1
|
Zi J, Yu L, Wang L, Li D, Du X, Chen H, Zhang J, Jiang Y. ADAM28 promotes epithelial mesenchymal transition and impairs tight junctions in non-eosinophilic chronic rhinosinusitis with nasal polyps by inducing M1 polarization of macrophages. Int Immunopharmacol 2025; 150:114276. [PMID: 39954661 DOI: 10.1016/j.intimp.2025.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by tight junction dysfunction associated with epithelial-mesenchymal transition (EMT) processing. ADAM28 participates in the pathogenic process of inflammatory airway diseases. METHODS The effects of ADAM28 knockdown on the expression levels of the M1-type macrophage markers were examined using M1-type macrophage polarization model established with the THP1 cells. An inflammation model was established by collecting cell supernatants from M1-polarized macrophages with stable ADAM28 knockdown to stimulate HNEPC and primary nasal mucosal epithelial cells (pHNECs).The expression levels of EMT markers and tight junction proteins were detected. RESULTS ADAM28 was highly expressed in non-eosinophilic CRSwNP (NE-CRSwNP) and correlated with NE-CRSwNP clinical scores. Immunofluorescence assay demonstrated that the number of ADAM28-positive macrophages significantly increased in the NE-CRSwNP group compared with the control group. In addition, ADAM28 levels were significantly elevated in M1-type macrophages. ADAM28 knockdown significantly reduced the expression levels of M1-type macrophage polarization markers in M1 macrophages. Furthermore, ADAM28 knockdown elevated the expression of EMT marker E-cadherin and decreased the expression of α-SMA in HNEPC and pHNECs. Additionally, ADAM28 knockdown increased the expression levels of tight junction proteins in pHNECs cultured at an air-liquid interface. CONCLUSION ADAM28 is markedly elevated in NE-CRSwNP and is correlated with the clinical scores of NE-CRSwNP. ADAM28 induces the M1-type polarization of macrophages. ADAM28 promotes EMT and impairs tight junctions of nasal epithelia by inducing M1-type polarization of macrophages.
Collapse
Affiliation(s)
- Jiajia Zi
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Longgang Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Danyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Xiaoyun Du
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Han Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Jisheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China.
| | - Yan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China.
| |
Collapse
|
2
|
de Souza S, Melo GA, Calôba C, Campos MCS, Pimenta JV, Dutra FF, Pereira RM, Echevarria-Lima J. HTLV-1-infected cells drive the differentiation of monocytes into macrophages in vitro. BMC Immunol 2025; 26:24. [PMID: 40114046 PMCID: PMC11927243 DOI: 10.1186/s12865-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/14/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic inflammatory neurodegenerative disease characterized by leukocyte infiltration in the spinal cord. T-lymphocytes are the most important targets of HTLV-1 infection, but monocytes are also infected. Monocytes from HTLV-1-infected individuals exhibit important functional differences compared to cells from uninfected donors. Here, we investigated the effects of cell-cell physical contact and/or secreted factors of HTLV-1-infected cells in monocyte activation and differentiation. METHODS The THP-1 human monocytic cell line was co-cultured with a human cell line transformed by HTLV-1 (MT-2) for 6 days. To determine the effects of co-culturing HTLV-1-infected cells in THP-1 monocytes cells were characterized by flow cytometry, immunofluorescence microscopy, and real-time PCR. Computational analysis of published transcriptomic datasets was realized to compare molecular profiles of macrophages and mononuclear cells from HTLV-1 carriers. RESULTS Co-culture of monocytes with HTLV-1-infected cells induced macrophage differentiation and upregulation of typical macrophages-associated molecules (HLA-DR, CD80, and CD86), increased cytokine (TNFα, IL-6, and IL-1β) levels and their coding genes expression. Consistently, published transcriptomic datasets showed changes in important genes associated with inflammation during HAM/TSP in patients. The presence of HTLV-1-infected cells in the culture also induced significant upregulation of Interferon Stimulated Genes (ISG), indicating viral infection. Monocyte activation and differentiation into pro-inflammatory macrophages occurred in a cell-to-cell contact-independent manner, suggesting the role of factors secreted by infected cells. CONCLUSIONS Together, our results indicated that HTLV-1-infected cells induced monocyte differentiation into macrophages inflammatory, predominantly.
Collapse
Affiliation(s)
- Sabrina de Souza
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Guilherme Affonso Melo
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Carolina Calôba
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Maria Clara Salgado Campos
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Juliana Vieira Pimenta
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Renata Meirelles Pereira
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil.
- Instituto de Microbiologia Paulo de Góes, CCS, Sala I-43, UFRJ, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
3
|
Zhu L, An P, Zhao W, Xia Y, Qi J, Luo J, Luo Y. Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients 2023; 15:1640. [PMID: 37049478 PMCID: PMC10096567 DOI: 10.3390/nu15071640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular inflammation triggers the development of thoracic aortic dissection (TAD). Zinc deficiency could dampen tissue inflammation. However, the role of zinc as a nutritional intervention in the progression of TAD remains elusive. In this study, we employed a classical β-aminopropionitrile monofumarate (BAPN)-induced TAD model in mice treated with low zinc and observed that the TAD progression was greatly ameliorated under low zinc conditions. Our results showed that low zinc could significantly improve aortic dissection and rupture (BAPN + low zinc vs. BAPN, 36% vs. 100%) and reduce mortality (BAPN + low zinc vs. BAPN, 22% vs. 57%). Mechanically, low zinc attenuated the infiltration of macrophages and inhibited the expression of inflammatory cytokines, suppressed the phenotype switch of vascular smooth muscle cells from contractile to synthetic types, and eventually alleviated the development of TAD. In conclusion, this study suggested that low zinc may serve as a potential nutritional intervention approach for TAD prevention.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenting Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yi Xia
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Targeted Phagocytosis Induction for Cancer Immunotherapy via Bispecific MerTK-Engaging Antibodies. Int J Mol Sci 2022; 23:ijms232415673. [PMID: 36555321 PMCID: PMC9779728 DOI: 10.3390/ijms232415673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The Tyro, Axl, and MerTK receptors (TAMRs) play a significant role in the clearance of apoptotic cells. In this work, the spotlight was set on MerTK, as it is one of the prominent TAMRs expressed on the surface of macrophages and dendritic cells. MerTK-specific antibodies were previously isolated from a transgenic rat-derived immune library with suitable biophysical properties. Further characterisation resulted in an agonistic MerTK antibody that led to phospho AKT activation in a dose-dependent manner. In this proof-of-concept study, a MerTK-specific antibody, MerK28, was combined with tandem, biparatopic EGFR-binding VHH camelid antibody domains (7D9G) in different architectures to generate bispecific antibodies with the capacity to bind EGFR and MerTK simultaneously. The bispecific molecules exhibited appropriate binding properties with regard to both targets in their soluble forms as well as to cells, which resulted in the engagement of macrophage-like THP-1 cells with epidermoid carcinoma A431 cells. Furthermore, targeted phagocytosis in co-culture experiments was observed only with the bispecific variants and not the parental MerTK-binding antibody. This work paves the way for the generation of bispecific macrophage-engaging antibodies for targeted phagocytosis harnessing the immune-modulating roles of MerTK in immunotherapy.
Collapse
|
5
|
Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria. Sci Rep 2021; 11:16595. [PMID: 34400721 PMCID: PMC8367987 DOI: 10.1038/s41598-021-96077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks’ gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24–34 weeks’ gestation); two prospective cohorts collected on the day of delivery (36 + 3–41 + 3 weeks’ gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.
Collapse
|
6
|
Papathanasiou AE, Spyropoulos F, Michael Z, Joung KE, Briana DD, Malamitsi-Puchner A, Mantzoros CS, Christou H. Adipokines and Metabolic Regulators in Human and Experimental Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22031435. [PMID: 33535425 PMCID: PMC7867052 DOI: 10.3390/ijms22031435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with meta-inflammation related to obesity but the role of adipose tissue in PH pathogenesis is unknown. We hypothesized that adipose tissue-derived metabolic regulators are altered in human and experimental PH. We measured circulating levels of fatty acid binding protein 4 (FABP-4), fibroblast growth factor -21 (FGF-21), adiponectin, and the mRNA levels of FABP-4, FGF-21, and peroxisome proliferator-activated receptor γ (PPARγ) in lung tissue of patients with idiopathic PH and healthy controls. We also evaluated lung and adipose tissue expression of these mediators in the three most commonly used experimental rodent models of pulmonary hypertension. Circulating levels of FABP-4, FGF-21, and adiponectin were significantly elevated in PH patients compared to controls and the mRNA levels of these regulators and PPARγ were also significantly increased in human PH lungs and in the lungs of rats with experimental PH compared to controls. These findings were coupled with increased levels of adipose tissue mRNA of genes related to glucose uptake, glycolysis, tricarboxylic acid cycle, and fatty acid oxidation in experimental PH. Our results support that metabolic alterations in human PH are recapitulated in rodent models of the disease and suggest that adipose tissue may contribute to PH pathogenesis.
Collapse
Affiliation(s)
- Aimilia Eirini Papathanasiou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.E.P.); (F.S.); (K.E.J.)
