1
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. eLife 2024; 12:RP91619. [PMID: 39268701 PMCID: PMC11398868 DOI: 10.7554/elife.91619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O Estevam
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Edmond M Linossi
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian B Macdonald
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Carla A Espinoza
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer M Michaud
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Willow Coyote-Maestas
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine/Hematology and Oncology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551866. [PMID: 37577651 PMCID: PMC10418267 DOI: 10.1101/2023.08.03.551866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase αC-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Carla A. Espinoza
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Jennifer M. Michaud
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - Eric A. Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States
- Department of Medicine/Hematology and Oncology, University of California, San Francisco, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| |
Collapse
|
3
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Biochemical characterization of the Drosophila insulin receptor kinase and longevity-associated mutants. FASEB J 2024; 38:e23355. [PMID: 38071609 PMCID: PMC11284340 DOI: 10.1096/fj.202301948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
4
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
6
|
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, Cho Y. Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat Commun 2022; 13:6500. [PMID: 36310231 PMCID: PMC9618554 DOI: 10.1038/s41467-022-34292-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 12/25/2022] Open
Abstract
Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Junhong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Na-Oh Yunn
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Mangeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jihan Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Seongeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jeongeun Noh
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Sung Ho Ryu
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yunje Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
7
|
Kumar L, Vizgaudis W, Klein-Seetharaman J. Structure-based survey of ligand binding in the human insulin receptor. Br J Pharmacol 2021; 179:3512-3528. [PMID: 34907529 DOI: 10.1111/bph.15777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
The insulin receptor is a membrane protein responsible for regulation of nutrient balance and therefore an attractive target in the treatment of diabetes and metabolic syndrome. Pharmacology of the insulin receptor involves two distinct mechanisms, (1) activation of the receptor by insulin mimetics that bind in the extracellular domain and (2) inhibition of the receptor tyrosine kinase enzymatic activity in the cytoplasmic domain. While a complete structural picture of the full-length receptor comprising the entire sequence covering extracellular, transmembrane, juxtamembrane and cytoplasmic domains is still elusive, recent progress through cryoelectron microscopy has made it possible to describe the initial insulin ligand binding events at atomistic detail. We utilize this opportunity to obtain structural insights into the pharmacology of the insulin receptor. To this end, we conducted a comprehensive docking study of known ligands to the new structures of the receptor. Through this approach, we provide an in-depth, structure-based review of human insulin receptor pharmacology in light of the new structures.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO
| | | | - Judith Klein-Seetharaman
- Department of Chemistry, Colorado School of Mines, Golden, CO.,School of Molecular Sciences & College of Health Solutions, Arizona State University, Phoenix, AZ
| |
Collapse
|
8
|
Liao Z, Zhang C, Ding L, Moyers JS, Tang JX, Beals JM. Comprehensive insulin receptor phosphorylation dynamics profiled by mass spectrometry. FEBS J 2021; 289:2657-2671. [PMID: 34826178 DOI: 10.1111/febs.16299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
Abstract
Insulin receptor (IR) phosphorylation is critical for the assessment of the extent of IR agonism and nuances in the downstream signaling cascade. A thorough identification and monitoring of the phosphorylation events is important for understanding the process of insulin signaling transduction and regulation. Although IR phosphorylation has been studied extensively in the past decades, only a handful of phosphorylation sites can be identified by either traditional antibody-based assays or recent large-scale mass spectrometry-based phosphoproteomics approaches. In the present study, the most exhaustive assessment of the IR phosphorylation was conducted using nano-liquid chromatography-tandem mass spectrometry, in which 13 IR phosphorylation sites and 22 combinations thereof were analyzed. The kinetic analysis included Y965, Y972, S968/969, and S974/976 in the juxtamembrane region; Y1158, Y1162, and Y1163 in the kinase domain; and Y1328, Y1334, S1278, S1320, S1321, and T1348 in the C-terminal region. Employing two different receptor agonists (i.e. insulin and an IR peptide agonist), the data revealed contrasting phosphorylation kinetics across these sites with dynamics far more diverse than expected for known IR agonists. Notably, cell trafficking experiments revealed that the IR peptide agonist was incapable of inducing IR to the early endosome, which is probably linked to a difference in IR phosphorylation. The present study provides a powerful tool for investigating IR signaling and trafficking that will benefit the design of IR agonists with improved therapeutic utility.
