specific trypanocidal inhibitor of T. brucei CLK1, an amidobenzimidazole, AB1. We now show that chemical inhibition of CLK1 with AB1 impairs inner kinetochore recruitment and compromises cell cycle progression, leading to cell death. Here, we show that KKT2 is a substrate for CLK1 and identify phosphorylation of S508 by CLK1 to be essential for KKT2 function and for kinetochore assembly. Additionally, KKT2 protein kinase activity is required for parasite proliferation but not for assembly of the inner kinetochore complex. We also show that chemical inhibition of the aurora kinase AUK1 does not affect CLK1 phosphorylation of KKT2, indicating that AUK1 and CLK1 are in separate regulatory pathways. We propose that CLK1 is part of a divergent signaling cascade that controls kinetochore function via phosphorylation of the inner kinetochore protein kinase KKT2. IMPORTANCE In eukaryotic cells, kinetochores are large protein complexes that link chromosomes to dynamic microtubule tips, ensuring proper segregation and genomic stability during cell division. Several proteins tightly coordinate kinetochore functions, including the protein kinase aurora kinase B. The kinetochore has diverse evolutionary roots. For example, trypanosomatids, single-cell parasitic protozoa that cause several neglected tropical diseases, possess a unique repertoire of kinetochore components whose regulation during the cell cycle remains unclear. Here, we shed light on trypanosomatid kinetochore biology by showing that the protein kinase CLK1 coordinates the assembly of the inner kinetochore by phosphorylating one of its components, KKT2, allowing the timely spatial recruitment of the rest of the kinetochore proteins and posterior attachment to microtubules in a process that is aurora kinase B independent.
Collapse
Affiliation(s)
- Manuel Saldivia
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Adam J. M. Wollman
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Juliana B. T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Nathaniel G. Jones
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Mark C. Leake
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Christopher Bower-Lepts
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | | | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| |
Collapse
|
11
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Gosavi U, Srivastava A, Badjatia N, Günzl A. Rapid block of pre-mRNA splicing by chemical inhibition of analog-sensitive CRK9 in Trypanosoma brucei. Mol Microbiol 2020; 113:1225-1239. [PMID: 32068297 PMCID: PMC7299817 DOI: 10.1111/mmi.14489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Trypanosoma brucei CRK9 is an essential cyclin-dependent kinase for the parasite-specific mode of pre-mRNA processing. In trypanosomes, protein coding genes are arranged in directional arrays that are transcribed polycistronically, and individual mRNAs are generated by spliced leader trans-splicing and polyadenylation, processes that are functionally linked. Since CRK9 silencing caused a decline of mRNAs, a concomitant increase of unspliced pre-mRNAs and the disappearance of the trans-splicing Y structure intermediate, CRK9 is essential for the first step of splicing. CRK9 depletion also caused a loss of phosphorylation in RPB1, the largest subunit of RNA polymerase (pol) II. Here, we established cell lines that exclusively express analog-sensitive CRK9 (CRK9AS ). Inhibition of CRK9AS in these cells by the ATP-competitive inhibitor 1-NM-PP1 reproduced the splicing defects and proved that it is the CKR9 kinase activity that is required for pre-mRNA processing. Since defective trans-splicing was detected as early as 5 min after inhibitor addition, CRK9 presumably carries out reversible phosphorylation on the pre-mRNA processing machinery. Loss of RPB1 phosphorylation, however, took 12-24 hr. Surprisingly, RNA pol II-mediated RNA synthesis in 24 hr-treated cells was upregulated, indicating that, in contrast to other eukaryotes, RPB1 phosphorylation is not a prerequisite for transcription in trypanosomes.
Collapse
Affiliation(s)
- Ujwala Gosavi
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Nitika Badjatia
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
- Current address: Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
13
|
Ishii M, Akiyoshi B. Characterization of unconventional kinetochore kinases KKT10 and KKT19 in Trypanosoma brucei. J Cell Sci 2020; 133:jcs240978. [PMID: 32184264 PMCID: PMC7197874 DOI: 10.1242/jcs.240978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids, such as Trypanosoma brucei, have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system, and it therefore remains unknown how mitotic progression is regulated in this organism. Here, we characterized, in the procyclic form of T. brucei, two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10 and KKT19 led to a significant delay in the metaphase to anaphase transition. We also found that phosphorylation of two kinetochore proteins, KKT4 and KKT7, depended on KKT10 and KKT19 in vivo Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10 and KKT19 is tightly controlled to regulate the metaphase to anaphase transition in T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
14
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Zhang X, Hu H, Lun ZR, Li Z. Functional analyses of an axonemal inner-arm dynein complex in the bloodstream form of Trypanosoma brucei uncover its essential role in cytokinesis initiation. Mol Microbiol 2019; 112:1718-1730. [PMID: 31515877 DOI: 10.1111/mmi.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
Abstract