- Harvard Medical School, Boston, MA 02215, USA;
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 10679 Athens, Greece; (D.D.B.); (A.M.-P.)
| | - Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.E.P.); (F.S.); (K.E.J.)
- Harvard Medical School, Boston, MA 02215, USA;
| | - Zoe Michael
- Harvard Medical School, Boston, MA 02215, USA;
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02215, USA
| | - Kyoung E. Joung
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.E.P.); (F.S.); (K.E.J.)
- Harvard Medical School, Boston, MA 02215, USA;
| | - Despina D. Briana
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 10679 Athens, Greece; (D.D.B.); (A.M.-P.)
| | - Ariadne Malamitsi-Puchner
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 10679 Athens, Greece; (D.D.B.); (A.M.-P.)
| | - Christos S. Mantzoros
- Harvard Medical School, Boston, MA 02215, USA;
- Division of Endocrinology Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (C.S.M.); (H.C.)
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.E.P.); (F.S.); (K.E.J.)
- Harvard Medical School, Boston, MA 02215, USA;
- Correspondence: (C.S.M.); (H.C.)
| |
Collapse
|
7
|
Afdal P, AbdelMassih AF. Is pulmonary vascular disease reversible with PPAR ɣ agonists? Microcirculation 2018; 25:e12444. [DOI: 10.1111/micc.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Afdal
- Faculty of Medicine; Cairo University; Cairo Egypt
| | | |
Collapse
|
8
|
Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg 2017; 67:1120-1126. [PMID: 29153440 DOI: 10.1016/j.jvs.2017.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/13/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Rupture of atherosclerotic plaques and the resulting thrombosis are vital causes of clinical ischemic events. Recent studies have shown that ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) is a pathogenic factor of plaque vulnerability in mice. However, the relationship between ADAMTS4 and carotid atherosclerotic vulnerable plaques in humans remains unclear. METHODS Forty-eight carotid atherosclerotic plaque specimens were obtained from 48 carotid artery stenosis inpatients undergoing carotid endarterectomy. We performed hematoxylin and eosin and Movat pentachrome staining for histologic characteristics; immunohistochemical staining for ADAMTS4, versican, and macrophages; and serologic tests for ADAMTS4. Patients were divided into stable and vulnerable groups on the basis of histologic characterization according to the classification criteria of the American Heart Association. Comparison between the groups was carried out using SPSS 17.0 (SPSS Inc, Chicago, Ill). RESULTS Expression of ADAMTS4 in the plaque and its serum concentration were significantly higher in the vulnerable group compared with the stable one (P = .004 and P = .021, respectively), whereas the expression of versican was lower in the vulnerable group than in the stable group (P = .015). Univariate analysis revealed that the incidence of symptomatic cerebral ischemic events and ADAMTS4 serum levels were statistically higher in the vulnerable group compared with the stable group (P = .021 and P = .029, respectively). Multivariate analysis showed that ADAMTS4 was an independent risk factor (odds ratio, 1.14; P = .038). CONCLUSIONS Our study revealed that ADAMTS4 expression was upregulated during carotid atherosclerotic plaque development. Serum levels of ADAMTS4 were associated with increased plaque vulnerability in both symptomatic and asymptomatic patients with carotid artery stenosis. ADAMTS4 may be a potential biomarker for plaque vulnerability.
Collapse
|
9
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
10
|
Tarasova NK, Ytterberg AJ, Lundberg K, Zhang XM, Harris RA, Zubarev RA. Proteomics Reveals a Role for Attachment in Monocyte Differentiation into Efficient Proinflammatory Macrophages. J Proteome Res 2015. [PMID: 26216291 DOI: 10.1021/acs.jproteome.5b00659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monocytes are blood-borne cells of the innate immune system. They can be differentiated and activated into proinflammatory macrophages that might be employed in tumor immune therapy. Monocyte exposure to lipopolysaccharide (LPS) is a standard method to induce a proinflammatory macrophage state, with the resultant population comprising both adherent and nonadherent cells. In the current study, we aimed to identify the differences in proteomes of these monocyte subpopulations, which addresses a more general question about the role of attachment in monocyte differentiation. Label-free proteomics of a model of human monocytes (THP-1 cell line) revealed that the cells remaining in suspension upon LPS treatment were activated by cytokines and primed for rapid responsiveness to pathogens. In terms of proteome change, the adhesion process was orthogonal to activation. Adherent cells exhibited signs of differentiation and enhanced innate immune responsivity, being closer to macrophages. These findings indicate that adherent, LPS-treated cells would be more appropriate for use in tumor therapeutic applications.
Collapse
Affiliation(s)
| | | | - Karin Lundberg
- Centre for Molecular Medicine, Karolinska Hospital , SE 17176 Stockholm, Sweden
| | - Xing-Mei Zhang
- Centre for Molecular Medicine, Karolinska Hospital , SE 17176 Stockholm, Sweden
| | - Robert A Harris
- Centre for Molecular Medicine, Karolinska Hospital , SE 17176 Stockholm, Sweden
| | | |
Collapse
|
11
|
Gacic J, Vorkapic E, Olsen RS, Söderberg D, Gustafsson T, Geffers R, Skoglund K, Matussek A, Wågsäter D. Imatinib reduces cholesterol uptake and matrix metalloproteinase activity in human THP-1 macrophages. Pharmacol Rep 2015; 68:1-6. [PMID: 26721343 DOI: 10.1016/j.pharep.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Imatinib mesylate (Glivec®, formerly STI-571) is a selective tyrosine kinase inhibitor used for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. However, there are reports suggesting that imatinib could be atheroprotective by lowering plasma low-density lipoprotein (LDL). AIM To investigate the potential inhibitory effect of imatinib on cholesterol uptake in human macrophages as well as its effect on matrix metalloproteinase (MMP) activity. METHODS AND RESULTS Uptake of fluorescence-labeled LDL was analyzed using flow cytometry. Macrophages treated with imatinib showed a 23.5%, 27%, and 15% decrease in uptake of native LDL (p<0.05), acetylated LDL (p<0.01), and copper-modified oxidized LDL (p<0.01), respectively. Gel-based zymography showed that secretion and activity of MMP-2 and MMP-9 were inhibited by imatinib. Using GeneChip Whole Transcript Expression array analysis, no obvious gene candidates involved in the mechanisms of cholesterol metabolism or MMP regulation were found to be affected by imatinib. Instead, we found that imatinib up-regulated microRNA 155 (miR155) by 43.8% and down-regulated ADAM metallopeptidase domain 28 (ADAM28) by 41.4%. Both genes could potentially play an atheroprotective role and would be interesting targets in future studies. CONCLUSION Our results indicate that imatinib causes post-translational inhibition with respect to cholesterol uptake and regulation of MMP-2 and MMP-9. More research is needed to further evaluate the role of imatinib in the regulation of other genes and processes.
Collapse
Affiliation(s)
- Jelena Gacic
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Emina Vorkapic
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Renate Slind Olsen
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Services, County Hospital Ryhov, Jönköping, Sweden
| | - Daniel Söderberg
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Therese Gustafsson
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Karin Skoglund
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Department of Laboratory Services, County Hospital Ryhov, Jönköping, Sweden
| | - Dick Wågsäter
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
12
|
Borst O, Schaub M, Walker B, Schmid E, Münzer P, Voelkl J, Alesutan I, Rodríguez JM, Vogel S, Schoenberger T, Metzger K, Rath D, Umbach A, Kuhl D, Müller II, Seizer P, Geisler T, Gawaz M, Lang F. Pivotal Role of Serum- and Glucocorticoid-Inducible Kinase 1 in Vascular Inflammation and Atherogenesis. Arterioscler Thromb Vasc Biol 2015; 35:547-57. [DOI: 10.1161/atvbaha.114.304454] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective—
Atherosclerosis, an inflammatory disease of arterial vessel walls, requires migration and matrix metalloproteinase (MMP)-9–dependent invasion of monocytes/macrophages into the vascular wall. MMP-9 expression is stimulated by transcription factor nuclear factor-κB, which is regulated by inhibitor κB (IκB) and thus IκB kinase. Regulators of nuclear factor-κB include serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored involvement of SGK1 in vascular inflammation and atherogenesis.
