1
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
2
|
Abhilasha KV, Sumanth MS, Thyagarajan A, Sahu RP, Kemparaju K, Marathe GK. Reversible cross-tolerance to platelet-activating factor signaling by bacterial toxins. Platelets 2021; 32:960-967. [PMID: 32835559 DOI: 10.1080/09537104.2020.1810652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial toxins signaling through Toll-like receptors (TLRs) are implicated in the pathogenesis of many inflammatory diseases. Among the toxins, lipopolysaccharide (LPS) exerts its action via TLR-4 while lipoteichoic acid (LTA) and bacterial lipoproteins such as Braun lipoprotein (BLP) or its synthetic analogue Pam3CSK4 act through TLR-2. Part of the TLR mediated pathogenicity is believed to stem from endogenously biosynthesized platelet-activating factor (PAF)- a potent inflammatory phospholipid acting through PAF-receptor (PAF-R). However, the role of PAF in inflammatory diseases like endotoxemia is controversial. In order to test the direct contribution of PAF in TLR-mediated pathogenicity, we intraperitoneally injected PAF to Wistar albino mice in the presence or absence of bacterial toxins. Intraperitoneal injection of PAF (5 μg/mouse) causes sudden death of mice, that can be delayed by simultaneously or pre-treating the animals with high doses of bacterial toxins- a phenomenon known as endotoxin cross-tolerance. The bacterial toxins- induced tolerance to PAF can be reversed by increasing the concentration of PAF suggesting the reversibility of cross-tolerance. We did similar experiments using human platelets that express both canonical PAF-R and TLRs. Although bacterial toxins did not induce human platelet aggregation, they inhibited PAF-induced platelet aggregation in a reversible manner. Using rabbit platelets that are ultrasensitive to PAF, we found bacterial toxins (LPS and LTA) and Pam3CSK4 causing rabbit platelet aggregation via PAF-R dependent way. The physical interaction of PAF-R and bacterial toxins is also demonstrated in a human epidermal cell line having stable PAF-R expression. Thus, we suggest the possibility of direct physical interaction of bacterial toxins with PAF-R leading to cross-tolerance.
Collapse
Affiliation(s)
| | | | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ravi Prakash Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India.,Department of Studies in Molecular Biology, University of Mysore, Mysuru, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India.,Department of Studies in Molecular Biology, University of Mysore, Mysuru, India
| |
Collapse
|
3
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
5
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
6
|
Sumanth MS, Jacob SP, Abhilasha KV, Manne BK, Basrur V, Lehoux S, Campbell RA, Yost CC, McIntyre TM, Cummings RD, Weyrich AS, Rondina MT, Marathe GK. Different glycoforms of alpha-1-acid glycoprotein contribute to its functional alterations in platelets and neutrophils. J Leukoc Biol 2020; 109:915-930. [PMID: 33070381 DOI: 10.1002/jlb.3a0720-422r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.
Collapse
Affiliation(s)
- Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Shancy P Jacob
- Department of Pediatrics, Division of Allergy and Immunology, University of Utah, Salt Lake City, Utah, USA
| | | | - Bhanu Kanth Manne
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sylvain Lehoux
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Campbell
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Christian C Yost
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA.,Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S Weyrich
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- Molecular Medicine Program, and Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah, USA.,The Geriatric Research Education and Clinical Center, Salt Lake City, Utah, USA.,Department of Internal Medicine, George E. Wahlen VAMC, Salt Lake City, Utah, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| |
Collapse
|
7
|
Karasu E, Demmelmaier J, Kellermann S, Holzmann K, Köhl J, Schmidt CQ, Kalbitz M, Gebhard F, Huber-Lang MS, Halbgebauer R. Complement C5a Induces Pro-inflammatory Microvesicle Shedding in Severely Injured Patients. Front Immunol 2020; 11:1789. [PMID: 32983087 PMCID: PMC7492592 DOI: 10.3389/fimmu.2020.01789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Initially underestimated as platelet dust, extracellular vesicles are continuously gaining interest in the field of inflammation. Various studies addressing inflammatory diseases have shown that microvesicles (MVs) originating from different cell types are systemic transport vehicles carrying distinct cargoes to modulate immune responses. In this study, we focused on the clinical setting of multiple trauma, which is characterized by activation and dysfunction of both, the fluid-phase and the cellular component of innate immunity. Given the sensitivity of neutrophils for the complement anaphylatoxin C5a, we hypothesized that increased C5a production induces alterations in MV shedding of neutrophils resulting in neutrophil dysfunction that fuels posttraumatic inflammation. In a mono-centered prospective clinical study with polytraumatized patients, we found significantly increased granulocyte-derived MVs containing the C5a receptor (C5aR1, CD88) on their surface. This finding was accompanied by a concomitant loss of C5aR1 on granulocytes indicative of an impaired cellular chemotactic and pro-inflammatory neutrophil functions. Furthermore, in vitro exposure of human neutrophils (from healthy volunteers) to C5a significantly increased MV shedding and C5aR1 loss on neutrophils, which could be blocked using the C5aR1 antagonist PMX53. Mechanistic analyses revealed that the interaction between C5aR1 signaling and the small GTPase Arf6 acts as a molecular switch for MV shedding. When neutrophil derived, C5a-induced MV were exposed to a complex ex vivo whole blood model significant pro-inflammatory properties (NADPH activity, ROS and MPO generation) of the MVs became evident. C5a-induced MVs activated resting neutrophils and significantly induced IL-6 secretion. These data suggest a novel role of the C5a-C5aR1 axis: C5a-induced MV shedding from neutrophils results in decreased C5aR1 surface expression on the one hand, on the other hand it leads to profound inflammatory signals which likely are both key drivers of the neutrophil dysfunction which is regularly observed in patients suffering from multiple traumatic injuries.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Julia Demmelmaier
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Stephanie Kellermann
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Karlheinz Holzmann
- Center for Biomedical Research, Genomics-Core Facility, Ulm University, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
8
|
Abstract
Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.
