1
|
Solders SK, Shen Q, Reas ET. Blood-brain barrier permeability varies by brain region and APOE4 status and correlates with brain microstructure among high-AD risk groups. Neuroimage Clin 2025; 46:103805. [PMID: 40409050 DOI: 10.1016/j.nicl.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Although strong evidence exists for blood-brain barrier (BBB) disruption in Alzheimer's disease (AD), substantial uncertainty remains regarding its role. We address gaps and inconsistencies in the literature by examining regional variation in BBB permeability among cognitively normal older adults enriched for AD risk, the influence of genetic risk and its interactions with amyloid-β and sex, and the relationships between BBB breakdown and brain microstructure. Additionally, we compare two methods of quantifying BBB permeability. METHODS Dynamic contrast-enhanced magnetic resonance imaging and restriction spectrum imaging were performed on 48 cognitively normal older adults. We examined differences in whole-brain regional BBB permeability between APOE4 carriers and non-carriers, as well as associations with brain microstructure. Analyses tested interactions of APOE4 with sex and amyloid-β positivity, and were compared using continuous measurements of permeability (Ktrans) and an abnormal leakage index (ALI). RESULTS BBB permeability was variable, with highest values in cortical gray matter, including inferior frontal, temporal, and some sensory regions across the full sample. APOE4 carriers had elevated permeability throughout superior occipital, parietal, and frontal cortical regions compared to non-carriers. Results were unchanged after controlling for amyloid-β positivity or when using ALI instead of Ktrans. Higher permeability correlated with altered microstructural patterns, with the most robust relationships among APOE4 carriers, amyloid-β positive individuals, and women. DISCUSSION Individuals at greater genetic risk for AD demonstrate elevated cortical BBB permeability associated with microstructural abnormalities. These relationships were seen in a widespread spatial pattern that is dissimilar from the stereotypical spread of AD neuropathology.
Collapse
Affiliation(s)
| | - Qian Shen
- Department of Neurosciences, University of California, San Diego, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, USA.
| |
Collapse
|
2
|
Arévalo-Caro C, Arce Retana M, Losada Amaya S, Arboleda H, Gallart-Palau X, Serra A. APOE4, Alzheimer's and periodontal disease: A scoping review. Ageing Res Rev 2025; 105:102649. [PMID: 39864561 DOI: 10.1016/j.arr.2024.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVE The ε4 allele of the apolipoprotein E gene (APOE4) is recognized as the primary genetic risk factor for Alzheimer's disease (AD) and has been associated with chronic inflammatory conditions, such as periodontal disease (PD). PD has been identified as having a potentiating effect that favors the development and progression of AD. This scoping review investigates the potential relationship between PD and AD through APOE4. METHODS The Joanna Briggs Institute methodology and PRISMA guidelines were followed. The search included articles published in PubMed and Embase, focusing on human studies, and excluding case series, in vitro studies, reviews, and animal studies. RESULTS Among the studies that evaluated the relationship between PD, APOE4, and AD, a correlation was identified between the gingival index and cognitive impairment in APOΕ4 carriers. Additionally, higher levels of apolipoprotein E4 were found in the crevicular fluid of patients with both AD and PD, compared to individuals without AD. CONCLUSION APOE4 may link PD and AD through shared genetic variants, inflammatory pathways, and dyslipidemia, involving both peripheral and central pathways. More comprehensive studies are required to ascertain the relationship between PD, AD, and APOE4, and to determine whether these associations are causal or non-causal in nature.
Collapse
Affiliation(s)
- Catalina Arévalo-Caro
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain; Grupo de Investigación en Periodoncia y Medicina Periodontal, Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Cra 30 No. 45-03, Edificio 210, Bogotá, Colombia.
| | - Marianela Arce Retana
- Grupo de Investigación en Periodoncia y Medicina Periodontal, Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Cra 30 No. 45-03, Edificio 210, Bogotá, Colombia
| | - Sergio Losada Amaya
- Grupo de Investigación en Periodoncia y Medicina Periodontal, Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Cra 30 No. 45-03, Edificio 210, Bogotá, Colombia
| | - Humberto Arboleda
- Grupos de Neurociencias y Muerte Celular, Department of Pediatrics, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Cra 30 No. 45-03, Bogotá, Colombia
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain.
| | - Aida Serra
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain.
| |
Collapse
|
3
|
Dias D, Portugal CC, Relvas J, Socodato R. From Genetics to Neuroinflammation: The Impact of ApoE4 on Microglial Function in Alzheimer's Disease. Cells 2025; 14:243. [PMID: 39996715 PMCID: PMC11853365 DOI: 10.3390/cells14040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder marked by progressive cognitive decline and memory loss, impacting millions of people around the world. The apolipoprotein E4 (ApoE4) allele is the most prominent genetic risk factor for late-onset AD, dramatically increasing disease susceptibility and accelerating onset compared to its isoforms ApoE2 and ApoE3. ApoE4's unique structure, which arises from single-amino-acid changes, profoundly alters its function. This review examines the critical interplay between ApoE4 and microglia-the brain's resident immune cells-and how this relationship contributes to AD pathology. We explore the molecular mechanisms by which ApoE4 modulates microglial activity, promoting a pro-inflammatory state, impairing phagocytic function, and disrupting lipid metabolism. These changes diminish microglia's ability to clear amyloid-beta peptides, exacerbating neuroinflammation and leading to neuronal damage and synaptic dysfunction. Additionally, ApoE4 adversely affects other glial cells, such as astrocytes and oligodendrocytes, further compromising neuronal support and myelination. Understanding the ApoE4-microglia axis provides valuable insights into AD progression and reveals potential therapeutic targets. We discuss current strategies to modulate ApoE4 function using small molecules, antisense oligonucleotides, and gene editing technologies. Immunotherapies targeting amyloid-beta and ApoE4, along with neuroprotective approaches to enhance neuronal survival, are also examined. Future directions highlight the importance of personalized medicine based on individual ApoE genotypes, early biomarker identification for risk assessment, and investigating ApoE4's role in other neurodegenerative diseases. This review emphasizes the intricate connection between ApoE4 and microglial dysfunction, highlighting the necessity of targeting this pathway to develop effective interventions. Advancing our understanding in this area holds promise for mitigating AD progression and improving outcomes for those affected by this relentless disease.