The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility-generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner-arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner-arm dynein heavy chain TbIAD5-1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5-1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5-1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner-arm dynein complex in cell division, and provided molecular insights into the flagellum motility-mediated cytokinesis initiation in the bloodstream form of T. brucei.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom;
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
17
|
Zhou Q, Pham KTM, Hu H, Kurasawa Y, Li Z. A kinetochore-based ATM/ATR-independent DNA damage checkpoint maintains genomic integrity in trypanosomes. Nucleic Acids Res 2019; 47:7973-7988. [PMID: 31147720 PMCID: PMC6736141 DOI: 10.1093/nar/gkz476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023] Open
Abstract
DNA damage-induced cell cycle checkpoints serve as surveillance mechanisms to maintain genomic stability, and are regulated by ATM/ATR-mediated signaling pathways that are conserved from yeast to humans. Trypanosoma brucei, an early divergent microbial eukaryote, lacks key components of the conventional DNA damage-induced G2/M cell cycle checkpoint and the spindle assembly checkpoint, and nothing is known about how T. brucei controls its cell cycle checkpoints. Here we discover a kinetochore-based, DNA damage-induced metaphase checkpoint in T. brucei. MMS-induced DNA damage triggers a metaphase arrest by modulating the abundance of the outer kinetochore protein KKIP5 in an Aurora B kinase- and kinetochore-dependent, but ATM/ATR-independent manner. Overexpression of KKIP5 arrests cells at metaphase through stabilizing the mitotic cyclin CYC6 and the cohesin subunit SCC1, mimicking DNA damage-induced metaphase arrest, whereas depletion of KKIP5 alleviates the DNA damage-induced metaphase arrest and causes chromosome mis-segregation and aneuploidy. These findings suggest that trypanosomes employ a novel DNA damage-induced metaphase checkpoint to maintain genomic integrity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
18
|
Zhou Q, Lee KJ, Kurasawa Y, Hu H, An T, Li Z. Faithful chromosome segregation in Trypanosoma brucei requires a cohort of divergent spindle-associated proteins with distinct functions. Nucleic Acids Res 2019; 46:8216-8231. [PMID: 29931198 PMCID: PMC6144804 DOI: 10.1093/nar/gky557] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022] Open
Abstract
Faithful chromosome segregation depends on correct spindle microtubule-kinetochore attachment and requires certain spindle-associated proteins (SAPs) involved in regulating spindle dynamics and chromosome segregation. Little is known about the spindle-associated proteome in the early divergent Trypanosoma brucei and its roles in chromosome segregation. Here we report the identification of a cohort of divergent SAPs through localization-based screening and proximity-dependent biotin identification. We identified seven new SAPs and seventeen new nucleolar proteins that associate with the spindle, and demonstrated that the kinetochore protein KKIP4 also associates with the spindle. These SAPs localize to distinct subdomains of the spindle during mitosis, and all but one localize to nucleus during interphase and post-mitotic phases. Functional analyses of three nucleus- and spindle-associated proteins (NuSAPs) revealed distinct functions in chromosome segregation. NuSAP1 is a kinetoplastid-specific protein required for equal chromosome segregation and for maintaining the stability of the kinetochore proteins KKIP1 and KKT1. NuSAP2 is a highly divergent ASE1/PRC1/MAP65 homolog playing an essential role in promoting the G2/M transition. NuSAP3 is a kinetoplastid-specific Kif13-1-binding protein maintaining Kif13-1 protein stability and regulating the G2/M transition. Together, our work suggests that chromosome segregation in T. brucei requires a cohort of kinetoplastid-specific and divergent SAPs with distinct functions.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
19
|
Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage. mSphere 2019; 4:4/3/e00199-19. [PMID: 31043517 PMCID: PMC6495339 DOI: 10.1128/msphere.00199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form. The early divergent protozoan parasite Trypanosoma brucei alternates between the insect vector and the mammalian hosts during its life cycle and proliferates through binary cell fission. The cell cycle control system in T. brucei differs substantially from that in its mammalian hosts and possesses distinct mitosis-cytokinesis checkpoint controls between two life cycle stages, the procyclic form and the bloodstream form. T. brucei undergoes an unusual mode of cytokinesis, which is controlled by a novel signaling cascade consisting of evolutionarily conserved protein kinases and trypanosome-specific regulatory proteins in the procyclic form. However, given the distinct mitosis-cytokinesis checkpoints between the two forms, it is unclear whether the cytokinesis regulatory pathway discovered in the procyclic form also operates in a similar manner in the bloodstream form. Here, we showed that the three regulators of cytokinesis initiation, cytokinesis initiation factor 1 (CIF1), CIF2, and CIF3, are interdependent for subcellular localization but not for protein stability as in the procyclic form. Further, we demonstrated that KLIF, a regulator of cytokinesis completion in the procyclic form, plays limited roles in cytokinesis in the bloodstream form. Finally, we showed that the cleavage furrow-localizing protein FRW1 is required for cytokinesis initiation in the bloodstream form but is nonessential for cytokinesis in the procyclic form. Together, these results identify conserved and life cycle-specific functions of cytokinesis regulators, highlighting the distinction in the regulation of cytokinesis between different life cycle stages of T. brucei. IMPORTANCE The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form.