Collapse
|
9
|
Abhilasha KV, Sumanth MS, Chaithra VH, Jacob SP, Thyagarajan A, Sahu RP, Rajaiah R, Prabhu KS, Kemparaju K, Travers JB, Chen CH, Marathe GK. p38 MAP-kinase inhibitor protects against platelet-activating factor-induced death in mice. Free Radic Biol Med 2019; 143:275-287. [PMID: 31442556 DOI: 10.1016/j.freeradbiomed.2019.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/25/2022]
Abstract
Platelet-activating factor (PAF) is a potent inflammatory agonist. In Swiss albino mice, intraperitoneal injection of PAF causes sudden death with oxidative stress and disseminated intravascular coagulation (DIC), characterized by prolonged prothrombin time, thrombocytopenia, reduced fibrinogen content, and increased levels of fibrinogen degradation products. However, the underlying mechanism(s) is unknown. The PAF-R antagonist WEB-2086 protected mice against PAF-induced death by reducing DIC and oxidative stress. Accordingly, general antioxidants such as ascorbic acid, α-tocopherol, gallic acid, and N-acetylcysteine partially protected mice from PAF-induced death. N-acetylcysteine, a clinically used antioxidant, prevented death in 67% of mice, ameliorated DIC characteristics and histological alterations in the liver, and reduced oxidative stress. WEB-2086 suppressed H2O2-mediated oxidative stress in isolated mouse peritoneal macrophages, suggesting that PAF signaling may be a downstream effector of reactive oxygen species generation. PAF stimulated all three (ERK, JNK, and p38) of the MAP-kinases, which were also inhibited by N-acetylcysteine. Furthermore, a JNK inhibitor (SP600125) and ERK inhibitor (SCH772984) partially protected mice against PAF-induced death, whereas a p38 MAP-kinase inhibitor (SB203580) provided complete protection against DIC and death. In human platelets, which have the canonical PAF-R and functional MAP-kinases, JNK and p38 inhibitors abolished PAF-induced platelet aggregation, but the ERK inhibitor was ineffective. Our studies identify p38 MAP-kinase as a critical, but unrecognized component in PAF-induced mortality in mice. These findings suggest an alternative therapeutic strategy to address PAF-mediated pathogenicity, which plays a role in a broad range of inflammatory diseases.
Collapse
Affiliation(s)
| | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | | | - Shancy Petsel Jacob
- Division of Allergy and Immunology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Ravi Prakash Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | - Jeffrey Bryant Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
10
|
Sumanth MS, Abhilasha KV, Jacob SP, Chaithra VH, Basrur V, Willard B, McIntyre TM, Prabhu KS, Marathe GK. Acute phase protein, α - 1- acid glycoprotein (AGP-1), has differential effects on TLR-2 and TLR-4 mediated responses. Immunobiology 2019; 224:672-680. [PMID: 31239174 DOI: 10.1016/j.imbio.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 01/16/2023]
Abstract
Alpha-1-acid glycoprotein (AGP-1) is a major positive acute phase glycoprotein with unknown functions that likely play a role in inflammation. We tested its involvement in a variety of inflammatory responses using human AGP-1 purified to apparent homogeneity and confirmed its identity by immunoblotting and mass spectrometry. AGP-1 alone upregulated MAPK signaling in murine peritoneal macrophages. However, when given in combination with TLR ligands, AGP-1 selectively augmented MAPK activation induced by ligands of TLR-2 (Braun lipoprotein) but not TLR-4 (lipopolysaccharide). In vivo treatment of AGP-1 in a murine model of sepsis with or without TLR-2 or TLR-4 ligands, selectively potentiated TLR-2-mediated mortality, but was without significant effect on TLR-4-mediated mortality. Furthermore, in vitro, AGP-1 selectively potentiated TLR-2 mediated adhesion of human primary immune cell, neutrophils. Hence, our studies highlight a new role for the acute phase protein AGP-1 in sepsis via its interaction with TLR-2 signaling mechanisms to selectively promote responsiveness to one of the two major gram-negative endotoxins, contributing to the complicated pathobiology of sepsis.
Collapse
Affiliation(s)
- Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | | | - Shancy Petsel Jacob
- Division of Allergy and Immunology, University of Utah, Salt Lake City, UT, 84113, USA
| | | | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Belinda Willard
- Research Core Services, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Thomas M McIntyre
- Department of Cellular & Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
11
|
Molinaro R, Pastò A, Corbo C, Taraballi F, Giordano F, Martinez JO, Zhao P, Wang X, Zinger A, Boada C, Hartman KA, Tasciotti E. Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. NANOSCALE 2019; 11:13576-13586. [PMID: 31290914 DOI: 10.1039/c9nr04253a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite numerous advances in medical treatment, sepsis remains one of the leading causes of death worldwide. Sepsis is characterized by the involvement of all organs and tissues as a consequence of blood poisoning, resulting in organ failure and eventually death. Effective treatment remains an unmet need and novel approaches are urgently needed. The growing evidence of clinical and biological heterogeneity of sepsis suggests precision medicine as a possible key for achieving therapeutic breakthroughs. In this scenario, biomimetic nanomedicine represents a promising avenue for the treatment of inflammatory diseases, including sepsis. We investigated the role of macrophage-derived biomimetic nanoparticles, namely leukosomes, in a lipopolysaccharide-induced murine model of sepsis. We observed that treatment with leukosomes was associated with significantly prolonged survival. In vitro studies elucidated the potential mechanism of action of these biomimetic vesicles. The direct treatment of endothelial cells (ECs) with leukosomes did not alter the gene expression profile of EC-associated cell adhesion molecules. In contrast, the interaction of leukosomes with macrophages induced a decrease of pro-inflammatory genes (IL-6, IL-1b, and TNF-α), an increase of anti-inflammatory ones (IL-10 and TGF-β), and indirectly an anti-inflammatory response on ECs. Taken together, these results showed the ability of leukosomes to regulate the inflammatory response in target cells, acting as a bioactive nanotherapeutic.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy. and Department of Medicine, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Anna Pastò
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy
| | - Francesca Taraballi
- Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Federica Giordano
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Picheng Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Xin Wang
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Assaf Zinger
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA. and Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Kelly A Hartman
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA and Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street Houston, TX 77030, USA.