Approach and Results—
Gene-targeted apolipoprotein E (ApoE)–deficient mice without (
apoe
−/−
sgk1
+/+
) or with (
apoe
−/−
sgk1
−/−
) additional SGK1 knockout received 16-week cholesterol-rich diet. According to immunohistochemistry atherosclerotic lesions in aorta and carotid artery, vascular CD45
+
leukocyte infiltration, Mac-3
+
macrophage infiltration, vascular smooth muscle cell content, MMP-2, and MMP-9 positive areas in atherosclerotic tissue were significantly less in
apoe
−/−
sgk1
−/−
mice than in
apoe
−/−
sgk1
+/+
mice. As determined by Boyden chamber, thioglycollate-induced peritonitis and air pouch model, migration of SGK1-deficient CD11b
+
F4/80
+
macrophages was significantly diminished in vitro and in vivo. Zymographic MMP-2 and MMP-9 production, MMP-9 activity and invasion through matrigel in vitro were significantly less in
sgk1
−/−
than in
sgk1
+/+
macrophages and in control plasmid–transfected or inactive
K127N
SGK1-transfected than in constitutively active
S422D
SGK1-transfected THP-1 cells. Confocal microscopy revealed reduced macrophage number and macrophage MMP-9 content in plaques of
apoe
−/−
sgk1
−/−
mice. In THP-1 cells, MMP-inhibitor GM6001 (25 μmol/L) abrogated
S422D
SGK1-induced MMP-9 production and invasion. According to reverse transcription polymerase chain reaction, MMP-9 transcript levels were significantly reduced in
sgk1
−/−
macrophages and strongly upregulated in
S422D
SGK1-transfected THP-1 cells compared with control plasmid–transfected or
K127N
SGK1-transfected THP-1 cells. According to immunoblotting and confocal microscopy, phosphorylation of IκB kinase and inhibitor κB and nuclear translocation of p50 were significantly lower in
sgk1
−/−
macrophages than in
sgk1
+/+
macrophages and significantly higher in
S422D
SGK1-transfected THP-1 cells than in control plasmid–transfected or
K127N
SGK1-transfected THP-1 cells. Treatment of
S422D
SGK1-transfected THP-1 cells with IκB kinase-inhibitor BMS-345541 (10 μmol/L) abolished
S422D
SGK1-induced increase of MMP-9 transcription and gelatinase activity.
Conclusions—
SGK1 plays a pivotal role in vascular inflammation during atherogenesis. SGK1 participates in the regulation of monocyte/macrophage migration and MMP-9 transcription via regulation of nuclear factor-κB.
Collapse
Affiliation(s)
- Oliver Borst
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Malte Schaub
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Britta Walker
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Evi Schmid
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Patrick Münzer
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Jakob Voelkl
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Ioana Alesutan
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - José M. Rodríguez
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Sebastian Vogel
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Tanja Schoenberger
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Katja Metzger
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Dominik Rath
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Anja Umbach
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Dietmar Kuhl
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Iris I. Müller
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Peter Seizer
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Tobias Geisler
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Meinrad Gawaz
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| | - Florian Lang
- From the Department of Cardiology and Cardiovascular Medicine (O.B., M.S., S.V., T.S., K.M., D.R., I.I.M., P.S., T.G., M.G.), Department of Physiology (O.B., B.W., E.S., P.M., J.V., I.A., A.U., F.L.), Department of Pediatric Surgery and Urology, University Children’s Hospital (E.S.), University of Tuebingen, Tuebingen, Germany; Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University of New York (J.M.R.); and Center for Molecular Neurobiology (ZMNH), Institute for Molecular and
| |
Collapse
|
13
|
Pujari R, Kumar N, Ballal S, Eligar SM, Anupama S, Bhat G, Swamy BM, Inamdar SR, Shastry P. Rhizoctonia bataticola lectin (RBL) induces phenotypic and functional characteristics of macrophages in THP-1 cells and human monocytes. Immunol Lett 2015; 163:163-72. [DOI: 10.1016/j.imlet.2014.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/06/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
|
14
|
Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhang Y, Zhong N, Ran P, Lu W. Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARγ axis. Am J Respir Cell Mol Biol 2013; 49:231-40. [PMID: 23526219 DOI: 10.1165/rcmb.2012-0185oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential canonical (TRPC) proteins play important roles in chronically hypoxic pulmonary hypertension (CHPH). Previous results indicated that sildenafil inhibited TRPC1 and TRPC6 expression in rat distal pulmonary arteries (PAs). However, the underlying mechanisms remain unknown. We undertook this study to investigate the downstream signaling of sildenafil's regulation on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle cells (PASMCs). Hypoxia-exposed rats (10% O2 for 21 d) and rat distal PASMCs (4% O2 for 60 h) were taken as models to mimic CHPH. Real-time PCR, Western blotting, and Fura-2-based fluorescent microscopy were performed for mRNA, protein, and Ca(2+) measurements, respectively. The cellular cyclic guanosine monophosphate (cGMP) analogue 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate sodium salt (CPT-cGMP) (100 μM) inhibited TRPC1 and TRPC6 expression, store-operated Ca(2+) entry (SOCE), and the proliferation and migration of PASMCs exposed to prolonged hypoxia. The inhibition of CPT-cGMP on TRPC1 and TRPC6 expression in PASMCs was relieved by either the inhibition or knockdown of cGMP-dependent protein kinase (PKG) and peroxisome proliferator-activated receptor γ (PPARγ) expression. Under hypoxic conditions, CPT-cGMP increased PPARγ expression. This increase was abolished by the PKG antagonists Rp8 or KT5823. PPARγ agonist GW1929 significantly decreased TRPC1 and TRPC6 expression in PASMCs. Moreover, hypoxia exposure decreased, whereas sildenafil treatment increased, PKG and PPARγ expression in PASMCs ex vivo, and in rat distal PAs in vivo. The suppressive effects of sildenafil on TRPC1 and TRPC6 in rat distal PAs and on the hemodynamic parameters of CHPH were inhibited by treatment with the PPARγ antagonist T0070907. We conclude that sildenafil inhibits TRPC1 and TRPC6 expression in PASMCs via cGMP-PKG-PPARγ-dependent signaling during CHPH.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abe H, Mochizuki S, Ohara K, Ueno M, Ochiai H, Kitagawa Y, Hino O, Sato H, Okada Y. Src plays a key role in ADAM28 expression in v-src-transformed epithelial cells and human carcinoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1667-1678. [PMID: 24007880 DOI: 10.1016/j.ajpath.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
ADAM28, a disintegrin and metalloproteinase 28, is overexpressed by carcinoma cells with direct correlations with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, the molecular mechanisms of ADAM28 gene expression in carcinoma cells remain elusive. Herein, we investigated the expression of ADAM28 in Madin-Darby canine kidney epithelial cells transformed by oncogenes, including v-src, LMP1, ErbB2, Ha-Ras, and c-Fos, and found that v-src transformants selectively induce ADAM28. Implantation of the v-src transformants showed a progressively growing tumor, which was significantly suppressed by local injections of anti-ADAM28 antibody. ADAM28 expression in v-src transformants was partially inhibited by treatment with inhibitors to Src kinase, mitogen-activated protein kinase kinase (MEK), phosphatidylinositol 3-kinase (PI3K), or mammalian target of rapamycin, and abrogated by v-Src kinase inhibitor, radicicol, or a mixture of MEK and PI3K inhibitors. Human carcinoma cell lines of the lung, breast, ovary, kidney, and colon showed ADAM28 expression, which was correlated with phosphorylation of c-Src and suppressed by the inhibitors in a similar way to v-src transformants. IHC of the human tumor tissues demonstrated co-expression of ADAM28 and phosphorylated Src in neoplastic cells of the breast, lung, and colon carcinomas and some adenomas of the colon, but not in nonneoplastic colon mucosa. Our data provide, to the best of our knowledge, the first evidence that Src is an inducer of ADAM28 gene expression through the MEK/extracellular signal-regulated kinase and PI3K/mammalian target of rapamycin pathways.
Collapse
Affiliation(s)
- Hitoshi Abe
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan; Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Ohara
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Ueno
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroki Ochiai
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Sato
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
16
|
Ashlin TG, Kwan APL, Ramji DP. Regulation of ADAMTS-1, -4 and -5 expression in human macrophages: differential regulation by key cytokines implicated in atherosclerosis and novel synergism between TL1A and IL-17. Cytokine 2013; 64:234-42. [PMID: 23859810 PMCID: PMC3779352 DOI: 10.1016/j.cyto.2013.06.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/17/2013] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is an inflammatory disorder regulated by cytokines. ADAMTS proteases have been suggested to play an important role in this disease. The action of key cytokines on the expression of ADAMTS proteases in macrophages is poorly understood. The effect of IFN-γ, TGF-β, TL1A and IL-17A on the expression of ADAMTS-1, -4 and -5 was studied. Novel differential actions and synergistic interactions were identified.
Atherosclerosis is an inflammatory disease of the vasculature regulated by cytokines. Macrophages play a crucial role at all stages of this disease, including regulation of foam cell formation, the inflammatory response and stability of atherosclerotic plaques. For example, matrix metalloproteinases produced by macrophages play an important role in modulating plaque stability. More recently, the ADAMTS proteases, which are known to play a key role in the control of cartilage degradation during arthritis, have been found to be expressed in atherosclerotic lesions and suggested to have potentially important functions in the control of plaque stability. Unfortunately, the action of cytokines on the expression of ADAMTS family in macrophages is poorly understood. We have investigated the effect of classical cytokines (IFN-γ and TGF-β) and those that have been recently identified (TL1A and IL-17) on the expression of ADAMTS-1, -4 and -5 in human macrophages. The expression of all three ADAMTS members was induced during differentiation of monocytes into macrophages. TGF-β had a differential action with induction of ADAMTS-1 and -5 expression and attenuation in the levels of ADAMTS-4. In contrast, IFN-γ suppressed the expression of ADAMTS-1 without having an effect on ADAMTS-4 and -5. Although TL-1A or IL-17A alone had little effect on the expression of all the members, they induced their expression synergistically when present together. These studies provide new insight into the regulation of key ADAMTS family members in human macrophages by major cytokines in relation to atherosclerosis.