Collapse
Affiliation(s)
- Zhongping Liao
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Chen Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Liyun Ding
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Jason X Tang
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| |
Collapse
|
9
|
Abstract
BACKGROUND Insulin's discovery 100 years ago and its ongoing use since that time to treat diabetes belies the molecular complexity of its structure and that of its receptor. Advances in single-particle cryo-electron microscopy have over the past three years revolutionized our understanding of the atomic detail of insulin-receptor interactions. SCOPE OF REVIEW This review describes the three-dimensional structure of insulin and its receptor and details on how they interact. This review also highlights the current gaps in our structural understanding of the system. MAJOR CONCLUSIONS A near-complete picture has been obtained of the hormone receptor interactions, providing new insights into the kinetics of the interactions and necessitating a revision of the extant two-site cross-linking model of hormone receptor engagement. How insulin initially engages the receptor and the receptor's traversed trajectory as it undergoes conformational changes associated with activation remain areas for future investigation.
Collapse
Affiliation(s)
- Michael C Lawrence
- WEHI, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
10
|
Artim SC, Kiyatkin A, Lemmon MA. Comparison of tyrosine kinase domain properties for the neurotrophin receptors TrkA and TrkB. Biochem J 2020; 477:4053-4070. [PMID: 33043964 PMCID: PMC7606831 DOI: 10.1042/bcj20200695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.
Collapse
Affiliation(s)
- Stephen C. Artim
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Present address: Merck Research Laboratories, Merck, South San Francisco, CA 94080, USA
| | - Anatoly Kiyatkin
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Two-step release of kinase autoinhibition in discoidin domain receptor 1. Proc Natl Acad Sci U S A 2020; 117:22051-22060. [PMID: 32839343 DOI: 10.1073/pnas.2007271117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase with important functions in organogenesis and tissue homeostasis. Aberrant DDR1 activity contributes to the progression of human diseases, including fibrosis and cancer. How DDR1 activity is regulated is poorly understood. We investigated the function of the long intracellular juxtamembrane (JM) region of human DDR1 and found that the kinase-proximal segment, JM4, is an important regulator of kinase activity. Crystal structure analysis revealed that JM4 forms a hairpin that penetrates the kinase active site, reinforcing autoinhibition by the activation loop. Using in vitro enzymology with soluble kinase constructs, we established that release from autoinhibition occurs in two distinct steps: rapid autophosphorylation of the JM4 tyrosines, Tyr569 and Tyr586, followed by slower autophosphorylation of activation loop tyrosines. Mutation of JM4 tyrosines abolished collagen-induced DDR1 activation in cells. The insights may be used to develop allosteric, DDR1-specific, kinase inhibitors.
Collapse
|
12
|
Srikakulam SK, Bastys T, Kalinina OV. A shift of dynamic equilibrium between the KIT active and inactive states causes drug resistance. Proteins 2020; 88:1434-1446. [PMID: 32530065 DOI: 10.1002/prot.25963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/06/2020] [Indexed: 11/11/2022]
Abstract
Tyrosine phosphorylation, a highly regulated post-translational modification, is carried out by the enzyme tyrosine kinase (TK). TKs are important mediators in signaling cascades, facilitating diverse biological processes in response to stimuli. TKs may acquire mutations leading to malignancy and are viable targets for anti-cancer drugs. Mast/stem cell growth factor receptor KIT is a TK involved in cell differentiation, whose dysregulation leads to various types of cancer, including gastrointestinal stromal tumors, leukemia, and melanoma. KIT can be targeted by a range of inhibitors that predominantly bind to the inactive state of the enzyme. A mutation Y823D in the activation loop of KIT is known to be responsible for the loss of sensitivity to some drugs in metastatic tumors. We used all-atom molecular dynamics simulations to study the impact of Y823D on the KIT conformation and dynamics and compared it to the effect of phosphorylation of Y823. We simulated in total 6.4 μs of wild-type, mutant and phosphorylated KIT in the active- and inactive-state conformations. We found that Y823D affects the protein dynamics differently: in the active state, the mutation increases the protein stability, whereas in the inactive state it induces local destabilization, thus shifting the dynamic equilibrium towards the active state, altering the communication between distant regulatory regions. The observed dynamics of the Y823D mutant is similar to the dynamics of KIT phosphorylated at position Y823, thus we hypothesize that this mutation mimics a constitutively active kinase, which is not responsive to inhibitors that bind its inactive conformation.
