1
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Abou Harb M, Meckes DG, Sun L. Epstein-Barr virus LMP1 enhances levels of large extracellular vesicle-associated PD-L1. J Virol 2023; 97:e0021923. [PMID: 37702487 PMCID: PMC10617501 DOI: 10.1128/jvi.00219-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE A growing body of evidence has supported the notion that viruses utilize EVs and associated pathways to incorporate viral products. This allows for the evasion of an immune response while enabling viral spread within the host. Given that viral proteins often elicit strong antigenic peptides that are recognized by T cells, the regulation of the PD-L1 pathway through the overexpression of lEV-associated PD-L1 may serve as a strategy for immune evasion by viruses. The discovery that EBV LMP1 increases the secretion of PD-L1 in larger EVs identifies a new potential target for immune blockade therapy in EBV-associated cancers. Our findings may help to clarify the mechanism of LMP1-mediated enhancement of PD-L1 packaging into lEVs and may lead to the identification of more specific targets for treatment. Additionally, the identification of lEV biomarkers that predict a viral origin of disease could allow for more targeted therapies to be developed.
Collapse
Affiliation(s)
- Monica Abou Harb
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Nkosi D, Sun L, Duke LC, Meckes DG. Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathog 2020; 16:e1009023. [PMID: 33382850 PMCID: PMC7774862 DOI: 10.1371/journal.ppat.1009023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) mediate intercellular communication events and alterations in normal vesicle content contribute to function and disease initiation or progression. The ability to package a variety of cargo and transmit molecular information between cells renders EVs important mediators of cell-to-cell crosstalk. Latent membrane protein 1 (LMP1) is a chief viral oncoprotein expressed in most Epstein-Barr virus (EBV)-associated cancers and is released from cells at high levels in EVs. LMP1 containing EVs have been demonstrated to promote cell growth, migration, differentiation, and regulate immune cell function. Despite these significant changes in recipient cells induced by LMP1 modified EVs, the mechanism how this viral oncogene modulates the recipient cells towards these phenotypes is not well understood. We hypothesize that LMP1 alters EV content and following uptake of the LMP1-modified EVs by the recipient cells results in the activation of cell signaling pathways and increased gene expression which modulates the biological properties of recipient cell towards a new phenotype. Our results show that LMP1 expression alters the EV protein and microRNA content packaged into EVs. The LMP1-modified EVs also enhance recipient cell adhesion, proliferation, migration, invasion concomitant with the activation of ERK, AKT, and NF-κB signaling pathways. The LMP1 containing EVs induced transcriptome reprogramming in the recipient cells by altering gene expression of different targets including cadherins, matrix metalloproteinases 9 (MMP9), MMP2 and integrin-α5 which contribute to extracellular matrix (ECM) remodeling. Altogether, our data demonstrate the mechanism in which LMP1-modified EVs reshape the tumor microenvironment by increasing gene expression of ECM interaction proteins.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
4
|
Hatton O, Smith MM, Alexander M, Mandell M, Sherman C, Stesney MW, Hui ST, Dohrn G, Medrano J, Ringwalt K, Harris-Arnold A, Maloney EM, Krams SM, Martinez OM. Epstein-Barr Virus Latent Membrane Protein 1 Regulates Host B Cell MicroRNA-155 and Its Target FOXO3a via PI3K p110α Activation. Front Microbiol 2019; 10:2692. [PMID: 32038504 PMCID: PMC6988802 DOI: 10.3389/fmicb.2019.02692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr Virus (EBV) is associated with potentially fatal lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD), a serious complication of transplantation. The viral mechanisms underlying the development and maintenance of EBV+ B cell lymphomas remain elusive but represent attractive therapeutic targets. EBV modulates the expression of host microRNAs (miRs), non-coding RNAs that regulate gene expression, to promote survival of EBV+ B cell lymphomas. Here, we examined how the primary oncogene of EBV, latent membrane protein 1 (LMP1), regulates host miRs using an established model of inducible LMP1 signaling. LMP1 derived from the B95.8 lab strain or PTLD induced expression of the oncogene miR-155. However, PTLD variant LMP1 lost the ability to upregulate the tumor suppressor miR-193. Small molecule inhibitors (SMI) of p38 MAPK, NF-κB, and PI3K p110α inhibited upregulation of miR-155 by B95.8 LMP1; no individual SMI significantly reduced upregulation of miR-155 by PTLD variant LMP1. miR-155 was significantly elevated in EBV+ B cell lymphoma cell lines and associated exosomes and inversely correlated with expression of the miR-155 target FOXO3a in cell lines. Finally, LMP1 reduced expression of FOXO3a, which was rescued by a PI3K p110α SMI. Our data indicate that tumor variant LMP1 differentially regulates host B cell miR expression, suggesting viral genotype as an important consideration for the treatment of EBV+ B cell lymphomas. Notably, we demonstrate a novel mechanism in which LMP1 supports the regulation of miR-155 and its target FOXO3a in B cells through activation of PI3K p110α. This mechanism expands on the previously established mechanisms by which LMP1 regulates miR-155 and FOXO3a and may represent both rational therapeutic targets and biomarkers for EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madeline M Smith
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madison Alexander
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Melanie Mandell
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Carissa Sherman
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Madeline W Stesney
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Sin Ting Hui
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Gillian Dohrn
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Joselinne Medrano
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Kurt Ringwalt
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, United States
| | - Aleishia Harris-Arnold
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eden M Maloney
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2018; 92:JVI.00280-18. [PMID: 29950415 DOI: 10.1128/jvi.00280-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
EBV latent membrane protein 1 (LMP1) is released from latently infected tumor cells in small membrane-enclosed extracellular vesicles (EVs). Accumulating evidence suggests that LMP1 is a major driver of EV content and functions. LMP1-modified EVs have been shown to influence recipient cell growth, migration, differentiation, and regulation of immune cell function. Despite the significance of LMP1-modified exosomes, very little is known about how this viral protein enters or manipulates the host EV pathway. In this study, LMP1 deletion mutants were generated to assess protein regions required for EV trafficking. Following transfection of LMP1 or mutant plasmids, EVs were collected by differential centrifugation, and the levels of specific cargo were evaluated by immunoblot analysis. The results demonstrate that, together, the N terminus and transmembrane region 1 of LMP1 are sufficient for efficient sorting into EVs. Consistent with these findings, a mutant lacking the N terminus and transmembrane domains 1 through 4 (TM5-6) failed to be packaged into EVs, and exhibited higher colocalization with endoplasmic reticulum and early endosome markers than the wild-type protein. Surprisingly, TM5-6 maintained the ability to colocalize and form a complex with CD63, an abundant exosome protein that is important for the incorporation of LMP1 into EVs. Other mutations within LMP1 resulted in enhanced levels of secretion, pointing to potential positive and negative regulatory mechanisms for extracellular vesicle sorting of LMP1. These data suggest new functions of the N terminus and transmembrane domains in LMP1 intra- and extracellular trafficking that are likely downstream of an interaction with CD63.IMPORTANCE EBV infection contributes to the development of cancers, such as nasopharyngeal carcinoma, Burkitt lymphoma, Hodgkin's disease, and posttransplant lymphomas, in immunocompromised or genetically susceptible individuals. LMP1 is an important viral protein expressed by EBV in these cancers. LMP1 is secreted in extracellular vesicles (EVs), and the transfer of LMP1-modified EVs to uninfected cells can alter their physiology. Understanding the cellular machinery responsible for sorting LMP1 into EVs is limited, despite the importance of LMP1-modified EVs. Here, we illustrate the roles of different regions of LMP1 in EV packaging. Our results show that the N terminus and TM1 are sufficient to drive LMP1 EV trafficking. We further show the existence of potential positive and negative regulatory mechanisms for LMP1 vesicle sorting. These findings provide a better basis for future investigations to identify the mechanisms of LMP1 targeting to EVs, which could have broad implications in understanding EV cargo sorting.
Collapse
|
6
|
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) is expressed in multiple human malignancies, including nasopharyngeal carcinoma and Hodgkin and immunosuppression-associated lymphomas. LMP1 mimics CD40 signaling to activate multiple growth and survival pathways, in particular, NF-κB. LMP1 has critical roles in Epstein-Barr virus (EBV)-driven B-cell transformation, and its expression causes fatal lymphoproliferative disease in immunosuppressed mice. Here, we review recent developments in studies of LMP1 signaling, LMP1-induced host dependency factors, mouse models of LMP1 lymphomagenesis, and anti-LMP1 immunotherapy approaches.
Collapse
Affiliation(s)
- Liang Wei Wang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Sizun Jiang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
7
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
8
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
9
|
God JM, Cameron C, Figueroa J, Amria S, Hossain A, Kempkes B, Bornkamm GW, Stuart RK, Blum JS, Haque A. Elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors. THE JOURNAL OF IMMUNOLOGY 2015; 194:1434-45. [PMID: 25595783 DOI: 10.4049/jimmunol.1402382] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.