| |
Collapse
|
12
|
Bonaventura A, Montecucco F, Dallegri F, Carbone F, Lüscher TF, Camici GG, Liberale L. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 2019; 115:1266-1285. [PMID: 30918936 DOI: 10.1093/cvr/cvz084] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 08/30/2023] Open
Abstract
Neutrophils are the most abundant circulating leucocytes in healthy humans. These cells are central players during acute inflammatory responses, although a growing body of evidence supports a crucial role in chronic inflammation and chemokines and cytokines related to it as well. Thus, both humoral and cellular components are involved in the development of plaque formation and atherosclerosis. Accordingly, CANTOS trial using an interleukin-1 beta antibody confirmed that inflammatory cytokines contribute to the occurrence of myocardial infarction and cardiac death independent of changes in lipids. Recent data revealed that neutrophils are a heterogeneous population with different subsets and functional characteristics (i.e. CD177+ cells, OLFM4+ neutrophils, proangiogenic neutrophils, neutrophils undergoing reverse migration, and aged neutrophils). Importantly, neutrophils are able to synthesize de novo proteins. Neutrophil extracellular trap generation and NETosis have been considered as very important weapons in sterile inflammation. Neutrophil-derived microvesicles represent another mechanism by which neutrophils amplify inflammatory processes, being found at high levels both at the site of injury and in the bloodstream. Finally, neutrophil aging can influence their functions also in relation with host age. These recent acquisitions in the field of neutrophil biology might pave the way for new therapeutic targets to prevent or even treat patients experiencing cardiovascular (CV) diseases. Here, we discuss novel findings in neutrophil biology, their impact on CV and cerebrovascular diseases, and the potential implementation of these notions into daily clinical practice.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- University Heart Center, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
- Department of Research and Education, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| |
Collapse
|
13
|
Abstract
Microparticles are a distinctive group of small vesicles, without nucleus, which are involved as significant modulators in several physiological and pathophysiological mechanisms. Plasma microparticles from various cellular lines have been subject of research. Data suggest that they are key players in development and manifestation of cardiovascular diseases and their presence, in high levels, is associated with chronic inflammation, endothelial damage and thrombosis. The strong correlation of microparticle levels with several outcomes in cardiovascular diseases has led to their utilization as biomarkers. Despite the limited clinical application at present, their significance emerges, mainly because their detection and enumeration methods are improving. This review article summarizes the evidence derived from research, related with the genesis and the function of microparticles in the presence of various cardiovascular risk factors and conditions. The current data provide a substrate for several theories of how microparticles influence various cellular mechanisms by transferring biological information.
Collapse
Affiliation(s)
- Christos Voukalis
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Eduard Shantsila
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Gregory Y H Lip
- b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Department of Clinical Medicine, Aalborg Thrombosis Research Unit , Aalborg University , Aalborg , Denmark
| |
Collapse
|
14
|
Mitra S, Exline M, Habyarimana F, Gavrilin MA, Baker PJ, Masters SL, Wewers MD, Sarkar A. Microparticulate Caspase 1 Regulates Gasdermin D and Pulmonary Vascular Endothelial Cell Injury. Am J Respir Cell Mol Biol 2019; 59:56-64. [PMID: 29365280 DOI: 10.1165/rcmb.2017-0393oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occur throughout all stages of acute lung injury/acute respiratory distress syndrome and impact disease progression. Caspases 1, 4, and 5 are essential for completion of the apoptotic program known as pyroptosis that also involves proinflammatory cytokines. Because gasdermin D (GSDMD) mediates pyroptotic death and is essential for pore formation, we hypothesized that it might direct caspase 1-encapsulated microparticle (MP) release and mediate endothelial cell death. Our present work provides evidence that GSDMD is released by LPS-stimulated THP-1 monocytic cells, where it is packaged into microparticles together with active caspase 1. Furthermore, only MP released from stimulated monocytic cells that contain both cleaved GSDMD and active caspase 1 induce endothelial cell apoptosis. MPs pretreated with caspase 1 inhibitor Y-VAD or pan-caspase inhibitor Z-VAD do not contain cleaved GSDMD. MPs from caspase 1-knockout cells are also deficient in p30 active GSDMD, further confirming that caspase 1 regulates GSDMD function. Although control MPs contained cleaved GSDMD without caspase 1, these fractions were unable to induce cell death, suggesting that encapsulation of both caspase 1 and GSDMD is essential for cell death induction. Release of microparticulate active caspase 1 was abrogated in GSDMD knockout cells, although cytosolic caspase 1 activation was not impaired. Last, higher concentrations of microparticulate GSDMD were detected in the plasma of septic patients with acute respiratory distress syndrome than in that of healthy donors. Taken together, these findings suggest that GSDMD regulates the release of microparticulate active caspase 1 from monocytes essential for induction of cell death and thereby may play a critical role in sepsis-induced endothelial cell injury.
Collapse
Affiliation(s)
- Srabani Mitra
- 1 Department of Physiology and Cell Biology and.,2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - Matthew Exline
- 2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - Fabien Habyarimana
- 2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - Mikhail A Gavrilin
- 2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - Paul J Baker
- 3 Department of Medical Biology, University of Melbourne and The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Seth L Masters
- 3 Department of Medical Biology, University of Melbourne and The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mark D Wewers
- 2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| | - Anasuya Sarkar
- 1 Department of Physiology and Cell Biology and.,2 Department of Internal Medicine, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
15
|
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018; 6:99. [PMID: 30062094 PMCID: PMC6054932 DOI: 10.3389/fbioe.2018.00099] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Rice TC, Pugh AM, Xia BT, Seitz AP, Whitacre BE, Gulbins E, Caldwell CC. Bronchoalveolar Lavage Microvesicles Protect Burn-Injured Mice from Pulmonary Infection. J Am Coll Surg 2017; 225:538-547. [PMID: 28690205 PMCID: PMC5614837 DOI: 10.1016/j.jamcollsurg.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of morbidity and mortality among burn patients, despite antibiotic therapy. There is a need to identify innate immune defenses that prevent P aeruginosa infection in injured adults in an effort to find therapeutic alternatives to antibiotics. Here, we tested our hypothesis that microvesicles (MVs) in bronchoalveolar (BAL) fluid have a role in the immunity of the lung in response to pathogens. STUDY DESIGN Microvesicles were isolated from murine BAL fluid, quantified using Nanoparticle Tracking Analysis, and injected into burn-injured mice before P aeruginosa infection. Survival was assessed and BAL bacterial loads enumerated. Neutrophil number and interleukin 6 activity were determined. Lungs were harvested and sphingosine (SPH) content analyzed via immunohistochemistry. Antimicrobial effects of MVs and SPH-enriched MVs were assessed in an in vitro assay. RESULTS Burn-injured mice have reduced BAL MV number and SPH content compared with sham. When BAL MVs from healthy mice are administered to injured mice, survival and bacterial clearance are improved robustly. We also observed that intranasal administration of MVs restores SPH levels after burn injury, MVs kill bacteria directly, and this bacterial killing is increased when the MVs are supplemented with SPH. CONCLUSIONS Using a preclinical model, BAL MVs are reduced after scald injury and BAL MV restoration to injured mice improves survival and bacterial clearance. The antimicrobial mechanisms leading to improved survival include the quantity and SPH content of BAL MVs.