Collapse
Affiliation(s)
- Sanjay K Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Graduate School of Computer Science, Saarland University, Saarbrücken, Germany.,Interdisciplinary Graduate School of Natural Product Research, Saarland University, Saarbrücken, Germany
| | - Tomas Bastys
- Graduate School of Computer Science, Saarland University, Saarbrücken, Germany.,Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Trenker R, Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Curr Opin Cell Biol 2020; 63:174-185. [PMID: 32114309 PMCID: PMC7813211 DOI: 10.1016/j.ceb.2020.01.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor-ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
14
|
Diwanji D, Thaker T, Jura N. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. IUBMB Life 2019; 71:706-720. [PMID: 31046201 PMCID: PMC6531341 DOI: 10.1002/iub.2060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Yunn NO, Kim J, Kim Y, Leibiger I, Berggren PO, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther 2018; 185:86-98. [DOI: 10.1016/j.pharmthera.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Ye L, Maji S, Sanghera N, Gopalasingam P, Gorbunov E, Tarasov S, Epstein O, Klein-Seetharaman J. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discov Today 2017; 22:1092-1102. [PMID: 28476537 DOI: 10.1016/j.drudis.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
Recently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane. This model provides a new perspective on the process of insulin binding to its receptor and, thus, could lead to future novel drug discovery efforts.
Collapse
Affiliation(s)
- Libin Ye
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Suvrajit Maji
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Narinder Sanghera
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Piraveen Gopalasingam
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Evgeniy Gorbunov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Sergey Tarasov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Oleg Epstein
- The Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St, 125315 Moscow, Russian Federation
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
17
|
Plaza-Menacho I, Barnouin K, Barry R, Borg A, Orme M, Chauhan R, Mouilleron S, Martínez-Torres RJ, Meier P, McDonald NQ. RET Functions as a Dual-Specificity Kinase that Requires Allosteric Inputs from Juxtamembrane Elements. Cell Rep 2016; 17:3319-3332. [PMID: 28009299 PMCID: PMC5199340 DOI: 10.1016/j.celrep.2016.11.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/02/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022] Open
Abstract
Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM) segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.
Collapse
Affiliation(s)
- Iván Plaza-Menacho
- Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Karin Barnouin
- Protein Analysis and Proteomics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachael Barry
- The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, Institute of Cancer Research, SW3 6JB London, UK
| | - Annabel Borg
- Protein Production Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariam Orme
- The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, Institute of Cancer Research, SW3 6JB London, UK
| | - Rakhee Chauhan
- Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rubén J Martínez-Torres
- Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, Institute of Cancer Research, SW3 6JB London, UK
| | - Neil Q McDonald
- Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, WC1E 7HX London, UK.