Collapse
Affiliation(s)
- Jason M God
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
| | - Christine Cameron
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
| | - Janette Figueroa
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
| | - Shereen Amria
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
| | - Azim Hossain
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
| | - Bettina Kempkes
- Department of Gene Vectors, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Georg W Bornkamm
- Institute of Clinical Molecular Biology and Tumor Genetics, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Robert K Stuart
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center and Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
10
|
LMP1 promotes expression of insulin-like growth factor 1 (IGF1) to selectively activate IGF1 receptor and drive cell proliferation. J Virol 2014; 89:2590-602. [PMID: 25520502 DOI: 10.1128/jvi.02921-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Epstein-Barr Virus (EBV) is a gammaherpesvirus that infects the majority of the human population and is linked to the development of multiple cancers, including nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is considered the primary oncoprotein of EBV, and in epithelial cells it induces the expression and activation, or phosphorylation, of the epidermal growth factor receptor kinase. To identify effects on additional kinases, an unbiased screen of receptor tyrosine kinases potentially activated by LMP1 was performed. Using a protein array, it was determined that LMP1 selectively activates insulin-like growth factor 1 receptor (IGF1R). This activation takes place in fibroblast, epithelial, and nasopharyngeal cell lines that express LMP1 stably and transiently. Of note, LMP1 altered the phosphorylation, but not the expression, of IGF1R. The use of LMP1 mutants with defective signaling domains revealed that the C-terminal activating region 2 domain of LMP1 increased the mRNA expression and the secretion of the ligand IGF1, which promoted phosphorylation of IGF1R. IGF1R phosphorylation was dependent upon activation of canonical NF-κB signaling and was suppressed by IκBα and a dominant negative form of TRAF6. Inhibition of IGF1R activation with two small-molecule inhibitors, AG1024 and picropodophyllin (PPP), or with short hairpin RNA (shRNA) directed against IGF1R selectively reduced proliferation, focus formation, and Akt activation in LMP1-positive cells but did not impair LMP1-induced cell migration. Expression of constitutively active Akt rescued cell proliferation in the presence of IGF1R inhibitors. These findings suggest that LMP1-mediated activation of IGF1R contributes to the ability of LMP1 to transform epithelial cells. IMPORTANCE EBV is linked to the development of multiple cancers in both lymphoid and epithelial cells, including nasopharyngeal carcinoma. Nasopharyngeal carcinoma is a major cancer that develops in specific populations, with nearly 80,000 new cases reported annually. LMP1 is consistently expressed in early lesions and continues to be detected within 50 to 80% of these cancers at later stages. It is therefore of paramount importance to understand the mechanisms through which LMP1 alters cell growth and contributes to tumorigenesis. This study is the first to determine that LMP1 activates the IGF1R tyrosine kinase by regulating expression of the ligand IGF1. Additionally, the data in this paper reveal that specific targeting of IGF1R selectively impacts LMP1-positive cells. These findings suggest that therapies directed against IGF1R may specifically impair the growth of EBV-infected cells.
Collapse
|
11
|
Mohr CF, Kalmer M, Gross C, Mann MC, Sterz KR, Kieser A, Fleckenstein B, Kress AK. The tumor marker Fascin is induced by the Epstein-Barr virus-encoded oncoprotein LMP1 via NF-κB in lymphocytes and contributes to their invasive migration. Cell Commun Signal 2014; 12:46. [PMID: 25105941 PMCID: PMC4222691 DOI: 10.1186/s12964-014-0046-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/29/2014] [Indexed: 12/05/2022] Open
Abstract
Background The actin-bundling protein Fascin (FSCN1) is a tumor marker that is highly expressed in numerous types of cancer including lymphomas and is important for migration and metastasis of tumor cells. Fascin has also been detected in B lymphocytes that are freshly-infected with Epstein-Barr virus (EBV), however, both the inducers and the mechanisms of Fascin upregulation are still unclear. Results Here we show that the EBV-encoded oncoprotein latent membrane protein 1 (LMP1), a potent regulator of cellular signaling and transformation, is sufficient to induce both Fascin mRNA and protein in lymphocytes. Fascin expression is mainly regulated by LMP1 via the C-terminal activation region 2 (CTAR2). Block of canonical NF-κB signaling using a chemical inhibitor of IκB kinase β (IKKβ) or cotransfection of a dominant-negative inhibitor of IκBα (NFKBIA) reduced not only expression of p100, a classical target of the canonical NF-κB-pathway, but also LMP1-induced Fascin expression. Furthermore, chemical inhibition of IKKβ reduced both Fascin mRNA and protein levels in EBV-transformed lymphoblastoid cell lines, indicating that canonical NF-κB signaling is required for LMP1-mediated regulation of Fascin both in transfected and transformed lymphocytes. Beyond that, chemical inhibition of IKKβ significantly reduced invasive migration of EBV-transformed lymphoblastoid cells through extracellular matrix. Transient transfection experiments revealed that Fascin contributed to LMP1-mediated enhancement of invasive migration through extracellular matrix. While LMP1 enhanced the number of invaded cells, functional knockdown of Fascin by two different small hairpin RNAs resulted in significant reduction of invaded, non-attached cells. Conclusions Thus, our data show that LMP1-mediated upregulation of Fascin depends on NF-κB and both NF-κB and Fascin contribute to invasive migration of LMP1-expressing lymphocytes.
Collapse
|
12
|
Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol 2014; 34:1322-35. [PMID: 24469399 DOI: 10.1128/mcb.01538-13] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex.
Collapse
|
13
|
Kang SC, Lim SY, Song YJ. Lupeol is one of active components in the extract of Chrysanthemum indicum Linne that inhibits LMP1-induced NF-κB activation. PLoS One 2013; 8:e82688. [PMID: 24303085 PMCID: PMC3841202 DOI: 10.1371/journal.pone.0082688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022] Open
Abstract
We have previously reported that seventy percent ethanol extract of Chrysanthemum indicum Linne (CIE) strongly reduces Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) survival by inhibiting virus-encoded latent infection membrane protein 1 (LMP1)-induced NF-κB activation. To identify an active compound(s) in CIE that inhibits LMP1-induced NF-κB activation, activity-guided fractionation was employed. The CH2Cl2 fraction of CIE strongly reduced LMP1-induced NF-κB activation and LCL viability with relatively low cytotoxic effects on primary human foreskin fibroblast (HFF), HeLa or Burkitt’s lymphoma (BL41) cells. Furthermore, lupeol, a pentacyclic triterpene, was identified in the CH2Cl2 fraction of CIE to attenuate LMP1-induced NF-κB activation and LCL viability. This study demonstrates that lupeol is one of active compounds in the CH2Cl2 fraction of CIE that inhibits LMP1-induced NF-κB activation and reduces NF-κB-dependent LCL viability.
Collapse
Affiliation(s)
- Se Chan Kang
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Sue Yeon Lim
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Chanut A, Duguet F, Marfak A, David A, Petit B, Parrens M, Durand-Panteix S, Boulin-Deveza M, Gachard N, Youlyouz-Marfak I, Bordessoule D, Feuillard J, Faumont N. RelA and RelB cross-talk and function in Epstein-Barr virus transformed B cells. Leukemia 2013; 28:871-9. [PMID: 24056880 DOI: 10.1038/leu.2013.274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/26/2023]
Abstract
In this study, we determined the respective roles of RelA and RelB NF-κB subunits in Epstein-Barr virus (EBV)-transformed B cells. Using different EBV-immortalized B-cell models, we showed that only RelA activation increased both survival and cell growth. RelB activity was induced secondarily to RelA activation and repressed RelA DNA binding by trapping the p50 subunit. Reciprocally, RelA activation repressed RelB activity by increasing expression of its inhibitor p100. To search for such reciprocal inhibition at the transcriptional level, we studied gene expression profiles of our RelA and RelB regulatable cellular models. Ten RelA-induced genes and one RelB-regulated gene, ARNTL2, were repressed by RelB and RelA, respectively. Apart from this gene, RelB signature was included in that of RelA Functional groups of RelA-regulated genes were for control of energy metabolism, genetic instability, protection against apoptosis, cell cycle and immune response. Additional functions coregulated by RelA and/or RelB were autophagy and plasma cell differentiation. Altogether, these results demonstrate a cross-inhibition between RelA and RelB and suggest that, in fine, RelB was subordinated to RelA. In the view of future drug development, RelA appeared to be pivotal in both classical and alternative activation pathways, at least in EBV-transformed B cells.