Collapse
Affiliation(s)
- Tim G Ashlin
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | | | | |
Collapse
|
17
|
Murray MY, Birkland TP, Howe JD, Rowan AD, Fidock M, Parks WC, Gavrilovic J. Macrophage migration and invasion is regulated by MMP10 expression. PLoS One 2013; 8:e63555. [PMID: 23691065 PMCID: PMC3653827 DOI: 10.1371/journal.pone.0063555] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
This study was designed to identify metalloproteinase determinants of macrophage migration and led to the specific hypothesis that matrix metalloproteinase 10 (MMP10/stromelysin-2) facilitates macrophage migration. We first profiled expression of all MMPs in LPS-stimulated primary murine bone marrow-derived macrophages and Raw264.7 cells and found that MMP10 was stimulated early (3 h) and down-regulated later (24 h). Based on this pattern of expression, we speculated that MMP10 plays a role in macrophage responses, such as migration. Indeed, using time lapse microscopy, we found that RNAi silencing of MMP10 in primary macrophages resulted in markedly reduced migration, which was reversed with exogenous active MMP10 protein. Mmp10 (-/-) bone marrow-derived macrophages displayed significantly reduced migration over a two-dimensional fibronectin matrix. Invasion of primary wild-type macrophages into Matrigel supplemented with fibronectin was also markedly impaired in Mmp10 (-/-) cells. MMP10 expression in macrophages thus emerges as an important moderator of cell migration and invasion. These findings support the hypothesis that MMP10 promotes macrophage movement and may have implications in understanding the control of macrophages in several pathologies, including the abnormal wound healing response associated with pro-inflammatory conditions.
Collapse
Affiliation(s)
- Megan Y. Murray
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Timothy P. Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jonathan D. Howe
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Andrew D. Rowan
- Musculoskeletal Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, United Kingdom
| | - Mark Fidock
- Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
| | - William C. Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Jacobi CLJ, Rudigier LJ, Scholz H, Kirschner KM. Transcriptional regulation by the Wilms tumor protein, Wt1, suggests a role of the metalloproteinase Adamts16 in murine genitourinary development. J Biol Chem 2013; 288:18811-24. [PMID: 23661704 DOI: 10.1074/jbc.m113.464644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs) is a secreted mammalian metalloproteinase with unknown function. We report here that murine Adamts16 is co-expressed with the Wilms tumor protein, Wt1, in the developing glomeruli of embryonic kidneys. Adamts16 mRNA levels were significantly reduced upon transfection of embryonic murine kidney explants with Wt1 antisense vivo-morpholinos. Antisense knockdown of Adamts16 inhibited branching morphogenesis in kidney organ cultures. Adamts16 was detected by in situ mRNA hybridization and/or immunohistochemistry also in embryonic gonads and in spermatids and granulosa cells of adult testes and ovaries, respectively. Silencing of Wt1 by transfection with antisense vivo-morpholinos significantly increased Adamts16 mRNA in cultured embryonic XY gonads (11.5 and 12.5 days postconception), and reduced Adamts16 transcripts in XX gonads (12.5 and 13.5 days postconception). Three predicted Wt1 consensus motifs could be identified in the promoter and the 5'-untranslated region of the murine Adamts16 gene. Binding of Wt1 protein to these elements was verified by EMSA and ChIP. A firefly luciferase reporter gene under control of the Adamts16 promoter was activated ∼8-fold by transient co-transfection of human granulosa cells with a Wt1 expression construct. Gradual shortening of the 5'-flanking sequence successively reduced and eventually abrogated Adamts16 promoter activation by Wt1. These findings demonstrate that Wt1 differentially regulates the Adamts16 gene in XX and XY embryonic gonads. It is suggested that Adamts16 acts immediately downstream of Wt1 during murine urogenital development. We propose that Adamts16 is involved in branching morphogenesis of the kidneys in mice.
Collapse
Affiliation(s)
- Charlotte L J Jacobi
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
19
|
Jowett JBM, Okada Y, Leedman PJ, Curran JE, Johnson MP, Moses EK, Goring HHH, Mochizuki S, Blangero J, Stone L, Allen H, Mitchell C, Matthews VB. ADAM28 is elevated in humans with the metabolic syndrome and is a novel sheddase of human tumour necrosis factor-α. Immunol Cell Biol 2012; 90:966-73. [PMID: 23010875 DOI: 10.1038/icb.2012.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metalloproteinases are implicated in cleaving numerous proinflammatory mediators from the cell surface. Interestingly, the elevated levels of tumour necrosis factor-α (TNF-α) have been associated with the metabolic syndrome. We aimed to ascertain whether the human metalloproteinase ADAM28 correlates with parameters of the metabolic syndrome and whether ADAM28 is a novel sheddase of human TNF-α. To identify novel metalloproteinases associated with the metabolic syndrome, we conducted microarray studies on peripheral blood mononuclear cells from a well characterised human cohort. Human ADAM28 and TNF-α were overexpressed and ADAM28 expression or activity was reduced with small-interfering RNA (siRNA) or pharmacological inhibition. TNF-α levels were measured in cell supernatant by enzyme-linked immunosorbent assay. We also conducted ADAM28 inhibition studies in human THP-1 macrophages. Human ADAM28 expression levels were positively correlated with parameters of the metabolic syndrome. When human ADAM28 and TNF-α were overexpressed in HEK293 cells, both proteins co-localised, co-immunoprecipitated and promoted TNF-α shedding. The shedding was significantly reduced when ADAM28 activity was inhibited or ADAM28 expression was downregulated. In human THP-1 macrophages, endogenous ADAM28 and TNF-α were co-expressed and TNF-α shedding was significantly reduced when ADAM28 was inhibited by pharmacological inhibition or siRNA knockdown. Our data suggest a novel mechanistic role for the metalloproteinase ADAM28 in inflammation, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jeremy B M Jowett
- Genomics and Systems Biology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Whelan JT, Chen J, Miller J, Morrow RL, Lingo JD, Merrell K, Shaikh SR, Bridges LC. 9-cis-retinoic acid promotes cell adhesion through integrin dependent and independent mechanisms across immune lineages. J Nutr Biochem 2012; 24:832-41. [PMID: 22925918 DOI: 10.1016/j.jnutbio.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/13/2022]
Abstract
Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866 and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-RA influences immune cell adhesion through at least two functionally distinct mechanisms.
Collapse
Affiliation(s)
- Jarrett T Whelan
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 2012; 35:167-75. [PMID: 21336677 DOI: 10.1007/s10753-011-9302-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Collapse
|
22
|
Patruno A, Pesce M, Marrone A, Speranza L, Grilli A, De Lutiis MA, Felaco M, Reale M. Activity of matrix metallo proteinases (MMPs) and the tissue inhibitor of MMP (TIMP)-1 in electromagnetic field-exposed THP-1 cells. J Cell Physiol 2012; 227:2767-74. [PMID: 21928345 DOI: 10.1002/jcp.23024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are the main determinants of tissue remodeling in both physiological and pathological processes. Metabolic processes, which generate oxidants and antioxidants can be influenced by environmental factors such as electromagnetic fields (EMF). We analyzed the effects of EMF on the activity and expression of MMPs in THP-1 cells. Cells were exposed to a 50 Hz, 1 mT EMF for 24 h and incubated with or without LPS. Our data indicate that THP-1 cells exposed to EMF causes a reduction of anti-oxidant enzyme activity and an enhancement of nitrogen intermediates involving the iNOS pathway. We then analyzed the role of nitration of TIMP-1 in increasing the activity of MMPs in EMF exposed cells. Molecular modeling tools were employed to identify the most plausible sites in the active conformation of TIMP-1; at least two protein sites, Y120 and Y38 and/or Y72 were identified. Reactive nitrogen species (RNS) may affect protein targets, such as TIMP-1, which are crucial for the regulation of MMP activities by oxidation of sulfydryl groups, or by nitration of tyrosine residues. These results may suggest a pathway connecting an imbalance of MMPs and their cognate inhibitor TIMP-1.