Collapse
Affiliation(s)
- Teresa C Rice
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Amanda M Pugh
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Brent T Xia
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Aaron P Seitz
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Brynne E Whitacre
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Erich Gulbins
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
17
|
Abstract
Extracellular vesicles (EVs) can modulate the host immune response, executing both pro- and anti-inflammatory effects. As EVs increasingly gain attention as potential carriers for targeted gene and drug delivery, knowledge on the effects of EVs on the host immune response is important. This review will focus on the ability of EVs to trigger a pro-inflammatory host response by activating target cells. The overall view is that EVs can augment an inflammatory response, thereby potentially contributing to organ injury. This pro-inflammatory potential of EVs may hamper its use for therapeutic drug delivery. Whether removal of EVs as a means to reduce a pro-inflammatory or pro-coagulant response during hyper-inflammatory conditions is beneficial remains to be determined. Prior to any proposed therapeutic application, there is a need for further studies on the role of EVs in physiology and pathophysiology using improved detection and characterization methods to elucidate the roles of EVs in inflammatory conditions.
Collapse
|
18
|
Johnson BL, Midura EF, Prakash PS, Rice TC, Kunz N, Kalies K, Caldwell CC. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2554-2563. [PMID: 28108420 DOI: 10.1016/j.bbadis.2017.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Although advances in medical care have significantly improved sepsis survival, sepsis remains the leading cause of death in the ICU. This is likely due to a lack of complete understanding of the pathophysiologic mechanisms that lead to dysfunctional immunity. Neutrophil derived microparticles (NDMPs) have been shown to be the predominant microparticle present at infectious and inflamed foci in human models, however their effect on the immune response to inflammation and infection is sepsis has not been fully elucidated. As NDMPs may be a potential diagnostic and therapeutic target, we sought to determine the impact NDMPs on the immune response to a murine polymicrobial sepsis. We found that peritoneal neutrophil numbers, bacterial loads, and NDMPs were increased in our abdominal sepsis model. When NDMPs were injected into septic mice, we observed increased bacterial load, decreased neutrophil recruitment, increased expression of IL-10 and worsened mortality. Furthermore, the NDMPs express phosphatidylserine and are ingested by F4/80 macrophages via a Tim-4 and MFG-E8 dependent mechanism. Finally, upon treatment, NDMPs decrease macrophage activation, increase IL-10 release and decrease macrophage numbers. Altogether, these data suggest that NDMPs enhance immune dysfunction in sepsis by blunting the function of neutrophils and macrophages, two key cell populations involved in the early immune response to infection. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Bobby L Johnson
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Emily F Midura
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Priya S Prakash
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Teresa C Rice
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Natalia Kunz
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kathrin Kalies
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
19
|
Petsel Jacob S, Lakshminarayana Lakshmikanth C, M. McIntyre T, Kedihitlu Marathe G. Platelet-activating factor and oxidized phosphatidylcholines do not suppress endotoxin-induced pro-inflammatory signaling among human myeloid and endothelial cells. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.3.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Platelet-Activating Factor Quantification Using Reversed Phase Liquid Chromatography and Selected Reaction Monitoring in Negative Ion Mode. Lipids 2016; 51:1421-1425. [PMID: 27757707 DOI: 10.1007/s11745-016-4204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Platelet-activating factor (PAF) is a potent biologically active phospholipid that mediates human physiological and pathophysiologic responses. PAF levels increase transiently and are typically assessed by techniques with limitations related to expense, sensitivity, pre-analysis derivatization and interference with isobaric molecules. This study elucidates a facile, accurate liquid chromatography-mass spectrometry analytical method for PAF. In negative ion mode using electrospray ionization, collisionally-activated dissociation analysis showed a unique product ion for acetate adducts of PAF molecular species representing the loss of methyl acetate from the polar head group and loss of a part of the acetate group from the sn-2 position. This product ion was exploited for selected reaction monitoring of PAF molecular species following separation by reversed-phase liquid chromatography. Standard calibration responses were determined, and this method was able to detect as low as 100 fmol of PAF. Finally, PAF molecular species were quantified in human neutrophils and monocytes.
Collapse
|
21
|
Lakshmikanth CL, Jacob SP, Kudva AK, Latchoumycandane C, Yashaswini PSM, Sumanth MS, Goncalves-de-Albuquerque CF, Silva AR, Singh SA, Castro-Faria-Neto HC, Prabhu SK, McIntyre TM, Marathe GK. Escherichia coli Braun Lipoprotein (BLP) exhibits endotoxemia - like pathology in Swiss albino mice. Sci Rep 2016; 6:34666. [PMID: 27698491 PMCID: PMC5048175 DOI: 10.1038/srep34666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1β mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2−/− mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | - Avinash Kundadka Kudva
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Calivarathan Latchoumycandane
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | | | - Adriana R Silva
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sridevi Annapurna Singh
- Department of Protein Chemistry &Technology, Central Food Technological Research Institute/CSIR, Mysore - 570 020, Karnataka, India
| | - Hugo C Castro-Faria-Neto
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sandeep Kumble Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| |
Collapse
|
22
|
Jacob SP, Lakshmikanth CL, Chaithra VH, Kumari TRS, Chen CH, McIntyre TM, Marathe GK. Lipopolysaccharide Cross-Tolerance Delays Platelet-Activating Factor-Induced Sudden Death in Swiss Albino Mice: Involvement of Cyclooxygenase in Cross-Tolerance. PLoS One 2016; 11:e0153282. [PMID: 27064683 PMCID: PMC4827832 DOI: 10.1371/journal.pone.0153282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling through Toll-like receptor-4 (TLR-4) has been implicated in the pathogenesis of many infectious diseases. Some believe that TLR-mediated pathogenicity is due, in part, to the lipid pro-inflammatory mediator platelet-activating factor (PAF), but this has been questioned. To test the direct contribution of PAF in endotoxemia in murine models, we injected PAF intraperitoneally into Swiss albino mice in the presence and absence of LPS. PAF alone (5 μg/mouse) caused death within 15-20 min, but this could be prevented by pretreating mice with PAF-receptor (PAF-R) antagonists or PAF-acetylhydrolase (PAF-AH). A low dose of LPS (5 mg/kg body wt) did not impair PAF-induced death, whereas higher doses (10 or 20 mg/kg body wt) delayed death, probably via LPS cross-tolerance. Cross-tolerance occurred only when PAF was injected simultaneously with LPS or within 30 min of LPS injection. Tolerance does not appear to be due to an abundant soluble mediator. Histologic examination of lungs and liver and measurement of circulating TNF-α and IL-10 levels suggested that the inflammatory response is not diminished during cross-tolerance. Interestingly, aspirin, a non-specific cyclooxygenase (COX) inhibitor, partially blocked PAF-induced sudden death, whereas NS-398, a specific COX-2 inhibitor, completely protected mice from the lethal effects of PAF. Both COX inhibitors (at 20 mg/kg body wt) independently amplified the cross-tolerance exerted by higher dose of LPS, suggesting that COX-derived eicosanoids may be involved in these events. Thus, PAF does not seem to have a protective role in endotoxemia, but its effects are delayed by LPS in a COX-sensitive way. These findings are likely to shed light on basic aspects of the endotoxin cross-tolerance occurring in many disease conditions and may offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | | | | | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77225–0345, United States of America
| | - Thomas M. McIntyre
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, United States of America
| | - Gopal Kedihitlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
- * E-mail:
| |
Collapse
|
23
|
Mitra S, Wewers MD, Sarkar A. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury. PLoS One 2015; 10:e0145607. [PMID: 26710067 PMCID: PMC4692444 DOI: 10.1371/journal.pone.0145607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.
