1
|
Chen X, Yu H, Yin Y, Cai B, shi G, Xu Y, Rong L, Yu X, Wang B, Zhou C, Wang J, Ding C, Li T, Xu Y. Abnormal lineage differentiation of peri-implantation aneuploid embryos revealed by single-cell RNA sequencing. Clin Transl Med 2025; 15:e70326. [PMID: 40329849 PMCID: PMC12056499 DOI: 10.1002/ctm2.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Affiliation(s)
- Xueyao Chen
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Hanwen Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yu Yin
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Bing Cai
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Gaohui shi
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yan Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Lujuan Rong
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiu Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Boyan Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Canquan Zhou
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Jichang Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenhui Ding
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yanwen Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| |
Collapse
|
2
|
Kogay R, Wolf YI, Koonin EV. Horizontal Transfer of Bacterial Operons into Eukaryote Genomes. Genome Biol Evol 2025; 17:evaf055. [PMID: 40111106 PMCID: PMC11965790 DOI: 10.1093/gbe/evaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
In prokaryotes, functionally linked genes are typically clustered into operons, which are transcribed into a single mRNA, providing for the coregulation of the production of the respective proteins, whereas eukaryotes generally lack operons. We explored the possibility that some prokaryotic operons persist in eukaryotic genomes after horizontal gene transfer (HGT) from bacteria. Extensive comparative analysis of prokaryote and eukaryote genomes revealed 33 gene pairs originating from bacterial operons, mostly encoding enzymes of the same metabolic pathways, and represented in distinct clades of fungi or amoebozoa. This amount of HGT is about an order of magnitude less than that observed for the respective individual genes. These operon fragments appear to be relatively recent acquisitions as indicated by their narrow phylogenetic spread and low intron density. In 20 of the 33 horizontally acquired operonic gene pairs, the genes are fused in the respective group of eukaryotes so that the encoded proteins become domains of a multifunctional protein ensuring coregulation and correct stoichiometry. We hypothesize that bacterial operons acquired via HGT initially persist in eukaryotic genomes under a neutral evolution regime and subsequently are either disrupted by genome rearrangement or undergo gene fusion which is then maintained by selection.
Collapse
Affiliation(s)
- Roman Kogay
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Cao R, Thatavarty A, King KY. Forged in the fire: Lasting impacts of inflammation on hematopoietic progenitors. Exp Hematol 2024; 134:104215. [PMID: 38580008 DOI: 10.1016/j.exphem.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.
Collapse
Affiliation(s)
- Ruoqiong Cao
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
5
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. Nat Struct Mol Biol 2024; 31:633-643. [PMID: 38267599 DOI: 10.1038/s41594-023-01189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remains elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp of entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Ishiyama S, Kimura M, Nakagawa T, Kishigami S, Mochizuki K. Induction of the Lipid Droplet Formation Genes in Steatohepatitis Mice by Embryo/Postnatal Nutrient Environment Is Associated with Histone Acetylation around the Genes. J Nutr Sci Vitaminol (Tokyo) 2024; 70:318-327. [PMID: 39218693 DOI: 10.3177/jnsv.70.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, we have demonstrated that mice, cultured embryos in α-minimum essential medium (αMEM) and subsequent fed a high-fat, high-sugar diet, developed steatohepatitis. In this study, we investigated using these samples whether the expression of lipid droplet formation genes in the liver is higher in MEM mice, whether these expressions are regulated by histone acetylation, writers/readers of histone acetylation, and the transcriptional factors of endoplasmic reticulum stress. Mice were produced by two-cell embryos in αMEM or standard potassium simplex-optimized medium (control) in vitro for 48 h, and implanted into an oviduct for spontaneous delivery. MEM and control-mice were fed a high-fat, high-sugar diet for 18 wk, and then liver samples were collected and analyzed by histology, qRT-PCR, and chromatin immunoprecipitation assay. Gene expression of Cidea, Cidec, and Plin4 were higher in MEM mice and histone H3K9 acetylation, BRD4, and CBP were higher in MEM mice than in control mice around those genes. However, the binding of endoplasmic reticulum stress-related transcription factors (ATF4, CHOP and C/EBPα) around those genes in the liver, was not clearly differed between MEM mice and control mice. The increased expression of Cidea, Cidec and Plin4 in the liver, accompanied by the development of steatohepatitis in mice induced is positively associated with increased histone H3K9 acetylation and CBP and BRD4 binding around these genes.
Collapse
Affiliation(s)
- Shiori Ishiyama
- Faculty of Life and Environmental Sciences, University of Yamanashi
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | - Mayu Kimura
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | | | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
- Advanced Biotechnology Center, University of Yamanashi
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi
| | - Kazuki Mochizuki
- Faculty of Life and Environmental Sciences, University of Yamanashi
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| |
Collapse
|
7
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554718. [PMID: 37790476 PMCID: PMC10542146 DOI: 10.1101/2023.08.25.554718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remain elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
9
|
Iyer K, Mitra A, Mitra D. Identification of 5' upstream sequence involved in HSPBP1 gene transcription and its downregulation during HIV-1 infection. Virus Res 2023; 324:199034. [PMID: 36581045 DOI: 10.1016/j.virusres.2022.199034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) is known to modulate the host environment for successful replication and propagation like other viruses. The virus utilises its proteins to interact with or modulate host factors and host signalling pathways that may otherwise restrict the virus. A previous study from our lab has shown that the host heat shock protein 70 (HSP70) binding protein (HSPBP1) is a co-chaperone that inhibits viral replication. We have also shown that the virus downregulates HSPBP1 during infection. However, the mechanism of downregulation remains to be elucidated. In the present study, we hypothesized that the HSPBP1 promoter may be repressed during infection leading to its downmodulation at the RNA and protein levels. The 5' upstream region of the HSPBP1 gene was first mapped and it was identified that a fragment comprising of a ∼600 bp upstream region of the transcription start site show the highest promoter-like activity. Further, the Sp1 transcription factor was shown to be essential for normal promoter activation. Our results further demonstrate that HIV-1 downregulates the activity of the identified promoter. It was seen that the viral transactivator protein, Tat, was responsible for the downmodulation of the HSPBP1 promoter. HIV-1 Tat is known to bind and regulate several cellular promoters during infection, thereby making the environment conducive for establishment of the virus. Our results further show that Tat is recruited to the HSPBP1 promoter and in the presence of Tat, recruitment of Sp1 on HSPBP1 promoter was decreased, which explains the suppression of HSPBP1 during HIV-1 infection. Therefore, this study further adds to the list of cellular promoters that are modulated by Tat during HIV-1 infection either directly or indirectly.