Collapse
Affiliation(s)
- A Chanut
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - F Duguet
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - A Marfak
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - A David
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - B Petit
- CHU Dupuytren, Laboratory of Pathology, Limoges, France
| | - M Parrens
- CHU de Bordeaux, Laboratory of Pathology, Bordeaux, France
| | - S Durand-Panteix
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - M Boulin-Deveza
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - N Gachard
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - I Youlyouz-Marfak
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - D Bordessoule
- 1] CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France [2] Department of Hematology, CHU Dupuytren, Limoges, France
| | - J Feuillard
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - N Faumont
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| |
Collapse
|
15
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
16
|
Shkoda A, Town JA, Griese J, Romio M, Sarioglu H, Knöfel T, Giehler F, Kieser A. The germinal center kinase TNIK is required for canonical NF-κB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol 2012; 10:e1001376. [PMID: 22904686 PMCID: PMC3419181 DOI: 10.1371/journal.pbio.1001376] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023] Open
Abstract
TNIK has an important function in physiological activation and viral transformation of human B-cells by interacting with the TRAF6 adapter complex and mediating NF-κB and JNK signal transduction. The tumor necrosis factor-receptor-associated factor 2 (TRAF2)- and Nck-interacting kinase (TNIK) is a ubiquitously expressed member of the germinal center kinase family. The TNIK functions in hematopoietic cells and the role of TNIK-TRAF interaction remain largely unknown. By functional proteomics we identified TNIK as interaction partner of the latent membrane protein 1 (LMP1) signalosome in primary human B-cells infected with the Epstein-Barr tumor virus (EBV). RNAi-mediated knockdown proved a critical role for TNIK in canonical NF-κB and c-Jun N-terminal kinase (JNK) activation by the major EBV oncoprotein LMP1 and its cellular counterpart, the B-cell co-stimulatory receptor CD40. Accordingly, TNIK is mandatory for proliferation and survival of EBV-transformed B-cells. TNIK forms an activation-induced complex with the critical signaling mediators TRAF6, TAK1/TAB2, and IKKβ, and mediates signalosome formation at LMP1. TNIK directly binds TRAF6, which bridges TNIK's interaction with the C-terminus of LMP1. Separate TNIK domains are involved in NF-κB and JNK signaling, the N-terminal TNIK kinase domain being essential for IKKβ/NF-κB and the C-terminus for JNK activation. We therefore suggest that TNIK orchestrates the bifurcation of both pathways at the level of the TRAF6-TAK1/TAB2-IKK complex. Our data establish TNIK as a novel key player in TRAF6-dependent JNK and NF-κB signaling and a transducer of activating and transforming signals in human B-cells. The germinal center kinase family member TNIK was discovered in a yeast-two-hybrid screen for interaction partners of the adapter proteins TRAF2 and Nck, and here we show it is one of the missing molecular players in two key signaling pathways in B-lymphocytes. We found that TNIK is crucial for the activities of the CD40 receptor on Bcells and its viral mimic, the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). EBV is a human DNA tumor virus that is associated with various malignancies. It targets and transforms B-cells by hijacking the cellular signaling machinery via its oncogene LMP1. In normal Bcell physiology, the CD40 receptor is central to the immune response by mediating B-cell activation and proliferation. TNIK turns out to be an organizer of the LMP1- and CD40-induced signaling complexes by interacting with the TRAF6 adapter protein, well known for its role in linking distinct signaling pathways. Through this mechanism the two receptors depend on TNIK to activate the canonical NF-κB and JNK signal transduction pathways, which are important for the physiological activation of B-cells (a process that enables antibody production), as well as for their transformation into tumor cells. TNIK thus constitutes a key player in the transmission of physiological and pathological signals in human B-cells that might serve as a future therapeutic target against B-cell malignancies.
Collapse
Affiliation(s)
- Anna Shkoda
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Jennifer A. Town
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Janine Griese
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Michael Romio
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Thomas Knöfel
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Fabian Giehler
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
- * E-mail:
| |
Collapse
|
17
|
Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. J Biol Chem 2012; 287:23626-34. [PMID: 22605335 DOI: 10.1074/jbc.m112.347195] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli.
Collapse
Affiliation(s)
- Tobias Kensche
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt, Main, Germany
| | | | | | | | | | | |
Collapse
|
18
|
The extract of Chrysanthemum indicum Linne inhibits EBV LMP1-induced NF-κB activation and the viability of EBV-transformed lymphoblastoid cell lines. Food Chem Toxicol 2012; 50:1524-8. [DOI: 10.1016/j.fct.2012.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 11/21/2022]
|
19
|
NF-kappaB-mediated modulation of inducible nitric oxide synthase activity controls induction of the Epstein-Barr virus productive cycle by transforming growth factor beta 1. J Virol 2011; 85:6502-12. [PMID: 21507981 DOI: 10.1128/jvi.02560-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor beta 1 (TGF-β1) signal transduction has been implicated in many second-messenger pathways, including the NF-κB pathway. We provide evidence of a novel TGF-β1-mediated pathway that leads to extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, which in turn induces expression of an Epstein-Barr virus (EBV) protein, ZEBRA, that is responsible for the induction of the viral lytic cycle. This pathway includes two unexpected steps, both of which are required to control ERK 1/2 phosphorylation: first, a quick and transient activation of NF-κB, and second, downregulation of inducible nitric oxide synthase (iNOS) activity that requires the participation of NF-κB activity. Although necessary, NF-κB alone is not sufficient to produce downregulation of iNOS, suggesting that another uncharacterized event(s) is involved in this pathway. Dissection of the steps involved in the switch from the EBV latent cycle to the lytic cycle will be important to understand how virus-host relationships modulate the innate immune system.
Collapse
|
20
|
Zhang J, Yamada O, Kida S, Matsushita Y, Yamaoka S, Chagan-Yasutan H, Hattori T. Identification of CD44 as a downstream target of noncanonical NF-κB pathway activated by human T-cell leukemia virus type 1-encoded Tax protein. Virology 2011; 413:244-52. [PMID: 21411116 DOI: 10.1016/j.virol.2011.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/21/2011] [Accepted: 02/24/2011] [Indexed: 12/16/2022]
Abstract
Our previous study showed Human T-cell leukemia virus type 1 Tax induces osteopontin (OPN) expression by transactivating its promoter. As an extension, we investigated here the possible influence of Tax on CD44, an important receptor for OPN. Co-expression of Tax, but not its NF-κB-defective mutant, significantly increased the reporter gene expression directed by CD44 promoter. Tax-mediated CD44 activation was largely diminished by disrupting an element similar to the noncanonical κβ site found in other IKKα target genes, and further, co-transfection of RelB siRNA abolished CD44 induction by Tax, suggesting an involvement of noncanonical NF-κB pathway in Tax-mediated transactivation. Consistently, chromatin immunoprecipitation revealed a specific interaction of CD44 promoter with RelB-containing complex. Together, these results indicate that D44 gene is one of the downstream target genes of aberrantly activated noncanonical NF-κB signaling by Tax, providing an additional line of evidence explaining how Tax-induced NF-κB signaling is integrated into a fate-determining cellular program.
Collapse
Affiliation(s)
- Jing Zhang
- Research and Development Center, FUSO Pharmaceutical Industries, LTD., 2-3-30 Morinomiya, Joto-ku, Osaka 536-8523, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Epstein-Barr latent membrane protein 1 transformation site 2 activates NF-kappaB in the absence of NF-kappaB essential modifier residues 133-224 or 373-419. Proc Natl Acad Sci U S A 2010; 107:18103-8. [PMID: 20923877 DOI: 10.1073/pnas.1011752107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein Barr virus latent membrane protein 1 (LMP1) induces NF-κB activation through transformation effector sites (TES) 1 and 2, both of which are critical for B-lymphocyte transformation. TES2 principally activates canonical NF-κB, which we confirm is NF-κB essential modifier (NEMO)-dependent and requires an intact ubiquitin binding in A20 binding inhibitor of NF-κB and NEMO (UBAN) domain. LMP1 TES2 activated NF-κB in Jurkat cell lines harboring NEMO truncated at 372 (A45) or NEMO with an in-frame deletion of 133-224 (2C), whereas TNFα, 12-O-Tetradecanoylphorbol-13-acetate, human T-cell leukemia virus 1 Tax, and CD40 did not. In both A45 and 2C Jurkat cell lines, LMP1 TES2-mediated NF-κB activation was blocked by siRNAs to TNFα receptor-associated factor 6 and NEMO, by IκB kinase inhibitors, and by the IκBα superrepressor, indicating that the NEMO mutants function to support canonical NF-κB activation. Expression of A45 or 2C mutants in NEMO-deficient murine embryonic fibroblasts reproduced the Jurkat phenotypes: LMP1 TES2 activated NF-κB in fibroblasts lacking NEMO amino acids 133-224 or 373-419, but TNFα and Tax did not. Further analysis indicated that TES2 did not activate NF-κB in cells expressing the double deletion mutant Δ133-224/Δ372-419. These data provide further evidence of the essential role for NEMO in LMP1 TES2 NF-κB activation and highlight the importance of unique domains within NEMO for sensing distinct NF-κB stimuli.