| |
Collapse
|
18
|
Tatulian SA. Structural Dynamics of Insulin Receptor and Transmembrane Signaling. Biochemistry 2015; 54:5523-32. [PMID: 26322622 DOI: 10.1021/acs.biochem.5b00805] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida , 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
19
|
Cabail MZ, Li S, Lemmon E, Bowen ME, Hubbard SR, Miller WT. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun 2015; 6:6406. [PMID: 25758790 DOI: 10.1038/ncomms7406] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
Collapse
Affiliation(s)
- M Zulema Cabail
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shiqing Li
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Eric Lemmon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
20
|
Kamstra RL, Freywald A, Floriano WB. N-(2,4)-dinitrophenyl-L-arginine Interacts with EphB4 and Functions as an EphB4 Kinase Modulator. Chem Biol Drug Des 2015; 86:476-86. [DOI: 10.1111/cbdd.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Rhiannon L. Kamstra
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; Thunder Bay ON P7A 7T1 Canada
| | - Andrew Freywald
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 0W0 Canada
| | - Wely B. Floriano
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; Thunder Bay ON P7A 7T1 Canada
| |
Collapse
|
21
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology; Novo Nordisk A/S; Måløv Denmark
- De Meyts R&D Consulting; Kraainem; Belgium
| |
Collapse
|
22
|
Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 2014; 6:541-61. [PMID: 24649957 DOI: 10.4155/fmc.13.216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.
Collapse
|
23
|
Kavran JM, McCabe JM, Byrne PO, Connacher MK, Wang Z, Ramek A, Sarabipour S, Shan Y, Shaw DE, Hristova K, Cole PA, Leahy DJ. How IGF-1 activates its receptor. eLife 2014; 3:03772. [PMID: 25255214 PMCID: PMC4381924 DOI: 10.7554/elife.03772] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.
Collapse
Affiliation(s)
- Jennifer M Kavran
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacqueline M McCabe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Patrick O Byrne
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mary Katherine Connacher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhihong Wang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, United States
| | | | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | | | - David E Shaw
- DE Shaw Research, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
24
|
Da Silva Figueiredo Celestino Gomes P, Panel N, Laine E, Pascutti PG, Solary E, Tchertanov L. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication. PLoS One 2014; 9:e97519. [PMID: 24828813 PMCID: PMC4020833 DOI: 10.1371/journal.pone.0097519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/22/2014] [Indexed: 02/02/2023] Open
Abstract
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.
Collapse
Affiliation(s)
- Priscila Da Silva Figueiredo Celestino Gomes
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolas Panel
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Solary
- Institut Gustave Roussy, Villejuif, France
- Faculty of Medicine, Paris- Sud University, Le Kremlin-Bicêtre, France
| | - Luba Tchertanov
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications, École Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
25
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
26
|
Ward CW, Menting JG, Lawrence MC. The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation. Bioessays 2013; 35:945-54, doi/10.1002/bies.201370111. [DOI: 10.1002/bies.201300065] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
| | - John G. Menting
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Medical Biology; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
27
|
Meyer MR, Shah S, Rao AG. Insights into molecular interactions between the juxtamembrane and kinase subdomains of the Arabidopsis Crinkly-4 receptor-like kinase. Arch Biochem Biophys 2013; 535:101-10. [DOI: 10.1016/j.abb.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023]
|
28
|
Hubbard SR. The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harb Perspect Biol 2013; 5:a008946. [PMID: 23457259 DOI: 10.1101/cshperspect.a008946] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unlike prototypical receptor tyrosine kinases (RTKs), which are single-chain polypeptides, the insulin receptor (InsR) is a preformed, covalently linked tetramer with two extracellular α subunits and two membrane-spanning, tyrosine kinase-containing β subunits. A single molecule of insulin binds asymmetrically to the ectodomain, triggering a conformational change that is transmitted to the cytoplasmic kinase domains, which facilitates their trans-phosphorylation. As in prototypical RTKs, tyrosine phosphorylation in the juxtamembrane region of InsR creates recruitment sites for downstream signaling proteins (IRS [InsR substrate] proteins, Shc) containing a phosphotyrosine-binding (PTB) domain, and tyrosine phosphorylation in the kinase activation loop stimulates InsR's catalytic activity. For InsR, phosphorylation of the activation loop, which contains three tyrosine residues, also creates docking sites for adaptor proteins (Grb10/14, SH2B2) that possess specialized Src homology-2 (SH2) domains, which are dimeric and engage two phosphotyrosines in the activation loop.