Collapse
|
20
|
da Silva RB, Machado CR, Rodrigues ARA, Pedrosa AL. Selective human inhibitors of ATR and ATM render Leishmania major promastigotes sensitive to oxidative damage. PLoS One 2018; 13:e0205033. [PMID: 30265735 PMCID: PMC6161909 DOI: 10.1371/journal.pone.0205033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
All cellular processes, including those involved in normal cell metabolism to those responsible for cell proliferation or death, are finely controlled by cell signaling pathways, whose core proteins constitute the family of phosphatidylinositol 3-kinase-related kinases (PIKKs). Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 related (ATR) are two important PIKK proteins that act in response to DNA damage, phosphorylating a large number of proteins to exert control over genomic integrity. The genus Leishmania belongs to a group of early divergent eukaryotes in evolution and has a highly plastic genome, probably owing to the existence of signaling pathways designed to maintain genomic integrity. The objective of this study was to evaluate the use of specific human inhibitors of ATR and ATM in Leishmania major. Bioinformatic analyses revealed the existence of the putative PIKK genes ATR and ATM, in addition to mTOR and DNA-PKcs in Leishmania spp. Moreover, it was possible to suggest that the inhibitors VE-821 and KU-55933 have binding affinity for the catalytic sites of putative L. major ATR and ATM, respectively. Promastigotes of L. major exposed to these inhibitors show slight growth impairment and minor changes in cell cycle and morphology. It is noteworthy that treatment of promastigotes with inhibitors VE-821 and KU-55933 enhanced the oxidative damage caused by hydrogen peroxide. These inhibitors could significantly reduce the number of surviving L. major cells following H2O2 exposure whilst also decreasing their evaluated IC50 to H2O2 to less than half of that observed for non-treated cells. These results suggest that the use of specific inhibitors of ATR and ATM in Leishmania interferes in the signaling pathways of this parasite, which can impair its tolerance to DNA damage and affect its genome integrity. ATR and ATM could constitute novel targets for drug development and/or repositioning for treatment of leishmaniases.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldo Rogelis Aquiles Rodrigues
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
21
|
Hiraiwa PM, de Aguiar AM, Ávila AR. Fluorescence-based assay for accurate measurement of transcriptional activity in trypanosomatid parasites. Cytometry A 2018; 93:727-736. [PMID: 30118574 DOI: 10.1002/cyto.a.23387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/05/2022]
Abstract
Trypanosomatid parasites are causative agents of neglected human diseases. Their lineage diverged early from the common eukaryotic ancestor, and they evolved singular mechanisms of gene expression that are crucial for their survival. Studies on unusual and essential molecular pathways lead to new drug targets. In this respect, assays to analyze transcriptional activity will provide useful information to identify essential and specific factors. However, the current methods are laborious and do not provide global and accurate measures. For this purpose, a previously reported radiolabeling in vitro nascent mRNA methodology was used to establish an alternative fluorescent-based assay that is able to precisely quantify nascent mRNA using both flow cytometry and a high-content image system. The method allowed accurate and global measurements in Trypanosoma brucei, a representative species of trypanosomatid parasites. We obtained data demonstrating that approximately 70% of parasites from a population under normal growth conditions displayed mRNA transcriptional activity, whilst the treatment with α-amanitin (75 µg/ml) inhibited the polymerase II activity. The adaptation of the method also allowed the analyses of the transcriptional activity during the cell cycle. Therefore, the methodology described herein contributes to obtaining precise measurements of transcriptional rates using multiparametric analysis. This alternative method can facilitate investigations of genetic and biochemical processes in trypanosome parasites and consequently provide additional information related to new treatment or prophylaxis strategies involving these important human parasites.
Collapse
Affiliation(s)
- Priscila M Hiraiwa
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Alessandra M de Aguiar
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Andréa R Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| |
Collapse
|
22
|
Abstract
Kinetoplastids have a nucleus that contains the nuclear genome and a kinetoplast that contains the mitochondrial genome. These single-copy organelles must be duplicated and segregated faithfully to daughter cells at each cell division. In Trypanosoma brucei, although duplication of both organelles starts around the same time, segregation of the kinetoplast precedes that of the nucleus. Cytokinesis subsequently takes place so that daughter cells inherit a single copy of each organelle. Very little is known about the molecular mechanism that governs the timing of these events. Furthermore, it is thought that T. brucei lacks a spindle checkpoint that delays the onset of nuclear division in response to spindle defects. Here we show that a mitotic cyclin CYC6 has a dynamic localization pattern during the cell cycle, including kinetochore localization. Using CYC6 as a molecular cell cycle marker, we confirmed that T. brucei cannot delay the onset of anaphase in response to a bipolar spindle assembly defect. Interestingly, expression of a stabilized form of CYC6 caused the nucleus to arrest in a metaphase-like state without preventing cytokinesis. We propose that trypanosomes have an ability to regulate the timing of nuclear division by modulating the CYC6 protein level, without a spindle checkpoint.
Collapse
Affiliation(s)
- Hanako Hayashi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
23
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
24
|
Millan CR, Acosta-Reyes FJ, Lagartera L, Ebiloma GU, Lemgruber L, Nué Martínez JJ, Saperas N, Dardonville C, de Koning HP, Campos JL. Functional and structural analysis of AT-specific minor groove binders that disrupt DNA-protein interactions and cause disintegration of the Trypanosoma brucei kinetoplast. Nucleic Acids Res 2017. [PMID: 28637278 PMCID: PMC5737332 DOI: 10.1093/nar/gkx521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)–biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.
