1
|
Nguyen VN, Park A, Xu A, Srouji JR, Brenner SE, Kirsch JF. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family. Proteins 2016; 84:1810-1822. [PMID: 27618147 PMCID: PMC5158307 DOI: 10.1002/prot.25163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74-compound library of known Nudix enzyme substrates. We found substrates for four enzymes with kcat /Km values >10,000 M-1 s-1 : Q92EH0_LISIN of Listeria innocua serovar 6a against ADP-ribose, Q5LBB1_BACFN of Bacillus fragilis against 5-Me-CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8-oxo-dATP and 3'-dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty-two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported kcat /Km values exhibited against these canonical substrates are well under 105 M-1 s-1 . By contrast, several Nudix enzymes show much larger kcat /Km values (in the range of 105 to >107 M-1 s-1 ) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810-1822. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vi N. Nguyen
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Annsea Park
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Anting Xu
- Graduate Program in Comparative BiochemistryUniversity of CaliforniaBerkeleyCalifornia94720
| | - John R. Srouji
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Present address: Molecular and Cellular Biology DepartmentHarvard UniversityCambridgeMA02138
| | - Steven E. Brenner
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Program in Comparative BiochemistryUniversity of CaliforniaBerkeleyCalifornia94720
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Jack F. Kirsch
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Program in Comparative BiochemistryUniversity of CaliforniaBerkeleyCalifornia94720
| |
Collapse
|
2
|
Daniels CM, Thirawatananond P, Ong SE, Gabelli SB, Leung AKL. Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 2015; 5:18271. [PMID: 26669448 PMCID: PMC4680915 DOI: 10.1038/srep18271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
Abstract
ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR.
Collapse
Affiliation(s)
- Casey M. Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Tchigvintsev A, Tchigvintsev D, Flick R, Popovic A, Dong A, Xu X, Brown G, Lu W, Wu H, Cui H, Dombrowski L, Joo JC, Beloglazova N, Min J, Savchenko A, Caudy AA, Rabinowitz JD, Murzin AG, Yakunin AF. Biochemical and structural studies of conserved Maf proteins revealed nucleotide pyrophosphatases with a preference for modified nucleotides. ACTA ACUST UNITED AC 2013; 20:1386-98. [PMID: 24210219 PMCID: PMC3899018 DOI: 10.1016/j.chembiol.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 11/17/2022]
Abstract
Maf (for multicopy associated filamentation) proteins represent a large family of conserved proteins implicated in cell division arrest but whose biochemical activity remains unknown. Here, we show that the prokaryotic and eukaryotic Maf proteins exhibit nucleotide pyrophosphatase activity against 5-methyl-UTP, pseudo-UTP, 5-methyl-CTP, and 7-methyl-GTP, which represent the most abundant modified bases in all organisms, as well as against canonical nucleotides dTTP, UTP, and CTP. Overexpression of the Maf protein YhdE in E. coli cells increased intracellular levels of dTMP and UMP, confirming that dTTP and UTP are the in vivo substrates of this protein. Crystal structures and site-directed mutagenesis of Maf proteins revealed the determinants of their activity and substrate specificity. Thus, pyrophosphatase activity of Maf proteins toward canonical and modified nucleotides might provide the molecular mechanism for a dual role of these proteins in cell division arrest and house cleaning. Maf proteins represent a family of nucleoside triphosphate pyrophosphatases Maf proteins hydrolyze the canonical nucleotides dTTP, UTP, and CTP Maf proteins are also active against m5UTP, m5CTP, pseudo-UTP, and m7GTP Maf structures reveal the molecular mechanisms of their substrate selectivity
Collapse
Affiliation(s)
- Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26. Biosci Biotechnol Biochem 2012; 76:2236-41. [PMID: 23221701 DOI: 10.1271/bbb.120523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Not only in bacteria but also in plant cells, guanosine-3',5'-tetraphosphate (ppGpp) is an important signaling molecule, that affects various cellular processes. In this study, we identified nucleoside diphosphates linked to some moiety X (Nudix) hydrolases, AtNUDX11, 15, 25, and 26, having ppGpp pyrophosphohydrolase activity from Arabidopsis plants. Among these, AtNUDX26 localized in chloroplasts had the highest Vmax and kcat values, leading to high catalytic efficiency, kcat/Km. The activity of AtNUDX26 required Mg2+ or Mn2+ ions as cofactor and was optimal at pH 9.0 and 50 °C. The expression of AtNUDX26 and of ppGpp metabolism-associated genes was regulated by various types of stress, suggesting that AtNUDX26 regulates cellular ppGpp levels in response to stress and impacts gene expression in chloroplasts. This is the first report on the molecular properties of ppGpp pyrophosphohydrolases in plants.