Collapse
Affiliation(s)
| | | | | | - Renato Socodato
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (D.D.); (C.C.P.); (J.R.)
| |
Collapse
|
4
|
Dybing KM, McAllister TW, Wu YC, McDonald BC, Broglio SP, Mihalik JP, Guskiewicz KM, Goldman JT, Jackson JC, Saykin AJ, Risacher SL, Nudelman KNH. Association of Alzheimer's Disease Polygenic Risk Score with Concussion Severity and Recovery Metrics. Sports Med 2025:10.1007/s40279-024-02150-w. [PMID: 39821585 DOI: 10.1007/s40279-024-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. OBJECTIVE We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. METHODS We assessed six concussion outcomes in 931 participants, including two recovery measures (number of days to asymptomatic and to return to play (RTP)) and four severity measures (scores on SAC and BESS, SCAT symptom severity and total number of symptoms). We calculated the PRS using a published score and performed multiple linear regression to assess the relationship of the PRS with outcomes. We also used ANOVAs, t-tests, and chi-square tests to examine outcomes by APOE genotype. RESULTS Higher PRS was associated with longer injury to RTP time in the normal RTP (< 24 days) subgroup (p = 0.024). A one standard deviation increase in the PRS resulted in a 9.89 hour increase to RTP time. This result was no longer significant after inclusion of covariates. There were no other consistently significant effects. CONCLUSIONS Our findings suggest high AD genetic risk is not associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
Collapse
Affiliation(s)
- Kaitlyn M Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Thomas W McAllister
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua T Goldman
- Sports Medicine, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Jonathan C Jackson
- United States Air Force Academy, 2355 Faculty Drive, Suite 1N207, USAFA, CO, USA
- Utah Valley Orthopedics and Sports Medicine, Provo, UT, USA
- Utah Valley Orthopedics and Sports Medicine, Saratoga Springs, UT, USA
- Department of Family Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kelly N H Nudelman
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Onisiforou A, Charalambous EG, Zanos P. Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer's Disease Pathogenesis-From Gut Microbiota and Viruses to Brain Biofilms. Microorganisms 2025; 13:90. [PMID: 39858858 PMCID: PMC11767882 DOI: 10.3390/microorganisms13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut-brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut-brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide's antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Eleftheria G. Charalambous
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 1–2, Ellernholzstr., 17489 Greifswald, Germany
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| |
Collapse
|
6
|
Xiong L, Li Q, Zhou X, Xiao J, Yang X, Xu H, Guo C. Anti-inflammatory and antioxidant effects of fenugreek in preventing mice model of Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241312970. [PMID: 40125337 PMCID: PMC11930484 DOI: 10.1177/25424823241312970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/26/2024] [Indexed: 03/25/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most prevalent form of dementia. Fenugreek seeds possess anti-inflammatory and antioxidant effects, making them valuable therapeutic agents in managing neurodegenerative diseases. Objective This study aimed to investigate the primary biological pathways and specific mechanisms underlying the protective effects of fenugreek in preventing mice of AD by employing bioinformatics and experimental verification. Methods We administered fenugreek extract as an intervention in mice model of AD and then assessed their cognitive ability and histopathological changes. We predicted the key target genes associated with fenugreek action on AD and the main biological pathways using the bioinformatics method. Furthermore, we observed the different expression of target genes by western blot (WB). Results The bioinformatics analysis revealed a strong correlation between fenugreek and AD. The behavioral experiments confirmed that fenugreek improved the behavioral and cognitive dysfunction in mice with AD. The histopathology revealed significant changes that fenugreek can inhabit Nissl bodies. Western blot experiments confirmed that fenugreek exerted statistically significant modulatory effects on the levels of inflammatory proteins [interleukin-6 (IL-6), IL-10, and IL-1β] and oxidative stress-related proteins (amyloid-β protein precursor, apolipoprotein E, and presenilin 1). Conclusions This study suggested that fenugreek might be involved in the AD pathway and effectively prevented the progression of AD through significant anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinxuan Li
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuhui Zhou
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiujia Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuan Guo
- Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
8
|
Ciurleo GCV, de Azevedo OGR, Carvalho CGM, Vitek MP, Warren CA, Guerrant RL, Oriá RB. Apolipoprotein E4 and Alzheimer's disease causality under adverse environments and potential intervention by senolytic nutrients. Clin Nutr ESPEN 2024; 64:16-20. [PMID: 39251089 DOI: 10.1016/j.clnesp.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Apolipoprotein E (apoE) has a pivotal role in Alzheimer's Disease (AD) pathophysiology. APOE4 has been recognized as a risk factor for developing late-onset AD. Recently, APOE4 homozygosity was regarded as a new familial genetic trait of AD. In this opinion paper, we summarized the potential pleiotropic antagonism role of APOE4 in children living under early life adversity and afflicted with enteric infection/malnutrition-related pathogenic exposome. APOE4 was found to be neuroprotective early in life despite its increasing risk for AD with aging. We call for awareness of the potential burden this can bring to the public health system when APOE4 carriers, raised under adverse environmental conditions in early life and then aging with unhealthy lifestyles in later life may be at special risk for cognitive impairments and acquired AD. We postulate the importance of anti-senescence therapies to protect these individuals and remediate aging-related chronic illnesses.
Collapse
Affiliation(s)
- Gabriella C V Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Camila G M Carvalho
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
9
|
Ng TKS, Beck T, Desai P, Dhana K, Wilson RS, Evans DA, Rajan KB. Prospective associations of interleukin-6 and APOE allele with cognitive decline in biracial community-dwelling older adults: The Chicago Health and Aging Project (CHAP). ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70002. [PMID: 39435276 PMCID: PMC11492147 DOI: 10.1002/dad2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION It is unclear whether inflammation, that is, high interleukin-6 (IL-6) levels, and genetic risk, that is, apolipoprotein E (APOE) ε4 allele, have a compounding effect on cognitive decline (CD). METHODS We analyzed a subset of participants from the longitudinal cohort study, Chicago Health and Aging Project, comprising 1120 biracial community-dwelling older adults (60% Black and 62% women), and mean follow-up = 6.4 years. We ran adjusted mixed-effects models on2 longitudinal CD. RESULTS In APOE ε4 carriers, higher serum IL-6 was not associated with the rate of CD (β = -0.0091 [standard deviation (SD) = 0.0165, p = 0.5800]). Conversely, in non-ε4 carriers, compared to the lower tertile, those with the upper tertile of serum IL-6 levels experienced significantly accelerated CD (β = -0.0257 [SD = 0.0084, p = 0.0023]). DISCUSSION Even without the largest genetic risk factor for late-onset Alzheimer's disease/Alzheimer's disease and related dementias (AD/ADRD), elevated serum IL-6 still accelerate the rate of CD in non-APOE ε4 carriers. Hence, interventions ameliorating inflammation may prevent AD/ADRD. Highlights Interleukin-6 (IL-6) and the apolipoprotein E (APOE) ε4 allele have been separately associated with an increased risk for cognitive decline, but their interaction remains unclear.In ε4 carriers, IL-6 was not associated with cognitive decline. However, even without the biggest genetic risk factor for Alzheimer's disease (AD), that is, APOE ε4, elevated serum IL-6 still could confer accelerated rate of cognitive decline, with a detrimental effect half of that imposed by APOE ε4 alone.We found no racial differences in these associations.These findings contribute complementary evidence on non-APOE ε4-dependent and non-AD biological pathways through which cognitive decline can still be accelerated in non-APOE ε4 carriers and highlight a specific subgroup of older adults who are at a higher risk of AD and thus may benefit from anti-inflammatory interventions.