Collapse
Affiliation(s)
- Cinthia R Millan
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Francisco J Acosta-Reyes
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | | | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Núria Saperas
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - J Lourdes Campos
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| |
Collapse
|
25
|
Chandra U, Yadav A, Kumar D, Saha S. Cell cycle stage-specific transcriptional activation of cyclins mediated by HAT2-dependent H4K10 acetylation of promoters in Leishmania donovani. PLoS Pathog 2017; 13:e1006615. [PMID: 28938001 PMCID: PMC5627965 DOI: 10.1371/journal.ppat.1006615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/04/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Chromatin modifications affect several processes. In investigating the Leishmania donovani histone acetyltransferase HAT2, using in vitro biochemical assays and HAT2-heterozygous genomic knockout we found the constitutively nuclear HAT2 acetylated histone H4K10 in vitro and in vivo. HAT2 was essential. HAT2-depleted cells displayed growth and cell cycle defects, and poor survival in host cells. Real time PCR and DNA microarray analyses, as well as rescue experiments, revealed that downregulation of cyclins CYC4 and CYC9 were responsible for S phase and G2/M defects of HAT2-depleted cells respectively. Leishmania genes are arranged in unidirectional clusters, and clustered genes are coordinately transcribed as long polycistronic units, typically from divergent strand switch regions (dSSRs) which initiate transcription bidirectionally on opposite strands. In investigating the mechanism by which CYC4 and CYC9 expression levels are reduced in HAT2-depleted cells without other genes in their polycistronic transcription units being coordinately downregulated, we found using reporter assays that CYC4 and CYC9 have their own specific promoters. Chromatin immunoprecipitation assays with H4acetylK10 antibodies and real time PCR analyses of RNA suggested these gene-specific promoters were activated in cell cycle-dependent manner. Nuclear run-on analyses confirmed that CYC4 and CYC9 were transcriptionally activated from their own promoters at specific cell cycle stages. Thus, there are two tiers of gene regulation. Transcription of polycistronic units primarily initiates at dSSRs, and this most likely occurs constitutively. A subset of genes have their own promoters, at least some of which are activated in a cell-cycle dependent manner. This second tier of regulation is more sensitive to H4K10 acetylation levels, resulting in downregulation of expression in HAT2-depleted cells. This report presents the first data pointing to cell cycle-specific activation of promoters in trypanosomatids, thus uncovering new facets of gene regulation in this parasite family.
Collapse
Affiliation(s)
- Udita Chandra
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Aarti Yadav
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
26
|
Moreira BP, Fonseca CK, Hammarton TC, Baqui MMA. Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei. J Cell Sci 2017; 130:1179-1193. [PMID: 28193733 PMCID: PMC5358337 DOI: 10.1242/jcs.194308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023] Open
Abstract
The flagellum and flagellum attachment zone (FAZ) are important cytoskeletal structures in trypanosomatids, being required for motility, cell division and cell morphogenesis. Trypanosomatid cytoskeletons contain abundant high molecular mass proteins (HMMPs), but many of their biological functions are still unclear. Here, we report the characterization of the giant FAZ protein, FAZ10, in Trypanosoma brucei, which, using immunoelectron microscopy, we show localizes to the intermembrane staples in the FAZ intracellular domain. Our data show that FAZ10 is a giant cytoskeletal protein essential for normal growth and morphology in both procyclic and bloodstream parasite life cycle stages, with its depletion leading to defects in cell morphogenesis, flagellum attachment, and kinetoplast and nucleus positioning. We show that the flagellum attachment defects are probably brought about by reduced tethering of the proximal domain of the paraflagellar rod to the FAZ filament. Further, FAZ10 depletion also reduces abundance of FAZ flagellum domain protein, ClpGM6. Moreover, ablation of FAZ10 impaired the timing and placement of the cleavage furrow during cytokinesis, resulting in premature or asymmetrical cell division.
Collapse
Affiliation(s)
- Bernardo P Moreira
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Carol K Fonseca
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Munira M A Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
27
|
Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis. Parasitology 2016; 144:571-582. [PMID: 27928981 DOI: 10.1017/s0031182016002195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.
Collapse
|
28
|
Hu H, Gourguechon S, Wang CC, Li Z. The G1 Cyclin-dependent Kinase CRK1 in Trypanosoma brucei Regulates Anterograde Protein Transport by Phosphorylating the COPII Subunit Sec31. J Biol Chem 2016; 291:15527-39. [PMID: 27252375 PMCID: PMC4957039 DOI: 10.1074/jbc.m116.715185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
Transport of secretory proteins from the endoplasmic reticulum to the Golgi is mediated by the coat protein II (COPII) complex comprising a Sec23-Sec24 heterodimer and a Sec13-Sec31 heterotetramer. The mechanisms underlying COPII-mediated protein trafficking have been well defined, but the extent of regulation of this secretory machinery by cellular signaling pathways remains poorly understood. Here, we report that CRK1, a G1 cyclin-dependent kinase in Trypanosoma brucei, regulates anterograde protein trafficking by phosphorylating Sec31. Depletion of CRK1 abolished anterograde transport of the secretory protein and disrupted the localization of multiple Golgi proteins, reminiscent of Sec31 depletion. CRK1 phosphorylates Sec31 at multiple serine/threonine sites, and mutation of these phosphosites to alanine recapitulates the protein trafficking defects caused by Sec31 depletion. Mutation of these CRK1 phosphosites to aspartate restored Sec31 function. Taken together, these results uncover a novel function of CRK1 in anterograde protein trafficking and elucidate the mechanistic role of CRK1 in protein trafficking through regulation of the COPII subunit Sec31.
