1
|
Chen YH, Dettipponpong P, Sin MY, Chang LC, Cheng CY, Huang SY, Walzem RL, Cheng HC, Chen SE. Ovarian expression of functional MTTP and apoB for VLDL assembly and secretion in chickens. Poult Sci 2025; 104:104993. [PMID: 40073639 PMCID: PMC11951013 DOI: 10.1016/j.psj.2025.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
In mammals, tissues other than liver and intestine are known to possess functional MTTP (microsomal triglyceride transfer protein) and apoB (apolipoprotein B) capable of VLDL (very low-density lipoprotein) assembly. Birds are oviparous and possess unique capabilities in lipid biology to accommodate yolk formation through massive deposition of hepatically assembled yolk-targeted VLDLy into ovarian follicles. Following identifications of MTTP and ApoB expression within chicken ovarian stroma, granulosa, theca, and epithelial cells of various classes of follicles, we sought to define the functionality of ovarian MTTP and ApoB in VLDL assembly. In situ hybridization analysis found that ApoB transcripts are most abundant in thecal layers, whereas immunohistochemistry showed that MTTP predominates in the granulosa layers. MTTP lipid transfer activity was greater in small yellow follicles than in hierarchical follicles. Metabolic labeling, electron microscopy, and Western blot studies confirmed the functionality of ovarian apoB and MTTP as newly assembled VLDL around 50-200 nm in diameter and lacking ApoVLDL-II dissimilar to VLDLy, were secreted from cultured follicular cells. Lomitapide and the ApoB-antisense oligonucleotide Mipomersen dose-dependently decreased MTTP activity and VLDL-apoB secretion from cultured follicular cells, while oleate addition or acute heat stress enhanced VLDL-apoB secretion. Ultrastructural images showed VLDL assembly and trafficking toward the secretion route. The findings support the notion that VLDL assembly and secretion within avian ovarian tissues functions as a protective mechanism against fuel and physical stressors to secure follicle development and/or nutritional quality control of yolk for embryo development.
Collapse
Affiliation(s)
- Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Mei-Ying Sin
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Yu Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| | - Rosemary L Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. FASEB J 2024; 38:e23522. [PMID: 38445789 PMCID: PMC10949407 DOI: 10.1096/fj.202302491r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570418. [PMID: 38105975 PMCID: PMC10723417 DOI: 10.1101/2023.12.06.570418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
5
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
6
|
Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis. Curr Atheroscler Rep 2019; 21:48. [PMID: 31741187 DOI: 10.1007/s11883-019-0809-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate the role of inhibiting the synthesis of lipoproteins when there is no or little residual LDL-receptor function as in patients with homozygous familial hypercholesterolaemia. Lomitapide is administered orally once a day while mipomersen is given by subcutaneous injection once a week. Lomitapide inhibits microsomal triglyceride transfer protein while mipomersen is an antisense oligonucleotide directed against apoB100. RECENT FINDINGS The pivotal registration trials for lomitapide and mipomersen were published in 2013 and 2010, respectively. More recently published data from extension trials and cohort studies provides additional information on long-term safety and efficacy. The mean LDL cholesterol reduction was 50% with lomitapide in its single-arm open-label registration trial. Mipomersen reduced LDL cholesterol by approximately 25% in its double-blind, placebo-controlled registration study. Both lomitapide and mipomersen therapy are associated with variable increases in hepatic fat content. The long-term safety of increased hepatic fat content in patients receiving these therapies is uncertain and requires further study. Both drugs may cause elevated transaminase in some patients, but no cases of severe liver injury have been reported. Lomitapide may also cause gastrointestinal discomfort and diarrhoea, especially if patients consume high-fat meals and patients are advised to follow a low-fat diet supplemented with essential fatty acids and fat-soluble vitamins. Mipomersen may cause injection-site and influenza-like reactions. The effect of lomitapide and mipomersen on cardiovascular outcomes has not been studied, but circumstantial evidence suggests that the LDL cholesterol lowering achieved with these two agents may reduce cardiovascular event rates.
Collapse
Affiliation(s)
- Dirk J Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, 4th Floor Chris Barnard Building, Anzio Road, 7925 Observatory, Cape Town, South Africa.
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| |
Collapse
|
7
|
Klevstig M, Arif M, Mannila M, Svedlund S, Mardani I, Ståhlman M, Andersson L, Lindbom M, Miljanovic A, Franco-Cereceda A, Eriksson P, Jeppsson A, Gan LM, Levin M, Mardinoglu A, Ehrenborg E, Borén J. Cardiac expression of the microsomal triglyceride transport protein protects the heart function during ischemia. J Mol Cell Cardiol 2019; 137:1-8. [PMID: 31533023 DOI: 10.1016/j.yjmcc.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
AIMS The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. MATERIALS AND METHODS We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. RESULTS Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. CONCLUSIONS Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.
Collapse
Affiliation(s)
- Martina Klevstig
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mannila
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Franco-Cereceda
- Department of Cardiothoracic Surgery and Anaesthesia, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Mölndal, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Zhang J, Schmidt CJ, Lamont SJ. Distinct genes and pathways associated with transcriptome differences in early cardiac development between fast- and slow-growing broilers. PLoS One 2018; 13:e0207715. [PMID: 30517173 PMCID: PMC6281182 DOI: 10.1371/journal.pone.0207715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022] Open
Abstract
Modern fast-growing broilers are susceptible to cardiac dysfunctions because their relatively small hearts cannot adequately meet the increased need of pumping blood through a large body mass. To improve cardiac health in broilers through breeding, we need to identify the genes and pathways that contribute to imbalanced cardiac development and occurrence of heart dysfunction. Two broiler lines–Ross 708 and Illinois–were included in this study as models of modern fast-growing and heritage slow-growing broilers, respectively. The left ventricular transcriptome were compared between the two broiler lines at day 6 and 21 post hatch through RNA-seq analysis to identify genes and pathways regulating compromised cardiac development in modern broilers. Number of differentially expressed genes (DEGs, p<0.05) between the two broiler lines increased from 321 at day 6 to 819 at day 21. As the birds grew, Ross broilers showed more DEGs (n = 1879) than Illinois broilers (n = 1117). Both broilers showed significant change of muscle related genes and immune genes, but Ross broilers showed remarkable change of expression of several lipid transporter genes including APOA4, APOB, APOH, FABP4 and RBP7. Ingenuity pathway analysis (IPA) suggested that increased cell apoptosis and inhibited cell cycle due to increased lipid accumulation, oxidative stress and endoplasmic reticulum stress may be related to the increased cardiac dysfunctions in fast-growing broilers. Cell cycle regulatory pathways like “Mitotic Roles of Polo-like Kinases” are ranked as the top changed pathways related to the cell apoptosis. These findings provide further insight into the cardiac dysfunction in modern broilers and also potential targets for improvement of their cardiac health through breeding.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sletten AC, Peterson LR, Schaffer JE. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med 2018; 284:478-491. [PMID: 29331057 PMCID: PMC6045461 DOI: 10.1111/joim.12728] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental and socioeconomic changes over the past thirty years have contributed to a dramatic rise in the worldwide prevalence of obesity. Heart disease is amongst the most serious health risks of obesity, with increases in both atherosclerotic coronary heart disease and heart failure among obese individuals. In this review, we focus on primary myocardial alterations in obesity that include hypertrophic remodelling and diastolic dysfunction. Obesity-associated perturbations in myocardial and systemic lipid metabolism are important contributors to cardiovascular complications of obesity. Accumulation of excess lipid in nonadipose cells of the cardiovascular system can cause cell dysfunction and cell death, a process known as lipotoxicity. Lipotoxicity has been modelled in mice using high-fat diet feeding, inbred lines with mutations in leptin receptor signalling, and in genetically engineered mice with enhanced myocardial fatty acid uptake, altered lipid droplet homoeostasis or decreased cardiac fatty acid oxidation. These studies, along with findings in cell culture model systems, indicate that the molecular pathophysiology of lipid overload involves endoplasmic reticulum stress, alterations in autophagy, de novo ceramide synthesis, oxidative stress, inflammation and changes in gene expression. We highlight recent advances that extend our understanding of the impact of obesity and altered lipid metabolism on cardiac function.