Collapse
Affiliation(s)
- Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
24
|
Midura EF, Prakash PS, Johnson BL, Rice TC, Kunz N, Caldwell CC. Impact of caspase-8 and PKA in regulating neutrophil-derived microparticle generation. Biochem Biophys Res Commun 2015; 469:917-22. [PMID: 26707875 DOI: 10.1016/j.bbrc.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The morbidity and mortality from sepsis continues to remain high despite extensive research into understanding this complex immunologic process. Further, while source control and antibiotic therapy have improved patient outcomes, many immunologically based therapies have fallen short. Microparticles (MPs) are intact vesicles that serve as mediators of intercellular communication as well as markers of inflammation in various disease processes. We have previously demonstrated that MPs can be produced at the infected foci during sepsis, are predominantly of neutrophil derivation (NDMPs) and can modulate immune cells. In this study, we sought to elucidate the molecular mechanisms underlying NDMP generation. Using thioglycolate (TGA) to recruit and activate neutrophils, we first determined that intra-peritoneal TGA increase NDMP accumulation. We next utilized TGA-elicited neutrophils in vitro to investigate signaling intermediates involved in NDMP production, including the intrinsic and extrinsic caspase pathways, cAMP dependent PKA and Epac activation as well as the role myosin light chain kinase (MLCK) as a final mediator of NDMP release. We observed that NDMP generation was dependent on the extrinsic caspase apoptotic pathway (caspase 3 and caspase 8), cAMP activation of PKA but not of Epac, and on activation of MLCK. Altogether, these data contribute to an overall framework depicting the molecular mechanisms that regulate NDMP generation.
Collapse
Affiliation(s)
- Emily F Midura
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Priya S Prakash
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Bobby L Johnson
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Teresa C Rice
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Natalia Kunz
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA; Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA.
| |
Collapse
|
25
|
Marathe GK, McIntyre TM. PAF is a potent pyrogen and cryogen in rodents, but it does not mediate thermoregulatory responses to bacterial endotoxin. Temperature (Austin) 2015; 2:449-50. [PMID: 27227061 PMCID: PMC4843932 DOI: 10.1080/23328940.2015.1096439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022] Open
Abstract
Concordance between lipopolysaccharide and platelet activating factor - mediated events have suggested that the latter likely mediates all effects induced by the former. In this issue of Temperature, Steiner and Romanovsky challenge this notion, showing that while platelet activating factor is a potent pyrogenic mediator, the thermoregulatory responses to lipopolysaccharide are instead induced by prostaglandins.
Collapse
Affiliation(s)
- Gopal K Marathe
- Department of Studies in Biochemistry; University of Mysore; Manasagangothri , Mysore, Karnataka, India
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine; Cleveland Clinic Lerner Research Institute; Cleveland , OH USA
| |
Collapse
|
26
|
Johnson BL, Kuethe JW, Caldwell CC. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response. Endocr Metab Immune Disord Drug Targets 2015; 14:210-7. [PMID: 25051983 DOI: 10.2174/1871530314666140722083717] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
In response to infection and trauma, exquisite control of the innate inflammatory response is necessary to promote an anti-microbial response and minimize tissue injury. Over the course of the host response, activated leukocytes are essential for the initial response and can later become unresponsive or undergo apoptosis. Leukocytes, along the continuum of activation to apoptosis, have been shown to generate microvesicles. These vesicles can range in size from 0.1 to 1.0 μm and can retain proteins, RNA and DNA of their parent cells. Importantly, neutrophil-derived microvesicles (NDMV) are robustly increased under inflammatory conditions. The aim of this review is to summarize the research to date upon NDMVs. This will include describing under which disease states NDMVs are increased, mechanisms underlying formation, and the impact of these vesicles upon cellular targets. Altogether, increased awareness of NDMVs during the host innate response may allow for diagnostic tools as well as potential novel therapies during infection and trauma.
Collapse
|
27
|
Carroll JA, Burdick Sanchez NC, Hulbert LE, Ballou MA, Dailey JW, Caldwell LC, Vann RC, Welsh TH, Randel RD. Sexually dimorphic innate immunological responses of pre-pubertal Brahman cattle following an intravenous lipopolysaccharide challenge. Vet Immunol Immunopathol 2015; 166:108-15. [DOI: 10.1016/j.vetimm.2015.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/25/2022]
|
28
|
Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol 2014; 15:602-11. [PMID: 24940954 DOI: 10.1038/ni.2921] [Citation(s) in RCA: 672] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from blood to tissues in models of blood-borne infections versus bacterial invasion through epithelial linings. We examine data on novel aspects of the activation of NADPH oxidase and the heterogeneity of phagosomes and, finally, consider the importance of two neutrophil-derived biological agents: neutrophil extracellular traps and ectosomes.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Abstract
Cell-cell communication has proven to be even more complex than previously thought since the discovery that extracellular vesicles serve as containers of biological information on various pathophysiological settings. Extracellular vesicles are classified into exosomes, microvesicles/microparticles, or apoptotic bodies, originating from different subcellular compartments. The cellular machinery controlling their formation and composition, as well as the mechanisms regulating their extracellular release, remain unfortunately much unknown. Extracellular vesicles have been found in plasma, urine, saliva, and inflammatory tissues. Their biomarker potential has raised significant interest in the cardiovascular field because the vesicle composition and microRNA content are specific signatures of cellular activation and injury. More than simply cell dust, extracellular vesicles are capable of transferring biological information to neighboring cells and play an active role in inflammatory diseases, including atherosclerosis and angiogenesis. The molecular interactions regulating these effects involve specific receptor activation, proteolytic enzymes, reactive oxygen species, or delivery of genetic information to target cells. Unraveling their mechanisms of action will likely open new therapeutic avenues.