Collapse
Affiliation(s)
- Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| | - Stéphane Gourguechon
- the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | - Ching C Wang
- the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| |
Collapse
|
29
|
Di Renzo MA, Laverrière M, Schenkman S, Wehrendt DP, Tellez-Iñón MT, Potenza M. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins. Parasitol Int 2016; 65:196-204. [DOI: 10.1016/j.parint.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
|
30
|
Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M, Brewer J, Mottram JC. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100:931-44. [PMID: 26991545 PMCID: PMC4913733 DOI: 10.1111/mmi.13375] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Cintia Philipon
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Brewer
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
31
|
Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein. PLoS Pathog 2016; 12:e1005498. [PMID: 26954683 PMCID: PMC4783070 DOI: 10.1371/journal.ppat.1005498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target.
Collapse
|
32
|
Nanavaty V, Lama R, Sandhu R, Zhong B, Kulman D, Bobba V, Zhao A, Li B, Su B. Orally Active and Selective Tubulin Inhibitors as Anti-Trypanosome Agents. PLoS One 2016; 11:e0146289. [PMID: 26771307 PMCID: PMC4714897 DOI: 10.1371/journal.pone.0146289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/15/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives There is an urgent need to develop a safe, effective, orally active, and inexpensive therapy for African trypanosomiasis due to the drawbacks of current drugs. Selective tubulin inhibitors have the potential to be promising drug candidates for the treatment of this disease, which is based on the tubulin protein structural difference between mammalian and trypanosome cells. We propose to identify novel tubulin inhibitors from a compound library developed based on the lead compounds that selectively target trypanosomiasis. Methods We used Trypanosoma brucei brucei as the parasite model, and human normal kidney cells and mouse microphage cells as the host model. Growth rates of both trypanosomes and mammalian cells were determined as a means to screen compounds that selectively inhibit the proliferation of parasites. Furthermore, we examined the cell cycle profile of the parasite and compared tubulin polymerization dynamics before and after the treatment using identified compounds. Last, in vivo anti-parasite activities of these compounds were determined in T. brucei-infected mice. Results Three compounds were selected that are 100 fold more effective against the growth of T. brucei cells than mammalian cells. These compounds caused cell cycle progression defects in T. brucei cells. Western analyses indicated that these compounds decreased tubulin polymerization in T. brucei cells. The in vivo investigation revealed that these compounds, when admitted orally, inhibited T. brucei cell proliferation in mouse blood. However, they were not potent enough to clear up the infection completely. Conclusions These compounds are promising lead compounds as orally active agents for drug development of anti-trypanosome agents. A more detail structure activity relationship (SAR) was summarized that will be used to guide future lead optimization to improve the selectivity and potency of the current compounds.
Collapse
Affiliation(s)
- Vishal Nanavaty
- Department of Biology, Geo. & Env. Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Rati Lama
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Ranjodh Sandhu
- Department of Biology, Geo. & Env. Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Bo Zhong
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Daniel Kulman
- Department of Biology, Geo. & Env. Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Viharika Bobba
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Anran Zhao
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Bibo Li
- Department of Biology, Geo. & Env. Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America.,Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| | - Bin Su
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America.,Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, United States of America
| |
Collapse
|
33
|
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, Perry JA, Crickley R, Mercadante CJ, Vaughan S, de Graffenried CL. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell 2015; 26:3013-29. [PMID: 26133384 PMCID: PMC4551316 DOI: 10.1091/mbc.e15-04-0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness, a devastating disease endemic to sub-Saharan Africa with few effective treatment options. The parasite is highly polarized, including a single flagellum that is nucleated at the posterior of the cell and adhered along the cell surface. These features are essential and must be transmitted to the daughter cells during division. Recently we identified the T. brucei homologue of polo-like kinase (TbPLK) as an essential morphogenic regulator. In the present work, we conduct proteomic screens to identify potential TbPLK binding partners and substrates to better understand the molecular mechanisms of kinase function. These screens identify a cohort of proteins, most of which are completely uncharacterized, which localize to key cytoskeletal organelles involved in establishing cell morphology, including the flagella connector, flagellum attachment zone, and bilobe structure. Depletion of these proteins causes substantial changes in cell division, including mispositioning of the kinetoplast, loss of flagellar connection, and prevention of cytokinesis. The proteins identified in these screens provide the foundation for establishing the molecular networks through which TbPLK directs cell morphogenesis in T. brucei.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Kyojiro N Ikeda
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Ana Lozano-Núñez
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Verena Unterwurzacher
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Thomas Gossenreiter
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Jenna A Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Courtney J Mercadante
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | |
Collapse
|
34
|
Catta-Preta CMC, Brum FL, da Silva CC, Zuma AA, Elias MC, de Souza W, Schenkman S, Motta MCM. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle. Front Microbiol 2015; 6:520. [PMID: 26082757 PMCID: PMC4451579 DOI: 10.3389/fmicb.2015.00520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number.