Collapse
Affiliation(s)
- A C Sletten
- Department of Medicine, Washington University, St Louis, MO, USA
| | - L R Peterson
- Department of Medicine, Washington University, St Louis, MO, USA
| | - J E Schaffer
- Department of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
10
|
Jun S, Datta S, Wang L, Pegany R, Cano M, Handa JT. The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE. Exp Eye Res 2018; 181:346-355. [PMID: 30292489 DOI: 10.1016/j.exer.2018.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
The accumulation of lipids within drusen, the epidemiologic link of a high fat diet, and the identification of polymorphisms in genes involved in lipid metabolism that are associated with disease risk, have prompted interest in the role of lipid abnormalities in AMD. Despite intensive investigation, our understanding of how lipid abnormalities contribute to AMD development remains unclear. Lipid metabolism is tightly regulated, and its dysregulation can trigger excess lipid accumulation within the RPE and Bruch's membrane. The high oxidative stress environment of the macula can promote lipid oxidation, impairing their original function as well as producing oxidation-specific epitopes (OSE), which unless neutralized, can induce unwanted inflammation that additionally contributes to AMD progression. Considering the multiple layers of lipid metabolism and inflammation, and the ability to simultaneously target multiple pathways, microRNA (miRNAs) have emerged as important regulators of many age-related diseases including atherosclerosis and Alzheimer's disease. These diseases have similar etiologic characteristics such as lipid-rich deposits, oxidative stress, and inflammation with AMD, which suggests that miRNAs might influence lipid metabolism in AMD. In this review, we discuss the contribution of lipids to AMD pathobiology and introduce how miRNAs might affect lipid metabolism during lesion development. Establishing how miRNAs contribute to lipid accumulation in AMD will help to define the role of lipids in AMD, and open new treatment avenues for this enigmatic disease.
Collapse
Affiliation(s)
- Sujung Jun
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Roma Pegany
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
11
|
Goldberg IJ. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease. Arterioscler Thromb Vasc Biol 2018; 38:700-706. [PMID: 29419410 PMCID: PMC5864527 DOI: 10.1161/atvbaha.117.309666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Cholesterol is not the only lipid that causes heart disease. Triglyceride supplies the heart and skeletal muscles with highly efficient fuel and allows for the storage of excess calories in adipose tissue. Failure to transport, acquire, and use triglyceride leads to energy deficiency and even death. However, overabundance of triglyceride can damage and impair tissues. Circulating lipoprotein-associated triglycerides are lipolyzed by lipoprotein lipase (LpL) and hepatic triglyceride lipase. We inhibited these enzymes and showed that LpL inhibition reduces high-density lipoprotein cholesterol by >50%, and hepatic triglyceride lipase inhibition shifts low-density lipoprotein to larger, more buoyant particles. Genetic variations that reduce LpL activity correlate with increased cardiovascular risk. In contrast, macrophage LpL deficiency reduces macrophage function and atherosclerosis. Therefore, muscle and macrophage LpL have opposite effects on atherosclerosis. With models of atherosclerosis regression that we used to study diabetes mellitus, we are now examining whether triglyceride-rich lipoproteins or their hydrolysis by LpL affect the biology of established plaques. Following our focus on triglyceride metabolism led us to show that heart-specific LpL hydrolysis of triglyceride allows optimal supply of fatty acids to the heart. In contrast, cardiomyocyte LpL overexpression and excess lipid uptake cause lipotoxic heart failure. We are now studying whether interrupting pathways for lipid uptake might prevent or treat some forms of heart failure.
Collapse
Affiliation(s)
- Ira J Goldberg
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
12
|
Liu Y, Conlon DM, Bi X, Slovik KJ, Shi J, Edelstein HI, Millar JS, Javaheri A, Cuchel M, Pashos EE, Iqbal J, Hussain MM, Hegele RA, Yang W, Duncan SA, Rader DJ, Morrisey EE. Lack of MTTP Activity in Pluripotent Stem Cell-Derived Hepatocytes and Cardiomyocytes Abolishes apoB Secretion and Increases Cell Stress. Cell Rep 2018; 19:1456-1466. [PMID: 28514664 DOI: 10.1016/j.celrep.2017.04.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
Abetalipoproteinemia (ABL) is an inherited disorder of lipoprotein metabolism resulting from mutations in microsomal triglyceride transfer protein (MTTP). In addition to expression in the liver and intestine, MTTP is expressed in cardiomyocytes, and cardiomyopathy has been reported in several ABL cases. Using induced pluripotent stem cells (iPSCs) generated from an ABL patient homozygous for a missense mutation (MTTPR46G), we show that human hepatocytes and cardiomyocytes exhibit defects associated with ABL disease, including loss of apolipoprotein B (apoB) secretion and intracellular accumulation of lipids. MTTPR46G iPSC-derived cardiomyocytes failed to secrete apoB, accumulated intracellular lipids, and displayed increased cell death, suggesting intrinsic defects in lipid metabolism due to loss of MTTP function. Importantly, these phenotypes were reversed after the correction of the MTTPR46G mutation by CRISPR/Cas9 gene editing. Together, these data reveal clear cellular defects in iPSC-derived hepatocytes and cardiomyocytes lacking MTTP activity, including a cardiomyocyte-specific regulated stress response to elevated lipids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine J Slovik
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianting Shi
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailey I Edelstein
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Javaheri
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - M Mahmood Hussain
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
14
|
Riggs K, Ali H, Taegtmeyer H, Gutierrez AD. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13:292-7. [PMID: 26125313 DOI: 10.1089/met.2015.0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concurrent management of type 2 diabetes mellitus (T2DM) and chronic congestive heart failure presents several therapeutic challenges. Of concern is that insulin and insulin-sensitizing medications detrimentally "flood" the heart with energy-providing substrates, including fats and glucose. In this population, treatment of T2DM should focus on the reduction of increased substrate supply. Sodium glucose cotransporter-2 (SGLT-2) inhibitors, a new class of antidiabetic medication, operate via this principle by blocking the reabsorption of glucose in the kidney and subsequently releasing glucose through the urine. In this review, we begin with an examination of the mechanisms of glucotoxicity and lipotoxicity in the heart. Then we analyze the potential role of SGLT-2 inhibitor therapy in patients with concurrent T2DM and chronic heart failure. Based on the available evidence, SGLT-2 inhibitors are safe and can be recommended to treat T2DM in patients with chronic heart failure and intact renal function. Further studies are in progress to assess long-term survival benefits.