Collapse
|
22
|
Song YJ, Kang MS. Roles of TRAF2 and TRAF3 in Epstein-Barr virus latent membrane protein 1-induced alternative NF-kappaB activation. Virus Genes 2010; 41:174-80. [PMID: 20585848 DOI: 10.1007/s11262-010-0505-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022]
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)-induced NF-kappaB activation is essential for EBV-transformed B cell survival. LMP1 has two C-terminal cytoplasmic domains referred to as C-Terminal Activation Regions (CTAR) 1 and 2 that activate the alternative and canonical NF-kappaB pathways, respectively. While CTAR2 activates TRAF6, IKKbeta and IKKgamma-dependent canonical NF-kappaB pathway, CTAR1 interacts with TRAF2 and TRAF3 and activates NIK and IKKalpha-dependent alternative NF-kappaB pathway involving p100 processing into functional p52. Using IKKalpha(-/-), IKKbeta(-/-), IKKgamma(-/-), TRAF2(-/-), TRAF3(-/-), TRAF6(-/-), and NIK(aly/aly) mouse embryonic fibroblasts (MEFs), potential roles of these proteins in LMP1-induced alternative NF-kappaB activation were investigated. Deficiency in IKKalpha or functional NIK, but not in IKKbeta, IKKgamma, or TRAF6, severely impaired LMP1-induced p100 processing. Notably, p100 was constitutively processed in TRAF2(-/-) or TRAF3(-/-) MEFs independently of LMP1 suggesting that TRAF2 or TRAF3 may play a regulatory role in p100 processing. Subsequently, TRAF2 or TRAF3 over-expression in HEK293 cells significantly blocked LMP1-induced p100 processing. The LMP1 CTAR1 expression in 293HEK cells activated the alternative p65/p52 complex while CTAR2 failed to do so. Taken together, LMP1 activates alternative NF-kappaB pathway through functional NIK and IKKalpha that is regulated by TRAF2 or TRAF3.
Collapse
Affiliation(s)
- Yoon-Jae Song
- Department of Life Science, Kyungwon University, Kyeonggi-Do, Korea.
| | | |
Collapse
|
23
|
Lai HC, Hsiao JR, Chen CW, Wu SY, Lee CH, Su IJ, Takada K, Chang Y. Endogenous latent membrane protein 1 in Epstein-Barr virus-infected nasopharyngeal carcinoma cells attracts T lymphocytes through upregulation of multiple chemokines. Virology 2010; 405:464-73. [PMID: 20637487 DOI: 10.1016/j.virol.2010.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/14/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Tumor-infiltrating T lymphocytes are considered to facilitate development of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), but how EBV in NPC tumor cells directs T cell infiltration remains unclear. Here we compare EBV-infected NPC cells with and without spontaneous expression of viral latent membrane protein 1 (LMP1) and find that culture supernatants of LMP1-positive NPC cells exert enhanced chemoattraction to primary T cells. Knockdown of endogenous LMP1 in the cells suppresses the chemotactic activity. Endogenous LMP1 in NPC cells upregulates multiple chemokines, among which MIP-1alpha, MIP-1beta and IL-8 contribute to T cell chemotaxis. We further reveal that LMP1-induced production of MIP-1alpha and MIP-1beta in NPC cells requires not only two carboxyl-terminal activation regions of LMP1 but also their downstream NF-kappaB and JNK pathways. This study corroborates that endogenous LMP1 in EBV-infected NPC cells induces multiple chemokines to promote T cell recruitment and perhaps other pathogenic events in NPC.
Collapse
Affiliation(s)
- Hsiao-Ching Lai
- Division of Infectious Diseases, National Health Research Institutes, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kung CP, Raab-Traub N. Epstein-Barr virus latent membrane protein 1 modulates distinctive NF- kappaB pathways through C-terminus-activating region 1 to regulate epidermal growth factor receptor expression. J Virol 2010; 84:6605-14. [PMID: 20410275 PMCID: PMC2903255 DOI: 10.1128/jvi.00344-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/12/2010] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1) is required for EBV B-lymphocyte transformation, transforms rodent fibroblasts, and can induce lymphoma and epithelial hyperplasia in transgenic mice. Two domains have been identified within the intracellular carboxy terminus that can activate NF-kappaB, C-terminus-activating region 1 (CTAR1) and CTAR2, through interactions with tumor necrosis receptor-associated factors (TRAFs). CTAR1 can activate both the canonical and noncanonical NF-kappaB pathways and has unique effects on cellular gene expression. The epidermal growth factor receptor (EGFR) is highly induced by LMP1-CTAR1 in epithelial cells through activation of a novel NF-kappaB form containing p50 homodimers and Bcl-3. To further understand the regulation of NF-kappaB in CTAR1-induced EGFR expression, we evaluated the ability of CTAR1 to induce EGFR in mouse embryonic fibroblasts (MEFs) defective for different NF-kappaB effectors. CTAR1-mediated EGFR induction required the NF-kappaB-inducing kinase (NIK) but not the IkappaB kinase (IKK) complex components that regulate canonical or noncanonical NF-kappaB pathways. CTAR1-mediated induction of nuclear p50 occurred in IKKbeta-, IKKgamma-, and NIK-defective MEFs, indicating that this induction is not dependent on the canonical or noncanonical NF-kappaB pathways. EGFR and nuclear p50 were expressed at high levels in TRAF2(-/-) fibroblasts and were not induced by CTAR1. In TRAF3(-/-) MEFs, CTAR1 induced nuclear p50 but did not affect basal levels of STAT3 serine phosphorylation or induce EGFR expression. EGFR was induced by LMP1 in TRAF6(-/-) MEFs. These findings suggest that this novel NF-kappaB pathway is differentially regulated by TRAF2 and TRAF3, and that distinct interactions of LMP1 and its effectors regulate LMP1-mediated gene expression.
Collapse
Affiliation(s)
- Che-Pei Kung
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nancy Raab-Traub
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
25
|
Watanabe T, Asano N, Fichtner-Feigl S, Gorelick PL, Tsuji Y, Matsumoto Y, Chiba T, Fuss IJ, Kitani A, Strober W. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest 2010; 120:1645-1662. [PMID: 20389019 PMCID: PMC2860924 DOI: 10.1172/jci39481] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 02/03/2010] [Indexed: 12/16/2022] Open
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular epithelial cell protein known to play a role in host defense at mucosal surfaces. Here we show that a ligand specific for NOD1, a peptide derived from peptidoglycan, initiates an unexpected signaling pathway in human epithelial cell lines that results in the production of type I IFN. Detailed analysis revealed the components of the signaling pathway. NOD1 binding to its ligand triggered activation of the serine-threonine kinase RICK, which was then able to bind TNF receptor-associated factor 3 (TRAF3). This in turn led to activation of TANK-binding kinase 1 (TBK1) and IkappaB kinase epsilon (IKKepsilon) and the subsequent activation of IFN regulatory factor 7 (IRF7). IRF7 induced IFN-beta production, which led to activation of a heterotrimeric transcription factor complex known as IFN-stimulated gene factor 3 (ISGF3) and the subsequent production of CXCL10 and additional type I IFN. In vivo studies showed that mice lacking the receptor for IFN-beta or subjected to gene silencing of the ISGF3 component Stat1 exhibited decreased CXCL10 responses and increased susceptibility to Helicobacter pylori infection, phenotypes observed in NOD1-deficient mice. These studies thus establish that NOD1 can activate the ISGF3 signaling pathway that is usually associated with protection against viral infection to provide mice with robust type I IFN-mediated protection from H. pylori and possibly other mucosal infections.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Naoki Asano
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Stefan Fichtner-Feigl
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Peter L. Gorelick
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Yoshihisa Tsuji
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Yuko Matsumoto
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Tsutomu Chiba
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Ivan J. Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Animal Health Diagnostic Laboratory, Laboratory Animal Sciences Program, National Cancer Institute — Frederick, Science Applications International Corporation, Frederick, Maryland, USA
| |
Collapse
|
26
|
BS69 cooperates with TRAF3 in the regulation of Epstein-Barr virus-derived LMP1/CTAR1-induced NF-κB activation. FEBS Lett 2010; 584:865-72. [DOI: 10.1016/j.febslet.2010.01.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/13/2010] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
|
27
|
Liu X, Wang B, Ma X, Guo Y. NF-kappaB activation through the alternative pathway correlates with chemoresistance and poor survival in extranodal NK/T-cell lymphoma, nasal type. Jpn J Clin Oncol 2009; 39:418-24. [PMID: 19395464 DOI: 10.1093/jjco/hyp037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Nuclear factor-kappaB (NF-kappaB) activation has been identified in a variety of solid tumors and lymphoid malignancies. The aim of our study was to determine the expression status and clinical significance of NF-kappaB in extranodal natural killer (NK)/T-cell lymphoma, nasal type. METHODS Tumor specimens from 23 patients with previously untreated NK/T-cell lymphoma initially treated with cyclophosphamide, vincristine, doxorubicin and prednisone (CHOP) or CHOP-based chemotherapy were examined by immunohistochemistry for three NF-kappaB subunits (p65, p50 and p52), which are involved in either the canonical or alternative pathway. RESULTS None of the cases could be detected with p65 or p50 nuclear staining. On the other hand, 15 (65.2%) cases had p52 nuclear staining, suggesting NF-kappaB activation through the alternative pathway. All major clinical characteristics were balanced between NF-kappaB p52-positive and -negative patients. The objective response rate achieved in NF-kappaB-positive patients was significantly lower than that in negative patients (33.3% vs. 87.5%, P = 0.027). At a median follow-up of 25 months, 8 (53.3%) of 15 NF-kappaB-positive patients had died compared with none of 8 NF-kappaB-negative patients (P = 0.041). In a multivariate analysis, NF-kappaB status and stage were identified to be independent prognostic factors. CONCLUSIONS Our results suggest that NF-kappaB activation through the alternative pathway is frequently observed in NK/T-cell lymphoma and associated with chemoresistance and poor survival.