Collapse
Affiliation(s)
- Kruthika Iyer
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Alapani Mitra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Debashis Mitra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
10
|
Fabri LM, Moraes CM, Costa MIC, Garçon DP, Fontes CFL, Pinto MR, McNamara JC, Leone FA. Salinity-dependent modulation by protein kinases and the FXYD2 peptide of gill (Na +, K +)-ATPase activity in the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183982. [PMID: 35671812 DOI: 10.1016/j.bbamem.2022.183982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min-1 mg-1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Carlos F L Fontes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelo R Pinto
- Laboratório de Biopatologia e Biologia Molecular, Universidade de Uberaba, Uberaba, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
11
|
Kottom TJ, Carmona EM, Limper AH. Gene Expression in Lung Epithelial Cells Following Interaction with Pneumocystis carinii and its Specific Life Forms Yields Insights into Host Gene Responses to Infection. Microbiol Immunol 2022; 66:238-251. [PMID: 35229348 PMCID: PMC9090966 DOI: 10.1111/1348-0421.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Pneumocystis spp. interacts with epithelial cells in the alveolar spaces of the lung. It is thought that the binding of Pneumocystis to host cell epithelium is needed for life cycle completion and proliferation. The effect of this interaction on lung epithelial cells have previously shown that the trophic form of this organism greatly inhibits p34 cdc2 activity, a serine/threonine kinase required for transition from G2 to M phase in the cell cycle. To gain further insight into the host response during Pneumocystis pneumonia (PCP), we used microarray technology to profile epithelial cell (A549) gene expression patterns following Pneumocystis carinii interaction. Furthermore, we isolated separate populations of cyst and trophic forms of P. carinii, which were then applied to the lung epithelial cells. Differential expression of genes involved in various cellular functions dependent on the specific P. carinii life form in contact with the A549 cell were identified. The reliability of our data was further confirmed by Northern blot analysis on a number of selected up or down regulated transcripts. The transcriptional response to P. carinii was dominated by cytokines, apoptotic, and anti-apoptotic related genes. These results reveal several previously unknown effects of P. carinii on the lung epithelial cell and provide insight into the complex interactions of host and pathogen. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
12
|
LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6C high to Ly6C int/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discov 2020; 6:87. [PMID: 33298871 PMCID: PMC7683537 DOI: 10.1038/s41421-020-00211-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are mainly divided into two populations, which play a different role in physiological and pathological conditions. The differentiation of these cells may be regulated by transcription factors. However, it is unclear how to modulate these transcription factors to affect differentiation of these cells. Here, we found that lncLy6C, a novel ultraconserved lncRNA, promotes differentiation of Ly6Chigh inflammatory monocytes into Ly6Clow/neg resident macrophages. We demonstrate that gut microbiota metabolites butyrate upregulates the expression of lncLy6C. LncLy6C deficient mice had markedly increased Ly6Chigh pro-inflammatory monocytes and reduced Ly6Cneg resident macrophages. LncLy6C not only bound with transcription factor C/EBPβ but also bound with multiple lysine methyltransferases of H3K4me3 to specifically promote the enrichment of C/EBPβ and H3K4me3 marks on the promoter region of Nr4A1, which can promote Ly6Chigh into Ly6Cneg macrophages. As a result, lncLy6C causes the upregulation of Nr4A1 to promote Ly6Chigh inflammatory monocytes to differentiate into Ly6Cint/neg resident macrophages.
Collapse
|
13
|
Yu K, Davidson CE, Burshtyn DN. LILRB1 Intron 1 Has a Polymorphic Regulatory Region That Enhances Transcription in NK Cells and Recruits YY1. THE JOURNAL OF IMMUNOLOGY 2020; 204:3030-3041. [PMID: 32321755 DOI: 10.4049/jimmunol.2000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
LILRB1 is a highly polymorphic receptor expressed by subsets of innate and adaptive immune cells associated with viral and autoimmune diseases and targeted by pathogens for immune evasion. LILRB1 expression on human NK cells is variegated, and the frequency of LILRB1+ cells differs among people. However, little is known about the processes and factors mediating LILRB1 transcription in NK cells. LILRB1 gene expression in lymphoid and myeloid cells arises from two distinct promoters that are separated by the first exon and intron. In this study, we identified a polymorphic 3-kb region within LILRB1 intron 1 that is epigenetically marked as an active enhancer in human lymphoid cells and not monocytes. This region possesses multiple YY1 sites, and complexes of the promoter/enhancer combination were isolated using anti-YY1 in chromatin immunoprecipitation-loop. CRISPR-mediated deletion of the 3-kb region lowers LILRB1 expression in human NKL cells. Together, these results indicate the enhancer in intron 1 binds YY1 and suggest YY1 provides a scaffold function enabling enhancer function in regulating LILRB1 gene transcription in human NK cells.