Collapse
Affiliation(s)
- Xavier Loyer
- From the INSERM, U970, Paris Cardiovascular Research Center-PARCC; and Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | | | | | | |
Collapse
|
30
|
Exline MC, Justiniano S, Hollyfield JL, Berhe F, Besecker BY, Das S, Wewers MD, Sarkar A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS One 2014; 9:e90968. [PMID: 24643116 PMCID: PMC3958341 DOI: 10.1371/journal.pone.0090968] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
Collapse
Affiliation(s)
- Matthew C. Exline
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Justiniano
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Hollyfield
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth Y. Besecker
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Das
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Pro-inflammatory effect of cystic fibrosis sputum microparticles in the murine lung. J Cyst Fibros 2013; 12:721-8. [DOI: 10.1016/j.jcf.2013.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 12/25/2022]
|
32
|
Eren E, Yilmaz N, Aydin O. Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis. CHOLESTEROL 2013; 2013:792090. [PMID: 24222847 PMCID: PMC3814057 DOI: 10.1155/2013/792090] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
The endothelium is the primary target for biochemical or mechanical injuries caused by the putative risk factors of atherosclerosis. Endothelial dysfunction represents the ultimate link between atherosclerotic risk factors that promote atherosclerosis. HDL-C is thought to exert at least some parts of its antiatherogenic facilities via stimulating endothelial NO production, nearby inhibiting oxidative stress and inflammation. HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS. Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction. The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling. Loss of nitric oxide bioavailability has a pivotal role in endothelial dysfunction preceding the appearance of atherosclerosis. Analyses of HDL-C and Paraoxonase1 would be more important in the diagnosis and treatment of atherosclerosis in the very near future.
Collapse
Affiliation(s)
- Esin Eren
- Laboratory of Atatürk Hospital, 07040 Antalya, Turkey
| | - Necat Yilmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, 07100 Antalya, Turkey
- Antalya Eğitim ve Araştırma Hastanesi Merkez Laboratuvarı Soğuksu, 07100 Antalya, Turkey
| | - Ozgur Aydin
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, 07100 Antalya, Turkey
| |
Collapse
|
33
|
Dengler V, Downey GP, Tuder RM, Eltzschig HK, Schmidt EP. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. Am J Respir Cell Mol Biol 2013; 49:1-5. [PMID: 23815257 DOI: 10.1165/rcmb.2012-0472tr] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A hallmark of acute inflammation involves the recruitment of polymorphonuclear leukocytes (neutrophils) to infected or injured tissues. The processes underlying this recruitment are complex, and include multiple mechanisms of intercellular communication between neutrophils and the inflamed tissue. In recent studies of the systemic and pulmonary vasculature, interest has increased in novel forms of intercellular communication, such as microparticle exchange and gap junctional intercellular communication. To understand the roles of these novel forms of communication in the onset, progression, and resolution of inflammatory lung injury (such as acute respiratory distress syndrome), we review the literature concerning the contributions of microparticle exchange and gap junctional intercellular communication to neutrophil-alveolar crosstalk during pulmonary inflammation. By focusing on these cell-cell communications, we aim to demonstrate significant gaps of knowledge and identify areas of considerable need for further investigations of the processes of acute lung inflammation.
Collapse
Affiliation(s)
- Viola Dengler
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
34
|
van Dooren FH, Duijvis NW, te Velde AA. Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. J Immunol Methods 2013; 396:128-33. [PMID: 23994257 DOI: 10.1016/j.jim.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Cytokines are immunomodulating proteins involved in cellular communication. The levels of different cytokines reflect the immune capabilities of a person. In literature both whole blood and peripheral blood mononuclear cells (PBMCs) are used, which might lead to different results. The choice between these different sources is not always explained. The goal of our experiments is to determine the cytokine response of whole blood, PBMCs and polymorphonuclear cells (PMNs) after stimulation with lipopolysaccharide (LPS). We used a multiplex analysis to determine a difference in cytokine secretion patterns. In general, PBMCs demonstrated the highest cytokine production and PMNs have an overall low cytokine production. CCL11 and interleukin-23 (IL-23) (and IL-12p40) were exclusively expressed in whole blood. IL-20, VEGF and GM-CSF were expressed only by PBMCs. This difference in expression could be explained by the bioactive components in serum, presence and interaction with granulocytes or platelets in whole blood, the anticoagulant heparin in whole blood and others. The expression of cytokines by cells is dependent on the microenvironment. Different conditions lead to different results. We recommend a thorough examination of the conditions before performing experiments.
Collapse
Affiliation(s)
- Faas H van Dooren
- Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Microparticles are novel effectors of immunity. Curr Opin Pharmacol 2013; 13:570-5. [DOI: 10.1016/j.coph.2013.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
36
|
Johnson BL, Goetzman HS, Prakash PS, Caldwell CC. Mechanisms underlying mouse TNF-α stimulated neutrophil derived microparticle generation. Biochem Biophys Res Commun 2013; 437:591-6. [PMID: 23850678 DOI: 10.1016/j.bbrc.2013.06.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
Abstract
Despite advances in understanding and treatment of sepsis, it remains a disease with high mortality. Neutrophil Derived Microparticles (NDMPs) are present during sepsis and can modulate the immune system. As TNF-α is a cytokine that predominates in the initial stages of sepsis, we evaluated whether and how TNF-α can induce NDMPs in mice. We observed that TNF-α treatment results in increased NDMP numbers. We also determined that the activation of either TNF receptor 1 (TNFr1) or TNF receptor 2 (TNFr2) resulted in increased NDMP numbers and that activation of both resulted in an additive increase. Inhibition of Caspase 8 diminishes NDMPs generated through TNFr1 activation and inhibition of NF-κB abrogates NDMPs generated through activation of both TNFr1 and TNFr2. We conclude that the early production of TNF-α during sepsis can increase NDMP numbers through activation of the Caspase 8 pathway or NF-κB.