Collapse
Affiliation(s)
- Carolina M C Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Felipe L Brum
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Camila C da Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Aline A Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Maria C Elias
- Instituto Butantan , São Paulo, Brazil ; Center of Toxins, Immunology and Cell Signaling , São Paulo, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil ; Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém , Rio de Janeiro, Brazil
| | - Sergio Schenkman
- Escola Paulista de Medicina, Universidade Federal de São Paulo , São Paulo, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
35
|
de Morais CGV, Castro Lima AK, Terra R, dos Santos RF, Da-Silva SAG, Dutra PML. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324915. [PMID: 26090399 PMCID: PMC4450238 DOI: 10.1155/2015/324915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
Abstract
The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.
Collapse
Affiliation(s)
- Carlos Gustavo Vieira de Morais
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Fisiopatologia Clínica e Experimental/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rosiane Freire dos Santos
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
37
|
MacLean L, Myburgh E, Rodgers J, Price HP. Imaging African trypanosomes. Parasite Immunol 2014; 35:283-94. [PMID: 23790101 PMCID: PMC3992894 DOI: 10.1111/pim.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the blood-sucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as sleeping sickness. In late-stage infection, trypanosomes cross the blood–brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late-stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox–eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late-stage HAT drug candidates. Here, we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilized cells in culture to whole-animal imaging, are providing insight into T. brucei biology, parasite-host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies.
Collapse
Affiliation(s)
- L MacLean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, Heslington, York, UK.
| | | | | | | |
Collapse
|
38
|
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Chiang JH, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 2014; 25:1421-36. [PMID: 24600046 PMCID: PMC4004592 DOI: 10.1091/mbc.e13-12-0750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear face of the nuclear pore complex (NPC) interfaces with chromatin, transcription, and transport intermediates. A novel architecture for the nuclear face of the trypanosome NPC provides insights into NPC function and evolution. The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.
Collapse
Affiliation(s)
- Jennifer M Holden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom The Rockefeller University, New York, NY 10021 Seattle Biomedical Research Institute and Institute for Systems Biology, Seattle, WA 98109 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City 701, Taiwan Department of Plant Sciences, University of Oxford, Oxford OX1 4JP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog 2014; 10:e1003886. [PMID: 24453978 PMCID: PMC3894213 DOI: 10.1371/journal.ppat.1003886] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/02/2013] [Indexed: 12/02/2022] Open
Abstract
The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite's protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite's 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation. The African trypanosome, which is transmitted by the tsetse fly, causes the usually fatal disease Sleeping Sickness in humans and a wasting disease, called Nagana, in livestock in sub-Saharan Africa. There are no vaccines available against the diseases, and various problems are associated with current drug treatments (including toxicity to the patient and parasite drug resistance). Thus, it is important to identify essential parasite proteins that could be targeted by novel drugs. Protein kinases (PKs) are important cell signalling molecules, and are generally considered to have potential as drug targets. Here we report the construction of a library of trypanosome cell lines that allows us to specifically deplete each of the trypanosome's 190 PKs individually and analyse their function. Using this library, we show that ≥42 PKs are essential for proliferation of the mammalian-infective bloodstream form of the parasite (and thus have potential as drug targets), and demonstrate that 24 of these play important roles in coordinating cell division. We also shed light on how the parasite develops during its life cycle as it passes from the mammalian bloodstream form to the tsetse fly gut by identifying the first two PKs that regulate this life cycle developmental step.
Collapse
|
40
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
41
|
Zhou Q, Hu H, Li Z. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:127-66. [PMID: 24411171 DOI: 10.1016/b978-0-12-800097-7.00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trypanosoma brucei, a unicellular eukaryote and the causative agent of human sleeping sickness, possesses multiple single-copy organelles that all need to be duplicated and segregated during cell division. Trypanosomes undergo a closed mitosis in which the mitotic spindle is anchored on the nuclear envelope and connects the kinetochores made of novel protein components. Cytokinesis in trypanosomes is initiated from the anterior tip of the new flagellum attachment zone, and proceeds along the longitudinal axis without the involvement of the actomyosin contractile ring, the well-recognized cytokinesis machinery conserved from yeast to humans. Trypanosome appears to employ both evolutionarily conserved and trypanosome-specific proteins to regulate its cell cycle, and has evolved certain cell cycle regulatory pathways that are either distinct between its life cycle stages or different from its human host. Understanding the mechanisms of mitosis and cytokinesis in trypanosomes not only would shed novel light on the evolution of cell cycle control, but also could provide new drug targets for chemotherapy.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
42
|
Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol Microbiol 2013; 90:1339-55. [PMID: 24164479 PMCID: PMC4159584 DOI: 10.1111/mmi.12436] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/01/2023]
Abstract
Trypanosomes use a microtubule‐focused mechanism for cell morphogenesis and cytokinesis. We used scanning electron and video microscopy of living cells to provide the first detailed description of cell morphogenesis and cytokinesis in the early‐branching eukaryote Trypanosoma brucei. We outline four distinct stages of cytokinesis and show that an asymmetric division fold bisects the two daughter cells, with a cytoplasmic bridge‐like structure connecting the two daughters immediately prior to abscission. Using detection of tyrosinated α‐tubulin as a marker for new or growing microtubules and expression of XMAP215, a plus end binding protein, as a marker for microtubule plus ends we demonstrate spatial asymmetry in the underlying microtubule cytoskeleton throughout the cell division cycle. This leads to inheritance of different microtubule cytoskeletal patterns and demonstrates the major role of microtubules in achieving cytokinesis. RNA interference techniques have led to a large set of mutants, often with variations in phenotype between procyclic and bloodstream life cycle forms. Here, we show morphogenetic differences between these two life cycle forms of this parasite during new flagellum growth and cytokinesis. These discoveries are important tools to explain differences between bloodstream and procyclic form RNAi phenotypes involving organelle mis‐positioning during cell division and cytokinesis defects.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | |
Collapse
|
43
|
Distinct roles of a mitogen-activated protein kinase in cytokinesis between different life cycle forms of Trypanosoma brucei. EUKARYOTIC CELL 2013; 13:110-8. [PMID: 24213350 DOI: 10.1128/ec.00258-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules are evolutionarily conserved signaling cascades that function in response to the environment and play crucial roles in intracellular signal transduction in eukaryotes. The involvement of a MAP kinase in regulating cytokinesis in yeast, animals, and plants has been reported, but the requirement for a MAP kinase for cytokinesis in the early-branching protozoa is not documented. Here, we show that a MAP kinase homolog (TbMAPK6) from Trypanosoma brucei plays distinct roles in cytokinesis in two life cycle forms of T. brucei. TbMAPK6 is distributed throughout the cytosol in the procyclic form but is localized in both the cytosol and the nucleus in the bloodstream form. RNA interference (RNAi) of TbMAPK6 results in moderate growth inhibition in the procyclic form but severe growth defects and rapid cell death in the bloodstream form. Moreover, TbMAPK6 appears to be implicated in furrow ingression and cytokinesis completion in the procyclic form but is essential for cytokinesis initiation in the bloodstream form. Despite the distinct defects in cytokinesis in the two forms, RNAi of TbMAPK6 also caused defective basal body duplication/segregation in a small cell population in both life cycle forms. Altogether, our results demonstrate the involvement of the TbMAPK6-mediated pathway in regulating cytokinesis in trypanosomes and suggest distinct roles of TbMAPK6 in cytokinesis between different life cycle stages of T. brucei.
Collapse
|
44
|
Boynak NY, Rojas F, D’Alessio C, Vilchez Larrea SC, Rodriguez V, Ghiringhelli PD, Téllez-Iñón MT. Identification of a Wee1-like kinase gene essential for procyclic Trypanosoma brucei survival. PLoS One 2013; 8:e79364. [PMID: 24223931 PMCID: PMC3818516 DOI: 10.1371/journal.pone.0079364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/28/2013] [Indexed: 01/16/2023] Open
Abstract
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.
Collapse
Affiliation(s)
- Natalia Y. Boynak
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Federico Rojas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia D’Alessio
- Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Vanina Rodriguez
- Department of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Pablo D. Ghiringhelli
- Department of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María T. Téllez-Iñón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Wei Y, Hu H, Lun ZR, Li Z. The cooperative roles of two kinetoplastid-specific kinesins in cytokinesis and in maintaining cell morphology in bloodstream trypanosomes. PLoS One 2013; 8:e73869. [PMID: 24069240 PMCID: PMC3772034 DOI: 10.1371/journal.pone.0073869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton of Trypanosoma brucei, a unicellular eukaryote and a parasitic protozoan, is defined by the subpellicular microtubule corset that is arranged underneath the plasma membrane. We recently identified two orphan kinesins, TbKIN-C and TbKIN-D, that cooperate to regulate the organization of the subpellicular microtubule corset and thereby maintain cell morphology in the procyclic form of T. brucei. In this report, we characterize the function of TbKIN-C and TbKIN-D in the bloodstream form of T. brucei and investigate their functional cooperation in both the bloodstream and procyclic forms. TbKIN-C and TbKIN-D form a tight complex in vivo in the bloodstream form. TbKIN-C is strongly enriched at the posterior tip of the cell, whereas TbKIN-D is distributed throughout the cell body at all cell cycle stages. RNAi of TbKIN-C or TbKIN-D in the bloodstream form inhibits cell proliferation and leads to cell death, due to cytokinesis defects. RNAi of TbKIN-C and TbKIN-D also results in defects in basal body segregation, but does not affect the synthesis and segregation of the flagellum and the flagellum attachment zone (FAZ) filament. Knockdown of TbKIN-C and TbKIN-D does not disrupt the organization of the subpellicular microtubule corset, but produces multinucleated cells with an enlarged flagellar pocket and misplaced flagella. Interestingly, depletion of TbKIN-C results in rapid degradation of TbKIN-D and, similarly, knockdown of TbKIN-C destabilizes TbKIN-D, suggesting that formation of TbKIN-C/TbKIN-D complex stabilizes both kinesins and is required for the two kinesins to execute their essential cellular functions. Altogether, our results demonstrate the essential role of the two kinesins in cell morphogenesis and cytokinesis in the bloodstream form and the requirement of heteromeric complex formation for maintaining the stability of the two kinesins.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Liu Y, Hu H, Li Z. The cooperative roles of PHO80-like cyclins in regulating the G1/S transition and posterior cytoskeletal morphogenesis in Trypanosoma brucei. Mol Microbiol 2013; 90:130-46. [PMID: 23909752 DOI: 10.1111/mmi.12352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 12/23/2022]