Collapse
Affiliation(s)
- Ted K. S. Ng
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Todd Beck
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Pankaja Desai
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Klodian Dhana
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease Research CenterRush University Medical CenterChicagoIllinoisUSA
| | - Denis A. Evans
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Kumar B. Rajan
- Rush Institute for Healthy AgingDepartment of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease Research CenterRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
10
|
Qian Z, Wang Z, Li B, Meng X, Kuang Z, Li Y, Yang Y, Ye K. Thy1-ApoE4/C/EBPβ double transgenic mice act as a sporadic model with Alzheimer's disease. Mol Psychiatry 2024; 29:3040-3055. [PMID: 38658772 PMCID: PMC11449781 DOI: 10.1038/s41380-024-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Early onset familial Alzheimer's disease (FAD) with APP, PS1/2 (presenilins) mutation accounts for only a small portion of AD cases, and most are late-onset sporadic. However, majority of AD mouse models are developed to mimic the genetic cause of human AD by overexpressing mutated forms of human APP, PS1/2, and/or Tau protein, though there is no Tau mutation in AD, and no single mouse model recapitulates all aspects of AD pathology. Here, we report Thy1-ApoE4/C/EBPβ double transgenic mouse model that demonstrates key AD pathologies in an age-dependent manner in absence of any human APP or PS1/2 mutation. Using the clinical diagnosis criteria, we show that this mouse model exhibits tempo-spatial features in AD patient brains, including progressive cognitive decline associated with brain atrophy, which is accompanied with extensive neuronal degeneration. Remarkably, the mice display gradual Aβ aggregation and neurofibrillary tangles formation in the brain validated by Aβ PET and Tau PET. Moreover, the mice reveal widespread neuroinflammation as shown in AD brains. Hence, Thy1-ApoE4/C/EBPβ mouse model acts as a sporadic AD mouse model, reconstituting the major AD pathologies.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - ZhiHao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong Province, 518055, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
11
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
12
|
André C, Martineau-Dussault MÈ, Baril AA, Marchi NA, Daneault V, Lorrain D, Hudon C, Bastien CH, Petit D, Thompson C, Poirier J, Montplaisir J, Gosselin N, Carrier J. Reduced rapid eye movement sleep in late middle-aged and older apolipoprotein E ɛ4 allele carriers. Sleep 2024; 47:zsae094. [PMID: 38634644 PMCID: PMC11236949 DOI: 10.1093/sleep/zsae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
STUDY OBJECTIVES Apolipoprotein E ɛ4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). In addition, APOE4 carriers may exhibit sleep disturbances, but conflicting results have been reported, such that there is no clear consensus regarding which aspects of sleep are impacted. Our objective was to compare objective sleep architecture between APOE4 carriers and non-carriers, and to investigate the modulating impact of age, sex, cognitive status, and obstructive sleep apnea (OSA). METHODS A total of 198 dementia-free participants aged >55 years old (mean age: 68.7 ± 8.08 years old, 40.91% women, 41 APOE4 carriers) were recruited in this cross-sectional study. They underwent polysomnography, APOE4 genotyping, and a neuropsychological evaluation. ANCOVAs assessed the effect of APOE4 status on sleep architecture, controlling for age, sex, cognitive status, and the apnea-hypopnea index. Interaction terms were added between APOE4 status and covariates. RESULTS Rapid eye movement (REM) sleep percentage (F = 9.95, p = .002, ηp2 = 0.049) and duration (F = 9.23, p = .003, ηp2 = 0.047) were lower in APOE4 carriers. The results were replicated in a subsample of 112 participants without moderate-to-severe OSA. There were no significant interactions between APOE4 status and age, sex, cognitive status, and OSA in the whole sample. CONCLUSIONS Our results show that APOE4 carriers exhibit lower REM sleep duration, including in cognitively unimpaired individuals, possibly resulting from early neurodegenerative processes in regions involved in REM sleep generation and maintenance.
Collapse
Affiliation(s)
- Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Dominique Lorrain
- Research Centre on Aging, University Institute of Geriatrics of Sherbrooke, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Department of Psychology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carol Hudon
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Célyne H Bastien
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, CIUSSS de l’Ouest-de-l’Ile-de-Montréal, Verdun, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Akahane S, Matsuura H, Kaido T, Usami Y, Ishimine N, Uehara T, Yamauchi K. Apolipoprotein E-containing lipoproteins and their extracellular interactions with LRP1 affect LPS-induced inflammation. Biol Chem 2024; 405:383-393. [PMID: 38488124 DOI: 10.1515/hsz-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 06/02/2024]
Abstract
The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways.
Collapse
Affiliation(s)
- Shogo Akahane
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
| | - Hiroto Matsuura
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
| | - Takahiro Kaido
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Nau Ishimine
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, 34808 Shinshu University Hospital , Matsumoto 390-8621, Japan
| | - Kazuyoshi Yamauchi
- Department of Clinical Laboratory Investigation, 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621, Japan
- Department of Biomedical Laboratory Sciences, 34808 School of Health Sciences, Shinshu University , 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
14
|
Dratva MA, Banks SJ, Panizzon MS, Galasko D, Sundermann EE. Low testosterone levels relate to poorer cognitive function in women in an APOE-ε4-dependant manner. Biol Sex Differ 2024; 15:45. [PMID: 38835072 PMCID: PMC11151480 DOI: 10.1186/s13293-024-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Past research suggests that low testosterone levels relate to poorer cognitive function and higher Alzheimer's disease (AD) risk; however, these findings are inconsistent and are mostly derived from male samples, despite similar age-related testosterone decline in females. Both animal and human studies demonstrate that testosterone's effects on brain health may be moderated by apolipoprotein E ε4 allele (APOE-ε4) carrier status, which may explain some previous inconsistencies. We examined how testosterone relates to cognitive function in older women versus men across healthy aging and the AD continuum and the moderating role of APOE-ε4 genotype. METHODS Five hundred and sixty one participants aged 55-90 (155 cognitively normal (CN), 294 mild cognitive impairment (MCI), 112 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), who had baseline cognitive and plasma testosterone data, as measured by the Rules Based Medicine Human DiscoveryMAP Panel were included. There were 213 females and 348 males (self-reported sex assigned at birth), and 52% of the overall sample were APOE-ε4 carriers. We tested the relationship of plasma testosterone levels and its interaction with APOE-ε4 status on clinical diagnostic group (CN vs. MCI vs. AD), global, and domain-specific cognitive performance using ANOVAs and linear regression models in sex-stratified samples. Cognitive domains included verbal memory, executive function, processing speed, and language. RESULTS We did not observe a significant difference in testosterone levels between clinical diagnostic groups in either sex, regrardless of APOE-ε4 status. Across clinical diagnostic group, we found a significant testosterone by APOE-ε4 interaction in females, such that lower testosterone levels related to worse global cognition, processing speed, and verbal memory in APOE-ε4 carriers only. We did not find that testosterone, nor its interaction with APOE-ε4, related to cognitive outcomes in males. CONCLUSIONS Findings suggest that low testosterone levels in older female APOE-ε4 carriers across the aging-MCI-AD continuum may have deleterious, domain-specific effects on cognitive performance. Although future studies including additional sex hormones and longitudinal cognitive trajectories are needed, our results highlight the importance of including both sexes and considering APOE-ε4 carrier status when examining testosterone's role in cognitive health.
Collapse
Affiliation(s)
- Melanie A Dratva
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- UCSD ACTRI Building, 2W502-B8, 9452 Medical Center Drive (MC-0841), La Jolla, CA, 92037, USA.
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92092, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Wang XX, Li ZH, Du HY, Liu WB, Zhang CJ, Xu X, Ke H, Peng R, Yang DG, Li JJ, Gao F. The role of foam cells in spinal cord injury: challenges and opportunities for intervention. Front Immunol 2024; 15:1368203. [PMID: 38545108 PMCID: PMC10965697 DOI: 10.3389/fimmu.2024.1368203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.