Collapse
Affiliation(s)
- Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
29
|
Similar but different: ligand-induced activation of the insulin and epidermal growth factor receptor families. Curr Opin Struct Biol 2012; 22:360-6. [PMID: 22521506 DOI: 10.1016/j.sbi.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/28/2012] [Indexed: 11/21/2022]
Abstract
The insulin and epidermal growth factor receptor families are among the most intensively studied proteins in biology. They are closely related members of the receptor tyrosine kinase superfamily and deregulated signaling by members of either receptor family has been implicated in the progression of a variety of cancers. These receptors have thus emerged as validated therapeutic targets for the development of anti-tumour agents. Recent studies have revealed detail of the ligand-binding sites in the insulin receptor family, as well as detail of conformational change upon ligand binding in the epidermal growth factor receptor family. Taken together, these findings and further data relating to kinase activation highlight the fact that while the receptor families share common structural elements, the structural detail of their functioning is remarkably different.
Collapse
|
30
|
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
Collapse
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail:
| |
Collapse
|
31
|
Zhang HM, Yu X, Greig MJ, Gajiwala KS, Wu JC, Diehl W, Lunney EA, Emmett MR, Marshall AG. Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry. Protein Sci 2010; 19:703-15. [PMID: 20095048 DOI: 10.1002/pro.347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution-phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT-KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild-type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310-4005, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recent interest in modeling biochemical networks raises questions about the relationship between often complex mathematical models and familiar arithmetic concepts from classical enzymology, and also about connections between modeling and experimental data. This review addresses both topics by familiarizing readers with key concepts (and terminology) in the construction, validation, and application of deterministic biochemical models, with particular emphasis on a simple enzyme-catalyzed reaction. Networks of coupled ordinary differential equations (ODEs) are the natural language for describing enzyme kinetics in a mass action approximation. We illustrate this point by showing how the familiar Briggs-Haldane formulation of Michaelis-Menten kinetics derives from the outer (or quasi-steady-state) solution of a dynamical system of ODEs describing a simple reaction under special conditions. We discuss how parameters in the Michaelis-Menten approximation and in the underlying ODE network can be estimated from experimental data, with a special emphasis on the origins of uncertainty. Finally, we extrapolate from a simple reaction to complex models of multiprotein biochemical networks. The concepts described in this review, hitherto of interest primarily to practitioners, are likely to become important for a much broader community of cellular and molecular biologists attempting to understand the promise and challenges of "systems biology" as applied to biochemical mechanisms.
Collapse
Affiliation(s)
- William W. Chen
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mario Niepel
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter K. Sorger
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Jahnke W, Grotzfeld RM, Pellé X, Strauss A, Fendrich G, Cowan-Jacob SW, Cotesta S, Fabbro D, Furet P, Mestan J, Marzinzik AL. Binding or Bending: Distinction of Allosteric Abl Kinase Agonists from Antagonists by an NMR-Based Conformational Assay. J Am Chem Soc 2010; 132:7043-8. [DOI: 10.1021/ja101837n] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wolfgang Jahnke
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | - Xavier Pellé
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - André Strauss
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Gabriele Fendrich
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | - Simona Cotesta
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Doriano Fabbro
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Jürgen Mestan
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | |
Collapse
|
34
|
Solowiej J, Bergqvist S, McTigue MA, Marrone T, Quenzer T, Cobbs M, Ryan K, Kania RS, Diehl W, Murray BW. Characterizing the effects of the juxtamembrane domain on vascular endothelial growth factor receptor-2 enzymatic activity, autophosphorylation, and inhibition by axitinib. Biochemistry 2009; 48:7019-31. [PMID: 19526984 DOI: 10.1021/bi900522y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The catalytic domains of protein kinases are commonly treated as independent modular units with distinct biological functions. Here, the interactions between the catalytic and juxtamembrane domains of VEGFR2 are studied. Highly purified preparations of the receptor tyrosine kinase VEGFR2 catalytic domain without (VEGFR2-CD) and with (VEGFR2-CD/JM) the juxtamembrane (JM) domain were characterized by kinetic, biophysical, and structural methods. Although the catalytic parameters for both constructs were similar, the autophosphorylation rate of VEGFR2-CD/JM was substantially faster than VEGFR2-CD. The first event in the autophosphorylation reaction was phosphorylation of JM residue Y801 followed by phosphorylation of activation loop residues in the CD. The rates of activation loop autophosphorylation for the two constructs were determined to be similar. The autophosphorylation rate of Y801 was invariant on enzyme concentration, which is consistent with an intramolecular reaction. In addition, the first biochemical characterization of the advanced clinical compound axitinib is reported. Axitinib was found to have 40-fold enhanced biochemical potency toward VEGFR2-CD/JM (K(i) = 28 pM) compared to VEGFR2-CD, which correlates better with cellular potency. Calorimetric studies, including a novel ITC compound displacement method, confirmed the potency and provided insight into the thermodynamic origin of the potency differences. A structural model for the VEGFR2-CD/JM is proposed based on the experimental findings reported here and on the JM position in c-Kit, FLT3, and CSF1/cFMS. The described studies identify potential functions of the VEGFR2 JM domain with implications to both receptor biology and inhibitor design.