Collapse
Affiliation(s)
- Kang Yu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Chelsea E Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; .,Alberta Transplant Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; and.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
14
|
A simple cytofluorimetric score may optimize testing for biallelic CEBPA mutations in patients with acute myeloid leukemia. Leuk Res 2019; 86:106223. [DOI: 10.1016/j.leukres.2019.106223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022]
|
15
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Cabianca DS, Muñoz-Jiménez C, Kalck V, Gaidatzis D, Padeken J, Seeber A, Askjaer P, Gasser SM. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature 2019; 569:734-739. [PMID: 31118512 DOI: 10.1038/s41586-019-1243-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
The execution of developmental programs of gene expression requires an accurate partitioning of the genome into subnuclear compartments, with active euchromatin enriched centrally and silent heterochromatin at the nuclear periphery1. The existence of degenerative diseases linked to lamin A mutations suggests that perinuclear binding of chromatin contributes to cell-type integrity2,3. The methylation of lysine 9 of histone H3 (H3K9me) characterizes heterochromatin and mediates both transcriptional repression and chromatin anchoring at the inner nuclear membrane4. In Caenorhabditis elegans embryos, chromodomain protein CEC-4 bound to the inner nuclear membrane tethers heterochromatin through H3K9me3,5, whereas in differentiated tissues, a second heterochromatin-sequestering pathway is induced. Here we use an RNA interference screen in the cec-4 background and identify MRG-1 as a broadly expressed factor that is necessary for this second chromatin anchor in intestinal cells. However, MRG-1 is exclusively bound to euchromatin, suggesting that it acts indirectly. Heterochromatin detachment in double mrg-1; cec-4 mutants is rescued by depleting the histone acetyltransferase CBP-1/p300 or the transcription factor ATF-8, a member of the bZIP family (which is known to recruit CBP/p300). Overexpression of CBP-1 in cec-4 mutants is sufficient to delocalize heterochromatin in an ATF-8-dependent manner. CBP-1 and H3K27ac levels increase in heterochromatin upon mrg-1 knockdown, coincident with delocalization. This suggests that the spatial organization of chromatin in C. elegans is regulated both by the direct perinuclear attachment of silent chromatin, and by an active retention of CBP-1/p300 in euchromatin. The two pathways contribute differentially in embryos and larval tissues, with CBP-1 sequestration by MRG-1 having a major role in differentiated cells.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland.,Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Dittmar G, Hernandez DP, Kowenz-Leutz E, Kirchner M, Kahlert G, Wesolowski R, Baum K, Knoblich M, Hofstätter M, Muller A, Wolf J, Reimer U, Leutz A. PRISMA: Protein Interaction Screen on Peptide Matrix Reveals Interaction Footprints and Modifications- Dependent Interactome of Intrinsically Disordered C/EBPβ. iScience 2019; 13:351-370. [PMID: 30884312 PMCID: PMC6424098 DOI: 10.1016/j.isci.2019.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPβ) is a pioneer transcription factor that specifies cell differentiation. C/EBPβ is intrinsically unstructured, a molecular feature common to many proteins involved in signal processing and epigenetics. The structure of C/EBPβ differs depending on alternative translation initiation and multiple post-translational modifications (PTM). Mutation of distinct PTM sites in C/EBPβ alters protein interactions and cell differentiation, suggesting that a C/EBPβ PTM indexing code determines epigenetic outcomes. Herein, we systematically explored the interactome of C/EBPβ using an array technique based on spot-synthesized C/EBPβ-derived linear tiling peptides with and without PTM, combined with mass spectrometric proteomic analysis of protein interactions. We identified interaction footprints of ∼1,300 proteins in nuclear extracts, many with chromatin modifying, chromatin remodeling, and RNA processing functions. The results suggest that C/EBPβ acts as a multi-tasking molecular switchboard, integrating signal-dependent modifications and structural plasticity to orchestrate interactions with numerous protein complexes directing cell fate and function.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany.
| | - Daniel Perez Hernandez
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Günther Kahlert
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Radoslaw Wesolowski
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Katharina Baum
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Knoblich
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Hofstätter
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Arnaud Muller
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany.
| |
Collapse
|
18
|
Sun Y, Zhou B, Mao F, Xu J, Miao H, Zou Z, Phuc Khoa LT, Jang Y, Cai S, Witkin M, Koche R, Ge K, Dressler GR, Levine RL, Armstrong SA, Dou Y, Hess JL. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018; 34:643-658.e5. [PMID: 30270123 PMCID: PMC6179449 DOI: 10.1016/j.ccell.2018.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpression.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhenhua Zou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Le Tran Phuc Khoa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Younghoon Jang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheng Cai
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Witkin
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ross L Levine
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- Dana Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jay L Hess
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Gantala SR, Kondapalli MS, Kummari R, Padala C, Tupurani MA, Kupsal K, Galimudi RK, Gundapaneni KK, Puranam K, Shyamala N, Guditi S, Rapur R, Hanumanth SR. Collagenase-1 (-1607 1G/2G), Gelatinase-A (-1306 C/T), Stromelysin-1 (-1171 5A/6A) functional promoter polymorphisms in risk prediction of type 2 diabetic nephropathy. Gene 2018; 673:22-31. [DOI: 10.1016/j.gene.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022]
|
20
|
Xu D, Luo HW, Hu W, Hu SW, Yuan C, Wang GH, Zhang L, Yu H, Magdalou J, Chen LB, Wang H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring. FASEB J 2018; 32:5563-5576. [PMID: 29718709 DOI: 10.1096/fj.201701557r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hanwen W Luo
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Shuwei W Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Guihua H Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Liaobin B Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
21
|
Wattanavanitchakorn S, Rojvirat P, Chavalit T, MacDonald MJ, Jitrapakdee S. CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) regulate expression of the human fructose-1,6-bisphosphatase 1 (FBP1) gene in human hepatocellular carcinoma HepG2 cells. PLoS One 2018; 13:e0194252. [PMID: 29566023 PMCID: PMC5863999 DOI: 10.1371/journal.pone.0194252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively. Mutations of these transcription factor binding sites result in marked decrease of C/EBPα- or HNF4α-mediated transcription activation of FBP1 promoter-luciferase reporter expression. Electrophoretic mobility shift assays of -228/-208 C/EBPα or -566/-554 and -212/-198 HNF4α sites with nuclear extract of HepG2 cells overexpressing C/EBPα or HNF4α confirms binding of these two transcription factors to these sites. Finally, we showed that siRNA-mediated suppression of C/EBPα or HNF4α expression in HepG2 cells lowers expression of FBP1 in parallel with down-regulation of expression of other gluconeogenic enzymes. Our results suggest that an overall gluconeogenic program is regulated by these two transcription factors, enabling transcription to occur in a liver-specific manner.