Collapse
|
5
|
Moreland NJ, Charlier C, Dingley AJ, Baker EN, Lott JS. Making sense of a missense mutation: characterization of MutT2, a Nudix hydrolase from Mycobacterium tuberculosis, and the G58R mutant encoded in W-Beijing strains of M. tuberculosis. Biochemistry 2009; 48:699-708. [PMID: 19115962 DOI: 10.1021/bi8009554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent polymorphism analyses of Mycobacterium tuberculosis strains have identified missense mutations unique to the W-Beijing lineage in genes belonging to the Nudix hydrolase superfamily. This study investigates the structure and function of one of these Nudix hydrolases, MutT2, and examines the effect that the W-Beijing mutation (G58R) has on enzyme characteristics. MutT2 has a preference for cytidine triphosphates, and although the G58R mutation does not alter nucleotide specificity, it reduces the protein's affinity for divalent cations. The K(D) of free Mg(2+) is 79-fold higher for the G58R mutant (3.30 +/- 0.19 mM) compared with that for the wild-type (41.7 +/- 1.4 microM). Circular dichroism and nuclear magnetic resonance spectroscopy measurements show that while the mutation does not perturb the overall structure of the protein, protein stability is significantly compromised by the presence of the arginine with DeltaG (H(2)O), the free-energy of unfolding, being reduced by 2.48 kcal mol(-1) in the G58R mutant. Homology modeling of MutT2 shows that Gly-58 is in close proximity (10.8 A) to the Mg(2+) binding site formed by the highly conserved Nudix box residues and hydrogen bonds with Ala-54 in the preceding alpha-helix. This may explain the increased divalent cation requirement and decreased stability observed when an arginine is substituted for glycine at this position. A role for MutT2 in the regulation of cytidine-triphosphates available for nucleotide-dependent reactions is postulated, and the impact that the G58R mutation may have on these reactions is discussed.
Collapse
Affiliation(s)
- Nicole J Moreland
- Maurice Wilkins Centre for Molecular Biodiscovery and Laboratory of Structural Biology, School of Biological Sciences, University of Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
6
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang SC, Barclay C, Alexander LA, Geldenhuys L, Porter GA, Casson AG, Murphy PR. Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma. J Mol Med (Berl) 2007; 85:1215-28. [PMID: 17569023 DOI: 10.1007/s00109-007-0219-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/24/2007] [Accepted: 05/24/2007] [Indexed: 05/15/2023]
Abstract
Overexpression of FGF-2 is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer, and these risks are reduced in tumors co-expressing the FGF antisense (FGF-AS) RNA. The aim of this study was to characterize the expression of alternatively spliced FGF-AS transcripts and encoded nudix-motif proteins in normal human tissues and in esophageal adenocarcinoma, and to correlate their expression with clinicopathologic findings and outcome. Three alternatively spliced FGF-AS transcripts encoding GFG/NUDT6 isoforms with distinct N termini were detected in various human tissues including esophageal adenocarcinoma. Expression of each isoform as a fusion protein with enhanced green fluorescent protein revealed differential subcellular trafficking: hGFGa is localized to mitochondria by an N-terminal targeting sequence (MTS), whereas hGFGb and hGFGc were localized in the cytoplasm and nucleus. Mutation/deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization. The predominant FGF-AS mRNA expressed in esophageal tumors was splice variant b. GFG immunoreactivity was detected in the cytoplasm of all esophageal adenocarcinomas and in 88% of tumor cell nuclei. Although we found a trend towards reduced disease-free survival in patients with FGF-2 overexpressing esophageal adenocarcinomas, significantly worse disease-free survival was noted among patients whose tumors did not also overexpress the FGF-AS b isoform (p = 0.03). Tetracycline-inducible FGF-AS b expression in stably transfected human Seg-1 esophageal adenocarcinoma cells resulted in a significant suppression of steady state FGF-2 mRNA content and cell proliferation. Our data implicate the FGF-AS b isoform in modulation of FGF-2 expression and clinical outcome in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Xu W, Dunn CA, O'handley SF, Smith DL, Bessman MJ. Three new Nudix hydrolases from Escherichia coli. J Biol Chem 2006; 281:22794-8. [PMID: 16766526 DOI: 10.1074/jbc.m603407200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.