Collapse
Affiliation(s)
- Xueguang Liu
- Department of Medical Oncology, Cancer Hospital of Fudan University, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
28
|
Kieser A. Pursuing different 'TRADDes': TRADD signaling induced by TNF-receptor 1 and the Epstein-Barr virus oncoprotein LMP1. Biol Chem 2009; 389:1261-71. [PMID: 18713013 DOI: 10.1515/bc.2008.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pro-apoptotic tumor necrosis factor (TNF)-receptor 1-associated death domain protein (TRADD) was initially identified as the central signaling adapter molecule of TNF-receptor 1 (TNFR1). Upon stimulation with the pro-inflammatory cytokine TNFalpha, TRADD is recruited to the activated TNFR1 by direct interaction between the death domains of both molecules. TRADD mediates TNFR1 activation of NF-kappaB and c-Jun N-terminal kinase (JNK), as well as caspase-dependent apoptosis. Surprisingly, TRADD is also recruited by latent membrane protein 1 (LMP1), the major oncoprotein of the human Epstein-Barr tumor virus. By mimicking a constitutively active receptor, LMP1 is essential for B-cell transformation by the virus, activating NF-kappaB, phosphatidylinositol 3-kinase, JAK/STAT and mitogen-activated protein kinase signaling. In contrast to TNFR1, LMP1's interaction with TRADD is independent of a functional death domain. The unique structure of the LMP1-TRADD complex dictates an unusual type of TRADD-dependent NF-kappaB signaling and subverts TRADD's potential to induce apoptosis. This article provides an overview of TNFR1 and LMP1 signal transduction with a focus on TRADD's functions in apoptotic and transforming signaling, incorporating recent results from TRADD RNAi and knockout studies.
Collapse
Affiliation(s)
- Arnd Kieser
- Abteilung Genvektoren, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Marchioninistrasse 25, D-81377 München, Germany.
| |
Collapse
|
29
|
Jeon JP, Nam HY, Shim SM, Han BG. Sustained viral activity of epstein-Barr virus contributes to cellular immortalization of lymphoblastoid cell lines. Mol Cells 2009; 27:143-8. [PMID: 19277495 DOI: 10.1007/s10059-009-0018-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 11/11/2008] [Accepted: 11/25/2008] [Indexed: 12/21/2022] Open
Abstract
EBV-transformed lymphoblastoid cell lines (LCLs) are used as a resource for human genetic, immunological, and pharmacogenomic studies. We investigated the biological activity of 20 LCL strains during continuous long-term subculture up to a passage number of 160. Out of 20 LCL strains, 17 proliferated up to a passage number of 160, at which point LCLs are generally considered as "immortalized". The other three LCL strains lost the ability to proliferate at an average passage number of 41, during which these LCLs may have undergone cellular crisis. These non-immortal LCL strains exhibited no telomerase activity, decreased EBV gene expression, and a lower copy number of the EBV genome and mitochondrial DNA when compared with immortal LCLs. Thus, this study suggests that sustained EBV viral activity as well as telomerase activity may be required for complete LCL immortalization.
Collapse
Affiliation(s)
- Jae-Pil Jeon
- Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, 122-701, Korea
| | | | | | | |
Collapse
|
30
|
Tokunaga F, Sakata SI, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123-32. [PMID: 19136968 DOI: 10.1038/ncb1821] [Citation(s) in RCA: 792] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/14/2008] [Indexed: 11/09/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a key transcription factor in inflammatory, anti-apoptotic and immune processes. The ubiquitin pathway is crucial in regulating the NF-kappaB pathway. We have found that the LUBAC ligase complex, composed of the two RING finger proteins HOIL-1L and HOIP, conjugates a head-to-tail-linked linear polyubiquitin chain to substrates. Here, we demonstrate that LUBAC activates the canonical NF-kappaB pathway by binding to NEMO (NF-kappaB essential modulator, also called IKKgamma) and conjugates linear polyubiquitin chains onto specific Lys residues in the CC2-LZ domain of NEMO in a Ubc13-independent manner. Moreover, in HOIL-1 knockout mice and cells derived from these mice, NF-kappaB signalling induced by pro-inflammatory cytokines such as TNF-alpha and IL-1beta was suppressed, resulting in enhanced TNF-alpha-induced apoptosis in hepatocytes of HOIL-1 knockout mice. These results indicate that LUBAC is involved in the physiological regulation of the canonical NF-kappaB activation pathway through linear polyubiquitylation of NEMO.
Collapse
Affiliation(s)
- Fuminori Tokunaga
- Department of Biophysics and Biochemistry, Graduate School of Medicine and Cell Biology and Metabolism Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shair KHY, Schnegg CI, Raab-Traub N. EBV latent membrane protein 1 effects on plakoglobin, cell growth, and migration. Cancer Res 2008; 68:6997-7005. [PMID: 18757414 DOI: 10.1158/0008-5472.can-08-1178] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Latent membrane protein 1 (LMP1), the major oncoprotein of EBV, is likely responsible for many of the altered cellular growth properties in EBV-associated cancers, including nasopharyngeal carcinoma (NPC). In this study, the effects of LMP1 on cell growth and migration were studied in the context of the EBV-positive C666-1 NPC cell line. In the soft agar transformation and Transwell metastasis assays, LMP1 enhanced cell growth and migration through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappaB (NF-kappaB) signaling. Inhibitors of PI3K, Akt, and NF-kappaB signaling dramatically reduced these enhanced properties. An IkappaBalpha super-repressor also blocked these effects. However, constitutive activation of Akt alone did not alter cell growth, suggesting that both PI3K/Akt and NF-kappaB activation are required by LMP1. These enhanced effects required the full-length LMP1 encompassing both the PI3K/Akt-activating COOH-terminal activation region (CTAR) 1 and the nonredundant NF-kappaB-activating regions CTAR1 and CTAR2. LMP2A, a latent protein that is also frequently expressed in NPC, similarly activates the PI3K/Akt pathway; however, its overexpression in C666-1 cells did not affect cell growth or migration. LMP1 also decreased expression of the junctional protein plakoglobin, which was shown to be partially responsible for enhanced migration induced by LMP1. This study reveals that in epithelial cells the transforming properties of LMP1 require activation of both PI3K/Akt and NF-kappaB and shows that the loss of plakoglobin expression by LMP1 is a significant factor in the enhanced migration.
Collapse
Affiliation(s)
- Kathy H Y Shair
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
32
|
Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 2008; 82:8124-37. [PMID: 18524825 DOI: 10.1128/jvi.00430-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Latent membrane protein 1 (LMP1), an Epstein-Barr virus (EBV) oncoprotein, mimics a constitutively activated tumor necrosis factor receptor and activates various signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt. LMP1 is essential for EBV-mediated B-cell transformation and is sufficient to transform several cell lines. Cellular transformation has been associated strongly with genomic instability, while DNA repair plays an important role in maintaining genomic stability. Previously, we have shown that LMP1 represses DNA repair by the C-terminal activating region 1 (CTAR1) in human epithelial cells. In the present study, we demonstrate that the PI3K/Akt pathway is required for LMP1-mediated repression of DNA repair. Through the LMP1/PI3K/Akt pathway, FOXO3a, which can induce DNA repair, is inactivated because of phosphorylation and relocalization. Expression of a constitutively active FOXO3a mutant can rescue LMP1-mediated repression of DNA repair. Furthermore, LMP1 can decrease the expression of DNA damage-binding protein 1 (DDB1), which functions in nucleotide excision repair, through the PI3K/Akt/FOXO3a pathway. LMP1-mediated repression of DNA repair is restored by DDB1, although only partially. These results suggest that LMP1 triggers the PI3K/Akt pathway to inactivate FOXO3a and decrease DDB1, which can lead to repression of DNA repair and may contribute to genomic instability in human epithelial cells.