Collapse
Affiliation(s)
| | - Pinnara Rojvirat
- Division of Interdisciplinary, Mahidol University, Kanjanaburi, Thailand
| | - Tanit Chavalit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Michael J. MacDonald
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
22
|
Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol Neurobiol 2018; 55:6914-6926. [DOI: 10.1007/s12035-018-0903-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/10/2018] [Indexed: 02/01/2023]
|
23
|
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Curr Pharm Biotechnol 2018; 19:611-621. [PMID: 29886828 PMCID: PMC6204661 DOI: 10.2174/1389201019666180611093428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oligonucleotide drug development has revolutionised the drug discovery field. Within this field, 'small' or 'short' activating RNAs (saRNA) are a more recently discovered category of short double-stranded RNA with clinical potential. saRNAs promote transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). OBJECTIVE The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, the potential clinical application of saRNAs is to increase target gene expression in a sequence-specific manner. saRNA-based therapeutics present opportunities for expanding the "druggable genome" with particular areas of interest including transcription factor activation and cases of haploinsufficiency. RESULTS AND CONCLUSION In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEBPA, induces increased expression of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEBPA is presently in Phase I clinical trials for hepatocellular carcinoma (HCC). The clinical development of MTL-CEBPA will demonstrate "proof of concept" that saRNAs can provide the basis for drugs which enhance target gene expression and consequently improve treatment outcome in patients.
Collapse
Affiliation(s)
| | | | | | - John J. Rossi
- Address correspondence to this author at the Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; Tel: 626-218-7390; Fax: 626-301-8371; E-mail:
| |
Collapse
|
24
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
25
|
Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Identification of two novel isoforms of mouse NUR77 lacking N-terminal domains. IUBMB Life 2017; 69:106-114. [PMID: 28111880 DOI: 10.1002/iub.1605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/18/2016] [Indexed: 12/21/2022]
Abstract
Nur77 is a member of nuclear receptor superfamily that acts as a transcription factor and regulates expression of multiple genes. Subcellular localization of Nur77 protein plays an important role in the survival and cell death. In this study, we have predicted and confirmed alternatively spliced two new transcripts of Nur77 gene in mouse. The newly identified transcripts have their alternatively spliced first exon located upstream of published 5'-UTR of the gene. Transcription factor binding sites in the possible promoter regions of these transcripts were also analyzed. Expression of novel transcript variants was found to be significantly lower than the already published transcript. New transcript variants encode for NUR77 protein isoforms which are significantly smaller in size due to lack of transactivation domain and a part of DNA binding domain. Western blot analysis using NUR77 specific antibody confirmed the existence of these smaller variants in mouse. Localization of these new isoforms was predicted to be majorly outside the nucleus. In silico analysis of the conceptually translated proteins was performed using different bioinformatics tools. The results obtained in this study offer further insight into novel area of research on extensively studied Nur77. © 2017 IUBMB Life, 69(2):106-114, 2017.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
26
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
27
|
Ruggiero C, Lalli E. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes. Front Endocrinol (Lausanne) 2016; 7:24. [PMID: 27065945 PMCID: PMC4810002 DOI: 10.3389/fendo.2016.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| |
Collapse
|
28
|
Dixit D, Ahmad F, Ghildiyal R, Joshi SD, Sen E. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma. Exp Cell Res 2016; 344:132-142. [PMID: 27001465 DOI: 10.1016/j.yexcr.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
Abstract
Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.
Collapse
Affiliation(s)
- Deobrat Dixit
- National Brain Research Centre, Manesar, Haryana, India
| | - Fahim Ahmad
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana, India.