Abstract
Cyclins and cyclin-dependent kinases (CDKs) represent the fundamental, crucial regulators of the cell division cycle in eukaryotes. Trypanosoma brucei expresses a large number of cyclins and Cdc2-related kinases (CRKs). However, how these cyclins and CRKs cooperate to regulate cell cycle progression remains poorly understood. Here, we carry out directional yeast two-hybrid assays to identify the interactions between the 10 cyclins and the 11 CRKs and detect a total of 26 cyclin-CRK pairs, among which 20 pairs are new. Our current efforts are focused on four PHO80-like cyclins, CYC2, CYC4, CYC5 and CYC7, and their physical and functional interactions with CRK1. Silencing of the four cyclins and CRK1 leads to the increase of G1 cells and defective DNA replication, suggesting their important roles in promoting the G1/S transition. Additionally, CYC2-, CYC7- and CRK1-deficient cells possess an elongated posterior that is filled with newly assembled microtubules. Further, we show that the four cyclins display distinct subcellular localizations and half-lives, suggesting that they likely undergo distinct regulation. Altogether, our results demonstrate the involvement of four CRK1-associated cyclins, CYC2, CYC4, CYC5 and CYC7, in promoting the G1/S transition and the requirement of CYC2 and CYC7 in maintaining posterior cytoskeletal morphogenesis during the G1/S transition.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | | | |
Collapse
|
47
|
Monnerat S, Almeida Costa CI, Forkert AC, Benz C, Hamilton A, Tetley L, Burchmore R, Novo C, Mottram JC, Hammarton TC. Identification and Functional Characterisation of CRK12:CYC9, a Novel Cyclin-Dependent Kinase (CDK)-Cyclin Complex in Trypanosoma brucei. PLoS One 2013; 8:e67327. [PMID: 23805309 PMCID: PMC3689728 DOI: 10.1371/journal.pone.0067327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively.
Collapse
Affiliation(s)
- Séverine Monnerat
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Cristina I. Almeida Costa
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C. Forkert
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Corinna Benz
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
48
|
Krüger T, Hofweber M, Kramer S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 2013; 24:2098-111. [PMID: 23676662 PMCID: PMC3694794 DOI: 10.1091/mbc.e13-01-0068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes lack many core components of ribonucleoprotein (RNP) granules identified in yeast and humans (e.g., DCP1/2). This study provides evidence for SCD6 being the core RNP granule component in trypanosomes: overexpression induces granules independent of translation, and even when SCD6 is targeted to the nucleus. Granule type and granule number are dependent on the RGG domain. Ribonucleoprotein (RNP) granules are cytoplasmic, microscopically visible structures composed of RNA and protein with proposed functions in mRNA decay and storage. Trypanosomes have several types of RNP granules, but lack most of the granule core components identified in yeast and humans. The exception is SCD6/Rap55, which is essential for processing body (P-body) formation. In this study, we analyzed the role of trypanosome SCD6 in RNP granule formation. Upon overexpression, the majority of SCD6 aggregates to multiple granules enriched at the nuclear periphery that recruit both P-body and stress granule proteins, as well as mRNAs. Granule protein composition depends on granule distance to the nucleus. In contrast to findings in yeast and humans, granule formation does not correlate with translational repression and can also take place in the nucleus after nuclear targeting of SCD6. While the SCD6 Lsm domain alone is both necessary and sufficient for granule induction, the RGG motif determines granule type and number: the absence of an intact RGG motif results in the formation of fewer granules that resemble P-bodies. The differences in granule number remain after nuclear targeting, indicating translation-independent functions of the RGG domain. We propose that, in trypanosomes, a local increase in SCD6 concentration may be sufficient to induce granules by recruiting mRNA. Proteins that bind selectively to the RGG and/or Lsm domain of SCD6 could be responsible for regulating granule type and number.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
49
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
50
|
Meyer KJ, Shapiro TA. Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo. J Infect Dis 2013; 208:489-99. [PMID: 23630365 DOI: 10.1093/infdis/jit179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
African sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is universally fatal if untreated, and current drugs are limited by severe toxicities and difficult administration. New antitrypanosomals are greatly needed. Heat shock protein 90 (Hsp90) is a conserved and ubiquitously expressed molecular chaperone essential for stress responses and cellular signaling. We investigated Hsp90 inhibitors for their antitrypanosomal activity. Geldanamycin and radicicol had nanomolar potency in vitro against bloodstream-form T. brucei; novobiocin had micromolar activity. In structure-activity studies of geldanamycin analogs, 17-AAG and 17-DMAG were most selective against T. brucei as compared to mammalian cells. 17-AAG treatment sensitized trypanosomes to heat shock and caused severe morphological abnormalities and cell cycle disruption. Both oral and parenteral 17-DMAG cured mice of a normally lethal infection of T. brucei. These promising results support the use of inhibitors to study Hsp90 function in trypanosomes and to expand current clinical development of Hsp90 inhibitors to include T. brucei.
Collapse
Affiliation(s)
- Kirsten J Meyer
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins UniversitySchool of Medicine, Baltimore, MD, USA
| | | |
Collapse
|