Collapse
|
33
|
Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3. J Virol 2008; 82:5486-93. [PMID: 18367518 DOI: 10.1128/jvi.00125-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates multiple signaling pathways. Two regions, C-terminal-activating region 1 (CTAR1) and CTAR2, have been identified within the cytoplasmic carboxy terminal domain that activates NF-kappaB. CTAR2 activates the canonical NF-kappaB pathway, which includes p50/p65 complexes. CTAR1 can activate both the canonical and noncanonical pathways to produce multiple distinct NF-kappaB dimers, including p52/p50, p52/p65, and p50/p50. CTAR1 also uniquely upregulates the epidermal growth factor receptor (EGFR) in epithelial cells. Increased p50-Bcl-3 complexes have been detected by chromatin precipitation on the NF-kappaB consensus motifs within the egfr promoter in CTAR1-expressing epithelial cells and nasopharyngeal carcinoma cells. In this study, the mechanism responsible for the increase in Bcl-3 has been further investigated. The data indicate that LMP1-CTAR1 induces Bcl-3 mRNA and increases the nuclear translocation of both Bcl-3 and p50. LMP1-CTAR1 constitutively activates STAT3, and this activation was not due to the induction of interleukin 6 (IL-6). In LMP1-CTAR1-expressing cells, increased levels of activated STAT3 were detected by chromatin immunoprecipitation on STAT-binding sites located within both the promoter and the second intron of Bcl-3. A STAT3 inhibitor significantly reduced the activation of STAT3, as well as the CTAR1-mediated upregulation of Bcl-3 and EGFR. These data suggest that LMP1 activates distinct forms of NF-kappaB through multiple pathways. In addition to activating the canonical and noncanonical pathways, LMP1-CTAR1 constitutively activates STAT3 and increases Bcl-3. The increased nuclear Bcl-3 and p50 homodimer complexes positively regulate EGFR expression. These results indicate that LMP1 likely regulates distinct cellular genes by activating specific NF-kappaB pathways.
Collapse
|
34
|
Schneider F, Neugebauer J, Griese J, Liefold N, Kutz H, Briseño C, Kieser A. The viral oncoprotein LMP1 exploits TRADD for signaling by masking its apoptotic activity. PLoS Biol 2008; 6:e8. [PMID: 18198944 PMCID: PMC2174972 DOI: 10.1371/journal.pbio.0060008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 12/04/2007] [Indexed: 01/14/2023] Open
Abstract
The tumor necrosis factor (TNF)-receptor 1–associated death domain protein (TRADD) mediates induction of apoptosis as well as activation of NF-κB by cellular TNF-receptor 1 (TNFR1). TRADD is also recruited by the latent membrane protein 1 (LMP1) oncoprotein of Epstein-Barr virus, but its role in LMP1 signaling has remained enigmatic. In human B lymphocytes, we have generated, to our knowledge, the first genetic knockout of TRADD to investigate TRADD's role in LMP1 signal transduction. Our data from TRADD-deficient cells demonstrate that TRADD is a critical signaling mediator of LMP1 that is required for LMP1 to recruit and activate I-κB kinase β (IKKβ). However, in contrast to TNFR1, LMP1-induced TRADD signaling does not induce apoptosis. Searching for the molecular basis for this observation, we characterized the 16 C-terminal amino acids of LMP1 as an autonomous and unique virus-derived TRADD-binding domain. Replacing the death domain of TNFR1 by LMP1′s TRADD-binding domain converts TNFR1 into a nonapoptotic receptor that activates NF-κB through a TRAF6-dependent pathway, like LMP1 but unlike wild-type TNFR1. Thus, the unique interaction of LMP1 with TRADD encodes the transforming phenotype of viral TRADD signaling and masks TRADD's pro-apoptotic function. For viral infection to succeed, viral proteins must interact with the cellular signaling machinery of its target cell. An oncoprotein encoded by the Epstein-Barr virus (EBV) called latent membrane protein 1 (LMP1) is a primary contributor to the transformation of human B cells by the virus and the development of EBV-associated B cell malignancies by recruiting signaling molecules provided by the host. One such molecule, the cellular adapter protein TRADD, is among the few direct interaction partners of LMP1. But because TRADD promotes cell death (apoptosis) in the cellular tumor necrosis factor-receptor 1 (TNFR1) signaling pathway, it seems counterintuitive that TRADD could play a role in LMP1 biology, since LMP1 promotes cell survival and proliferation. We provide genetic evidence that TRADD is critical for LMP1 to assemble its transforming signaling network. LMP1 requires TRADD to recruit and activate I-κB kinase β and, thus, to induce canonical NF-κB signaling. Simultaneously, LMP1 masks TRADD's pro-apoptotic activity. We show that LMP1 carries a unique and autonomous viral TRADD-binding domain, which dictates an unusual structure of the LMP1-TRADD complex and the nonapoptotic phenotype of TRADD signaling, irrespective of the receptor context in which this domain is located. Thus, DNA tumor viruses alter the functional properties of cellular signaling molecules to exploit them for their own purpose of cell transformation. A unique Epstein Barr virus-derived protein interaction domain uses the cellular death domain protein TRADD to assemble its transforming signaling complex and dictates a transferable nonapoptitic phenotype of TRADD signaling.
Collapse
Affiliation(s)
- Frank Schneider
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Julia Neugebauer
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Janine Griese
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Nicola Liefold
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Helmut Kutz
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Cinthia Briseño
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Arnd Kieser
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Shair KHY, Bendt KM, Edwards RH, Bedford EC, Nielsen JN, Raab-Traub N. EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas. PLoS Pathog 2008; 3:e166. [PMID: 17997602 PMCID: PMC2065877 DOI: 10.1371/journal.ppat.0030166] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/24/2007] [Indexed: 11/18/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFκB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFκB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas. Epstein-Barr virus (EBV) is linked to the development of multiple cancers, including post-transplant lymphoma, Hodgkin disease, and nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is expressed in many EBV-associated cancers and is responsible for most of the altered cellular growth properties that are induced by EBV infection. This study reveals that LMP1 induces lymphomas in B-1a lymphocytes, a cell type that is susceptible to transformation in aged mice. The lymphomas require Akt, NFκB, and Stat3 signaling for enhanced growth and survival. The activation of the Stat3, Akt, and NFκB signaling pathways likely underlies the ability of LMP1 to promote malignant transformation.
Collapse
Affiliation(s)
- Kathy H. Y Shair
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine M Bendt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rachel H Edwards
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elisabeth C Bedford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Judith N Nielsen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
EBV LMP2A affects LMP1-mediated NF-kappaB signaling and survival of lymphoma cells by regulating TRAF2 expression. Blood 2008; 111:3813-20. [PMID: 18230756 DOI: 10.1182/blood-2007-03-080309] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A mechanism used by Epstein-Barr virus (EBV) for in vitro transformation of B cells into lymphoblastoid cell lines (LCLs) is activation of the NF-kappaB pathway, which is largely mediated by the EBV latent membrane protein 1 (LMP1). LMP1 is coexpressed with LMP2A in many EBV-associated lymphoid malignancies. Since inhibition of NF-kappaB leads to apoptosis of EBV-infected LCLs and lymphoma cell lines, we sought to determine whether LMP1 alone, or in combination with other viral proteins, is responsible for initiating NF-kappaB activation in these cells, thereby playing a role in cell survival. We found that suppression of LMP1 by RNA interference results in inhibition of basal NF-kappaB and induction of apoptosis. Unexpectedly, knockdown of LMP2A also resulted in comparable decrease of NF-kappaB activity and apoptosis. We report that LMP2A protein controls the expression of TRAF2 mRNA, which in turn is necessary for signaling by LMP1. Our data contrast with previous studies showing that transfected LMP1 can signal in the absence of LMP2A or TRAF2, and demonstrate that both LMP2A and TRAF2 are required for survival in naturally infected lymphoma cells and LCLs. These results also support LMP1, LMP2A, and TRAF2 as potential therapeutic targets in a subset of EBV-associated lymphoid malignancies.
Collapse
|
37
|
Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J Virol 2008; 82:3654-64. [PMID: 18199641 DOI: 10.1128/jvi.01888-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is an oncogenic protein which has previously been shown to engage the NF-kappaB, stress-activated MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and extracellular-regulated kinase (ERK)-MAPK pathways. In this study, we demonstrate that LMP1 activates ERK-MAPK in epithelial cells via the canonical Raf-MEK-ERK-MAPK pathway but in a Ras-independent manner. In agreement with the results of a previous study (B. A. Mainou, D. N. Everly, Jr., and N. Raab-Traub, J. Virol. 81:9680-9692, 2007), we show that the ability of LMP1 to activate ERK-MAPK mapped to its CTAR1 domain, the TRAF binding domain previously implicated in PI 3-kinase activation. A role for ERK-MAPK in LMP1-induced epithelial cell motility was identified, as LMP1-expressing cells displayed increased rates of haptotactic migration compared to those of LMP1-negative cells. These data implicate the ERK-MAPK pathway in LMP1-induced effects associated with transformation, suggesting that this pathway may contribute to the oncogenicity of LMP1 through its ability to promote cell motility and to enhance the invasive properties of epithelial cells.