Collapse
Affiliation(s)
- James Solowiej
- Pfizer Global Research and Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A novel hydroxyfuroic acid compound as an insulin receptor activator. Structure and activity relationship of a prenylindole moiety to insulin receptor activation. J Biomed Sci 2009; 16:68. [PMID: 19642985 PMCID: PMC2733134 DOI: 10.1186/1423-0127-16-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/30/2009] [Indexed: 01/24/2023] Open
Abstract
Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ) B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db) mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), and fibroblast growth factor (FGF) receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639), which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.
Collapse
|
36
|
Rajala RVS, Rajala A. Cytoskeletal components enhance the autophosphorylation of retinal insulin receptor. Chem Biol Interact 2009; 180:245-53. [PMID: 19497423 PMCID: PMC2749664 DOI: 10.1016/j.cbi.2009.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/26/2009] [Accepted: 03/16/2009] [Indexed: 11/16/2022]
Abstract
Insulin receptor (IR) signaling provides a trophic signal for transformed retinal neurons in culture, and we recently reported that deletion of IR from rod photoreceptors resulted in stress-induced photoreceptor degeneration. Retinal insulin receptor has a high basal level autophosphorylation compared to liver and the reasons for higher autophosphorylation are not known. In the current study we report a novel finding that cytoplasmic actin associates with and activates the retinal IR in vivo. Similar to insulin, actin also induced autophosphorylation at tyrosines 1158, 1162 and 1163 in the catalytic loop of IR. Our studies also suggest that globular actin activates the retinal IR more effectively than does filamentous actin. Retinal IR kinase activity has been shown to decrease in hyperglycemia and we found a decreased binding of actin to the IR under hyperglycemia. This is the first study which demonstrates that cytoplasmic actin regulates autophosphorylation of the retinal IR.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
37
|
Ward CW, Lawrence MC. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 2009; 31:422-34. [PMID: 19274663 DOI: 10.1002/bies.200800210] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Current models of insulin binding to the insulin receptor (IR) propose (i) that there are two binding sites on the surface of insulin which engage with two binding sites on the receptor and (ii) that ligand binding involves structural changes in both the ligand and the receptor. Many of the features of insulin binding to its receptor, namely B-chain helix interactions with the leucine-rich repeat domain and A-chain residue interactions with peptide loops from another part of the receptor, are also seen in models of relaxin and insulin-like peptide 3 binding to their receptors. We show that these principles can likely be extended to the group of mimetic peptides described by Schäffer and coworkers, which are reported to have no sequence identity with insulin. This review summarizes our current understanding of ligand-induced activation of the IR and highlights the key issues that remain to be addressed.