Collapse
Affiliation(s)
- Antonia Patruno
- Department of Drug Sciences, University G. d'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Burger KL, Davis AL, Isom S, Mishra N, Seals DF. The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011; 68:694-711. [PMID: 22021214 PMCID: PMC3240724 DOI: 10.1002/cm.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023]
Abstract
Tks5 is a Src substrate and adaptor protein previously recognized for its regulation of cancer cell invasion through modulation of specialized adhesion structures called podosomes/invadopodia. Here we show for the first time that Tks5 localizes to the podosomes of primary macrophages, and that Tks5 protein levels increase concurrently with podosome deposition during the differentiation of monocytes into macrophages. Similar results are reported for model THP-1 cells, which differentiate into macrophages and form proteolytically active podosomes in response to a PKC signaling agonist (PMA) and with sensitivity to a PKC inhibitor (bisindolylmaleimide). Genetic manipulation of Tks5 expression (silencing and overexpression) in stable THP-1 cell lines does not independently alter this macrophage differentiation process. Nor do these cells lose the ability to focalize F-actin and its accessory proteins into podosome-like structures following PMA treatment. However, Tks5 directly controls podosome-associated gelatin degradation and invasion through collective changes in adhesion, chemotaxis, and the expression/proteolytic activity of MMP9. The Src family kinase-dependent phosphorylation of Tks5 is also implicated in the regulation of THP-1 macrophage invasive behavior. These results therefore define a previously unappreciated function of Tks5 signaling specific to the functional attributes of the macrophage podosome in adhesion, motility, and extracellular matrix-remodeling.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Amanda L. Davis
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott Isom
- Department of Department of Biostatistical Sciences-Section on Biostatistics, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Nilamadhab Mishra
- Department of Internal Medicine-Section on Rheumatology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Darren F. Seals
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
24
|
Huang JL, Wu SY, Xie XJ, Wang MX, Zhu S, Gu JR. Inhibiting effects of Leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells. Eur J Pharmacol 2011; 670:304-10. [PMID: 21871883 DOI: 10.1016/j.ejphar.2011.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/06/2011] [Accepted: 07/30/2011] [Indexed: 12/21/2022]
Abstract
Recent studies have reported elevated expression of cluster of differentiation (CD) 147 on CD14(+) monocytes of the peripheral blood of patients with active rheumatoid arthritis and a correlation of CD147 expression with Disease Activity Score. Thus, CD147 may be a new target for treatment of rheumatoid arthritis. Leflunomide is a disease-modifying antirheumatic drug that is commonly used to treat rheumatoid arthritis. The effect of leflunomide in blocking the up-regulation of CD147 and in blocking the down-regulation of metalloproteinases (MMP)-2 and MMP-9 in active macrophages has not yet been established. In this study we investigated the effect of A771726, the active metabolite of leflunomide, on expression of CD147 and on the gelatinolytic activity of MMP-2 and MMP-9 in phorbol myristate acetate (PMA) differentiated THP-1 cells. The expression of CD147, MMP-2, and MMP-9 mRNAs were determined by real-time quantitative reverse transcription PCR, the levels of cellular surface expression of CD147 were determined by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Our results showed that A771726 significantly inhibited the expression of CD147 on the cell surface of activated THP-1 cells in a dose-dependent manner (P<0.01), inhibited the expression of MMP-2 and MMP-9 mRNAs in a dose-dependent manner (P<0.01), and inhibited the gelatinolytic activity of MMP-2 and MMP-9 at concentration of 15 μg/ml and 45 μg/ml (P<0.01). Our results indicate that A771726, the active metabolite of leflunomide, inhibited CD147 expression at the protein level and inhibited gelatinolytic activity of MMP-2 and MMP-9 in PMA-differentiated THP-1 cells.
Collapse
Affiliation(s)
- Jian-lin Huang
- Division of Rheumatology, Department of Internal Medicine, 3rd Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China.
| | | | | | | | | | | |
Collapse
|
25
|
Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis 2011; 216:313-20. [PMID: 21411094 DOI: 10.1016/j.atherosclerosis.2011.02.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Atherosclerosis is a condition that is increasingly contributing to worldwide mortality through complications such as stroke and myocardial infarction. IL-1β plays multiple direct, local roles in the formation and stability of the atheroma by eliciting the production of additional cytokines and proteolytic enzymes from macrophages, endothelial cells (EC) and smooth muscle cells (SMC). We therefore tested whether an anti-IL-1β antibody, XOMA 052, might inhibit the secretion of pro-atherogenic cytokines from macrophages in vitro and affect a positive outcome in the Apolipoprotein E-deficient mouse (ApoE(-/-)) model of atherosclerosis in vivo. METHODS AND RESULTS In an in vitro co-culture model, XOMA 052 inhibited macrophage-induced secretion of key atherogenic cytokines from EC and SMC, including IL-6, IL-8, MCP-1 and TNFα. The release of degradative enzymes, such as the matrix metalloproteinases MMP-3 and MMP-9, was also decreased by XOMA 052. In addition, XOMA 052 inhibited the secretion of IL-7 from EC and IL-4 from SMC, cytokines not previously reported to be driven by IL-1β in this context. In vivo, XMA052 MG1K, a chimeric murine version of XOMA 052, inhibited the formation of atherosclerotic lesions in the ApoE(-/-) model at all three doses tested. This effect was comparable to that reported for complete genetic ablation of IL-1β or IL-1R1 on an ApoE(-/-) background and was associated with decreases in plasma non-HDL/HDL cholesterol ratio and plaque lipid content and macrophage infiltration. CONCLUSIONS These results demonstrate for the first time that an antibody targeting IL-1β can inhibit the progression of atherosclerosis in vivo, highlighting the importance of this key cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Vinay Bhaskar
- Preclinical Research, XOMA (US) LLC, 2910 Seventh Street, Berkeley, CA 94710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Salter RC, Arnaoutakis K, Michael DR, Singh NN, Ashlin TG, Buckley ML, Kwan APL, Ramji DP. The expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 in human macrophages is inhibited by the anti-atherogenic cytokine transforming growth factor-β and requires Smads, p38 mitogen-activated protein kinase and c-Jun. Int J Biochem Cell Biol 2011; 43:805-11. [PMID: 21334453 PMCID: PMC3081072 DOI: 10.1016/j.biocel.2011.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/14/2011] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is an inflammatory disorder of the vasculature that is orchestrated by the action of cytokines. Macrophages play a prominent role in all stages of this disease, including foam cell formation, production of reactive oxygen species, modulation of the inflammatory response and the regulation of the stability of atherosclerotic plaques. The role of the matrix metalloproteinase family in the control of plaque stability is well established. A disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) family has been implicated in several diseases and the expression of ADAMTS-4 in macrophages of atherosclerotic lesions has suggested a potential role for this protease in atherosclerosis. However, the action of cytokines on the expression of ADAMTS-4 in macrophages is poorly understood. We have investigated here the effect of transforming growth factor-β (TGF-β) on ADAMTS-4 expression in macrophages along with the regulatory mechanisms underlying its actions. Consistent with the anti-atherogenic role of TGF-β, this cytokine decreased the expression of ADAMTS-4 mRNA and protein in human macrophages. Transient transfection assays showed that the −100 to +10 promoter region contained the minimal TGF-β response elements. Small-interfering RNA-mediated knockdown revealed a critical role for Smads, p38 mitogen-activated protein kinase and c-Jun in the action of TGF-β on ADAMTS-4 mRNA expression. These studies show for the first time that TGF-β inhibits the expression of ADAMTS-4 in human macrophages and identifies the signalling pathways underlying this response. The inhibition of macrophage ADAMTS-4 expression is likely to contribute to the anti-atherogenic, plaque stabilisation action of TGF-β.
Collapse
Affiliation(s)
- Rebecca C Salter
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hsu JW, Huang HC, Chen ST, Wong CH, Juan HF. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:358717. [PMID: 19696196 PMCID: PMC3135330 DOI: 10.1093/ecam/nep107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 06/26/2009] [Indexed: 11/22/2022]
Abstract
Differentiation therapy by induction of tumor cells is an important method in the treatment of hematological cancers such as leukemia. Tumor cell differentiation ends cancer cells' immortality, thus stopping cell growth and proliferation. In our previous study, we found that fucose-containing polysaccharide fraction F3 extracted from Ganoderma lucidum can bring about cytokine secretion and cell death in human leukemia THP-1 cells. This prompted us to further investigate on how F3 induces the differentiation in human leukemia cells. We integrated time-course microarray analysis and network modeling to study the F3-induced effects on THP-1 cells. In addition, we determined the differentiation effect using Liu's staining, nitroblue tetrazolium (NBT) reduction assay, flow cytometer, western blotting and Q-PCR. We also examined the modulation and regulation by F3 during the differentiation process. Dynamic gene expression profiles showed that cell differentiation was induced in F3-treated THP-1 cells. Furthermore, F3-treated THP-1 cells exhibited enhanced macrophage differentiation, as demonstrated by changes in cell adherence, cell cycle arrest, NBT reduction and expression of differentiation markers including CD11b, CD14, CD68, matrix metalloproteinase-9 and myeloperoxidase. In addition, caspase cleavage and p53 activation were found to be significantly enhanced in F3-treated THP-1 cells. We unraveled the role of caspases and p53 in F3-induced THP-1 cells differentiation into macrophages. Our results provide a molecular explanation for the differentiation effect of F3 on human leukemia THP-1 cells and offer a prospect for a potential leukemia differentiation therapy.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Institute of Molecular and Cellular Biology, Department of Life Science, Graduate Institute of Biomedical Electronics and Bioinformatics, Center for Systems Biology and Bioinformatics, Institute of Biochemical Sciences, National Taiwan University, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Salter RC, Ashlin TG, Kwan APL, Ramji DP. ADAMTS proteases: key roles in atherosclerosis? J Mol Med (Berl) 2010; 88:1203-11. [PMID: 20652528 DOI: 10.1007/s00109-010-0654-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/07/2010] [Accepted: 07/01/2010] [Indexed: 12/13/2022]
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases are secreted enzymes that regulate extracellular matrix turnover by degrading specific matrix components. Roles for the proteases in inflammation and atherosclerosis have been suggested by a number of recent studies, and the role of ADAMTS-4 and -5 in the breakdown of aggrecan and subsequent degradation of cartilage during osteoarthritis has also been established. The ability of the ADAMTS proteases to degrade versican, the primary proteoglycan in the vasculature, is thought to be central to any hypothesized role for the proteases in atherosclerosis. In this review, we introduce the structure and function of the ADAMTS family of proteases and review the literature that links them with inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Rebecca C Salter
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK CF10 3AX.