Collapse
|
38
|
Abstract
NF-kappaB family is a kind of nuclear factors in B lymphocyte that can bind to the immunoglobulin kappa-chain enhancer and enhance transcriptional activity. NF-kappaB/Rel proteins, as a dimeric transcription factor, control the expression of genes that regulate a broad range of biological processes through canonical and non-canonical pathways. In the central nervous system, NF-kappaB controls inflammatory reactions and the apoptotic cell death following nerve injury. It also contributes to the infarction and cell death in stroke models and patients. However, NF-kappaB is essential for neurosurvival as well. NF-kappaB activation is a part of recovery process that may protect neurons against oxidative-stresses or brain ischemia-induced apoptosis and neurodegeneration. Inhibition of NF-kappaB may reduce its neuroprotection activity. Hence the dual opposite effects of NF-kappaB on cells. The ultimate survival or death of neurons depends on which, where and when the NF-kappaB factors are activated.
Collapse
|
39
|
Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking Activates Growth and Survival pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:173-87. [PMID: 17633026 DOI: 10.1007/978-0-387-70630-6_14] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) Latent Infection Membrane Protein 1 (LMP1) is expressed in all the EBV related malignancies. LMP1 expression is critical for transformation of human B-cells by EBV. LMP1 expression in human B cells induces activation and adhesion molecule expression and cell dumping, which are characteristic of CD40 activated B lymphocytes. In immortalized fibroblasts, LMP1 mimics aspects of activated ras in enabling serum, contact, and anchorage independent growth. Reverse genetic analyses implicate six transmembrane domains (TM), TM1-6, and two C-terminal cytosolic domains, transformation effector sites 1 and 2 (TES1 and 2) or C-terminal activation regions 1 and 2 (CTAR1 and 2) as the essential domains for LMP1 effects. The 6 transmembrane domains cause intermolecular interaction, whereas the C-terminal domains signal through tumor necrosis factor receptor (TNFR) associated factors (TRAFs) or TNFR associated death domain proteins (TRADD) and activate NF-kappaB, JNK, and p38. LMP1 TES1/CTAR1 directly recruits TRAFs 1, 2, 3 and 5 whereas LMP1 TES2/CTAR2 indirectly recruits TRAF6 via BS69. LMP1 TES1/CTAR1 activates TRAF2, NIK, IKKalpha and p52 mediated noncanonical NF-KB pathway and LMP1 TES2/CTAR2 activates TRAF6, TAB1, TAK1, IKKalpha/ IKKbeta/ IKKgamma mediated canonical NF-KB pathway. Interestingly, TRAF3 is a negative regulator of noncanonical NF-kappaB activation, although a positive role in LMP1 signaling has also been described. LMP1 mediated JNK activation is predominantly TES2/CTAR2 dependent and requires TRAF6. LMP1 specifically increases TRAF3 partitioning into lipid rafts and interestingly does not induce degradation of any of the TRAFs upon NF-kappaB activation. Studies of the chemistry and biology of LMP1-TRAF interaction mediated activation of signaling pathways are important for controlling EBV infected cell survival and growth.
Collapse
Affiliation(s)
- Vishal Soni
- Channing Laboratory and Infectious Disease Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
40
|
Thornburg NJ, Raab-Traub N. Induction of epidermal growth factor receptor expression by Epstein-Barr virus latent membrane protein 1 C-terminal-activating region 1 is mediated by NF-kappaB p50 homodimer/Bcl-3 complexes. J Virol 2007; 81:12954-61. [PMID: 17881446 PMCID: PMC2169135 DOI: 10.1128/jvi.01601-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with the development of numerous malignancies, including the epithelial malignancy nasopharyngeal carcinoma (NPC). The viral oncoprotein latent membrane protein 1 (LMP1) is expressed in almost all EBV-associated malignancies and has profound effects on gene expression. LMP1 acts as a constitutively active tumor necrosis factor receptor and activates multiple forms of the NF-kappaB family of transcription factors. LMP1 has two domains that both activate NF-kappaB. In epithelial cells, LMP1 C-terminal activating region 1 (CTAR1) uniquely activates p50/p50-, p50/p52-, and p65-containing complexes while CTAR2 activates canonical p50/p65 complexes. CTAR1 also uniquely upregulates the epidermal growth factor receptor (EGFR). In NPC, NF-kappaB p50/p50 homodimers and the transactivator Bcl-3 were detected on the EGFR promoter. In this study, the role of NF-kappaB p50 and Bcl-3 in LMP1-mediated upregulation of EGFR was analyzed. In LMP1-CTAR1-expressing cells, chromatin immunoprecipitation detected p50 and Bcl-3 on the NF-kappaB consensus sites within the egfr promoter. Transient overexpression of p50 and Bcl-3 increased EGFR expression, confirming the regulation of EGFR by these factors. Treatment with p105/p50 siRNA effectively reduced p105/p50 levels but unexpectedly increased Bcl-3 expression and levels of p50/Bcl-3 complexes, resulting in increased EGFR expression. These data suggest that induction of p50/p50/Bcl-3 complexes by LMP1 CTAR1 mediates LMP1-induced EGFR upregulation and that formation of the p50/p50/Bcl-3 complex is negatively regulated by the p105 precursor. The distinct forms of NF-kappaB that are induced by LMP1 CTAR1 likely activate distinct cellular genes.
Collapse
Affiliation(s)
- Natalie J Thornburg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, Tanaka Y, Mahieux R, Matsuoka M, Fujii M. Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol 2007; 81:11900-7. [PMID: 17715223 PMCID: PMC2168800 DOI: 10.1128/jvi.00532-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) but not HTLV-2 is associated with adult T-cell leukemia, and the distinct pathogenicity of these two closely related viruses is thought to stem from the distinct biological functions of the respective transforming proteins, HTLV-1 Tax1 and HTLV-2 Tax2. In this study, we demonstrate that Tax1 but not Tax2 interacts with NF-kappaB2/p100 and activates it by inducing the cleavage of p100 into the active transcription factor p52. Using RNA interference methods, we further show that NF-kappaB2/p100 is required for the transformation induced by Tax1, as determined by the ability to convert a T-cell line (CTLL-2) from interleukin-2 (IL-2)-dependent to -independent growth. While Tax2 shows a reduced transforming activity relative to Tax1, Tax2 fused with a PDZ domain binding motif (PBM) present only in Tax1 shows transforming activity equivalent to that of Tax1 in CTLL-2 cells expressing an inducer of p52 processing. These results reveal that the activation of NF-kappaB2/p100 plays a crucial role in the Tax1-mediated transformation of T cells and that NF-kappaB2/p100 activation and PBM function are both responsible for the augmented transforming activity of Tax1 relative to Tax2, thus suggesting that these Tax1-specific functions play crucial roles in HTLV-1 leukemogenesis.
Collapse
Affiliation(s)
- Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yan GR, He QY. Functional proteomics to identify critical proteins in signal transduction pathways. Amino Acids 2007; 35:267-74. [PMID: 17704892 DOI: 10.1007/s00726-007-0594-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 05/25/2007] [Indexed: 01/07/2023]
Abstract
Reversible protein phosphorylation plays a crucial role in the regulation of signaling pathways that control various biological responses, such as cell growth, differentiation, invasion, metastasis and apoptosis. Proteomics is a powerful research approach for fully monitoring global molecular responses to the activation of signal transduction pathways. Identification of different phosphoproteins and their phosphorylation sites by functional proteomics provides informational insights into signaling pathways triggered by all kinds of factors. This review summarizes how functional proteomics can be used to answer specific questions related to signal transduction systems of interest. By examining our own example on identifying the novel phosphoproteins in signaling pathways activated by EB virus-encoded latent membrane protein 1 (LMP1), we demonstrated a functional proteomic strategy to elucidate the molecular activity of phosphorylated annexin A2 in LMP1 signaling pathway. Functional profiling of signaling pathways is promising for the identification of novel targets for drug discovery and for the understanding of disease pathogenesis.
Collapse
Affiliation(s)
- G-R Yan
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| | | |
Collapse
|
43
|
Mainou BA, Everly DN, Raab-Traub N. Unique signaling properties of CTAR1 in LMP1-mediated transformation. J Virol 2007; 81:9680-92. [PMID: 17626074 PMCID: PMC2045399 DOI: 10.1128/jvi.01001-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene is considered the EBV oncogene as it is necessary for EBV-mediated transformation of B lymphocytes and itself transforms rodent fibroblasts. LMP1 activates the NF-kappaB, phosphatidylinositol 3-kinase (PI3K)-Akt, mitogen-activated protein kinase, and Jun N-terminal protein kinase signaling pathways through its two signaling domains, carboxyl-terminal activating regions 1 and 2 (CTAR1 and CTAR2). CTAR1 and CTAR2 induce signal transduction pathways through their direct (CTAR1) or indirect (CTAR2) recruitment of tumor necrosis factor receptor-associated factors (TRAFs). CTAR1 is necessary for LMP1-mediated transformation as well as activation of PI3K signaling and induction of cell cycle markers associated with G(1)/S transition. In this study, activation of PI3K-Akt signaling and deregulation of cell cycle markers were mapped to the TRAF-binding domain within CTAR1 and to the residues between CTAR1 and CTAR2. LMP1 CTAR1 also activated the MEK1/2-extracellular signal-regulated kinase 1/2 signaling pathway, and this activation was necessary for LMP1-induced transformation of Rat-1 fibroblasts. Dominant-negative forms of TRAF2 and TRAF3 inhibited but did not fully block LMP1-mediated transformation. These findings identify a new signaling pathway that is uniquely activated by the TRAF-binding domain of LMP1 and is required for transformation.