| |
Collapse
|
29
|
Shimada H, Otero M, Tsuchimochi K, Yamasaki S, Sakakima H, Matsuda F, Sakasegawa M, Setoguchi T, Xu L, Goldring MB, Tanimoto A, Komiya S, Ijiri K. CCAAT/enhancer binding protein β (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 β (GADD45β) in articular chondrocytes. Pathol Res Pract 2016; 212:302-9. [PMID: 26896926 DOI: 10.1016/j.prp.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/09/2016] [Accepted: 01/24/2016] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is a whole joint disease characterized by cartilage degradation, which causes pain and disability in older adults. Our previous work showed that growth arrest and DNA damage-inducible protein 45 β (GADD45β) is upregulated in chondrocyte clusters in OA cartilage, especially in the early stage of this disease. CCAAT/enhancer binding protein β (C/EBPβ) is expressed in the hypertrophic growth plate chondrocytes and functions in synergy with GADD45β. Here, the presence and localization of these proteins was assessed by immunohistochemistry using articular cartilage from OA patients, revealing colocalization of C/EBPβ and GADD45β in OA chondrocytes. GADD45β promoter analysis was performed to determine whether C/EBPβ directly regulates GADD45β transcription. Furthermore, we analyzed the effect of C/EBPβ on Gadd45β gene regulation in articular chondrocytes in vivo and in vitro. Immunohistochemical analysis of C/ebpβ-haploinsufficient mice (C/ebpβ(+/-)) cartilage showed that C/ebpβ haploinsufficiency led to reduced Gadd45β gene expression in these cells. In vitro, we evaluated the effects of conditional C/EBPβ overexpression driven by the cartilage oligomeric matrix protein (Comp) promoter in mComp-tTA;pTRE-Tight-BI-DsRed-mC/ebpβ transgenic mice. C/EBPβ overexpression significantly stimulated Gadd45β gene expression in articular chondrocytes. Taken together, our data demonstrate that C/EBPβ plays a central role in controlling Gadd45β gene expression in these cells.
Collapse
Affiliation(s)
- Hirofumi Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Miguel Otero
- Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Kaneyuki Tsuchimochi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Onga Nakama Medical Association, Onga Hospital, Fukuoka, Japan
| | - Satoshi Yamasaki
- Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Fumiyo Matsuda
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Megumi Sakasegawa
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine And Faculty of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary B Goldring
- Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Akihide Tanimoto
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Ijiri
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
30
|
Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2. Cell Signal 2015; 27:2252-60. [PMID: 26247811 DOI: 10.1016/j.cellsig.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 01/18/2023]
Abstract
CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.
Collapse
|
31
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
32
|
Choi EK, Cho YJ, Yang HJ, Kim KS, Lee IS, Jang JC, Kim KH, Bang JH, Kim Y, Kim SH, Cho YH, Yoon NY, Jang YP, Song MY, Jang HJ. Coix seed extract attenuates the high-fat induced mouse obesity via PPARγ and C/EBPα a downregulation. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0020-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Tang Y, Xiong K, Shen M, Mu Y, Li K, Liu H. CCAAT-enhancer binding protein (C/EBP) β regulates insulin-like growth factor (IGF) 1 expression in porcine liver during prenatal and postnatal development. Mol Cell Biochem 2014; 401:209-18. [DOI: 10.1007/s11010-014-2308-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
|
34
|
Lovrics A, Gao Y, Juhász B, Bock I, Byrne HM, Dinnyés A, Kovács KA. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One 2014; 9:e111430. [PMID: 25398016 PMCID: PMC4232242 DOI: 10.1371/journal.pone.0111430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.
Collapse
Affiliation(s)
| | - Yu Gao
- Biotalentum Ltd., Gödöllö, Hungary
| | | | - István Bock
- Biotalentum Ltd., Gödöllö, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary
| | - Helen M. Byrne
- Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - András Dinnyés
- Biotalentum Ltd., Gödöllö, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Krisztián A. Kovács
- Biotalentum Ltd., Gödöllö, Hungary
- Institute of Science and Technology, Klosterneuburg, Austria
| |
Collapse
|
35
|
Carpenter S, Fitzgerald KA. Transcription of inflammatory genes: long noncoding RNA and beyond. J Interferon Cytokine Res 2014; 35:79-88. [PMID: 25250698 DOI: 10.1089/jir.2014.0120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune system must coordinate elaborate signaling pathways to turn on expression of hundreds of genes to provide protection against pathogens and resolve acute inflammation. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional on and off switches in response to distinct external stimuli. Three classes of transcription factors act together with transcriptional coregulators and chromatin-modifying complexes to control these programs. In addition, newer studies implicate long noncoding RNA (lncRNA) as additional regulators of these responses. LncRNAs promote, fine-tune, and restrain the inflammatory program. In this study, we provide an overview of gene regulation and the emerging importance of lncRNAs in the immune system.
Collapse
Affiliation(s)
- Susan Carpenter
- 1 Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | | |
Collapse
|
36
|
Ayala E, Downey JS, Mashburn-Warren L, Senadheera DB, Cvitkovitch DG, Goodman SD. A biochemical characterization of the DNA binding activity of the response regulator VicR from Streptococcus mutans. PLoS One 2014; 9:e108027. [PMID: 25229632 PMCID: PMC4168254 DOI: 10.1371/journal.pone.0108027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 02/03/2023] Open
Abstract
Two-component systems (TCSs) are ubiquitous among bacteria and are among the most elegant and effective sensing systems in nature. They allow for efficient adaptive responses to rapidly changing environmental conditions. In this study, we investigated the biochemical characteristics of the Streptococcus mutans protein VicR, an essential response regulator that is part of the VicRK TCS. We dissected the DNA binding requirements of the recognition sequences for VicR in its phosphorylated and unphosphorylated forms. In doing so, we were able to make predictions for the expansion of the VicR regulon within S. mutans. With the ever increasing number of bacteria that are rapidly becoming resistant to even the antibiotics of last resort, TCSs such as the VicRK provide promising targets for a new class of antimicrobials.