Collapse
Affiliation(s)
- Kayla Riggs
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Hiba Ali
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Heinrich Taegtmeyer
- 2 Division of Cardiology, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Absalon D Gutierrez
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| |
Collapse
|
15
|
Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, Onunkwor OB, Balogun EA, Odukoya OO, Ademuyiwa O. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol Toxicol 2015; 16:15. [PMID: 26044777 PMCID: PMC4455335 DOI: 10.1186/s40360-015-0015-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. Methods In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Results Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Conclusion Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at “low” or “medium” doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Olusegun K Afolabi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria.
| | - Adedoja D Wusu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Olabisi O Ogunrinola
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Esther O Abam
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Biochemistry Unit, Department of Chemical Sciences, Bells University of Technology, Ota, Nigeria.
| | - David O Babayemi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oluwatosin A Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Okechukwu B Onunkwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Elizabeth A Balogun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.
| | - Olusegun O Odukoya
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
16
|
Fuentes-Antrás J, Picatoste B, Ramírez E, Egido J, Tuñón J, Lorenzo Ó. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol 2015; 14:17. [PMID: 25856422 PMCID: PMC4328972 DOI: 10.1186/s12933-015-0173-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy is defined as ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. In addition to the demonstrated burden of cardiovascular events associated with diabetes, diabetic cardiomyopathy partly explains why diabetic patients are subject to a greater risk of heart failure and a worse outcome after myocardial ischemia. The raising prevalence and accumulating costs of cardiovascular disease in diabetic patients underscore the deficiencies of tertiary prevention and call for a shift in medical treatment. It is becoming increasingly clearer that the effective prevention and treatment of diabetic cardiomyopathy require measures to regulate the metabolic derangement occurring in the heart rather than merely restoring suitable systemic parameters. Recent research has provided deeper insight into the metabolic etiology of diabetic cardiomyopathy and numerous heart-specific targets that may substitute or reinforce current strategies. From both experimental and translational perspectives, in this review we first discuss the progress made with conventional therapies, and then focus on the need for prospective metabolic targets that may avert myocardial vulnerability and functional decline in next-generation diabetic care.
Collapse
Affiliation(s)
- Jesús Fuentes-Antrás
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
| | - Belén Picatoste
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - Elisa Ramírez
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - Jesús Egido
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - José Tuñón
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
| | - Óscar Lorenzo
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| |
Collapse
|
17
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
18
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
19
|
Fujihara M, Cano M, Handa JT. Mice that produce ApoB100 lipoproteins in the RPE do not develop drusen yet are still a valuable experimental system. Invest Ophthalmol Vis Sci 2014; 55:7285-95. [PMID: 25316721 DOI: 10.1167/iovs.14-15195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mice typically produce apolipoprotein B (apoB)-48 and not apoB100. Apolipoprotein B100 accumulates in Bruch's membrane prior to basal deposit and drusen formation during the onset of AMD, raising the possibility that they are a trigger for these Bruch's membrane alterations. The purpose herein, was to determine whether mice that predominantly produce apoB100 develop features of AMD. METHODS The eyes of mice that produce apoB100 were examined for apoB100 synthesis, cholesteryl esterase/filipin labeling for cholesteryl esters, and transmission electron microscopy for lipid particles and phenotype. RESULTS Apolipoprotein B100 was abundant in the RPE-choroid of apoB100, but not wild-type mice by Western blot analysis. The apolipoprotein B100,(35)S-radiolabeled and immunoprecipitated from RPE explants, confirmed that apoB100 was synthesized by RPE. Apolipoprotein B100, but not control mice, had cholesteryl esters and lipid particles in Bruch's membrane. Immunoreactivity of ApoB100 was present in the RPE and Bruch's membrane, but not choroidal endothelium of apoB100 mice. Ultrastructural changes were consistent with aging, but not AMD when aged up to 18 months. The induction of advanced glycation end products to alter Bruch's membrane, did not promote basal linear deposit or drusen formation. CONCLUSIONS Mice that produce apoB100 in the RPE and liver secrete lipoproteins into Bruch's membrane, but not to the extent that distinct features of AMD develop, which suggests that either additional lipoprotein accumulation or additional factors are necessary to initiate their formation.