Collapse
Affiliation(s)
- Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
16
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
17
|
Reimer Jensen AM, Frikke-Schmidt R, Gelpi M, Knudsen AD, Benfield T, Nordestgaard BG, Afzal S, Biering-Sørensen T, Nielsen SD. Elevated plasma apolipoprotein E levels in people living with HIV: Associations with biomarkers and HIV-specific risk factors. Atherosclerosis 2024; 390:117457. [PMID: 38301603 DOI: 10.1016/j.atherosclerosis.2024.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND AIMS Apolipoprotein E (apoE) plays a crucial role in cholesterol metabolism, and high levels of apoE in plasma are associated with cardiovascular disease and all-cause mortality. We aimed to assess if HIV is independently associated with high plasma apoE and to determine HIV-related risk factors for high plasma apoE. METHODS We included 661 people with HIV (PWH) from the Copenhagen Comorbidity in HIV (COCOMO) study with available measurement of plasma apoE. COCOMO participants were frequency matched 1:1 on age and sex with controls from the Copenhagen General Population Study. High plasma apoE was defined as levels above the 90th percentile (66.2 mg/L). The association between HIV and high plasma apoE was assessed using logistic regression models. Among PWH, both linear and logistic regression models were used to determine HIV-specific risk factors for high plasma apoE. RESULTS Mean age was 52 years and 89 % were male. Median plasma apoE was 49.0 mg/L in PWH and 43.3 mg/L in controls, p < 0.001. HIV was associated with higher plasma apoE after adjusting for potential confounders, including triglycerides (odds ratio 2.14 [95 % CI: 1.39-3.29], p < 0.001). In PWH, higher plasma apoE was associated with a previous AIDS-defining condition in linear models before adjustment for triglycerides and integrase strand transfer inhibitor use in fully adjusted linear models. CONCLUSIONS PWH had higher plasma apoE than controls even after adjusting for triglycerides. Further studies are needed to elucidate the clinical impact of high plasma apoE in PWH.
Collapse
Affiliation(s)
- Anne Marie Reimer Jensen
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark; Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marco Gelpi
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas D Knudsen
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center of Research & Disruption of Infectious Diseases, Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark; Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Reyes-Reyes EM, Brown J, Trial MD, Chinnasamy D, Wiegand JP, Bradford D, Brinton RD, Rodgers KE. Vivaria housing conditions expose sex differences in brain oxidation, microglial activation, and immune system states in aged hAPOE4 mice. Exp Brain Res 2024; 242:543-557. [PMID: 38206365 PMCID: PMC10894770 DOI: 10.1007/s00221-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.
Collapse
Affiliation(s)
- E M Reyes-Reyes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J Brown
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - M D Trial
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Chinnasamy
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J P Wiegand
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Bradford
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - K E Rodgers
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
19
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
20
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Yaqub A, Khan SR, Vernooij MW, van Hagen PM, Peeters RP, Ikram MA, Chaker L, Dalm VASH. Serum immunoglobulins and biomarkers of dementia: a population-based study. Alzheimers Res Ther 2023; 15:194. [PMID: 37936180 PMCID: PMC10629143 DOI: 10.1186/s13195-023-01333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inflammation plays a key role in the development of dementia, but its link to early biomarkers, particularly those in plasma or neuroimaging, remains elusive. This study aimed to investigate the association between serum immunoglobulins and biomarkers of dementia. METHODS Between 1997 and 2009, serum immunoglobulins (IgA, IgG and IgM) were measured in dementia-free participants of the population-based Rotterdam Study. A random subset of participants had assessment of biomarkers in plasma (total tau (t-tau), neurofilament light chain (NfL), amyloid-β40 (Aβ-40), amyloid-β42 (Aβ-42), while another subset of participants underwent neuroimaging to quantify brain volume, white matter structural integrity and markers of cerebral small vessel disease. Linear regression models were constructed to determine cross-sectional associations between IgA, IgG, IgM and biomarkers of dementia, with adjustment for potential confounders. Multiple testing correction was applied using the false discovery rate. As a sensitivity analysis, we re-ran the models for participants within the reference range of immunoglobulins, excluding those using immunomodulating drugs, and conducted a stratified analysis by APOE-ε4 carriership and sex. RESULTS Of 8,768 participants with serum immunoglobulins, 3,455 participants (65.8 years [interquartile range (IQR): 61.5-72.0], 57.2% female) had plasma biomarkers available and 3,139 participants (57.4 years [IQR: 52.7-60.7], 54.4% female) had neuroimaging data. Overall, no associations between serum immunoglobulins and biomarkers of dementia remained significant after correction for multiple testing. However, several suggestive associations were noted: higher serum IgA levels concurred with lower plasma levels of Aβ-42 (standardized adjusted mean difference: -0.015 [95% confidence interval (CI): -0.029--0.002], p = 2.8 × 10-2), and a lower total brain volume, mainly driven by less gray matter (-0.027 [-0.046--0.008], p = 6.0 × 10-3) and more white matter hyperintensities (0.047 [0.016 - 0.077], p = 3.0 × 10-3). In sensitivity analyses, higher IgM was linked to lower t-tau, Aβ-40, and Aβ-42, but also a loss of white matter microstructural integrity. Stratified analyses indicate that these associations potentially differ between carriers and non-carriers of the APOE-ε4 allele and men and women. CONCLUSIONS While associations between serum immunoglobulins and early markers of dementia could not be established in this population-based sample, it may be valuable to consider factors such as APOE-ε4 allele carriership and sex in future investigations.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Samer R Khan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Bachstetter AD, Lutshumba J, Winford E, Abner EL, Martin BJ, Harp JP, Van Eldik LJ, Schmitt FA, Wilcock DM, Stowe AM, Jicha GA, Nikolajczyk BS. A blunted T H17 cytokine signature in women with mild cognitive impairment: insights from inflammatory profiling of a community-based cohort of older adults. Brain Commun 2023; 5:fcad259. [PMID: 37901041 PMCID: PMC10612408 DOI: 10.1093/braincomms/fcad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
People with dementia have an increase in brain inflammation, caused in part by innate and adaptive immune cells. However, it remains unknown whether dementia-associated diseases alter neuro-immune reflex arcs to impact the systemic immune system. We examined peripheral immune cells from a community-based cohort of older adults to test if systemic inflammatory cytokine signatures associated with early stages of cognitive impairment. Human peripheral blood mononuclear cells were cultured with monocyte or T-cell-targeted stimuli, and multiplex assays quantitated cytokines in the conditioned media. Following T-cell-targeted stimulation, cells from women with cognitive impairment produced lower amounts of TH17 cytokines compared with cells from cognitively healthy women, while myeloid-targeted stimuli elicited similar amounts of cytokines from cells of both groups. This TH17 signature correlated with the proportion of circulating CD4+ and CD8+ T cells and plasma glial fibrillary acidic protein and neurofilament light concentrations. These results suggest that decreases in TH17 cytokines could be an early systemic change in women at risk for developing dementia. Amelioration of TH17s cytokines in early cognitive impairment could, in part, explain the compromised ability of older adults to respond to vaccines or defend against infection.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jenny Lutshumba
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Edric Winford