| | | | | | | |
Collapse
|
29
|
Zha Y, Chen Y, Xu F, Zhang J, Li T, Zhao C, Cui L. Elevated level of ADAMTS4 in plasma and peripheral monocytes from patients with acute coronary syndrome. Clin Res Cardiol 2010; 99:781-6. [PMID: 20625753 DOI: 10.1007/s00392-010-0183-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 06/17/2010] [Indexed: 12/30/2022]
Abstract
OBJECTIVES A recent study shows that ADAMTS4 is expressed in macrophage-rich areas of human atherosclerotic carotid plaques and coronary unstable plaques, suggesting a pathogenic role of ADAMTS4 in the development of acute coronary syndrome (ACS). We investigated (a) whether the expression level of ADAMTS4 in plasma and peripheral blood mononuclear cells was affected; and (b) whether there was a relationship with hs-CRP level and the stability of coronary atherosclerotic plaque in patients with ACS. METHODS Our study included 30 normal controls and 120 patients including 40 with stable angina (SA), 50 with unstable angina (UA), and 30 with acute myocardial infarction (AMI). The expression of ADAMTS4 in monocytes was analyzed by RT-PCR and plasma ADAMTS4 level was determined by ELISA. All coronary stenosis with >30% diameter reduction was assessed by angiographic coronary stenosis morphology. RESULTS Patients with ACS showed a significant increase of ADAMTS4 (2.7 ± 0.4) expression in monocytes compared with controls (1.1 ± 0.2) and the SA group (1.3 ± 0.2) (P < 0.001). Plasma ADAMTS4 also showed a higher level in ACS patients (100.2 ± 31.6 ng/ml) than in control (47.5 ± 9.0 ng/ml, P < 0.001) and the SA group (54.3 ± 13.2 ng/ml, P < 0.001). Moreover, we found a positive correlation between hs-CRP and ADAMTS4 expression in monocytes as well as in plasma. There was also a positive correlation of ADAMTS4 expression in monocytes and plasma with complex coronary stenosis (r (1) = 0.61, r (2) = 0.57, P < 0.001). CONCLUSIONS Patients with ACS showed increased ADAMTS4 expression, which may aggravate the development of atherosclerosis and instability of atherosclerotic plaques. Therefore, the ADAMTS4 expression may be a valuable marker for predicting the severity of ACS.
Collapse
Affiliation(s)
- Yanping Zha
- Department of Cardiology, Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD. p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 2010; 285:20358-68. [PMID: 20421303 PMCID: PMC2888447 DOI: 10.1074/jbc.m109.082834] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/13/2010] [Indexed: 02/05/2023] Open
Abstract
During the development of the sympathetic nervous system, the p75 neurotrophin receptor (p75NTR) has a dual function: promoting survival together with TrkA in response to NGF, but inducing cell death upon binding pro or mature brain-derived neurotrophic factor (BDNF). Apoptotic signaling through p75NTR requires activation of the stress kinase, JNK. However, the receptor also undergoes regulated proteolysis, first by a metalloprotease, and then by gamma-secretase, in response to pro-apoptotic ligands and this is necessary for receptor mediated neuronal death (Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., and Carter, B. D. (2006) Neuron 50, 219-232). Hence, the relationship between JNK activation and receptor proteolysis remains to be defined. Here, we report that JNK3 activation is necessary for p75NTR cleavage; however, following release of the intracellular domain, there is a secondary activation of JNK3 that is cleavage dependent. Receptor proteolysis and apoptosis were prevented in sympathetic neurons from jnk3(-/-) mice, while activation of JNK by ectopic expression of MEKK1 induced p75NTR cleavage and cell death. Proteolysis of the receptor was not detected until 6 h after BDNF treatment, suggesting that JNK3 promotes cleavage through a transcriptional mechanism. In support of this hypothesis, BDNF up-regulated tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM17 mRNA and protein in wild-type, but not jnk3(-/-) sympathetic neurons. Down-regulation of TACE by RNA interference blocked BDNF-induced p75NTR cleavage and apoptosis, indicating that this metalloprotease is responsible for the initial processing of the receptor. Together, these results demonstrate that p75NTR-mediated activation of JNK3 is required for up-regulation of TACE, which promotes receptor proteolysis, leading to prolonged activation of JNK3 and subsequent apoptosis in sympathetic neurons.
Collapse
Affiliation(s)
- Rajappa S. Kenchappa
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | - Chhavy Tep
- the Center for Molecular Neurobiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Zeljka Korade
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | - Soledad Urra
- the Department of Physiology, Neurobiology Unit, Center of Aging and Regeneration, Nucleus Millenium in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica, Alameda 340, Santiago 8320000, Chile
| | - Francisca C. Bronfman
- the Department of Physiology, Neurobiology Unit, Center of Aging and Regeneration, Nucleus Millenium in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica, Alameda 340, Santiago 8320000, Chile
| | - Sung Ok Yoon
- the Center for Molecular Neurobiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Bruce D. Carter
- From the Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| |
Collapse
|
31
|
Zha Y, Chen Y, Xu F, Li T, Zhao C, Cui L. ADAMTS4 level in patients with stable coronary artery disease and acute coronary syndromes. Biomed Pharmacother 2010; 64:160-4. [DOI: 10.1016/j.biopha.2009.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 09/09/2009] [Indexed: 11/16/2022] Open
|
32
|
Rabinovitch M. PPARgamma and the pathobiology of pulmonary arterial hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:447-58. [PMID: 20204748 DOI: 10.1007/978-1-60761-500-2_29] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that functions as a transcription factor to regulate adipogenesis and metabolism by binding to PPAR response elements (PPAREs) in the promoter region of various target genes. Activation of PPARgamma suppresses smooth muscle cell proliferation and migration. This chapter discusses the potential protective role of PPARgamma and its downstream signaling cascades in the development of pulmonary arterial hypertension. Furthermore, the chapter also provides an overview on the cellular and molecular mechanisms involved in PPARgamma-mediated inhibitory effect on pulmonary vascular remodeling, a major contributor to the elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- The Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Pustovrh MC, Capobianco E, Martínez N, Higa R, White V, Jawerbaum A. MMP/ TIMP balance is modulated in vitro by 15dPGJ(2) in fetuses and placentas from diabetic rats. Eur J Clin Invest 2009; 39:1082-90. [PMID: 19811527 DOI: 10.1111/j.1365-2362.2009.02200.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Maternal diabetes is associated with morphological placental abnormalities and foeto-placental impairments. These alterations are linked with a dysregulation of the activity of matrix metalloproteinases (MMPs). We investigated the action of 15deoxyDelta(12,14) prostaglandin J(2) (15dPGJ(2)), a natural ligand of the peroxisome proliferator activated receptor (PPAR) gamma, on MMP-2 and MMP-9 activities and tissue inhibitors of matrix metalloproteinases (TIMP) levels in foetuses and placentas from diabetic rats. MATERIALS AND METHODS Diabetes was induced in rat neonates by a single streptozotocin administration (90 mg kg(-1) s.c.). At 13.5 days of gestation, foetal and placental homogenates were prepared for the determination of PPARgamma levels (western blot) and 15dPGJ(2) concentration (enzyme-immunoassay), whereas the in vitro effect of 15dPGJ(2) (2 microM) was evaluated on placental and foetal MMPs and TIMP activities (zymography and reverse zymography), nitrate/nitrite concentrations (Griess method) and thiobarbituric acid reactive substances (TBARS). RESULTS PPARgamma was increased while 15dPGJ(2) was decreased in placentas and foetuses from diabetic rats. 15dPGJ(2) additions were able to reduce the high activities of MMP-2 and MMP-9 present in diabetic placental tissues. 15dPGJ(2) additions reduced MMP-2 activity in control and diabetic foetuses. TIMP-3 levels were decreased in diabetic placentas and 15dPGJ(2) was able to enhance them to control values. Nitrates/nitrites and TBARS, metabolites of MMPs activators, were increased in the diabetic placenta and reduced by 15dPGJ(2). CONCLUSIONS This study demonstrates that 15dPGJ(2) is a potent modulator of the balance between MMP activities and TIMP levels, which is needed in the correct formation and function of the placenta and foetal organs.