Collapse
Affiliation(s)
- Bobby L Johnson
- Division of Research, Department of Surgery, University of Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
37
|
Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013; 100:7-18. [PMID: 23774505 DOI: 10.1093/cvr/cvt161] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to intracellular organelles, eukaryotic cells contain extracellular organelles which are released, or shed, into the microenvironment. In practice, most human studies have examined mixed populations containing both exosomes and shedding microvesicles (also called ectosomes or microparticles); only a few studies have rigorously distinguished between the two. Accordingly, in this review, exosomes and shedding microvesicles are collectively called microvesicles. The first aim of this review was to discuss the role of microvesicles in cell-to-cell communication in general and in specific interactions between cells in chronic inflammation associated with atherosclerotic disease. Hereby, we focused on cell-specific microvesicles derived from platelets, endothelial cells and monocyte and monocyte-derived cells. The latter were also found to be associated with inflammation in obesity and type 2 diabetes prior to atherosclerotic disease, and cancer. Our second aim was to discuss specific changes in microvesicle content in relation with inflammation associated with metabolic and atherosclerotic disease, and cancer. Because many studies supported the putative diagnostic value of microRNAs, we emphasized therein changes in microRNA content rather than protein or lipid content. The most interesting microRNAs in inflammatory microvesicles in association with metabolic and cardiovascular diseases were found to be the let-7 family, miR-17/92 family, miR-21, miR-29, miR-126, miR-133, miR-146, and miR-155. These data warrant further investigation of the potential of microvesicles as putative biomarkers and as novel carriers for the cell-specific transfer of microRNAs and other therapeutic agents.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, PB 705, Leuven B-3000, Belgium
| | | |
Collapse
|
38
|
Abstract
Neutrophilic granulocytes are no longer regarded as cells involved only in the last phase of the immune response with one single-although vitally important-task: engulfing and killing of microorganisms marked by immunoglobulin or complement fragments. In recent years, it was shown that neutrophils are actively involved in initiation and organization of the adaptive immune response by releasing various cytokines, interacting with all major types of immune cells, regulating their own lifespan, and participating in the anaphylactic reaction and in several classically nonimmune functions such as hemostasis, atherogenesis, and even insulin resistance. The antibacterial effect is no longer restricted to killing and destruction of microorganisms sequestered in the phagosomal space. Bacteriostasis also occurs at certain locations of the extracellular space, by formation of neutrophil extracellular traps (NETs) that were shown in the last 2 years to have a significant role in the prevention of dissemination of microorganisms. Extracellular vesicles represent a recently discovered form of intercellular communication carried out both by lipids, proteins, and nucleic acids. In this review, we also summarize the role of neutrophil-derived extracellular vesicles in modifying the function of other cell types as well as their direct antibacterial effect that differs significantly from mechanisms applied either by neutrophils or by the NETs.
Collapse
|
39
|
Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JNH, Ponomarev ED, Duckett L, Vorobjev IA. Circulating microparticles: square the circle. BMC Cell Biol 2013; 14:23. [PMID: 23607880 PMCID: PMC3651414 DOI: 10.1186/1471-2121-14-23] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/20/2013] [Indexed: 01/05/2023] Open
Abstract
Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, D-249, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64:676-705. [PMID: 22722893 DOI: 10.1124/pr.112.005983] [Citation(s) in RCA: 1340] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.
Collapse
Affiliation(s)
- Edwin van der Pol
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L364-81. [PMID: 22728467 DOI: 10.1152/ajplung.00354.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.
Collapse
Affiliation(s)
- Mark McVey
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Mycobacterium tuberculosis-induced neutrophil ectosomes decrease macrophage activation. Tuberculosis (Edinb) 2012; 92:218-25. [PMID: 22391089 DOI: 10.1016/j.tube.2012.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND The existence of ectosome-like microvesicles released by neutrophils was proposed a few decades ago. Other studies revealed that the innate immune response during mycobacterial infection is accompanied by an intense migration of neutrophils to the site of infection, which may be important during the acute phase of tuberculosis. We found that the ectosomes derived from infected neutrophils are biologically active and can influence the survival of Mycobacterium tuberculosis within macrophages. METHODS Mycobacteria were cultured on supplemented Middlebrook-7H9 broth. All strains were grown to the exponential phase and quantitated by serial dilution. Human neutrophils and macrophages were infected with mycobacteria. Ectosomes from neutrophils were isolated post-infection and characterized by transmission electron microscopy and flow cytometry. To determine whether these microvesicles influenced mycobactericidal activity, mycobacteria-infected macrophages were treated with isolated ectosomes. RESULTS Ectosomes were released from neutrophils infected with mycobacteria. These ectosomes were derived from neutrophil plasma membrane and a small proportion stained with PKH26. These microvesicles, when incubated with infected macrophages, influenced antimycobacterial activity. CONCLUSIONS This is the first study to demonstrate that ectosomes that are shed from infected neutrophils influence mycobactericidal activity in macrophages in vitro, suggesting that these microvesicles have biological significance. Nevertheless, major gaps in our knowledge of microvesicle biology remain.
Collapse
|
43
|
Abstract
Observational and experimental studies continue to support the association of infection and infection-stimulated inflammation with development of cardiovascular disease (CVD) including atherosclerosis and thrombosis. Microvesicles (MV) are heterogeneous populations of sealed membrane-derived vesicles shed into circulation by activated mammalian cells and/or pathogenic microbes that may represent an interface between bacterial/microbial infection and increased risk of CVD. This review evaluates how MV act to modulate and intersect immunological and inflammatory responses to infection with particular attention to progression of CVD. Although infection-related stimuli provoke release of MV from blood and vascular cells, MV express phosphatidylserine and other procoagulant factors on their surface, which initiate and amplify blood coagulation. In addition, MV mediate cell-cell adhesion, which may stimulate production of pro-inflammatory cytokines in vascular cells, which in turn aggravate progression of CVD and propagate atherothrombosis. MV transfer membrane receptors, RNA and proteins among cells, and present auto-antigens from their cells of origin to proximal or remote target cells. Because MV harbor cell surface proteins and contain cytoplasmic components of the parent cell, they mediate biological messages and play a pivotal role in the crossroad between infection-stimulated inflammation and CVDs.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
| | - Yunman Li
- Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
44
|
Pérez-Casal M, Thompson V, Downey C, Welters I, Wyncoll D, Thachil J, Toh CH. The clinical and functional relevance of microparticles induced by activated protein C treatment in sepsis. Crit Care 2011; 15:R195. [PMID: 21834973 PMCID: PMC3387637 DOI: 10.1186/cc10356] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/07/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Activated protein C (APC) induces release of microparticles (MP) from primary physiological cells, which are found in patients undergoing treatment with recombinant human APC (rhAPC) for severe sepsis. We hypothesised that APC on these circulating MPs activate endothelial protease-activated receptor 1 (PAR1) to induce anti-apoptotic and anti-inflammatory properties that can improve patient outcome. METHODS This was an experimental study on clinical samples in an intensive care setting, and included patients with severe sepsis who fulfilled criteria for treatment with rhAPC. The number of CD13+ MPs from the patients were analysed to determine their origin. They were also quantified for endothelial protein C receptor (EPCR) and APC expression. Clinical relevance of these MPs were ascertained by comparing survival between the group receiving rhAPC (n = 25) and a control group of untreated patients (n = 25). MPs were also incubated with endothelial cells to analyse apoptotic gene expression, cytoprotection and anti-inflammatory effects. RESULTS rhAPC treatment induced a significant increase in circulating MP-associated EPCR by flow cytometry (P < 0.05) and by quantitative ELISA (P < 0.005). APC expression also showed significant increases (P < 0.05). Numerically, CD13+ MPs were higher in rhAPC-treated survivors versus non-survivors. However, the number of non-survivors was low and this was not significantly different. APC on MPs was demonstrated to induce anti-apoptotic and endothelial barrier effects through the activation of endothelial PAR1. CONCLUSIONS rhAPC treatment in patients with sepsis significantly increases circulating EPCR + MPs. These MPs were noted to express APC, which has specific anti-apoptotic and anti-inflammatory effects, with a non-significant correlative trend towards survival. This suggests that MPs could disseminate APC function and activate endothelial PAR1 at distal vascular sites.