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbra J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P Harp
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
- Department of Behavioral Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Donna M Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
23
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
24
|
Laskowitz DT, Van Wyck DW. ApoE Mimetic Peptides as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1496-1507. [PMID: 37592168 PMCID: PMC10684461 DOI: 10.1007/s13311-023-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The lack of targeted therapies for traumatic brain injury (TBI) remains a compelling clinical unmet need. Although knowledge of the pathophysiologic cascades involved in TBI has expanded rapidly, the development of novel pharmacological therapies has remained largely stagnant. Difficulties in creating animal models that recapitulate the different facets of clinical TBI pathology and flaws in the design of clinical trials have contributed to the ongoing failures in neuroprotective drug development. Furthermore, multiple pathophysiological mechanisms initiated early after TBI that progress in the subacute and chronic setting may limit the potential of traditional approaches that target a specific cellular pathway for acute therapeutic intervention. We describe a reverse translational approach that focuses on translating endogenous mechanisms known to influence outcomes after TBI to develop druggable targets. In particular, numerous clinical observations have demonstrated an association between apolipoprotein E (apoE) polymorphism and functional recovery after brain injury. ApoE has been shown to mitigate the response to acute brain injury by exerting immunomodulatory properties that reduce secondary tissue injury as well as protecting neurons from excitotoxicity. CN-105 represents an apoE mimetic peptide that can effectively penetrate the CNS compartment and retains the neuroprotective properties of the intact protein.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- AegisCN LLC, 701 W Main Street, Durham, NC, 27701, USA
| | - David W Van Wyck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Eskandari S, Rezayof A, Asghari SM, Hashemizadeh S. Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases. Neuropeptides 2023; 101:102356. [PMID: 37390744 DOI: 10.1016/j.npep.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship between the biochemical properties of arginine-rich peptides (ARPs) and their neuroprotective effects to deal with the harmful effects of risk factors. It seems that ARPs have portrayed a promising and fantastic landscape for treating neurodegeneration-associated disorders. With multimodal mechanisms of action, ARPs play various unprecedented roles, including as the novel delivery platforms for entering the central nervous system (CNS), the potent antagonists for calcium influx, the invader molecules for targeting mitochondria, and the protein stabilizers. Interestingly, these peptides inhibit the proteolytic enzymes and block protein aggregation to induce pro-survival signaling pathways. ARPs also serve as the scavengers of toxic molecules and the reducers of oxidative stress agents. They also have anti-inflammatory, antimicrobial, and anti-cancer properties. Moreover, by providing an efficient nucleic acid delivery system, ARPs can play an essential role in developing various fields, including gene vaccines, gene therapy, gene editing, and imaging. ARP agents and ARP/cargo therapeutics can be raised as an emergent class of neurotherapeutics for neurodegeneration. Part of the aim of this review is to present recent advances in treating neurodegenerative diseases using ARPs as an emerging and powerful therapeutic tool. The applications and progress of ARPs-based nucleic acid delivery systems have also been discussed to highlight their usefulness as a broad-acting class of drugs.
Collapse
Affiliation(s)
- Sedigheh Eskandari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| |
Collapse
|
26
|
Wang C, Yin L, Fu P, Lu G, Zhai X, Yang C. Anti-inflammatory effect of ApoE23 on Salmonella typhimurium-induced sepsis in mice. Open Med (Wars) 2023; 18:20230767. [PMID: 37533741 PMCID: PMC10390754 DOI: 10.1515/med-2023-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Two independent experiments were performed with three groups each (sepsis control, sepsis, and sepsis with apoE23 treatment) to investigate the anti-inflammatory effect of apolipoprotein 23 (apoE23) in a mouse model of sepsis induced by S. typhimurium. Survival rates; plasma level variations in tumor necrosis factor (TNF)-α, interleukin (IL)-6, and lipopolysaccharide (LPS); S. typhimurium colony-forming units in the spleen tissue; and mRNA and protein expression levels of low-density lipoprotein receptor (LDLR), LDLR-related protein (LRP), syndecan-1, and scavenger receptor B1 were evaluated in the livers of mice from the three groups. Results found that the survival rate of septic mice treated with apoE23 was 100% within 48 h, while it was only 40% in septic mice without apoE23 treatment (P < 0.001). The plasma LPS, TNF-α, and IL-6 levels and the S. typhimurium load in mice in the apoE23-treated group were significantly lower than those in septic mice (P < 0.05). Moreover, apoE23 restored the downregulated expression of LDLR and LRP in the liver tissue of septic mice. So apoE23 exhibits an anti-inflammatory effect in the mouse model of S. typhimurium-induced sepsis. Further studies are required to understand the mechanisms underlying the anti-inflammatory effects of apoE23.
Collapse
Affiliation(s)
- Chuanqing Wang
- Department of Nosocomial Infection Control and the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Lijun Yin
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Pan Fu
- Department of the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Xiaowen Zhai
- Department of Hematology, Children’s Hospital of Fudan University, Shanghai, 399 Wanyuan Road, Shanghai200032, China
| | - Changsheng Yang
- The Institute of Cardiovascular Diseases of Shanghai, Key Laboratory of Viral Heart Diseases, Ministry of Health, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai200032, China
| |
Collapse
|
27
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
28
|
Nichols E, Brickman AM, Casaletto KB, Dams-O’Connor K, George KM, Kumar RG, Palta P, Rabin JS, Satizabal CL, Schneider J, Pa J, La Joie R. AD and non-AD mediators of the pathway between the APOE genotype and cognition. Alzheimers Dement 2023; 19:2508-2519. [PMID: 36516004 PMCID: PMC10264550 DOI: 10.1002/alz.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is a driver of cognitive decline and dementia. We used causal mediation methods to characterize pathways linking the APOE genotype to late-life cognition through Alzheimer's disease (AD) and non-AD neuropathologies. METHODS We analyzed autopsy data from 1671 individuals from the Religious Orders Study, Memory and Aging Project, and Minority Aging Research Study (ROS/MAP/MARS) studies with cognitive assessment within 5 years of death and autopsy measures of AD (amyloid beta (Aβ), neurofibrillary tangles), vascular (athero/arteriolo-sclerosis, micro-infarcts/macro-infarcts), and non-AD neurodegenerative neuropathologies (TAR DNA protein 43 [TDP-43], Lewy bodies, amyloid angiopathy, hippocampal sclerosis). RESULTS The detrimental effect of APOE ε4 on cognition was mediated by summary measures of AD and non-AD neurodegenerative neuropathologies but not vascular neuropathologies; effects were strongest in individuals with dementia. The protective effect of APOE ε2 was partly mediated by AD neuropathology and stronger in women than in men. DISCUSSION The APOE genotype influences cognition and dementia through multiple neuropathological pathways, with implications for different therapeutic strategies targeting people at increased risk for dementia. HIGHLIGHTS Both apolipoprotein E (APOE) ε2 and APOE ε4 effects on late-life cognition are mediated by AD neuropathology. The estimated mediated effects of most measures of AD neuropathology were similar. Non-Alzheimer's disease (AD) neurodegenerative pathologies mediate the effect of ε4 independently from AD. Non-AD vascular pathologies did not mediate the effect of the APOE genotype on cognition. The protective effect of APOE ε2 on cognition was stronger in women.