Collapse
Affiliation(s)
- Wenlian Xu
- Department of Biology and The McCollum Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Cellular metabolism constantly generates by-products that are wasteful or even harmful. Such compounds are excreted from the cell or are removed through hydrolysis to normal cellular metabolites by various 'house-cleaning' enzymes. Some of the most important contaminants are non-canonical nucleoside triphosphates (NTPs) whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. Enzymes intercepting abnormal NTPs from incorporation by DNA polymerases work in parallel with DNA repair enzymes that remove lesions produced by modified nucleotides. House-cleaning NTP pyrophosphatases targeting non-canonical NTPs belong to at least four structural superfamilies: MutT-related (Nudix) hydrolases, dUTPase, ITPase (Maf/HAM1) and all-alpha NTP pyrophosphatases (MazG). These enzymes have high affinity (Km's in the micromolar range) for their natural substrates (8-oxo-dGTP, dUTP, dITP, 2-oxo-dATP), which allows them to select these substrates from a mixture containing a approximately 1000-fold excess of canonical NTPs. To date, many house-cleaning NTPases have been identified only on the basis of their side activity towards canonical NTPs and NDP derivatives. Integration of growing structural and biochemical data on these superfamilies suggests that their new family members cleanse the nucleotide pool of the products of oxidative damage and inappropriate methylation. House-cleaning enzymes, such as 6-phosphogluconolactonase, are also part of normal intermediary metabolism. Genomic data suggest that house-cleaning systems are more abundant than previously thought and include numerous analogous enzymes with overlapping functions. We discuss the structural diversity of these enzymes, their phylogenetic distribution, substrate specificity and the problem of identifying their true substrates.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
10
|
Dos Vultos T, Blázquez J, Rauzier J, Matic I, Gicquel B. Identification of Nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol 2006; 188:3159-61. [PMID: 16585780 PMCID: PMC1446978 DOI: 10.1128/jb.188.8.3159-3161.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 01/27/2006] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium smegmatis MutT1, MutT2, MutT3, and Rv3908 (MutT4) enzymes were screened for an antimutator role. Results indicate that both MutT1, in M. tuberculosis and M. smegmatis, and MutT4, in M. smegmatis, have that role. Furthermore, an 8-oxo-guanosine triphosphatase function for MutT1 and MutT2 is suggested.
Collapse
Affiliation(s)
- T Dos Vultos
- Unité de Génétique Mycobactérienne, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
11
|
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Pühler A. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 2005; 187:4671-82. [PMID: 15968079 PMCID: PMC1151758 DOI: 10.1128/jb.187.13.4671-4682.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium jeikeium is a "lipophilic" and multidrug-resistant bacterial species of the human skin flora that has been recognized with increasing frequency as a serious nosocomial pathogen. Here we report the genome sequence of the clinical isolate C. jeikeium K411, which was initially recovered from the axilla of a bone marrow transplant patient. The genome of C. jeikeium K411 consists of a circular chromosome of 2,462,499 bp and the 14,323-bp bacteriocin-producing plasmid pKW4. The chromosome of C. jeikeium K411 contains 2,104 predicted coding sequences, 52% of which were considered to be orthologous with genes in the Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae genomes. These genes apparently represent the chromosomal backbone that is conserved between the four corynebacteria. Among the genes that lack an ortholog in the known corynebacterial genomes, many are located close to transposable elements or revealed an atypical G+C content, indicating that horizontal gene transfer played an important role in the acquisition of genes involved in iron and manganese homeostasis, in multidrug resistance, in bacterium-host interaction, and in virulence. Metabolic analyses of the genome sequence indicated that the "lipophilic" phenotype of C. jeikeium most likely originates from the absence of fatty acid synthase and thus represents a fatty acid auxotrophy. Accordingly, both the complete gene repertoire and the deduced lifestyle of C. jeikeium K411 largely reflect the strict dependence of growth on the presence of exogenous fatty acids. The predicted virulence factors of C. jeikeium K411 are apparently involved in ensuring the availability of exogenous fatty acids by damaging the host tissue.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Klaus SMJ, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF, Hanson AD. A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 2005; 280:5274-80. [PMID: 15611104 DOI: 10.1074/jbc.m413759200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Removal of pyrophosphate from dihydroneopterin triphosphate (DHNTP) is the second step in the pterin branch of the folate synthesis pathway. There has been controversy over whether this reaction requires a specific pyrophosphohydrolase or is a metal ion-dependent chemical process. The genome of Lactococcus lactis has a multicistronic folate synthesis operon that includes an open reading frame (ylgG) specifying a putative Nudix hydrolase. Because many Nudix enzymes are pyrophosphohydrolases, YlgG was expressed in Escherichia coli and characterized. The recombinant protein showed high DHNTP pyrophosphohydrolase activity with a K(m) value of 2 microM, had no detectable activity against deoxynucleoside triphosphates or other typical Nudix hydrolase substrates, required a physiological level (approximately 1 mM) of Mg(2+), and was active as a monomer. Essentially no reaction occurred without enzyme at 1 mM Mg(2+). Inactivation of ylgG in L. lactis resulted in DHNTP accumulation and folate depletion, confirming that YlgG functions in folate biosynthesis. We therefore propose that ylgG be redesignated as folQ. The closest Arabidopsis homolog of YlgG (encoded by Nudix gene At1g68760) was expressed in E. coli and shown to have Mg(2+)-dependent DHNTP pyrophosphohydrolase activity. This protein (AtNUDT1) was reported previously to have NADH pyrophosphatase activity in the presence of 5 mM Mn(2+) (Dobrzanska, M., Szurmak, B., Wyslouch-Cieszynska, A., and Kraszewska, E. (2002) J. Biol. Chem. 277, 50482-50486). However, we found that this activity is negligible at physiological levels of Mn(2+) and that, with 1 mM Mg(2+), AtNUDT1 prefers DHNTP and (deoxy) nucleoside triphosphates.