Collapse
Affiliation(s)
- Colin W Ward
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
38
|
Chaperone over-expression in Escherichia coli: Apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Protein Expr Purif 2009; 64:185-93. [DOI: 10.1016/j.pep.2008.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 11/18/2022]
|
39
|
Chase A, Schultheis B, Kreil S, Baxter J, Hidalgo-Curtis C, Jones A, Zhang L, Grand FH, Melo JV, Cross NCP. Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1. Leukemia 2008; 23:358-64. [PMID: 18971950 DOI: 10.1038/leu.2008.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imatinib is usually a highly effective treatment for myeloproliferative neoplasms (MPNs) associated with ABL, PDGFRA or PDGFRB gene fusions; however, occasional imatinib-responsive patients have been reported without abnormalities of these genes. To identify novel imatinib-sensitive lesions, we screened 11 BCR-ABL-negative cell lines and identified GDM1, derived from a patient with an atypical MPN (aMPN), as being responsive to imatinib. Screening of genes encoding known imatinib targets revealed an exon 12 mutation in the colony-stimulating factor 1 receptor (CSF1R; c-FMS) with a predicted Y571D amino-acid substitution. CSF1R in GDM1 was constitutively phosphorylated, but rapidly dephosphorylated on exposure to imatinib. Y571D did not transform FDCP1 cells to growth factor independence, but resulted in a significantly increased colony growth compared with controls, constitutive CSF1R phosphorylation and elevated CSF1R signaling. We found that GDM1 expresses CSF1, and CSF1 neutralization partially inhibited proliferation, suggesting the importance of both autocrine and intrinsic mechanisms of CSF1R activation. An extensive screen of CSF1R in aMPNs and acute myeloid leukemia identified three additional novel missense variants. None of these variants were active in transformation assays and are therefore likely to be previously unreported rare polymorphisms or non-pathogenic passenger mutations.
Collapse
Affiliation(s)
- A Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Southampton, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li S, Depetris RS, Barford D, Chernoff J, Hubbard SR. Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Structure 2008; 13:1643-51. [PMID: 16271887 DOI: 10.1016/j.str.2005.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/28/2005] [Accepted: 07/28/2005] [Indexed: 02/03/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 A resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.
Collapse
Affiliation(s)
- Shiqing Li
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
41
|
Wu J, Tseng YD, Xu CF, Neubert TA, White MF, Hubbard SR. Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol 2008; 15:251-8. [DOI: 10.1038/nsmb.1388] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 01/10/2008] [Indexed: 11/09/2022]
|
42
|
Craddock BP, Cotter C, Miller WT. Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. FEBS Lett 2007; 581:3235-40. [PMID: 17586502 PMCID: PMC1986766 DOI: 10.1016/j.febslet.2007.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/23/2007] [Accepted: 06/07/2007] [Indexed: 11/20/2022]
Abstract
The juxtamembrane (JM) regions of several receptor tyrosine kinases are involved in autoinhibitory interactions that maintain the low basal activity of the receptors; mutations can give rise to constitutive kinase activity and signaling. In this report, we show that the JM region of the human insulin-like growth factor I receptor (IGF1R) plays a role in kinase regulation. We mutated JM residues that were conserved in this subfamily of receptor tyrosine kinases, and expressed and purified the cytoplasmic domains using the Sf9/baculovirus system. We show that a kinase-proximal mutation (Y957F) and (to a lesser extent) a mutation in the central part of the JM region (N947A) increase the autophosphorylation activity of the kinase. Steady-state kinetic measurements show the mutations cause an increase in V(max) for phosphorylation of peptide substrates. When the holoreceptors were expressed in fibroblasts derived from IGF1R-deficient mice, the Y957F mutation led to a large increase in basal and in IGF1-stimulated receptor autophosphorylation. Together, these data demonstrate that the JM region of IGF1R plays an important role in limiting the basal activity of the receptor.