Collapse
Affiliation(s)
- Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Department of Neurology, College of Physicians and Surgeons,
Columbia University, New York, NY, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Kristen M. George
- Department of Public Health Sciences, University of
California Davis School of Medicine, Davis, CA, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia
University Irving Medical Center, New York, NY, USA
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook
Health Sciences Centre, University of Toronto, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain
Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of
Toronto, Canada
| | - Claudia L. Satizabal
- Department of Population Health Science and Biggs
Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San
Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | - Julie Schneider
- Rush Alzheimer’s Disease Center, Chicago, IL,
USA
- Rush University Medical Center, Chicago, IL, USA
| | - Judy Pa
- Department of Neuroscience, University of California San
Diego, San Diego, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Erdi M, Saruwatari MS, Rozyyev S, Acha C, Ayyub OB, Sandler AD, Kofinas P. Controlled Release of a Therapeutic Peptide in Sprayable Surgical Sealant for Prevention of Postoperative Abdominal Adhesions. ACS APPLIED MATERIALS & INTERFACES 2023:10.1021/acsami.3c00283. [PMID: 36884271 PMCID: PMC10485170 DOI: 10.1021/acsami.3c00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Formation of asymmetric, rigid scar tissue known as surgical adhesions is caused by traumatic disruption of mesothelial-lined surfaces in surgery. A widely adopted prophylactic barrier material (Seprafilm) for the treatment of intra-abdominal adhesions is applied operatively as a pre-dried hydrogel sheet but has reduced translational efficacy due its brittle mechanical properties. Topically administered peritoneal dialysate (Icodextrin) and anti-inflammatory drugs have failed to prevent adhesions due to an uncontrolled release profile. Hence, inclusion of a targeted therapeutic into a solid barrier host matrix with improved mechanical properties could provide dual utility in adhesion prevention and as a surgical sealant. Spray deposition of poly(lactide-co-caprolactone) (PLCL) polymer fibers through solution blow spinning has yielded a tissue-adherent barrier material with previously reported adhesion prevention efficacy due to a surface erosion mechanism that inhibits deposition of inflamed tissue. However, such an approach uniquely presents an avenue for controlled therapeutic release through mechanisms of diffusion and degradation. Such a rate is kinetically tuned via facile blending of "high" molecular weight (HMW) and "low" molecular weight (LMW) PLCL with slow and fast biodegradation rates, respectively. Here, we explore viscoelastic blends of HMW PLCL (70% w/v) and LMW PLCL (30% w/v) as a host matrix for anti-inflammatory drug delivery. In this work, COG133, an apolipoprotein E (ApoE) mimetic peptide with potent anti-inflammatory properties was selected and tested. In vitro studies with PLCL blends presented low (∼30%) and high (∼80%) percent release profiles over a 14-day period based on the nominal molecular weight of the HMW PLCL component. Two independent mouse models of cecal ligation and cecal anastomosis significantly reduced adhesion severity versus Seprafilm, COG133 liquid suspension, and no treatment control. The synergy of physical and chemical methods in a barrier material with proven preclinical studies highlights the value of COG133-loaded PLCL fiber mats in effectively dampening the formation of severe abdominal adhesions.
Collapse
Affiliation(s)
- Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michele S Saruwatari
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Selim Rozyyev
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Christopher Acha
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Omar B Ayyub
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony D Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
31
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
33
|
Mhatre-Winters I, Eid A, Han Y, Tieu K, Richardson JR. Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Astrocytes from Humanized Targeted Replacement Mice. ASN Neuro 2023; 15:17590914221144549. [PMID: 36604975 PMCID: PMC9982390 DOI: 10.1177/17590914221144549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein E4 (APOE4) genotype and sex are significant risk factors for Alzheimer's disease (AD), with females demonstrating increased risk modulated by APOE genotype. APOE is predominantly expressed in astrocytes, however, there is a lack of comprehensive assessments of sex differences in astrocytes stratified by APOE genotype. Here, we examined the response of mixed-sex and sex-specific neonatal APOE3 and APOE4 primary mouse astrocytes (PMA) to a cytokine mix of IL1b, TNFa, and IFNg. Pro-inflammatory and anti-inflammatory cytokine profiles were assessed by qRT-PCR and Meso Scale Discovery multiplex assay. Mixed-sex APOE4 PMA were found to have higher basal messenger RNA expression of several pro-inflammatory cytokines including Il6, Tnfa, Il1b, Mcp1, Mip1a, and Nos2 compared to APOE3 PMA, which was accompanied by increased levels of these secreted cytokines. In sex-specific cultures, basal expression of Il1b, Il6, and Nos2 was 1.5 to 2.5 fold higher in APOE4 female PMA compared to APOE4 males, with both being higher than APOE3 PMA. Similar results were found for secreted levels of these cytokines. Together, these findings indicate that APOE4 genotype and female sex, contribute to a greater inflammatory response in primary astrocytes and these data may provide a framework for investigating the mechanisms contributing to genotype and sex differences in AD-related neuroinflammation.
Collapse
Affiliation(s)
- Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Department of Neurosciences, School of Biomedical Sciences, Kent
State University, Kent, OH, USA
| | - Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Jason R. Richardson, Department of
Environmental Health Sciences, Robert Stempel College of Public Health and
Social Work, Florida International University, Miami, FL 33199-2156, USA.
| |
Collapse
|
34
|
Wee AS, Nhu TD, Khaw KY, San Tang K, Yeong KY. Linking Diabetes to Alzheimer's Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase. Curr Neuropharmacol 2023; 21:2036-2048. [PMID: 36372924 PMCID: PMC10556372 DOI: 10.2174/1570159x21999221111102343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.
Collapse
Affiliation(s)
- Ai Sze Wee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, 47810 Selangor, Malaysia
| | - Thao Dinh Nhu
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 , Selangor, Malaysia
- Tropical Medicine and Biology (TMB) Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500 Selangor, Malaysia
| |
Collapse
|
35
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J, Hua F. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci 2022; 12:106. [PMID: 35831869 PMCID: PMC9277953 DOI: 10.1186/s13578-022-00828-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of neuroglia in maintaining normal brain function under physiological and pathological conditions has been supported by growing evidence in recent years. The most important issues regarding glial metabolism and function include the cooperation between glial populations and neurons, morphological and functional changes in pathological states, and the role in the onset and progression of neurodegenerative diseases. Although lipid accumulation and further lipid droplet production in neurodegenerative disease brain models have been observed for a long time, the dynamic development of brain lipid droplet research in recent years suggests its role in the development and progression of neurodegenerative diseases was previously underestimated. First recognized as organelles of lipid storage, lipid droplets (LDs) have emerged as an important organelle in metabolic diseases, inflammation, and host defense. Dynamic changes in lipid metabolism within neurons and glial cells resulting in lipid accumulation and lipid droplet formation are present in brain models of various neurodegenerative diseases, yet their role in the brain remains largely unexplored. This paper first reviews the metabolism and accumulation of several major lipids in the brain and discusses the regulation of lipid accumulation in different types of brain cells. We explore the potential role of intracellular lipid accumulation in the pathogenesis of neurodegeneration, starting from lipid metabolism and LDs biogenesis in glial cells, and discuss several pathological factors that promote lipid droplet formation, mainly focusing on oxidative stress, energy metabolism and glial cell-neuron coupling, which are closely related to the etiology and progression of neurodegenerative diseases. Finally, the directions and challenges of intracellular lipid metabolism in glial cells in neurodegeneration are discussed.