Collapse
Affiliation(s)
- Masashi Fujihara
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Mora S, Akinkuolie AO, Sandhu RK, Conen D, Albert CM. Paradoxical association of lipoprotein measures with incident atrial fibrillation. Circ Arrhythm Electrophysiol 2014; 7:612-9. [PMID: 24860180 PMCID: PMC4591535 DOI: 10.1161/circep.113.001378] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low-density lipoprotein (LDL) cholesterol is a strong risk factor for atherosclerosis but has an inverse association with atrial fibrillation (AF). We aimed to provide insight into the paradoxical association of LDL cholesterol with AF by evaluating the relationship of various lipoprotein measures and incident AF. METHODS AND RESULTS We prospectively evaluated lipoprotein measures among 23 738 healthy middle-aged and older women (median follow-up 16.4 years; N=795 incident AF events). Baseline LDL cholesterol was directly measured, lipoprotein particle concentrations and size were measured by nuclear magnetic resonance spectroscopy, and apolipoproteins were measured by immunoassay. Cox regression models were adjusted for age, AF risk factors, inflammatory, and dysglycemic biomarkers. After multivariable adjustment, inverse associations with AF were observed (hazard ratio, 95% confidence interval for top versus bottom quintile, P value) for LDL cholesterol (0.72, 0.56-0.92, P=0.009), the total number of LDL particles (0.77, 0.60-0.99, P=0.045), and very-low-density lipoprotein particles (0.78, 0.61-0.99, P=0.04), which was driven by the number of cholesterol-poor small LDL (0.78, 0.61-1.00, P=0.05) and small very-low-density lipoprotein particles (0.78, 0.62-0.99, P=0.04). By contrast, the larger cholesterol-rich LDL particles and all high-density lipoprotein measures were not associated with AF in multivariable models. Adjustment for inflammatory and dysglycemic biomarkers had minimal impact on these associations. CONCLUSIONS In this prospective study, the inverse association between LDL cholesterol and AF extended to several other atherogenic lipoproteins, and these associations are unlikely to be mediated by direct cholesterol effects. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; Unique Identifier: NCT00000479.
Collapse
Affiliation(s)
- Samia Mora
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.).
| | - Akintunde O Akinkuolie
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - Roopinder K Sandhu
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - David Conen
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - Christine M Albert
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| |
Collapse
|
21
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
22
|
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:857-65. [DOI: 10.1016/j.bbamcr.2012.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 01/24/2023]
|
23
|
Kang SC, Kim BR, Lee SY, Park TS. Sphingolipid metabolism and obesity-induced inflammation. Front Endocrinol (Lausanne) 2013; 4:67. [PMID: 23761785 PMCID: PMC3671289 DOI: 10.3389/fendo.2013.00067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/20/2013] [Indexed: 12/15/2022] Open
Abstract
Obesity is a metabolic disorder developed by overnutrition and a major cause for insulin resistance and cardiovascular events. Since adipose tissue is one of the major sites for the synthesis and secretion of cytokines, enlarged adipose tissue in obese condition alters inflammatory state leading to pathophysiological conditions such as type 2 diabetes and increased cardiovascular risk. A plausible theory for development of metabolic dysregulation is that obesity increases secretion of inflammatory cytokines from adipose tissue and causes a chronic inflammation in the whole body. Additionally accumulation of lipids in non-adipose tissues elevates the cellular levels of bioactive lipids that inhibit the signaling pathways implicated in metabolic regulation together with activated inflammatory response. Recent findings suggest that obesity-induced inflammatory response leads to modulation of sphingolipid metabolism and these bioactive lipids may function as mediators for increased risk of metabolic dysfunction. Importantly, elucidation of mechanism regarding sphingolipid metabolism and inflammatory disease will provide crucial information to development of new therapeutic strategies for the treatment of obesity-induced pathological inflammation.
Collapse
Affiliation(s)
- Se-Chan Kang
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Bo-Rahm Kim
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Su-Yeon Lee
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Seongnam, South Korea
- *Correspondence: Tae-Sik Park, Department of Life Science, Gachon University, Jinrikwan 304B, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggi-do 461-701, South Korea e-mail:
| |
Collapse
|
24
|
Shao Y, Redfors B, Ståhlman M, Täng MS, Miljanovic A, Möllmann H, Troidl C, Szardien S, Hamm C, Nef H, Borén J, Omerovic E. A mouse model reveals an important role for catecholamine-induced lipotoxicity in the pathogenesis of stress-induced cardiomyopathy. Eur J Heart Fail 2012; 15:9-22. [PMID: 23099354 DOI: 10.1093/eurjhf/hfs161] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Stress-induced cardiomyopathy (SIC), also known as takotsubo cardiomyopathy, is an acute cardiac syndrome with substantial morbidity and mortality. The unique hallmark of SIC is extensive ventricular dysfunction (akinesia) involving apical segments with preserved function in basal segments. Adrenergic overstimulation plays an important role in initiating SIC, but the pathomechanisms involved are unknown. We tested the hypothesis that excessive catecholamines cause perturbation of myocardial lipid metabolism and that cardiac lipotoxicity is responsible for the pathogenesis of SIC. METHODS AND RESULTS A single dose injection of isoprenaline (ISO; 400 mg/kg) induced SIC-like regional akinesia in mice. Oil red O staining revealed severe lipid accumulation in the heart 2 h post-ISO. Both intramyocardial lipid accumulation and cardiac function were normalized within 1 week post-ISO and no significant amount of fibrosis was detected. We found that gene expression of lipid importers and exporters (ApoB lipoprotein) was depressed 2 h post-ISO. These results were confirmed by similar findings in SIC patients and in ISO/patient serum-stressed HL-1 cardiomyocytes. Moreover, overexpression of ApoB in the heart was found to protect against the development of ISO-induced cardiac toxicity and cardiac dysfunction. We also found that ISO-induced intramyocardial lipid accumulation caused electrophysiological disturbance and stunning in ISO/patient serum-stressed HL-1 cardiomyocytes. CONCLUSIONS The present study demonstrates that lipotoxicity is closely associated with catecholamine-induced myocardial dysfunction, including neurogenic stunning, metabolic stunning, and electrophysiological stunning. Cardiac lipotoxicity may originate from direct inhibition of myocardial ApoB lipoprotein and subsequent decreased lipid export, caused by supraphysiological levels of catecholamines.
Collapse
Affiliation(s)
- Yangzhen Shao
- Wallenberg Laboratory at Sahlgrenska Academy, Göteborg University Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In the setting of obesity and type 2 diabetes mellitus, the ectopic disposition of lipids may be a cause of heart failure. Clinical studies have clearly shown a correlation between the accumulation of triglycerides and heart dysfunction. In this process, it is likely that there are also changes in the contents of sphingolipids. Sphingolipids are important structural and signaling molecules. One specific sphingolipid, ceramide, may cause cardiac dysfunction, whereas another, sphingosine 1-phosphate, is cardioprotective. In this review, the authors focus on the role of sphingolipids in the development and prevention of cardiac failure.