Collapse
Affiliation(s)
- Eduardo Ayala
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
| | - Jennifer S. Downey
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Dilani B. Senadheera
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Steven D. Goodman
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bhaumik P, Davis J, Tropea JE, Cherry S, Johnson PF, Miller M. Structural insights into interactions of C/EBP transcriptional activators with the Taz2 domain of p300. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1914-21. [PMID: 25004968 PMCID: PMC4089485 DOI: 10.1107/s1399004714009262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/10/2022]
Abstract
Members of the C/EBP family of transcription factors bind to the Taz2 domain of p300/CBP and mediate its phosphorylation through the recruitment of specific kinases. Short sequence motifs termed homology boxes A and B, which comprise their minimal transactivation domains (TADs), are conserved between C/EBP activators and are necessary for specific p300/CBP binding. A possible mode of interaction between C/EBP TADs and the p300 Taz2 domain was implied by the crystal structure of a chimeric protein composed of residues 1723-1818 of p300 Taz2 and residues 37-61 of C/EBPℇ. The segment corresponding to the C/EBPℇ TAD forms two orthogonally disposed helices connected by a short linker and interacts with the core structure of Taz2 from a symmetry-related molecule. It is proposed that other members of the C/EBP family interact with the Taz2 domain in the same manner. The position of the C/EBPℇ peptide on the Taz2 protein interaction surface suggests that the N-termini of C/EBP proteins are unbound in the C/EBP-p300 Taz2 complex. This observation is in agreement with the known location of the docking site of protein kinase HIPK2 in the C/EBPβ N-terminus, which associates with the C/EBPβ-p300 complex.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jamaine Davis
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Protein Purification Core, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Scott Cherry
- Protein Purification Core, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Maria Miller
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
38
|
High glucose-induced increased expression of endothelin-1 in human endothelial cells is mediated by activated CCAAT/enhancer-binding proteins. PLoS One 2013; 8:e84170. [PMID: 24376792 PMCID: PMC3871648 DOI: 10.1371/journal.pone.0084170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
High glucose-induced endothelial dysfunction is partially mediated by the down-stream pathophysiological effects triggered by increased expression of endothelin-1 (ET-1). The molecular control mechanisms of ET-1 synthesis are yet to be discovered. Members of the CCAAT/enhancer-binding proteins (C/EBP) family are important regulators of key metabolic processes, cellular differentiation and proinflammatory genes. In this study, we aimed at elucidating the role of C/EBP in mediating the high glucose effect on ET-1 expression in human endothelial cells (EC). Human umbilical vein cells (EAhy926) and primary cultures of human aortic EC were exposed to high levels of glucose (16.5-25 mM). Real-time PCR, Western blot, enzyme-linked immunosorbent assay, ET-1 promoter-luciferase reporter analysis, and chromatin immunoprecipitation assays were employed to investigate ET-1 regulation. High glucose activated C/EBPα, C/EBPβ, and C/EBPδ in a dose-dependent manner. It also promoted significant increases in ET-1 gene and peptide expression. Chemical inhibition of JNK, p38MAPK and ERK1/2 diminished significantly the high glucose-induced nuclear translocation of C/EBP and ET-1 expression. Silencing of C/EBPα, C/EBPβ or C/EBPδ greatly reduced the high glucose-induced upregulation of ET-1 mRNA, pre-pro-ET-1, and ET-1 secretion. The expression of various C/EBP isoforms was selectively downregulated by siRNA-mediated gene silencing. In silico analysis indicated the existence of typical C/EBP elements within human ET-1 gene promoter. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ upregulated the luciferase level controlled by the ET-1 gene promoter. The direct interaction of C/EBPα, C/EBPβ or C/EBPδ proteins with the ET-1 promoter in high glucose-exposed EC was confirmed by chromatin immunoprecipitation assay. High glucose-induced ET-1 expression is mediated through multiple mechanisms. We present evidence that members of the C/EBP proinflammatory transcription factors are important regulators of ET-1 in high glucose-exposed human endothelial cells. High glucose-induced activation of C/EBP-related signaling pathways may induce excessive ET-1 synthesis, thus promoting vasoconstriction and dysfunction of the vascular wall cells in diabetes.
Collapse
|
39
|
Rozenberg JM, Bhattacharya P, Chatterjee R, Glass K, Vinson C. Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation. PLoS One 2013; 8:e78179. [PMID: 24244291 PMCID: PMC3820678 DOI: 10.1371/journal.pone.0078179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 01/11/2023] Open
Abstract
Background Transcription factors CREB, C/EBPβ and Jun regulate genes involved in keratinocyte proliferation and differentiation. We questioned if specific combinations of CREB, C/EBPβ and c-Jun bound to promoters correlate with RNA polymerase II binding, mRNA transcript levels and methylation of promoters in proliferating and differentiating keratinocytes. Results Induction of mRNA and RNA polymerase II by differentiation is highest when promoters are bound by C/EBP β alone, C/EBPβ together with c-Jun, or by CREB, C/EBPβ and c-Jun, although in this case CREB binds with low affinity. In contrast, RNA polymerase II binding and mRNA levels change the least upon differentiation when promoters are bound by CREB either alone or in combination with C/EBPβ or c-Jun. Notably, promoters bound by CREB have relatively high levels of RNA polymerase II binding irrespective of differentiation. Inhibition of C/EBPβ or c-Jun preferentially represses mRNA when gene promoters are bound by corresponding transcription factors and not CREB. Methylated promoters have relatively low CREB binding and, accordingly, those which are bound by C/EBPβ are induced by differentiation irrespective of CREB. Composite “Half and Half” consensus motifs and co localizing consensus DNA binding motifs are overrepresented in promoters bound by the combination of corresponding transcription factors. Conclusion Correlational and functional data describes combinatorial mechanisms regulating the activation of promoters. Colocalization of C/EBPβ and c-Jun on promoters without strong CREB binding determines high probability of activation upon keratinocyte differentiation.