Collapse
|
36
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
37
|
Seto M, Weiner RL, Dumitrescu L, Mahoney ER, Hansen SL, Janve V, Khan OA, Liu D, Wang Y, Menon V, De Jager PL, Schneider JA, Bennett DA, Gifford KA, Jefferson AL, Hohman TJ. RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiol Aging 2022; 118:66-76. [PMID: 35896049 PMCID: PMC9721357 DOI: 10.1016/j.neurobiolaging.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer's disease (AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain cognitively normal throughout life, suggesting that neuroprotective factors may be present in these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition. Expression of RNASE6 interacted with APOE-ε4 status (p = 4.35 × 10-8) whereby higher RNASE6 expression was associated with worse memory at baseline among APOE-ε4 carriers. This interaction was replicated using RNAseq data from the prefrontal cortex in an independent dataset (N = 535; p = 0.002), suggesting the peripheral effect of RNASE6 is also present in brain tissue. RNASE6 encodes an antimicrobial peptide involved in innate immune response and has been previously observed in a gene co-expression network module with other AD-related inflammatory genes, including TREM2 and MS4A. Together, these data implicate neuroinflammation in cognitive decline, and suggest that innate immune signaling may be detectable in blood and confer differential susceptibility to AD depending on APOE-ε4.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rebecca L Weiner
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shania L Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vaibhav Janve
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Omair A Khan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
38
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
39
|
Boyd RJ, Avramopoulos D, Jantzie LL, McCallion AS. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflammation 2022; 19:223. [PMID: 36076238 PMCID: PMC9452283 DOI: 10.1186/s12974-022-02584-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Multifactorial diseases are characterized by inter-individual variation in etiology, age of onset, and penetrance. These diseases tend to be relatively common and arise from the combined action of genetic and environmental factors; however, parsing the convoluted mechanisms underlying these gene-by-environment interactions presents a significant challenge to their study and management. For neurodegenerative disorders, resolving this challenge is imperative, given the enormous health and societal burdens they impose. The mechanisms by which genetic and environmental effects may act in concert to destabilize homeostasis and elevate risk has become a major research focus in the study of common disease. Emphasis is further being placed on determining the extent to which a unifying biological principle may account for the progressively diminishing capacity of a system to buffer disease phenotypes, as risk for disease increases. Data emerging from studies of common, neurodegenerative diseases are providing insights to pragmatically connect mechanisms of genetic and environmental risk that previously seemed disparate. In this review, we discuss evidence positing inflammation as a unifying biological principle of homeostatic destabilization affecting the risk, onset, and progression of neurodegenerative diseases. Specifically, we discuss how genetic variation associated with Alzheimer disease and Parkinson disease may contribute to pro-inflammatory responses, how such underlying predisposition may be exacerbated by environmental insults, and how this common theme is being leveraged in the ongoing search for effective therapeutic interventions.
Collapse
Affiliation(s)
- Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
41
|
Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Microglia from APOE Targeted Replacement Mice. Int J Mol Sci 2022; 23:ijms23179829. [PMID: 36077227 PMCID: PMC9456163 DOI: 10.3390/ijms23179829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sex and APOE4 genotype are significant risk factors for Alzheimer’s disease (AD); however, the mechanism(s) responsible for this interaction are still a matter of debate. Here, we assess the responses of mixed-sex and sex-specific APOE3 and APOE4 primary microglia (PMG) to lipopolysaccharide and interferon-gamma. In our investigation, inflammatory cytokine profiles were assessed by qPCR and multiplex ELISA assays. Mixed-sex APOE4 PMG exhibited higher basal mRNA expression and secreted levels of TNFa and IL1b. In sex-specific cultures, basal expression and secreted levels of IL1b, TNFa, IL6, and NOS2 were 2−3 fold higher in APOE4 female PMG compared to APOE4 males, with both higher than APOE3 cells. Following an inflammatory stimulus, the expression of pro-inflammatory cytokines and the secreted cytokine level were upregulated in the order E4 female > E4 male > E3 female > E3 male in sex-specific cultures. These data indicate that the APOE4 genotype and female sex together contribute to a greater inflammatory response in PMG isolated from targeted replacement humanized APOE mice. These data are consistent with clinical data and indicate that sex-specific PMG may provide a platform for exploring mechanisms of genotype and sex differences in AD related to neuroinflammation and neurodegeneration.
Collapse
|
42
|
Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M, The Netherlands Brain Bank. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 2022; 14:117. [PMID: 36008818 PMCID: PMC9414424 DOI: 10.1186/s13195-022-01062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is foremost characterized by β-amyloid (Aβ)-extracellular plaques, tau-intraneuronal fibrillary tangles (NFT), and neuroinflammation, but over the last years it has become evident that peripheral inflammation might also contribute to the disease. AD patients often demonstrate increased levels of circulating proinflammatory mediators and altered antibody levels in the blood. In our study, we investigated the plasma Immunoglobulin A (IgA) levels in association with apolipoprotein E (APOE) ε4 status and Aβ pathology. Methods IgA levels in antemortem-collected (cohort I) and postmortem-collected (cohort II) plasma samples from AD patients (n = 30 in cohort I and n = 16 in cohort II) and non-demented age-matched controls (NC) (n = 42 in cohort I and n = 7 in cohort II) were measured using ELISA. Hippocampal sections from cohort II were immunostained against IgA, and the IgA area fraction as well as the number of IgA positive (IgA+) cells in the cornu ammonis region were analysed using ImageJ. The relationship between plasma IgA levels and cognition, C-reactive protein (CRP), and cerebrospinal fluid (CSF) AD biomarkers in cohort I as well as neuropathology, IgA+ cell number, and IgA area fraction in cohort II was analysed before and after grouping the cohorts into APOEε4 carriers and APOEε4 non-carriers. Results Plasma IgA levels were higher in AD patients compared to NC in both cohorts. Also, AD patients demonstrated higher IgA area fraction and IgA+ cell number compared to NC. When APOEε4 status was considered, higher plasma IgA levels in AD patients were only seen in APOEε4 non-carriers. Finally, plasma IgA levels, exclusively in APOEε4 non-carriers, were associated with cognition, CRP, and CSF Aβ levels in cohort I as well as with IgA area fraction, IgA+ cell number, and Aβ, Lewy body, and NFT neuropathology in cohort II. Conclusions Our study suggests that AD pathology and cognitive decline are associated with increased plasma IgA levels in an APOE allele-dependent manner, where the associations are lost in APOEε4 carriers. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01062-z.