Collapse
Affiliation(s)
- Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Seongnam, Gyunggi-do, South Korea
| | | |
Collapse
|
26
|
Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 2012; 55:101-10. [PMID: 22789525 DOI: 10.1016/j.yjmcc.2012.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Myocardial triacylglycerol (TAG) constitutes a highly dynamic fatty acid (FA) storage pool that can be used for an energy reserve in the cardiomyocyte. However, derangements in myocardial TAG metabolism and accumulation are commonly associated with cardiac disease, suggesting an important role of intramyocardial TAG turnover in the regulation of cardiac function. In cardiomyocytes, TAG is synthesized by acyltransferases and phosphatases at the sarcoplasmic reticulum and mitochondrial membrane and then packaged into cytosolic lipid droplets for temporary storage or into lipoproteins for secretion. A complex interplay among lipases, lipase regulatory proteins, and lipid droplet scaffold proteins leads to the controlled release of FAs from the cardiac TAG pool for subsequent mitochondrial β-oxidation and energy production. With the identification and characterization of proteins involved in myocardial TAG metabolism as well as the identification of the importance of cardiac TAG turnover, it is now evident that adequate regulation of myocardial TAG metabolism is critical for both cardiac energy metabolism and function. In this article, we review the current understanding of myocardial TAG metabolism and discuss the potential role of myocardial TAG turnover in cardiac health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
27
|
Abstract
The heart has both the greatest caloric needs and the most robust oxidation of fatty acids (FAs). Under pathological conditions such as obesity and type 2 diabetes, cardiac uptake and oxidation are not balanced and hearts accumulate lipid potentially leading to cardiac lipotoxicity. We will first review the pathways utilized by the heart to acquire FAs from the circulation and to store triglyceride intracellularly. Then we will describe mouse models in which excess lipid accumulation causes heart dysfunction and experiments performed to alleviate this toxicity. Finally, the known relationships between heart lipid metabolism and dysfunction in humans will be summarized.
Collapse
Affiliation(s)
- Ira J Goldberg
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
28
|
Råmunddal T, Lindbom M, Täng MS, Shao Y, Borén J, Omerovic E. Overexpression of apolipoprotein B attenuates pathologic cardiac remodeling and hypertrophy in response to catecholamines and after myocardial infarction in mice. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:230-6. [DOI: 10.3109/00365513.2012.654506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Truls Råmunddal
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
- Division of Cardiology, Sahlgrenska University Hospital,
Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
| | - Margareta Scharin Täng
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
| | - Yangzhen Shao
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden
- Division of Cardiology, Sahlgrenska University Hospital,
Gothenburg, Sweden
| |
Collapse
|
29
|
Redfors B, Shao Y, Råmunddal T, Lindbom M, Täng MS, Stillemark-Billton P, Boren J, Omerovic E. Effects of doxorubicin on myocardial expression of apolipoprotein-B. SCAND CARDIOVASC J 2012; 46:93-8. [PMID: 22263831 DOI: 10.3109/14017431.2012.653825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Doxorubicin (DOX) is an effective antitumour agent against a variety of human malignancies but is associated with deleterious side effects, including myocardial damage and heart failure. Myocardial apoB-containing lipoprotein (apoB) is upregulated post myocardial infarction and has been shown to be cardioprotective in this setting by unloading excessive lipid. The aim of this study was to investigate whether apoB expression is increased also in DOX-induced heart failure and whether apoB overexpression protects the heart in DOX-induced myocardial injury. DESIGN Cardiac function and energy metabolism was studied in mice and rats 24 hours after intraperitoneally administered DOX. RESULTS We found that the content of apoB was decreased in rat myocardium 24 hours after DOX injection. In contrast, apoB content was increased in the infarcted myocardium of rats 24 hours post ischemia-reperfusion. Moreover, transgenic mice overexpressing apoB had better cardiac function and lower intracellular lipid accumulation compared to wild type mice 24 hours post DOX. CONCLUSIONS Our findings indicate that depression of the myocardial apoB system may contribute to DOX-induced cardiac injury and that overexpression of apoB is protective, not only in ischemically damaged myocardium, but also in DOX-induced heart failure.
Collapse
Affiliation(s)
- Bjorn Redfors
- The Wallenberg laboratory at Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Redfors B, Shao Y, Råmunddal T, Lindbom M, Täng MS, Stillemark-Billton P, Boren J, Omerovic E. Effects of doxorubicin on myocardial expression of apolipoprotein-B. SCAND CARDIOVASC J 2011. [DOI: 10.3109/14017431.2011.653825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Abstract
Type 2 diabetes and obesity are associated with systemic inflammation, generalized enlargement of fat depots, and uncontrolled release of fatty acids (FA) into the circulation. These features support the occurrence of cardiac adiposity, which is characterized by an increase in intramyocardial triglyceride content and an enlargement of the volume of fat surrounding the heart and vessels. Both events may initially serve as protective mechanisms to portion energy, but their excessive expansion can lead to myocardial damage and heart disease. FA overload promotes FA oxidation and the accumulation of triglycerides and metabolic intermediates, which can impair calcium signaling, β-oxidation, and glucose utilization. This leads to damaged mitochondrial function and increased production of reactive oxygen species, pro-apoptotic, and inflammatory molecules, and finally to myocardial inflammation and dysfunction. Triglyceride accumulation is associated with left ventricular hypertrophy and dysfunction. The enlargement of epicardial fat in patients with metabolic disorders, and coronary artery disease, is associated with the release of proinflammatory and proatherogenic cytokines to the subtending tissues. In this review, we examine the evidence supporting a causal relationship linking FA overload and cardiac dysfunction. Also, we disentangle the separate roles of FA oxidation and triglyceride accumulation in causing cardiac damage. Finally, we focus on the mechanisms of inflammation development in the fatty heart, before summarizing the available evidence in humans. Current literature confirms the dual (protective and detrimental) role of cardiac fat, and suggests prospective studies to establish the pathogenetic (when and how) and possible prognostic value of this potential biomarker in humans.
Collapse
Affiliation(s)
- Maria A Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
32
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
33
|
Jiang XC, Goldberg IJ, Park TS. Sphingolipids and cardiovascular diseases: lipoprotein metabolism, atherosclerosis and cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:19-39. [PMID: 21910080 DOI: 10.1007/978-1-4614-0650-1_2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart disease is widely believed to develop from two pathological processes. Circulating lipoproteins containing the nondegradable lipid, cholesterol, accumulate within the arterial wall and perhaps are oxidized to more toxic lipids. Both lipid accumulation and vascular reaction to the lipids lead to the gradual thickening of the vascular wall. A second major process that in some circumstances is a primary event is the development of a local inflammatory reaction. This might be a reaction to vessel wall injury that accompanies infections, immune disease, and perhaps diabetes and renal failure. In this chapter, we will focus on the relationship between de novo synthesis of sphingolipids and lipid metabolism, atherosclerosis, and cardiomyopathy.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, New York, USA.