Collapse
Affiliation(s)
- Julian M. Rozenberg
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paramita Bhattacharya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Biological Science Division, Indian Statistical Institute, Kolkata, India
| | - Kimberly Glass
- Harvard School of Public Health, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
41
|
Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Mol Oncol 2013; 7:929-43. [PMID: 23800415 DOI: 10.1016/j.molonc.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023] Open
Abstract
MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.
Collapse
|
42
|
Abraham BJ, Cui K, Tang Q, Zhao K. Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics 2013; 14:193. [PMID: 23510235 PMCID: PMC3636055 DOI: 10.1186/1471-2164-14-193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/07/2013] [Indexed: 12/24/2022] Open
Abstract
Background Human blood develops from self-renewing hematopoietic stem cells to terminal lineages and necessitates regulator and effector gene expression changes; each cell type specifically expresses a subset of genes to carry out a specific function. Gene expression changes coincide with histone modification, histone variant deposition, and recruitment of transcription-related enzymes to specific genetic loci. Transcriptional regulation has been mostly studied using in vitro systems while epigenetic changes occurring during in vivo development remain poorly understood. Results By integrating previously published and novel global expression profiles from human CD34+/CD133+ hematopoietic stem and progenitor cells (HSPCs), in vivo differentiated human CD4+ T-cells and CD19+ B-cells, and in vitro differentiated CD36+ erythrocyte precursors, we identified hundreds of transcripts specifically expressed in each cell type. To relate concurrent epigenomic changes to expression, we examined genome-wide distributions of H3K4me1, H3K4me3, H3K27me1, H3K27me3, histone variant H2A.Z, ATP-dependent chromatin remodeler BRG1, and RNA Polymerase II in these cell types, as well as embryonic stem cells. These datasets revealed that numerous differentiation genes are primed for subsequent downstream expression by BRG1 and PolII binding in HSPCs, as well as the bivalent H3K4me3 and H3K27me3 modifications in the HSPCs prior to their expression in downstream, differentiated cell types; much HSPC bivalency is retained from embryonic stem cells. After differentiation, bivalency resolves to active chromatin configuration in the specific lineage, while it remains in parallel differentiated lineages. PolII and BRG1 are lost in closer lineages; bivalency resolves to silent monovalency in more distant lineages. Correlation of expression with epigenomic changes predicts tens of thousands of potential common and tissue-specific enhancers, which may contribute to expression patterns and differentiation pathways. Conclusions Several crucial lineage factors are bivalently prepared for their eventual expression or repression. Bivalency is not only resolved during differentiation but is also established in a step-wise manner in differentiated cell types. We note a progressive, specific silencing of alternate lineage genes in certain cell types coinciding with H3K27me3 enrichment, though expression silencing is maintained in its absence. Globally, the expression of type-specific genes across many cell types correlates strongly with their epigenetic profiles. These epigenomic data appear useful for further understanding mechanisms of differentiation and function of human blood lineages.
Collapse
Affiliation(s)
- Brian J Abraham
- Systems Biology Center, NHLBI, NIH, Rockville Pike, Bethesda, MD, USA
| | | | | | | |
Collapse
|
43
|
Venza I, Visalli M, Fortunato C, Ruggeri M, Ratone S, Caffo M, Caruso G, Alafaci C, Tomasello F, Teti D, Venza M. PGE2 induces interleukin-8 derepression in human astrocytoma through coordinated DNA demethylation and histone hyperacetylation. Epigenetics 2012; 7:1315-30. [PMID: 23051921 PMCID: PMC3499332 DOI: 10.4161/epi.22446] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.
Collapse
Affiliation(s)
- Isabella Venza
- Department of Surgical Specialities, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cooperativity of stress-responsive transcription factors in core hypoxia-inducible factor binding regions. PLoS One 2012; 7:e45708. [PMID: 23029193 PMCID: PMC3454324 DOI: 10.1371/journal.pone.0045708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction. Despite recent characterization of genome-wide HIF DNA binding locations and hypoxia-regulated transcripts in different cell types, the molecular bases of HIF target selection remain unresolved. Herein, we combined multi-level experimental data and computational predictions to identify sequence motifs that may contribute to HIF target selectivity. We obtained a core set of bona fide HIF binding regions by integrating multiple HIF1 DNA binding and hypoxia expression profiling datasets. This core set exhibits evolutionarily conserved binding regions and is enriched in functional responses to hypoxia. Computational prediction of enriched transcription factor binding sites identified sequence motifs corresponding to several stress-responsive transcription factors, such as activator protein 1 (AP1), cAMP response element-binding (CREB), or CCAAT-enhancer binding protein (CEBP). Experimental validations on HIF-regulated promoters suggest a functional role of the identified motifs in modulating HIF-mediated transcription. Accordingly, transcriptional targets of these factors are over-represented in a sorted list of hypoxia-regulated genes. Altogether, our results implicate cooperativity among stress-responsive transcription factors in fine-tuning the HIF transcriptional response.