Collapse
Affiliation(s)
- Bernardo A Mainou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
44
|
Yamada K, Moriuchi R, Mori T, Okazaki E, Kohno T, Nagayasu T, Matsuyama T, Katamine S. Tgat, a Rho-specific guanine nucleotide exchange factor, activates NF-kappaB via physical association with IkappaB kinase complexes. Biochem Biophys Res Commun 2007; 355:269-74. [PMID: 17292329 DOI: 10.1016/j.bbrc.2007.01.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Constitutive activity of NF-kappaB is associated with various human cancers including adult T-cell leukemia (ATL). In this study, we have found Tgat that activates NF-kappaB by screening a cDNA expression library derived from ATL cells. We previously identified Tgat as the oncogene, which consists of the Rho-guanine nucleotide exchange factor (Rho-GEF) domain and the unique C-terminal region, as a consequence of alternative splicing of the Trio transcript. Tgat activated the IKK activity by binding with the IkappaB kinase (IKK) complex. The Tgat mutants lacking the C-terminal region failed to associate with the IKK complex suggesting an essential role of the unique sequence. The mutation causing the loss of GEF activity also abolished the NF-kappaB activation. Moreover, co-expressed p100 was efficiently processed into p52 in the Tgat-expressing cells, suggesting the co-involvement of non-canonical pathway.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kieser A. Signal transduction by the Epstein-Barr virus oncogene latent membrane protein 1 (LMP1). ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Abstract
Transcription factors of the NF-kappaB family regulate hundreds of genes in the context of multiple important physiological and pathological processes. NF-kappaB activation depends on phosphorylation-induced proteolysis of inhibitory IkappaB molecules and NF-kappaB precursors by the ubiquitin-proteasome system. Most of the diverse signaling pathways that activate NF-kappaB converge on IkappaB kinases (IKK), which are essential for signal transmission. Many important details of the composition, regulation and biological function of IKK have been revealed in the last years. This review summarizes current aspects of structure and function of the regular stoichiometric components, the regulatory transient protein interactions of IKK and the mechanisms that contribute to its activation, deactivation and homeostasis. Both phosphorylation and ubiquitinatin (destructive as well as non-destructive) are crucial post-translational events in these processes. In addition to controlling induced IkappaB degradation in the cytoplasm and processing of the NF-kappaB precursor p100, nuclear IKK components have been found to act directly at the chromatin level of induced genes and to mediate responses to DNA damage. Finally, IKK is engaged in cross talk with other pathways and confers functions independently of NF-kappaB.
Collapse
|
47
|
Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, Kotani H, Yamaoka S, Miyake K, Aoe S, Kamei Y, Ogawa Y. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2006; 27:84-91. [PMID: 17082484 DOI: 10.1161/01.atv.0000251608.09329.9a] [Citation(s) in RCA: 617] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Previous studies demonstrated that obese adipose tissue is characterized by increased infiltration of macrophages, suggesting that they might represent an important source of inflammation. Using an in vitro coculture system composed of 3T3-L1 adipocytes and RAW264 macrophages, we previously demonstrated that saturated fatty acids (FAs) and tumor necrosis factor (TNF)-alpha derived from adipocytes and macrophages, respectively, play a major role in the coculture-induced inflammatory changes. METHODS AND RESULTS Coculture of adipocytes and macrophages resulted in the activation of nuclear factor-kappaB (NF-kappaB), a primary regulator of inflammatory responses, in both cell types. Pharmacological inhibition of NF-kappaB markedly suppressed the coculture-induced production of proinflammatory cytokines and adipocyte lipolysis. Peritoneal macrophages obtained from Toll-like receptor 4 (TLR4) mutant mice exhibited marked attenuation of TNFalpha production in response to saturated FAs. Notably, coculture of hypertrophied adipocytes and TLR4-mutant macrophages resulted in marked inhibition of proinflammatory cytokine production and adipocyte lipolysis. We also observed that endogenous FAs, which are released from adipocytes via the beta3-adrenergic stimulation, resulted in the activation of the TLR4/NF-kappaB pathway. CONCLUSIONS These findings suggest that saturated FAs, which are released in large quantities from hypertrophied adipocytes via the macrophage-induced adipocyte lipolysis, serve as a naturally occurring ligand for TLR4, thereby inducing the inflammatory changes in both adipocytes and macrophages through NF-kappaB activation.
Collapse
Affiliation(s)
- Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72:1161-79. [PMID: 16970925 DOI: 10.1016/j.bcp.2006.08.007] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 01/08/2023]
Abstract
The past two decades have led to a tremendous work on the transcription factor NF-kappaB and its molecular mechanisms of activation. The nuclear translocation of NF-kappaB is controlled by two main pathways: the classical and the alternative NF-kappaB pathways. The classical NF-kappaB pathway activates the IKK complex that controls the inducible degradation of most IkappaB family members that are IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and p105. The alternative NF-kappaB pathway induces p100 processing and p52 generation through the activation of at least two kinases, which are NIK and IKKalpha. Genetic studies have shown that IKKgamma is dispensable for the alternative pathway, which suggests the existence of an alternative IKKalpha-containing complex. It is noteworthy that activation of particular p52 heterodimers like p52/RelB requires solely the alternative pathway while activation of p52/p65 or p52/c-Rel involves a "hybrid pathway". Among others, LTbetaR, BAFF-R, CD40 and RANK have the ability to induce the alternative pathway. The latter plays some roles in biological functions controlled by these receptors, which are the development of secondary lymphoid organs, the proliferation, survival and maturation of B cell, and the osteoclastogenesis. Exacerbated activation of the alternative pathway is potentially associated to a wide range of disorders like rheumatoid arthritis, ulcerative colitis or B cell lymphomas. Therefore, inhibitors of the alternative pathway could be valuable tools for the treatment of inflammatory disorders and cancers.
Collapse
Affiliation(s)
- Emmanuel Dejardin
- Laboratory of Virology & Immunology, Centre of Biomedical Integrative Genoproteomics (CBIG), University of Liège, Avenue de l'Hôpital, Sart-Tilman, CHU, B23, 4000 Liege, Belgium.
| |
Collapse
|
49
|
Park GY, Wang X, Hu N, Pedchenko TV, Blackwell TS, Christman JW. NIK is involved in nucleosomal regulation by enhancing histone H3 phosphorylation by IKKalpha. J Biol Chem 2006; 281:18684-90. [PMID: 16675465 PMCID: PMC4360958 DOI: 10.1074/jbc.m600733200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exact physiological role of NF-kappaB-inducing kinase (NIK) in the NF-kappaB activation pathway has not been defined, although it is an upstream kinase of IKKalpha. Recent studies have indicated that IKKalpha is a nucleosomal modifier of NF-kappaB signaling. We hypothesized that NIK generates a proximal signal that contributes to IKKalpha modification of nucleosomal structure through phosphorylation of histone H3 and enhancement of target gene expression. By using a chromatin immunoprecipitation assay, our data show that endogenous IKKalpha is recruited to the promoter site of several NF-kappaB-dependent genes in macrophages. Our data show that immunoreactive NIK is rapidly recruited to nuclear compartment in macrophages in response to treatment with endotoxin where it augments phosphorylation of histone H3 by inducing phosphorylation and kinase activity of IKKalpha. A small interfering RNA knockdown of NIK markedly reduces phosphorylation of histone H3 in endotoxin treated macrophages. These data, together, demonstrate a novel role for NIK as a histone H3 modifier, through an accessory pathway from NIK to IKKalpha, that could play an important role in the endotoxin response through modification of nucleosomal structure.
Collapse
Affiliation(s)
- Gye Young Park
- Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, Illinois 60612
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37203
- Department of Veterans Affairs, Nashville, Tennessee 37203
| | - Xuerong Wang
- Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, Illinois 60612
| | - Ningning Hu
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37203
- Department of Veterans Affairs, Nashville, Tennessee 37203
| | - Tetyana V. Pedchenko
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37203
- Department of Veterans Affairs, Nashville, Tennessee 37203
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37203
- Department of Veterans Affairs, Nashville, Tennessee 37203
| | - John W. Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, Illinois 60612
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37203
- Department of Veterans Affairs, Nashville, Tennessee 37203
| |
Collapse
|
50
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|