Collapse
Affiliation(s)
- M C Pustovrh
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
34
|
Gavrilovic J. Fibroblast growth factor 2: A new key player in osteoarthritis. ACTA ACUST UNITED AC 2009; 60:1869-72. [PMID: 19565484 DOI: 10.1002/art.24657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Franzke CW, Bruckner-Tuderman L, Blobel CP. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J Biol Chem 2009; 284:23386-96. [PMID: 19574220 PMCID: PMC2749112 DOI: 10.1074/jbc.m109.034090] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII is a transmembrane collagen and the major autoantigen of the autoimmune skin blistering disease bullous pemphigoid. Collagen XVII is proteolytically released from the membrane, and the pathogenic epitope harbors the cleavage site for its ectodomain shedding, suggesting that proteolysis has an important role in regulating the function of collagen XVII in skin homeostasis. Previous studies identified ADAMs 9, 10, and 17 as candidate collagen XVII sheddases and suggested that ADAM17 is a major sheddase. Here we show that ADAM17 only indirectly affects collagen XVII shedding and that ADAMs 9 and 10 are the most prominent collagen XVII sheddases in primary keratinocytes because (a) collagen XVII shedding was not stimulated by phorbol esters, known activators of ADAM17, (b) constitutive and calcium influx-stimulated shedding was sensitive to the ADAM10-selective inhibitor GI254023X and was strongly reduced in Adam10(-/-) cells, (c) there was a 55% decrease in constitutive collagen XVII ectodomain shedding from Adam9(-/-) keratinocytes, and (d) H(2)O(2) enhanced ADAM9 expression and stimulated collagen XVII shedding in skin and keratinocytes of wild type mice but not of Adam9(-/-) mice. We conclude that ADAM9 and ADAM10 can both contribute to collagen XVII shedding in skin with an enhanced relative contribution of ADAM9 in the presence of reactive oxygen species. These results provide critical new insights into the identity and regulation of the major sheddases for collagen XVII in keratinocytes and skin and have implications for the treatment of blistering diseases of the skin.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
| | - Leena Bruckner-Tuderman
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
- the Freiburg Institute of Advanced Studies, School of Life Sciences, D-79085 Freiburg, Germany
| | - Carl P. Blobel
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
| |
Collapse
|
36
|
Leishmania (Viannia) peruviana (MHOM/PE/LCA08): Comparison of THP-1 cell and murine macrophage susceptibility to axenic amastigotes for the screening of leishmanicidal compounds. Exp Parasitol 2009; 122:353-6. [DOI: 10.1016/j.exppara.2009.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 11/24/2022]
|
37
|
Coppola G, Marmolino D, Lu D, Wang Q, Cnop M, Rai M, Acquaviva F, Cocozza S, Pandolfo M, Geschwind DH. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia. Hum Mol Genet 2009; 18:2452-61. [PMID: 19376812 PMCID: PMC2694693 DOI: 10.1093/hmg/ddp183] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/14/2009] [Indexed: 01/09/2023] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARgamma) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARgamma coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARgamma pathway affects frataxin levels in vitro, supporting PPARgamma as a novel therapeutic target in FRDA.
Collapse
Affiliation(s)
- Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | | | - Daning Lu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | - Miriam Cnop
- Division of Endocrinology
- Laboratory of Experimental Medicine, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | | | - Fabio Acquaviva
- Department of Cellular and Molecular Biology, University of Naples ‘Federico II’, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
| | - Sergio Cocozza
- Department of Cellular and Molecular Biology, University of Naples ‘Federico II’, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
| | | | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Nicotinic acid-mediated activation of both membrane and nuclear receptors towards therapeutic glucocorticoid mimetics for treating multiple sclerosis. PPAR Res 2009; 2009:853707. [PMID: 19461950 PMCID: PMC2683338 DOI: 10.1155/2009/853707] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/22/2009] [Indexed: 12/21/2022] Open
Abstract
Acute attacks of multiple sclerosis (MS) are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA) is now known to involve induction of indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10), where IL-10 requires subsequent heme oxygenase-1 (HMOX-1) induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2) can prevent demyelination in experimental autoimmune encephalomyelitis (EAE) animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs) demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD), without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPARγ-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic acid administration far outweigh any known adverse risks in consideration for the treatment of multiple sclerosis.
Collapse
|
39
|
Copper egress is induced by PMA in human THP-1 monocytic cell line. Biometals 2009; 22:531-9. [DOI: 10.1007/s10534-009-9210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
|
40
|
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a fascinating family of transmembrane and secreted proteins with important roles in regulating cell phenotype via their effects on cell adhesion, migration, proteolysis and signalling. Though all ADAMs contain metalloproteinase domains, in humans only 13 of the 21 genes in the family encode functional proteases, indicating that at least for the other eight members, protein–protein interactions are critical aspects of their biological functions. The functional ADAM metalloproteinases are involved in “ectodomain shedding” of diverse growth factors, cytokines, receptors and adhesion molecules. The archetypal activity is shown by ADAM-17 (tumour necrosis factor-α convertase, TACE), which is the principal protease involved in the activation of pro-TNF-α, but whose sheddase functions cover a broad range of cell surface molecules. In particular, ADAM-17 is required for generation of the active forms of Epidermal Growth Factor Receptor (EGFR) ligands, and its function is essential for the development of epithelial tissues. Several other ADAMs have important sheddase functions in particular tissue contexts. Another major family member, ADAM-10, is a principal player in signalling via the Notch and Eph/ephrin pathways. For a growing number of substrates, foremost among them being Notch, cleavage by ADAM sheddases is essential for their subsequent “regulated intramembrane proteolysis” (RIP), which generates cleaved intracellular domains that translocate to the nucleus and regulate gene transcription. Several ADAMs play roles in spermatogenesis and sperm function, potentially by effecting maturation of sperm and their adhesion and migration in the uterus. Other non-catalytic ADAMs function in the CNS via effects on guidance mechanisms. The ADAM family are thus fundamental to many control processes in development and homeostasis, and unsurprisingly they are also linked to pathological states when their functions are dysregulated, including cancer, cardiovascular disease, asthma, Alzheimer’s disease. This review will provide an overview of current knowledge of the human ADAMs, discussing their structure, function, regulation and disease involvement.
Collapse
Affiliation(s)
- Dylan R Edwards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
41
|
Rodríguez-Manzaneque JC, Carpizo D, Plaza-Calonge MDC, Torres-Collado AX, Thai SNM, Simons M, Horowitz A, Iruela-Arispe ML. Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int J Biochem Cell Biol 2008; 41:800-10. [PMID: 18775505 DOI: 10.1016/j.biocel.2008.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Syndecan-4 is a membrane-bound heparan sulfate proteoglycan that participates in cell-cell and cell-matrix interactions and modulates adhesion and migration of many cell types. Through its extracellular domain, syndecan-4 cooperates with adhesion molecules and binds matrix components relevant for cell migration. Importantly, syndecan-4 is a substrate of extracellular proteases, however the biological significance of this cleavage has not been elucidated. Here, we show that the secreted metalloprotease ADAMTS1, involved in angiogenesis and inflammatory processes, cleaves the ectodomain of syndecan-4. We further showed that this cleavage results in altered distribution of cytoskeleton components, functional loss of adhesion, and gain of migratory capacities. Using syndecan-4 null cells, we observed that ADAMTS1 proteolytic action mimics the outcome of genetic deletion of this proteoglycan with regards to focal adhesion. Our findings suggest that the shedding of syndecan-4 by ADAMTS1 disrupts cell adhesion and promotes cell migration.
Collapse
Affiliation(s)
- Juan Carlos Rodríguez-Manzaneque
- Medical Oncology Research Program, Vall d'Hebron University Hospital Research Institute/Universidad Autónoma de Barcelona, Barcelona 08035, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gaurnier-Hausser A, Rothman VL, Dimitrov S, Tuszynski GP. The novel angiogenic inhibitor, angiocidin, induces differentiation of monocytes to macrophages. Cancer Res 2008; 68:5905-14. [PMID: 18632645 DOI: 10.1158/0008-5472.can-07-6179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that angiocidin, a tumor and vascular associated protein, is a potent inhibitor of angiogenesis and tumor growth. Angiocidin is a multidomain protein that exerts its antiangiogenic activity through multiple mechanisms, including effects on cell matrix interaction. Here, we describe another activity of angiocidin that may contribute to its antitumor activity. We show that angiocidin activates monocytes to secrete a mixture of proinflammatory cytokines and induces them to differentiate into macrophage-like cells. Using the monocytic cell line THP-1, we show that angiocidin induces the cells to become adherent and phagocytic, express macrophage markers, and secrete matrix metalloproteinase-9. Microarray analysis of control and angiocidin-treated THP-1 cells revealed that angiocidin up-regulated p105/p50, p100/p52, and rel B, components of the nuclear factor-kappaB (NF-kappaB) pathway. We confirmed the microarray data and showed that angiocidin induced phosphorylation of I kappa beta, p50, and p65 and translocation of p50 and p65 to the nucleus. We also showed that angiocidin activated up-stream mediators of NF-kappaB, such as the mitogen-activated protein kinase (MAPK) pathway and phosphoinositide-3 kinase (PI3K). Blockage of NF-kappaB and MAPK activation with small molecule inhibitors completely prevented angiocidin-mediated secretion of cytokines from THP-1 cells, but did not inhibit their adhesive phenotype. Blocking PI3K inhibited both secretion of cytokines, as well as the adhesive phenotype. These data suggest that angiocidin activates monocytes to secrete cytokines and differentiates them to a macrophage-like phenotype through at least two pathways mediated by MAPK and NF-kappaB, as well as PI3K.