Collapse
Affiliation(s)
- Sebastian M J Klaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
13
|
Xu W, Jones CR, Dunn CA, Bessman MJ. Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2004; 186:8380-4. [PMID: 15576788 PMCID: PMC532436 DOI: 10.1128/jb.186.24.8380-8384.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/10/2004] [Indexed: 11/20/2022] Open
Abstract
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.
Collapse
Affiliation(s)
- Wenlian Xu
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
14
|
Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF. General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 2004; 279:54687-94. [PMID: 15489502 DOI: 10.1074/jbc.m411023200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To find proteins with nucleotidase activity in Escherichia coli, purified unknown proteins were screened for the presence of phosphatase activity using the general phosphatase substrate p-nitrophenyl phosphate. Proteins exhibiting catalytic activity were then assayed for nucleotidase activity against various nucleotides. These screens identified the presence of nucleotidase activity in three uncharacterized E. coli proteins, SurE, YfbR, and YjjG, that belong to different enzyme superfamilies: SurE-like family, HD domain family (YfbR), and haloacid dehalogenase (HAD)-like superfamily (YjjG). The phosphatase activity of these proteins had a neutral pH optimum (pH 7.0-8.0) and was strictly dependent on the presence of divalent metal cations (SurE: Mn(2+) > Co(2+) > Ni(2+) > Mg(2+); YfbR: Co(2+) > Mn(2+) > Cu(2+); YjjG: Mg(2+) > Mn(2+) > Co(2+)). Further biochemical characterization of SurE revealed that it has a broad substrate specificity and can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. SurE also hydrolyzed polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P(20-25)). YfbR was strictly specific to deoxyribonucleoside 5'-monophosphates, whereas YjjG showed narrow specificity to 5'-dTMP, 5'-dUMP, and 5'-UMP. The three enzymes also exhibited different sensitivities to inhibition by various nucleoside di- and triphosphates: YfbR was equally sensitive to both di- and triphosphates, SurE was inhibited only by triphosphates, and YjjG was insensitive to these effectors. The differences in their sensitivities to nucleotides and their varied substrate specificities suggest that these enzymes play unique functions in the intracellular nucleotide metabolism in E. coli.
Collapse
Affiliation(s)
- Michael Proudfoot
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gabelli SB, Bianchet MA, Azurmendi HF, Xia Z, Sarawat V, Mildvan AS, Amzel LM. Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus. Structure 2004; 12:927-35. [PMID: 15274914 DOI: 10.1016/j.str.2004.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022]
Abstract
GDP-mannose glycosyl hydrolase (GDPMH) catalyzes the hydrolysis of GDP-mannose and GDP-glucose to GDP and sugar by substitution with inversion at C1 of the sugar. The enzyme has a modified Nudix motif and requires one divalent cation for activity. The 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP complex, together with kinetic, mutational, and NMR data, suggests a mechanism for the GDPMH reaction. Several residues and the divalent cation strongly promote the departure of the GDP leaving group, supporting a dissociative mechanism. Comparison of the GDPMH structure with that of a typical Nudix hydrolase suggests how sequence changes result in the switch of catalytic activity from P-O bond cleavage to C-O bond cleavage. Changes in the Nudix motif result in loss of binding of at least one Mg(2+) ion, and shortening of a loop by 6 residues shifts the catalytic base by approximately 10 A.