| | | | | |
Collapse
|
34
|
Wu T, Fujihara M, Tian J, Jovanovic M, Grayson C, Cano M, Gehlbach P, Margaron P, Handa JT. Apolipoprotein B100 secretion by cultured ARPE-19 cells is modulated by alteration of cholesterol levels. J Neurochem 2010; 114:1734-44. [PMID: 20598021 DOI: 10.1111/j.1471-4159.2010.06884.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesteryl ester rich apolipoprotein B100 (apoB100) lipoproteins accumulate in Bruch's membrane before the development of age-related macular degeneration. It is not known if these lipoproteins come from the circulation or local ocular tissue. Emerging, but incomplete evidence suggests that the retinal pigmented epithelium (RPE) can secrete lipoproteins. The purpose of this investigation was to determine (i) whether human RPE cells synthesize and secrete apoB100, and (ii) whether this secretion is driven by cellular cholesterol, and if so, (iii) whether statins inhibit this response. The established, human derived ARPE-19 cells challenged with 0-0.8 mM oleic acid accumulated cellular cholesterol, but not triglycerides. Oleic acid increased the amount of apoB100 protein recovered from the medium by both western blot analysis and (35) S-radiolabeled immunoprecipitation while negative stain electron microscopy showed lipoprotein-like particles. Of nine statins evaluated, lipophilic statins induced HMG-CoA reductase mRNA expression the most. The lipophilic Cerivastatin (5 μM) reduced cellular cholesterol by 39% and abrogated apoB100 secretion by 3-fold. In contrast, the hydrophilic statin Pravastatin had minimal effect on apoB100 secretion. These data suggest that ARPE-19 cells synthesize and secrete apoB100 lipoproteins, that this secretion is driven by cellular cholesterol, and that statins can inhibit apoB100 secretion by reducing cellular cholesterol.
Collapse
Affiliation(s)
- Tinghuai Wu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aminoff A, Ledmyr H, Thulin P, Lundell K, Nunez L, Strandhagen E, Murphy C, Lidberg U, Westerbacka J, Franco-Cereceda A, Liska J, Nielsen LB, Gåfvels M, Mannila MN, Hamsten A, Yki-Järvinen H, Thelle D, Eriksson P, Borén J, Ehrenborg E. Allele-specific regulation of MTTP expression influences the risk of ischemic heart disease. J Lipid Res 2010; 51:103-11. [PMID: 19546343 DOI: 10.1194/jlr.m900195-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promoter polymorphisms in microsomal triglyceride transfer protein (MTTP) have been associated with decreased plasma lipids but an increased risk for ischemic heart disease (IHD), indicating that MTTP influences the susceptibility for IHD independent of plasma lipids. The objective of this study was to characterize the functional promoter polymorphism in MTTP predisposing to IHD and its underlying mechanism. Use of pyrosequencing technology revealed that presence of the minor alleles of the promoter polymorphisms -493G>T and -164T>C result in lower transcription of MTTP in vivo in the heart, liver, and macrophages. In vitro experiments indicated that the minor -164C allele mediates the lower gene expression and that C/EBP binds to the polymorphic region in an allele-specific manner. Furthermore, homozygous carriers of the -164C were found to have increased risk for IHD as shown in a case-control study including a total of 544 IHD patients and 544 healthy control subjects. We concluded that carriers of the minor -164C allele have lower expression of MTTP in the heart, mediated at least partly by the transcription factor CCAAT/enhancer binding protein, and that reduced concentration of MTTP in the myocardium may contribute to IHD upon ischemic damage.
Collapse
Affiliation(s)
- Anna Aminoff
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1553] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
37
|
Akanji AO, Suresh CG, Al-Radwan R, Fatania HR. Body Mass and Atherogenic Dyslipidemia as Major Determinants of Blood Levels of B-Type Natriuretic Peptides in Arab Subjects With Acute Coronary Syndromes. Metab Syndr Relat Disord 2009; 7:563-9. [DOI: 10.1089/met.2009.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Abayomi O. Akanji
- Departments of Pathology, Kuwait University Faculty of Medicine, Kuwait
| | - Cheriyil G. Suresh
- Cardiology Unit, Department of Medicine, Mubarak Al-Kabir Hospital, Kuwait
| | | | - Hasmukh R. Fatania
- Departments of Biochemistry, Kuwait University Faculty of Medicine, Kuwait
| |
Collapse
|
38
|
Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:311-9. [PMID: 19818871 DOI: 10.1016/j.bbalip.2009.09.023] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance are associated with ectopic lipid deposition in multiple tissues, including the heart. Excess lipid may be stored as triglycerides, but are also shunted into non-oxidative pathways that disrupt normal cellular signaling leading to organ dysfunction and in some cases apoptosis, a process termed lipotoxicity. Various pathophysiological mechanisms have been proposed to lead to lipotoxic tissue injury, which might vary by cell type. Specific mechanisms by which lipotoxicity alter cardiac structure and function are incompletely understood, but are beginning to be elucidated. This review will focus on mechanisms that have been proposed to lead to lipotoxic injury in the heart and will review the state of knowledge regarding potential causes and correlates of increased myocardial lipid content in animal models and humans. We will seek to highlight those areas where additional research is warranted.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
39
|
Yin N, Jin X, He J, Yin Z. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1. Toxicol Appl Pharmacol 2009; 238:20-6. [DOI: 10.1016/j.taap.2009.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 11/16/2022]
|
40
|
Råmunddal T, Lindbom M, Scharin-Täng M, Stillemark-Billton P, Boren J, Omerovic E. Overexpression of apolipoprotein-B improves cardiac function and increases survival in mice with myocardial infarction. Biochem Biophys Res Commun 2009; 385:336-40. [PMID: 19460358 DOI: 10.1016/j.bbrc.2009.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/13/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND The heart produces apolipoprotein-B containing lipoproteins (apoB) whose function is not well understood. The aim of this study was to evaluate importance of myocardial apoB for cardiac function, structure and survival in myocardial infarction (MI) and heart failure (HF). METHODS AND RESULTS MI was induced in mice (n=137) and myocardial apoB content was measured at 30 min, 3, 6, 24, 48, 120 h and 8 weeks post-MI. Transgenic mice overexpressing apoB (n=27) and genetically matched controls (n=27) were used to study the effects of myocardial apoB on cardiac function, remodeling, arrhythmias and survival after MI. Echocardiography was performed at rest and stress conditions at baseline, 2, 4 and 6 week post-MI and cumulative survival rate was registered. The myocardial apoB content increased both in the injured and the remote myocardium (p<0.05) in response to ischemic injury. ApoB mice had 2-fold higher survival rate (p<0.05) and better systolic function (p<0.05) post-MI. CONCLUSION Overexpression of apoB in the heart increases survival and improves cardiac function after acute MI. Myocardial apoB may be an important cardioprotective system in settings such as myocardial ischemia and HF.