Collapse
|
45
|
Sarvestani ST, Williams BRG, Gantier MP. Human Toll-like receptor 8 can be cool too: implications for foreign RNA sensing. J Interferon Cytokine Res 2012; 32:350-61. [PMID: 22817608 DOI: 10.1089/jir.2012.0014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent advances in our understanding of foreign nucleic acid sensing indicate an important role for the human Toll-like receptor (TLR) 8 in the initiation of immune responses to certain pathogens. However, TLR8, far too often grouped together with TLR7 for its common ability to detect RNA, has a function on its own in the initiation of specific proinflammatory responses to viruses and bacteria. Here, we present an overview of what is currently known of human TLR8 biology, from genetic regulation to its function in innate immunity, and discuss how TLR8 could present novel therapeutic opportunities in viral and cancer diseases.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
46
|
Abstract
C/EBPα (CEBPA) is mutated in approximately 8 % of AML in both familial and sporadic AML and, with FLT3 and NPM1, has received most attention as a predictive marker of outcome in patients with normal karyotype disease. Mutations clustering to either the N- or C-terminal (N-and C-ter) portions of the protein have different consequences on the protein function. In familial cases the N-ter form is inherited with patients exhibiting long latency period before the onset of overt disease, typically with the acquisition of a C-ter mutation. Despite the essential insights murine models provide the functional consequences of wild-type C/EBPα in human hematopoiesis and how different mutations are involved in AML development have received less attention. Our data underline the critical role of C/EBPα in human hematopoiesis and demonstrate that C/EBPα mutations (alone or in combination) are insufficient to convert normal human hematopoietic stem/progenitors (HSC/HPCs) into leukemic initiating cells, although individually each altered normal hematopoiesis. It provides the first insight into the effects of N- and C-terminal mutations acting alone and to the combined effects of N/C double mutants. Our results mimicked closely what happens in CEBPA mutated patients.
Collapse
|
47
|
Hollis A, Sperl B, Gräber M, Berg T. The Natural Product Betulinic Acid Inhibits C/EBP Family Transcription Factors. Chembiochem 2011; 13:302-7. [DOI: 10.1002/cbic.201100652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 12/19/2022]
|
48
|
|
49
|
Hwang PH, Lian L, Zavras AI. Alcohol intake and folate antagonism via CYP2E1 and ALDH1: effects on oral carcinogenesis. Med Hypotheses 2011; 78:197-202. [PMID: 22100631 DOI: 10.1016/j.mehy.2011.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/15/2011] [Accepted: 10/21/2011] [Indexed: 12/18/2022]
Abstract
The interaction of folate and alcohol consumption has been shown to have an antagonistic effect on the risk of oral cancer. Studies have demonstrated that increased intake of folate decreases the risk of oral cancer, while greater alcohol consumption has an opposite effect. However, what is poorly understood is the biological interaction of these two dietary factors in relation to carcinogenesis. We hypothesize that cytochrome P450 2E1 (CYP2E1) and the family of aldehyde dehydrogenase 1 (ALDH1) enzymes may play a causal role in the occurrence of oral cancer. Chronic and high alcohol use has been implicated in the induction of CYP2E1, which oxidizes ethanol to acetaldehyde. Acetaldehyde is a known carcinogen. As the first metabolite of ethanol, it has been shown to interfere with DNA methylation, synthesis and repair, as well as bind to protein and DNA to form stable adducts, which lead to the eventual formation of damaged DNA and cell proliferation. Studies using liver cells have demonstrated that S-adenosyl methionine (SAM), which is a product of folate metabolism, regulates the expression and catalytic activity of CYP2E1. Our first hypothesis is that as increased levels of folate lead to higher concentrations of SAM, SAM antagonizes the expression of CYP2E1, which results in decreased conversion of ethanol into acetaldehyde. Thus, the lower levels of acetaldehyde may lower risk of oral cancer. There are also two enzymes within the ALDH1 family that play an important role both in ethanol metabolism and the folate one-carbon pathway. The first, ALDH1A1, converts acetaldehyde into its non-carcinogenic byproduct, acetate, as part of the second step in the ethanol metabolism pathway. The second, ALDH1L1, also known as FDH, is required for DNA nucleotide biosynthesis, and is upregulated at high concentrations of folate. ALDH1L1 appears to be a chief regulator of cellular metabolism as it is strongly downregulated at certain physiological and pathological conditions, while its upregulation can produce drastic antiproliferative effects. ALDH1 has three known response elements that regulate gene expression (NF-Y, C/EBPβ, and RARα). Our second hypothesis is that folate interacts with one of these response elements to upregulate ALDH1A1 and ALDH1L1 expression in order to decrease acetaldehyde concentrations and promote DNA stability, thereby decreasing cancer susceptibility. Conducting future metabolic and biochemical human studies in order to understand this biological mechanism will serve to support evidence from epidemiologic studies, and ultimately promote the intake of folate to at-risk populations.
Collapse
Affiliation(s)
- Phillip H Hwang
- Division of Oral Epidemiology and Biostatistics, Columbia College of Dental Medicine, 622 West 168th Street, Suite PH17-306R, New York, NY 10032, USA
| | | | | |
Collapse
|
50
|
Rodríguez-Ubreva J, Ciudad L, Gómez-Cabrero D, Parra M, Bussmann LH, di Tullio A, Kallin EM, Tegnér J, Graf T, Ballestar E. Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes. Nucleic Acids Res 2011; 40:1954-68. [PMID: 22086955 PMCID: PMC3299990 DOI: 10.1093/nar/gkr1015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcription factor-induced lineage reprogramming or transdifferentiation experiments are essential for understanding the plasticity of differentiated cells. These experiments helped to define the specific role of transcription factors in conferring cell identity and played a key role in the development of the regenerative medicine field. We here investigated the acquisition of DNA methylation changes during C/EBPα-induced pre-B cell to macrophage transdifferentiation. Unexpectedly, cell lineage conversion occurred without significant changes in DNA methylation not only in key B cell- and macrophage-specific genes but also throughout the entire set of genes differentially methylated between the two parental cell types. In contrast, active and repressive histone modification marks changed according to the expression levels of these genes. We also demonstrated that C/EBPα and RNA Pol II are associated with the methylated promoters of macrophage-specific genes in reprogrammed macrophages without inducing methylation changes. Our findings not only provide insights about the extent and hierarchy of epigenetic events in pre-B cell to macrophage transdifferentiation but also show an important difference to reprogramming towards pluripotency where promoter DNA demethylation plays a pivotal role.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|