Collapse
Affiliation(s)
- Barbara P. Craddock
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Christopher Cotter
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
43
|
Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006; 281:33577-87. [PMID: 16928683 DOI: 10.1074/jbc.m605604200] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B. We report here the biochemical characterization of the human RET tyrosine kinase domain and the structure determination of the non-phosphorylated and phosphorylated forms. Both structures adopt the same active kinase conformation competent to bind ATP and substrate and have a pre-organized activation loop conformation that is independent of phosphorylation status. In agreement with the structural data, enzyme kinetic data show that autophosphorylation produces only a modest increase in activity. Longer forms of RET containing the juxtamembrane domain and C-terminal tail exhibited similar kinetic behavior, implying that there is no cis-inhibitory mechanism within the RET intracellular domain. Our results suggest the existence of alternative inhibitory mechanisms, possibly in trans, for the autoregulation of RET kinase activity. We also present the structures of the RET tyrosine kinase domain bound to two inhibitors, the pyrazolopyrimidine PP1 and the clinically relevant 4-anilinoquinazoline ZD6474. These structures explain why certain multiple endocrine neoplasia 2-associated RET mutants found in patients are resistant to inhibition and form the basis for design of more effective inhibitors.
Collapse
Affiliation(s)
- Phillip P Knowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ishiko J, Mizuki M, Matsumura I, Shibayama H, Sugahara H, Scholz G, Serve H, Kanakura Y. Roles of tyrosine residues 845, 892 and 922 in constitutive activation of murine FLT3 kinase domain mutant. Oncogene 2005; 24:8144-53. [PMID: 16091740 DOI: 10.1038/sj.onc.1208957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FLT3 tyrosine kinase domain (TKD) mutations are detected in approximately 7% of acute myeloid leukemia patients, and suggested to correlate with poor prognosis and confer resistance to FLT3 inhibitors. To explore activation mechanism of FLT3 TKD mutation, we analysed critical tyrosine residues for the constitutive activation and downstream signaling of the mutant by generating a series of single Tyr --> Phe substitution mutant of all 22 cytoplasmic tyrosine residues of murine FLT3 TKD-mutant (mFLT3Asp838Val). Tyr845Phe, Tyr892Phe and Tyr922Phe substitutions suppressed the phosphorylation of mFLT3Asp838Val itself, the activation of Erk1/2, STAT3 and STAT5, and the factor-independent cell proliferation and survival. In contrast, these three Tyr --> Phe mutations partially suppressed but maintained the ligand-dependent activation and anti-apoptotic activity of wild-type FLT3, suggesting that these tyrosine residues were more critical for the constitutive activation and signaling of mFLT3Asp838Val. These three Tyr --> Phe mutations also inhibited the constitutive activation of other FLT3 mutants bearing internal tandem duplication, Asp838Tyr or Ile839del. The suppression of mFLT3Asp838Val activation and signaling by these substitutions was partially recovered by shifting the culture temperature from 37 to 33 degrees C, or by the introduction of Cdc37 and Hsp90. Taken together, Tyr845, Tyr892 and Tyr922 are the critical residues in mFLT3Asp838Val activation, possibly through stabilizing the active conformation of mFLT3Asp838Val.
Collapse
Affiliation(s)
- Jun Ishiko
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors.
Collapse
Affiliation(s)
- Nick J Dibb
- Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Campus, London W12 ONN, UK.
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Stevan R Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|
47
|
Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004; 279:31655-63. [PMID: 15123710 DOI: 10.1074/jbc.m403319200] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The activity of the c-Kit receptor protein-tyrosine kinase is tightly regulated in normal cells, whereas deregulated c-Kit kinase activity is implicated in the pathogenesis of human cancers. The c-Kit juxtamembrane region is known to have an autoinhibitory function; however the precise mechanism by which c-Kit is maintained in an autoinhibited state is not known. We report the 1.9-A resolution crystal structure of native c-Kit kinase in an autoinhibited conformation and compare it with active c-Kit kinase. Autoinhibited c-Kit is stabilized by the juxtamembrane domain, which inserts into the kinase-active site and disrupts formation of the activated structure. A 1.6-A crystal structure of c-Kit in complex with STI-571 (Imatinib or Gleevec) demonstrates that inhibitor binding disrupts this natural mechanism for maintaining c-Kit in an autoinhibited state. Together, these results provide a structural basis for understanding c-Kit kinase autoinhibition and will facilitate the structure-guided design of specific inhibitors that target the activated and autoinhibited conformations of c-Kit kinase.
Collapse
|