Collapse
Affiliation(s)
- Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ranatunga W, Hill EE, Mooster JL, Holbrook EL, Schulze-Gahmen U, Xu W, Bessman MJ, Brenner SE, Holbrook SR. Structural studies of the Nudix hydrolase DR1025 from Deinococcus radiodurans and its ligand complexes. J Mol Biol 2004; 339:103-16. [PMID: 15123424 DOI: 10.1016/j.jmb.2004.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 01/29/2004] [Indexed: 11/20/2022]
Abstract
We have determined the crystal structure, at 1.4A, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked beta-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap(4)A (both at 1.6A resolution). In the Ap(4)A co-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved.
Collapse
Affiliation(s)
- Wasantha Ranatunga
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fisher DI, Cartwright JL, Harashima H, Kamiya H, McLennan AG. Characterization of a nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5'-diphosphates. BMC BIOCHEMISTRY 2004; 5:7. [PMID: 15147580 PMCID: PMC428907 DOI: 10.1186/1471-2091-5-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/17/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nudix hydrolases form a protein family whose function is to hydrolyse intracellular nucleotides and so regulate their levels and eliminate potentially toxic derivatives. The genome of the radioresistant bacterium Deinococcus radiodurans encodes 25 nudix hydrolases, an unexpectedly large number. These may contribute to radioresistance by removing mutagenic oxidised and otherwise damaged nucleotides. Characterisation of these hydrolases is necessary to understand the reason for their presence. Here, we report the cloning and characterisation of the DR0975 gene product, a nudix hydrolase that appears to be unique to this organism. RESULTS The DR0975 gene was cloned and expressed as a 20 kDa histidine-tagged recombinant product in Escherichia coli. Substrate analysis of the purified enzyme showed it to act primarily as a phosphatase with a marked preference for (deoxy)nucleoside 5'-diphosphates (dGDP > ADP > dADP > GDP > dTDP > UDP > dCDP > CDP). Km for dGDP was 110 microM and kcat was 0.18 s-1 under optimal assay conditions (pH 9.4, 7.5 mM Mg2+). 8-Hydroxy-2'-deoxyguanosine 5'-diphosphate (8-OH-dGDP) was also a substrate with a Km of 170 microM and kcat of 0.13 s-1. Thus, DR0975 showed no preference for 8-OH-dGDP over dGDP. Limited pyrophosphatase activity was also observed with NADH and some (di)adenosine polyphosphates but no other substrates. Expression of the DR0975 gene was undetectable in logarithmic phase cells but was induced at least 30-fold in stationary phase. Superoxide, but not peroxide, stress and slow, but not rapid, dehydration both caused a slight induction of the DR0975 gene. CONCLUSION Nucleotide substrates for nudix hydrolases conform to the structure NDP-X, where X can be one of several moieties. Thus, a preference for (d)NDPs themselves is most unusual. The lack of preference for 8-OH-dGDP over dGDP as a substrate combined with the induction in stationary phase, but not by peroxide or superoxide, suggests that the function of DR09075 may be to assist in the recycling of nucleotides under the very different metabolic requirements of stationary phase. Thus, if DR0975 does contribute to radiation resistance, this contribution may be indirect.
Collapse
Affiliation(s)
- David I Fisher
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool L69 7ZB, UK
| | - Jared L Cartwright
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool L69 7ZB, UK
- Department of Biology, University of York, P.O. Box 373, York, YO10 5YW, UK
| | - Hideyoshi Harashima
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kamiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Alexander G McLennan
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool L69 7ZB, UK
| |
Collapse
|
18
|
Xu W, Dunn CA, Jones CR, D'Souza G, Bessman MJ. The 26 Nudix hydrolases of Bacillus cereus, a close relative of Bacillus anthracis. J Biol Chem 2004; 279:24861-5. [PMID: 15060060 DOI: 10.1074/jbc.m403272200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Bacillus cereus contains 26 Nudix hydrolase genes, second only to its closest relative, Bacillus anthracis which has 30. All 26 genes have been cloned, 25 have been expressed, and 21 produced soluble proteins suitable for analysis. Substrates for 16 of the enzymes were identified; these included ADP-ribose, diadenosine polyphosphates, sugar nucleotides, and deoxynucleoside triphosphates. One of the enzymes was a CDP-choline pyrophosphatase, the first Nudix hydrolase active on this substrate. Furthermore, as a result of this and previous work we have identified a new sub-family of the Nudix hydrolase superfamily recognizable by a specific amino acid motif outside of the Nudix box.
Collapse
Affiliation(s)
- WenLian Xu
- Department of Biology and The McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|