Collapse
Affiliation(s)
- Truls Råmunddal
- The Wallenberg Laboratory at Sahlgrenska Academy, Gothenburg University, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Bartels ED, Nielsen JM, Hellgren LI, Ploug T, Nielsen LB. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation. PLoS One 2009; 4:e5300. [PMID: 19390571 PMCID: PMC2668751 DOI: 10.1371/journal.pone.0005300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/26/2009] [Indexed: 12/13/2022] Open
Abstract
Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.
Collapse
Affiliation(s)
- Emil D. Bartels
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jan M. Nielsen
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Lars I. Hellgren
- Department of Systems Biology and Centre for Advanced Food Studies, Technical University of Denmark, Lyngby, Denmark
| | - Thorkil Ploug
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars B. Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
42
|
Fujihara M, Bartels E, Nielsen LB, Handa JT. A human apoB100 transgenic mouse expresses human apoB100 in the RPE and develops features of early AMD. Exp Eye Res 2009; 88:1115-23. [PMID: 19450445 DOI: 10.1016/j.exer.2009.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
apoB100 lipoprotein particles have been found to accumulate in Bruch membrane prior to the development of age-related macular degeneration (AMD). This work was performed to determine whether mice that overexpress apoB100 in the RPE/choroid and liver develop landmarks of early AMD over time. Mice transgenic for a human genomic fragment encoding the full length human apoB ("apoB100" mice) and litter-mate control mice were given a normal chow or high-fat diet for 12 months. Mice were evaluated for human apoB mRNA expression in the RPE/choroid and liver by RT-qPCR. Phenotypic changes associated with early AMD were evaluated by ultrastructural analysis using transmission electron microscopy. Changes were semi-quantified using linear regression analysis. Both the RPE/choroid and liver of apoB100 mice expressed both human and mouse apoB mRNA. Transmission electron microscopy showed ultrastructural changes consistent with early human AMD including loss of basal infoldings and accumulation of cytoplasmic vacuoles in the RPE, and basal laminar deposits containing long-spacing collagen and heterogeneous debris in Bruch membrane of apoB100 mice. In apoB100 mice given a high-fat diet, basal linear-like deposits were identified in 12-month-old mice. Linear regression analysis showed that the genotype (human apoB transgene) was a stronger influencing factor than high-fat diet in producing AMD-like lesions used in this study. Human apoB100 transgenic mice overexpress apoB in RPE and, with time, develop validated phenotypic changes that are seen in early human AMD. The phenotypic changes were aggravated by feeding a high-fat diet. The apoB100 mouse model could be valuable in determining the role of apoB-containing lipoproteins in triggering the onset of early AMD.
Collapse
Affiliation(s)
- Masashi Fujihara
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
43
|
Ma L, Li D, Wang J, He J, Yin Z. Effects of adrenergic agonists on the extrahepatic expression of vitellogenin Ao1 in heart and brain of the Chinese rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:19-25. [PMID: 19027183 DOI: 10.1016/j.aquatox.2008.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/23/2008] [Accepted: 09/29/2008] [Indexed: 05/27/2023]
Abstract
Teleost vitellogenins (VTGs) are large multidomain apolipoproteins and traditionally considered as the estrogen responsive precursors of the major egg yolk proteins. We identified five clones encoding VTGs, about 16% of the random EST clones from our constructed cDNA library from Chinese rare minnow liver tissue treated with 17beta-estradiol (E2). Full-length vtgAo1 has been obtained based on the sequence information of four partial cDNA inserts by RACE. The inducibility of the vtgAo1 expression in liver by E2 was confirmed by RT-PCR. The presence of vtgAo1 transcripts have been observed primarily in liver. However, a significant level of the vtgAo1 was found in an unexpected location, heart, particularly in atrial cells by RT-PCR and whole mount in situ hybridization analyses. The vtgAo1 mRNA expression in heart and liver tissue could be suppressed by both alpha-adrenergic agonist, phenylephrine (PE) and beta-adrenergic agonist, isoproterenol (ISO). The expression of VTG in the heart observed in the present studies suggested it may provide protection from surplus intracellular lipids in fish cardiomyocytes as triglyceride transport proteins do in mammals. The results also indicated that the production of teleost vtg in vivo can be regulated by not only estrogenic agents, but adrenergic signals as well.
Collapse
Affiliation(s)
- Liwen Ma
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, P R China
| | | | | | | | | |
Collapse
|
44
|
Niu YG, Evans RD. Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference. Am J Physiol Endocrinol Metab 2008; 295:E1106-16. [PMID: 18780778 DOI: 10.1152/ajpendo.90260.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.