Collapse
|
43
|
Van Wyck D, Kolls BJ, Wang H, Cantillana V, Maughan M, Laskowitz DT. Prophylactic treatment with CN-105 improves functional outcomes in a murine model of closed head injury. Exp Brain Res 2022; 240:2413-2423. [PMID: 35841411 DOI: 10.1007/s00221-022-06417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The treatment of traumatic brain injury (TBI) in military populations is hindered by underreporting and underdiagnosis. Clinical symptoms and outcomes may be mitigated with an effective pre-injury prophylaxis. This study evaluates whether CN-105, a 5-amino acid apolipoprotein E (ApoE) mimetic peptide previously shown to modify the post-traumatic neuroinflammatory response, would maintain its neuroprotective effects if administered prior to closed-head injury in a clinically relevant murine model. CN-105 was synthesized by Polypeptide Inc. (San Diego, CA) and administered to C57-BL/6 mice intravenously (IV) and/or by intraperitoneal (IP) injection at various time points prior to injury while vehicle treated animals received IV and/or IP normal saline. Animals were randomized following injury and behavioral observations were conducted by investigators blinded to treatment. Vestibulomotor function was assessed using an automated Rotarod (Ugo Basile, Comerio, Italy), and hippocampal microglial activation was assessed using F4/80 immunohistochemical staining in treated and untreated mice 7 days post-TBI. Separate, in vivo assessments of the pharmacokinetics was performed in healthy CD-1. IV CN-105 administered prior to head injury improved vestibulomotor function compared to vehicle control-treated animals. CN-105 co-administered by IP and IV dosing 6 h prior to injury also improved vestibulomotor function up to 28 days following injury. Microglia counted in CN-105 treated specimens were significantly fewer (P = 0.03) than in vehicle specimens. CN-105 improves functional outcomes and reduces hippocampal microglial activation when administered prior to injury and could be adapted as a pre-injury prophylaxis for soldiers at high risk for TBI.
Collapse
Affiliation(s)
- David Van Wyck
- 3Rd Special Forces Group (A), U.S. Army Special Operations Command, 111 Enduring Freedom Drive (Stop A), Fort Bragg, NC, 28310, USA. .,Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Viviana Cantillana
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.,Aegis-CN LLC., 701 W Main Street, Durham, NC, 27701, USA
| |
Collapse
|
44
|
Riphagen JM, van Hooren RWE, Kenis G, Verhey FRJ, Jacobs HIL. Distinct Patterns Link the BDNF Val66Met Polymorphism to Alzheimer's Disease Pathology. J Alzheimers Dis 2022; 88:447-453. [PMID: 35662115 DOI: 10.3233/jad-215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The brain-derived neurotropic growth factor (BDNF) gene has been linked to dementia, inflammation, and Apolipoprotein E (APOE) ɛ4 status. We used cerebrospinal fluid (CSF) amyloid-β (Aβ)42 and phosphorylated tau (p-tau) to investigate associations with BDNF polymorphisms and modifications by APOE ɛ4 or inflammation in a memory clinic population (n = 114; subjective cognitive decline, mild cognitive impairment, Alzheimer's disease). We found distinct pathways to Alzheimer's disease pathology: Val-Met displayed lower CSF-Aβ 42 in APOE ɛ4+ carriers, independent of p-tau, while Val-Val displayed greater p-tau at higher IL-6 and sub-threshold Aβ 42. This may contribute to resolving some inconsistencies in the BDNF literature and provide possible inroads to specific Aβ and tau interventions depending on BDNF polymorphism.
Collapse
Affiliation(s)
- Joost M Riphagen
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, USA.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Roy W E van Hooren
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
45
|
Omuro KC, Gallo CM, Scrandis L, Ho A, Beffert U. Human APOER2 Isoforms Have Differential Cleavage Events and Synaptic Properties. J Neurosci 2022; 42:4054-4068. [PMID: 35414534 PMCID: PMC9121830 DOI: 10.1523/jneurosci.1800-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Human apolipoprotein E receptor 2 (APOER2) is a type I transmembrane protein with a large extracellular domain (ECD) and a short cytoplasmic tail. APOER2-ECD contains several ligand-binding domains (LBDs) that are organized into exons with aligning phase junctions, which allows for in-frame exon cassette splicing events. We have identified 25 human APOER2 isoforms from cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events within the N-terminal LBD regions compared with six identified in the heart. APOER2 undergoes proteolytic cleavage in response to ligand binding that releases a C-terminal fragment (CTF) and transcriptionally active intracellular domain (ICD). We tested whether the diversity of human brain-specific APOER2 variants affects APOER2 cleavage. We found isoforms with differing numbers of ligand-binding repeats generated different amounts of CTFs compared with full-length APOER2 (APOER2-FL). Specifically, APOER2 isoforms lacking exons 5-8 (Δex5-8) and lacking exons 4-6 (Δex4-6) generated the highest and lowest amounts of CTF generation, respectively, in response to APOE peptide compared with APOER2-FL. The differential CTF generation of Δex5-8 and Δex4-6 coincides with the proteolytic release of the ICD, which mediates transcriptional activation facilitated by the Mint1 adaptor protein. Functionally, we demonstrated loss of mouse Apoer2 decreased miniature event frequency in excitatory synapses, which may be because of a decrease in the total number of synapses and/or VAMP2 positive neurons. Lentiviral infection with human APOER2-FL or Δex4-6 isoform in Apoer2 knockout neurons restored the miniature event frequency but not Δex5-8 isoform. These results suggest that human APOER2 isoforms have differential cleavage events and synaptic properties.SIGNIFICANCE STATEMENT Humans and mice share virtually the same number of protein-coding genes. However, humans have greater complexity of any higher eukaryotic organisms by encoding multiple protein forms through alternative splicing modifications. Alternative splicing allows pre-mRNAs transcribed from genes to be spliced in different arrangements, producing structurally and functionally distinct protein variants that increase proteomic diversity and are particularly prevalent in the human brain. Here, we identified 25 distinct human APOER2 splice variants from the cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events that exclude N-terminal ligand-binding regions of APOER2. We show that some of the APOER2 variants have differential proteolytic properties in response to APOE ligand and exhibit distinct synaptic properties.
Collapse
Affiliation(s)
| | | | - Lauren Scrandis
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
46
|
Zhao J, Zhao D, Wang J, Luo X, Guo R. Inflammation—Cause or consequence of late onset Alzheimer’s disease or both? A review of the evidence. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221095383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence suggests that inflammation is involved in the development of late onset Alzheimer’s disease (LOAD). However, it is not clear whether inflammation is a cause or consequence, or both. The aim of this paper is to review the relationship between inflammation and LOAD. We also review the effect of anti-inflammation on the risk of LOAD to further elucidate the relationship between inflammation and LOAD.
Collapse
Affiliation(s)
- Jinrong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Dong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Jinpei Wang
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Xiaoe Luo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Rui Guo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| |
Collapse
|
47
|
Seaks CE, Weekman EM, Sudduth TL, Xie K, Wasek B, Fardo DW, Johnson LA, Bottiglieri T, Wilcock DM. Apolipoprotein E ε4/4 genotype limits response to dietary induction of hyperhomocysteinemia and resulting inflammatory signaling. J Cereb Blood Flow Metab 2022; 42:771-787. [PMID: 35023380 PMCID: PMC9254035 DOI: 10.1177/0271678x211069006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.
Collapse
Affiliation(s)
- Charles E Seaks
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Erica M Weekman
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | | | - Kevin Xie
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| |
Collapse
|
48
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
49
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
50
|
Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol 2022; 209:102212. [DOI: 10.1016/j.pneurobio.2021.102212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
|