Collapse
|
43
|
Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M. An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 2008; 118:1846-57. [PMID: 18382765 DOI: 10.1172/jci32503] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 02/06/2008] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in bone morphogenetic protein receptor II (BMP-RII) are linked to pulmonary arterial hypertension (PAH); the ligand for BMP-RII, BMP-2, is a negative regulator of SMC growth. Here, we report an interplay between PPARgamma and its transcriptional target apoE downstream of BMP-2 signaling. BMP-2/BMP-RII signaling prevented PDGF-BB-induced proliferation of human and murine pulmonary artery SMCs (PASMCs) by decreasing nuclear phospho-ERK and inducing DNA binding of PPARgamma that is independent of Smad1/5/8 phosphorylation. Both BMP-2 and a PPARgamma agonist stimulated production and secretion of apoE by SMCs. Using a variety of methods, including short hairpin RNAi in human PASMCs, PAH patient-derived BMP-RII mutant PASMCs, a PPARgamma antagonist, and PASMCs isolated from PPARgamma- and apoE-deficient mice, we demonstrated that the antiproliferative effect of BMP-2 was BMP-RII, PPARgamma, and apoE dependent. Furthermore, we created mice with targeted deletion of PPARgamma in SMCs and showed that they spontaneously developed PAH, as indicated by elevated RV systolic pressure, RV hypertrophy, and increased muscularization of the distal pulmonary arteries. Thus, PPARgamma-mediated events could protect against PAH, and PPARgamma agonists may reverse PAH in patients with or without BMP-RII dysfunction.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305-5162, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bridges LC, Lingo JD, Grandon RA, Kelley MD. All-trans-Retinoic Acid Induces Integrin-Independent B-Cell Adhesion to ADAM Disintegrin Domains. Biochemistry 2008; 47:4544-51. [DOI: 10.1021/bi702447u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lance C. Bridges
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035
| | - Joshuah D. Lingo
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035
| | - Rachel A. Grandon
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035
| | - Melissa D. Kelley
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035
| |
Collapse
|
45
|
Hu Q, Zhang XJ, Zhang C, Zhao YX, He H, Liu CX, Feng JB, Jiang H, Yang FL, Zhang CX, Zhang Y. Peroxisome Proliferator-Activated Receptor-γ1 Gene Therapy Attenuates Atherosclerosis and Stabilizes Plaques in Apolipoprotein E-Deficient Mice. Hum Gene Ther 2008; 19:287-299. [DOI: 10.1089/hum.2007.0142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qin Hu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Xian Jun Zhang
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Yu Xia Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Hong He
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Chun Xi Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Jin Bo Feng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Fa Lin Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Chun Xiang Zhang
- Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| |
Collapse
|
46
|
Wågsäter D, Björk H, Zhu C, Björkegren J, Valen G, Hamsten A, Eriksson P. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 2008; 196:514-22. [PMID: 17606262 DOI: 10.1016/j.atherosclerosis.2007.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Remodeling of extracellular matrix (ECM) plays an important role in inflammatory disorders such as atherosclerosis. ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) is a recently described family of proteinases that is able to degrade the ECM proteins aggrecan and versican expressed in blood vessels. The purpose of the present study was to analyze the expression and regulation of several ADAMTSs before and after macrophage differentiation and after stimulation with IFN-gamma, IL-1beta and TNF-alpha. ADAMTS expression was also examined during atherosclerosis development in mice and in human atherosclerotic plaques. METHODS AND RESULTS Real time RTPCR showed that, of the nine different ADAMTS members examined, only ADAMTS-4 and -8 were induced during monocyte to macrophage differentiation, which was also seen at protein level. Macrophage expression of ADAMTS-4, -7, -8 and -9 mRNA were enhanced upon stimulation with IFN-gamma or TNF-alpha. Furthermore, immunohistochemical analyses revealed that ADAMTS-4 and -8 were expressed in macrophage rich areas of human atherosclerotic carotid plaques and coronary unstable plaques. In addition, ADAMTS-4 expression was upregulated during the development of atherosclerosis in LDLR(-/-)ApoB(100/100) mice. Whereas ADAMTS-4 expression was low in non-atherosclerotic aortas, it was significantly higher in aortas from 30-40-week old atherosclerotic animals. CONCLUSION The present study suggests that ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of atherosclerotic plaques. This is the first study associating ADAMTS-4 and -8 expression with atherosclerosis. However, further experiments are required to understand the physiological and pathological functions of ADAMTS in the vascular wall, and tools to measure ADAMTS activity need to be developed.
Collapse
Affiliation(s)
- Dick Wågsäter
- Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ho TC, Yang YC, Chen SL, Kuo PC, Sytwu HK, Cheng HC, Tsao YP. Pigment epithelium-derived factor induces THP-1 macrophage apoptosis and necrosis by the induction of the peroxisome proliferator-activated receptor gamma. Mol Immunol 2008; 45:898-909. [PMID: 17870167 DOI: 10.1016/j.molimm.2007.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 01/28/2023]
Abstract
Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor, partially through the induction of endothelial cell apoptosis. Here we report that PEDF can also induce the apoptosis of human THP-1 monocytic leukemia cell line-derived macrophage cells (THP-1 macrophages) and peroxisome proliferator-activated receptor gamma (PPARgamma), a pleiotropic transcriptional factor is involved in the signaling. TUNEL and propidium iodide permeability assays demonstrated that PEDF dose- and time-dependently induces both apoptosis and necrosis of THP-1 macrophages while inducing the cleavages of procaspase-9, -3, the release of cytochrome c and the overexpression of p53. All these PEDF effects can be attenuated by either PPARgamma inhibitor GW9662 or PPARgamma small interfering RNA. The effects of PEDF can be reproduced by transient expression of PPARgamma by a PPARgamma-expression plasmid transfection. PEDF increased the expression and transcriptional activity of PPARgamma in THP-1 macrophages. In addition, PEDF also induced apoptosis in primary human monocyte-derived macrophages (MDMs) while inducing the expression of PPARgamma. Our observations indicate that PEDF induces macrophage apoptosis and necrosis through the signaling of PPARgamma. This suggests a novel mechanism through which PEDF can modulate inflammation.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Choi MS, Lee WH, Kwon EY, Kang MA, Lee MK, Park YB, Jeon SM. Effects of soy pinitol on the pro-inflammatory cytokines and scavenger receptors in oxidized low-density lipoprotein-treated THP-1 macrophages. J Med Food 2007; 10:594-601. [PMID: 18158828 DOI: 10.1089/jmf.2006.220] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pinitol, a methylated form of D-chiro-inositol, acts as a insulin mediator. We investigated the effects of soy pinitol on the factors involved in foam cell formation using differentiated THP-1 macrophages. Pinitol slightly inhibited the lipid-laden foam cell formation by oxidized low-density lipoprotein (oxLDL) in a dose-dependent manner. Tumor necrosis factor-alpha and monocyte chemoattractant protein-1 releases were significantly reduced by pinitol treatment (0.05-0.5 mM), whereas interleukin-1beta and interleukin-8 secretions were significantly reduced in low-dose pinitol (0.05 or 0.1 mM) and 0.5 mM pinitol-treated cells, respectively, compared to no pinitol-treated cells. Gene expressions of CD36 and CD68 were significantly down-regulated by 0.05-0.5 mM pinitol compared to the oxLDL-treated control cells. Matrix metalloproteinase-9 gene expression was significantly decreased in 0.05-0.5 mM pinitol-treated cells compared to the no pinitol-treated macrophages. We conclude that pinitol has some inhibitory effects on foam cell formation by reducing lipid accumulation, secretion, and expression of some cytokines and macrophage scavenger receptor expression via its insulin-like action.
Collapse
Affiliation(s)
- Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Mahajan N, Dhawan V, Sharma G, Jain S, Kaul D. ‘Induction of inflammatory gene expression by THP-1 macrophages cultured in normocholesterolaemic hypertensive sera and modulatory effects of green tea polyphenols’. J Hum Hypertens 2007; 22:141-3. [PMID: 17728801 DOI: 10.1038/sj.jhh.1002277] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypertension is a disorder controlled by multiple genes and inflammation and vascular remodelling of arteries have been implicated in pathogenesis of this disease. Green tea polyphenols (GrTPs) are rich in antioxidants and are known to inhibit inflammatory responses. A significant time-dependent increase in mRNA expression of both IL-6 and MMP-9 were observed in THP-1 macrophages when cultured in normocholesterolaemic hypertensive sera (P<0.05).
Collapse
|
50
|
Worley JR, Hughes DA, Dozio N, Gavrilovic J, Sampson MJ. Low density lipoprotein from patients with Type 2 diabetes increases expression of monocyte matrix metalloproteinase and ADAM metalloproteinase genes. Cardiovasc Diabetol 2007; 6:21. [PMID: 17714581 PMCID: PMC2041943 DOI: 10.1186/1475-2840-6-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 08/22/2007] [Indexed: 01/09/2023] Open
Abstract
Aims Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [adisintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL. Methods We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied. Results Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP. Conclusion These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.
Collapse
Affiliation(s)
- Joanna R Worley
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Bertram Diabetes Research Department, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK
| | | | - Nicoletta Dozio
- Bertram Diabetes Research Department, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Mike J Sampson
- Bertram Diabetes Research Department, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK
| |
Collapse
|