Collapse
Affiliation(s)
- Margarita Pérez-Casal
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'. Semin Immunopathol 2011; 33:455-67. [PMID: 21318413 DOI: 10.1007/s00281-011-0250-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 01/01/2023]
Abstract
Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.
Collapse
|
46
|
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107:1047-57. [PMID: 21030722 DOI: 10.1161/circresaha.110.226456] [Citation(s) in RCA: 616] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microparticles represent a heterogeneous population of vesicles with a diameter of 100 to 1000 nm that are released by budding of the plasma membrane and express antigens specific of their parental cells. Although microparticle formation represents a physiological phenomenon, a multitude of pathologies are associated with a considerable increase in circulating microparticles, including inflammatory and autoimmune diseases, atherosclerosis, and malignancies. Microparticles display an broad spectrum of bioactive substances and receptors on their surface and harbor a concentrated set of cytokines, signaling proteins, mRNA, and microRNA. Recent studies provided evidence for the concept of microparticles as veritable vectors for the intercellular exchange of biological signals and information. Indeed, microparticles may transfer part of their components and content to selected target cells, thus mediating cell activation, phenotypic modification, and reprogramming of cell function. Because microparticles readily circulate in the vasculature, they may serve as shuttle modules and signaling transducers not only in their local environment but also at remarkable distance from their site of origin. Altogether, this transcellular delivery system may extend the confines of the limited transcriptome and proteome of recipient cells and establishes a communication network in which specific properties and information among cells can be efficiently shared. At least in same cases, the sequential steps of the transfer process underlie complex regulatory mechanisms, including selective sorting ("packaging") of microparticle components and content, specificity of interactions with target cells determined by surface receptors, and ultimately finely tuned and signal-dependent release and delivery of microparticle content.
Collapse
Affiliation(s)
- Sebastian F Mause
- Institut für Molekulare Herz-Kreislaufforschung, Universitätsklinikum Aachen, Pauwelsstrasse 30, Aachen, Germany
| | | |
Collapse
|
47
|
Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 2010; 92:692-7. [PMID: 20167241 PMCID: PMC2878918 DOI: 10.1016/j.biochi.2010.02.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/11/2010] [Indexed: 12/21/2022]
Abstract
The platelet-activating factor (PAF) signaling cascade evolved as a component of the repertoire of innate host defenses, but is also an effector pathway in inflammatory and thrombotic diseases. This review focuses on the PAF signaling cascade in systemic inflammatory responses and, specifically, explores its activities in experimental and clinical sepsis and anaphylaxis in the context of the basic biochemistry and biology of signaling via this lipid mediator system.
Collapse
Affiliation(s)
- Christian C. Yost
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Andrew S. Weyrich
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Guy A. Zimmerman
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
48
|
Saranwong S, Ezuki S, Kawabata K, Kawano S, Ohto H. A noninvasive near infrared system for detection of platelet components contaminated with bacteria. Transfusion 2010; 50:178-84. [PMID: 19694992 DOI: 10.1111/j.1537-2995.2009.02354.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Platelet (PLT) transfusion-associated bacterial sepsis has remained a substantial patient risk, primarily due to lacking effective and point-of-issue measures to detect bacterial contamination. This study describes near infrared (NIR) spectroscopy to examine inoculated PLTs without sampling within a few seconds. STUDY DESIGN AND METHODS This study evaluated apheresis PLTs inoculated with low concentrations of Bacillus cereus and Staphylococcus epidermidis, comparing with sterile bags. Short-wavelength NIR spectra over the range from 700 to 1100 nm in the transmittance mode were obtained using research (NIRS6500, Foss NIRSystems) and portable (NIRGun, Shizuoka Shibuya Seiki) instruments at 6-hour intervals from 0 to 72 hours after inoculation (HAI). RESULTS The sensitivity of the NIRS6500 was 100% (43/43) and 98% (50/51) after incubating PLTs inoculated with B. cereus for 42 HAI or more and with S. epidermidis for 54 HAI or more, respectively. Difference spectra calculated by subtracting the NIR spectra of stored PLTs with that of the same PLTs measured at 0 HAI improved the discrimination results compared with conventional second derivative spectra. CONCLUSION The NIRS6500 system can provide a PLT monitoring system based on difference spectra. The chemical components of PLTs that were influenced by bacterial metabolism seemed to play an important role in the calibration structure. Further studies should examine samples spiked with various species of prevalent bacteria.
Collapse
|
49
|
Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009; 4:e7140. [PMID: 19779610 PMCID: PMC2744928 DOI: 10.1371/journal.pone.0007140] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/29/2009] [Indexed: 01/20/2023] Open
Abstract
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.
Collapse
Affiliation(s)
- Anasuya Sarkar
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Mitra
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sonya Mehta
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raquel Raices
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target. Future Cardiol 2009; 5:159-73. [DOI: 10.2217/14796678.5.2.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2), present in the circulation and in atherosclerotic plaque, is an inflammatory marker with potential use as a predictor of cardiovascular risk and as a therapeutic target. Although Lp-PLA2 is associated with both LDL and HDL, it is important to determine whether Lp-PLA2 has a predominantly pro- or anti-atherogenic effect. Increasing evidence suggests a proatherogenic role for Lp-PLA2. ©iEpidemiologic and clinical evidence suggests Lp-PLA2 is an independent predictor of risk and may be superior to other inflammatory markers owing to its specificity and minimal biovariation. Lp-PLA2 inhibitors currently being investigated in clinical trials are promising novel anti-inflammatory agents with a specificity for the vascular bed and a potential for decreasing plaque vulnerability.
Collapse
Affiliation(s)
- Muzammil Ali
- Texas Heart Institute, 6770 Bertner Ave, MC 2-255, Houston, TX 77030, USA
| | - Mohammad Madjid
- Texas Heart Institute at St Luke’s Episcopal Hospital, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|