Collapse
Affiliation(s)
- You-Guo Niu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
45
|
Abstract
The dramatic increase in the prevalence of obesity and its strong association with cardiovascular disease have resulted in unprecedented interest in understanding the effects of obesity on the cardiovascular system. A consistent, but puzzling clinical observation is that obesity confers an increased susceptibility to the development of cardiac disease, while at the same time affording protection against subsequent mortality (termed the obesity paradox). In this review we focus on evidence available from human and animal model studies and summarize the ways in which obesity can influence structure and function of the heart. We also review current hypotheses regarding mechanisms linking obesity and various aspects of cardiac remodeling. There is currently great interest in the role of adipokines, factors secreted from adipose tissue, and their role in the numerous cardiovascular complications of obesity. Here we focus on the role of leptin and the emerging promise of adiponectin as a cardioprotective agent. The challenge of understanding the association between obesity and heart failure is complicated by the multifaceted interplay between various hemodynamic, metabolic, and other physiological factors that ultimately impact the myocardium. Furthermore, the end result of obesity-associated changes in the myocardial structure and function may vary at distinct stages in the progression of remodeling, may depend on the individual pathophysiology of heart failure, and may even remain undetected for decades before clinical manifestation. Here we summarize our current knowledge of this complex yet intriguing topic.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Biology, York University, Toronto, Canada
| | | | | |
Collapse
|
46
|
Augustus AS, Buchanan J, Addya S, Rengo G, Pestell RG, Fortina P, Koch WJ, Bensadoun A, Abel ED, Lisanti MP. Substrate uptake and metabolism are preserved in hypertrophic caveolin-3 knockout hearts. Am J Physiol Heart Circ Physiol 2008; 295:H657-66. [PMID: 18552160 DOI: 10.1152/ajpheart.00387.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolin-3 (Cav3), the primary protein component of caveolae in muscle cells, regulates numerous signaling pathways including insulin receptor signaling and facilitates free fatty acid (FA) uptake by interacting with several FA transport proteins. We previously reported that Cav3 knockout mice (Cav3KO) develop cardiac hypertrophy with diminished contractile function; however, the effects of Cav3 gene ablation on cardiac substrate utilization are unknown. The present study revealed that the uptake and oxidation of FAs and glucose were normal in hypertrophic Cav3KO hearts. Real-time PCR analysis revealed normal expression of lipid metabolism genes including FA translocase (CD36) and carnitine palmitoyl transferase-1 in Cav3KO hearts. Interestingly, myocardial cAMP content was significantly increased by 42%; however, this had no effect on PKA activity in Cav3KO hearts. Microarray expression analysis revealed a marked increase in the expression of genes involved in receptor trafficking to the plasma membrane, including Rab4a and the expression of WD repeat/FYVE domain containing proteins. We observed a fourfold increase in the expression of cellular retinol binding protein-III and a 3.5-fold increase in 17beta-hydroxysteroid dehydrogenase type 11, a member of the short-chain dehydrogenase/reductase family involved in the biosynthesis and inactivation of steroid hormones. In summary, a loss of Cav3 in the heart leads to cardiac hypertrophy with normal substrate utilization. Moreover, a loss of Cav3 mRNA altered the expression of several genes not previously linked to cardiac growth and function. Thus we have identified a number of new target genes associated with the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ayanna S Augustus
- Dept. of Cancer Biology, Thomas Jefferson Univ., 233 S. 10th St., BLSB 933, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lindegaard MLS, Nielsen LB. Maternal diabetes causes coordinated down-regulation of genes involved with lipid metabolism in the murine fetal heart. Metabolism 2008; 57:766-73. [PMID: 18502258 DOI: 10.1016/j.metabol.2008.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/10/2008] [Indexed: 01/13/2023]
Abstract
Maternal diabetes is associated with increased transport of lipids to the fetus and increased risk of hypertrophic cardiomyopathy in the fetus. During fetal life, the heart normally has limited capacity to use lipids as fuel; and, at least in adults, cardiac lipid accumulation may lead to cardiomyopathy. Postnatally, lipid supply is increased when the offspring begins to suckle. We examined offspring from hypoinsulinemic Ins2(Akita) mice to assess whether maternal diabetes results in fetal myocardial hypertrophy and triglyceride accumulation and compared these with fetal hearts collected postnatally. On embryonic days 16 to 19, the fetal heart weight and triglyceride content were similar in offspring from Ins2(Akita) and nondiabetic wild-type mothers. The heart expression of lipid-metabolizing genes (peroxisomal proliferator-activated receptor alpha, lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1) was reduced in offspring from Ins2(Akita) mothers with high blood glucose levels and were closely intercorrelated, suggesting coordinated down-regulation. In contrast, on day 1 postnatally where the lipid availability to the heart is markedly increased, heart triglycerides and expression of several lipid-metabolizing genes (including lipoprotein lipase and fatty acid transport protein 1) were increased in offspring from wild-type mice. The results suggest that maternal type 1 diabetes mellitus in Ins2(Akita) mice does not cause cardiac hypertrophy or triglycerides accumulation in the fetal heart, possibly because of a coordinated down-regulation of genes controlling fatty acid uptake.
Collapse
|
48
|
Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008; 29:381-402. [PMID: 18451260 PMCID: PMC2528849 DOI: 10.1210/er.2007-0025] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and dyslipidemia are risk factors for metabolic disorders including diabetes and cardiovascular disease. Sphingolipids such as ceramide and glucosylceramides, while being a relatively minor component of the lipid milieu in most tissues, may be among the most pathogenic lipids in the onset of the sequelae associated with excess adiposity. Circulating factors associated with obesity (e.g., saturated fatty acids, inflammatory cytokines) selectively induce enzymes that promote sphingolipid synthesis, and lipidomic profiling reveals relationships between tissue sphingolipid levels and certain metabolic diseases. Moreover, studies in cultured cells and isolated tissues implicate sphingolipids in certain cellular events associated with diabetes and cardiovascular disease, including insulin resistance, pancreatic beta-cell failure, cardiomyopathy, and vascular dysfunction. However, definitive evidence that sphingolipids contribute to insulin resistance, diabetes, and atherosclerosis has come only recently, as researchers have found that pharmacological inhibition or genetic ablation of enzymes controlling sphingolipid synthesis in rodents ameliorates each of these conditions. Herein we will review the role of ceramide and other sphingolipid metabolites in insulin resistance, beta-cell failure, cardiomyopathy, and vascular dysfunction, focusing on these in vivo studies that identify enzymes controlling sphingolipid metabolism as therapeutic targets for combating metabolic disease.
Collapse
Affiliation(s)
- William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
49
|
Pagano C, Calcagno A, Granzotto M, Calabrese F, Thiene G, Federspil G, Vettor R. Heart lipid accumulation in obese non-diabetic rats: effect of weight loss. Nutr Metab Cardiovasc Dis 2008; 18:189-197. [PMID: 17399966 DOI: 10.1016/j.numecd.2006.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 03/29/2006] [Accepted: 05/05/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM The aim of this study was to investigate lipid content and expression of genes involved in lipid metabolism, in lean and obese non-diabetic rats and in obese rats undergoing food restriction and weight loss. METHODS AND RESULTS We studied lean and genetically obese Zucker rats (fa/fa). Another group of obese rats were food restricted to lose 20% of initial body weight. We measured expression of genes involved in lipid oxidation and synthesis. Tissue triglyceride content, cell apoptosis and tissue fibrosis were also evaluated. The hearts of obese rats have higher triglyceride content compared to lean controls despite an increased expression of genes involved in fatty acid oxidation (PPAR alpha, PGC-1 alpha, CPT-I, ACO, UCP3). No differences were found in apoptosis and tissue fibrosis between the two phenotypes. Weight loss resulted in a significant reduction in heart lipid content, while the expression of genes involved in fatty acid oxidation remained elevated. CONCLUSION In contrast to data reported in diabetic rats, pathways of lipid oxidation are increased rather than decreased in insulin-resistant obese rats. Food restriction reduced heart triglyceride content while lipid-oxidizing genes remained elevated, probably as a consequence of lipid oversupply coming from the endogenous source.
Collapse
Affiliation(s)
- Claudio Pagano
- Endocrine Metabolic Unit, Department of Medical and Surgical Sciences, University of Padova, via Ospedale 105, 35100 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee J, Goldberg IJ. Lipoprotein lipase-derived fatty acids: Physiology and dysfunction. Curr Hypertens Rep 2008; 9:462-6. [DOI: 10.1007/s11906-007-0085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|