1
|
Xia F, Shi S, Palacios E, Liu W, Buscho SE, Li J, Huang S, Vizzeri G, Dong XC, Motamedi M, Zhang W, Liu H. Sirt6 protects retinal ganglion cells and optic nerve from degeneration during aging and glaucoma. Mol Ther 2024; 32:1760-1778. [PMID: 38659223 PMCID: PMC11184404 DOI: 10.1016/j.ymthe.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.
Collapse
Affiliation(s)
- Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erick Palacios
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Seth E Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joseph Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Department of Education, Innovation and Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianmarco Vizzeri
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
2
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Looking into the Eyes—In Vitro Models for Ocular Research. Int J Mol Sci 2022; 23:ijms23169158. [PMID: 36012421 PMCID: PMC9409455 DOI: 10.3390/ijms23169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Animal research undoubtedly provides scientists with virtually unlimited data but inflicts pain and suffering on animals. Currently, legislators and scientists alike are promoting alternative in vitro approaches allowing for an accurate evaluation of processes occurring in the body without animal sacrifice. Historically, one of the most infamous animal tests is the Draize test, mainly performed on rabbits. Even though this test was considered the gold standard for around 50 years, the Draize test fails to mimic human response mainly due to human and rabbit eye physiological differences. Therefore, many alternative assays were developed to evaluate ocular toxicity and drug effectiveness accurately. Here we review recent achievements in tissue engineering of in vitro 2D, 2.5D, 3D, organoid and organ-on-chip ocular models, as well as in vivo and ex vivo models in terms of their advantages and limitations.
Collapse
|
4
|
Jones MA, Jadeja RN, Flandrin O, Abdelrahman AA, Thounojam MC, Thomas S, Dai C, Xiao H, Chen JK, Smith SB, Bartoli M, Martin PM, Powell FL. Autonomous regulation of retinal insulin biosynthesis in diabetes. Neuropeptides 2022; 94:102258. [PMID: 35660758 PMCID: PMC10440820 DOI: 10.1016/j.npep.2022.102258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.
Collapse
Affiliation(s)
- Malita A Jones
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Orneika Flandrin
- UC Berkeley School of Optometry, University of California, Berkeley, CA, USA
| | - Ammar A Abdelrahman
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Menaka C Thounojam
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shakera Thomas
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Caihong Dai
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Haiyan Xiao
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
5
|
Ipp E. Diabetic Retinopathy and Insulin Insufficiency: Beta Cell Replacement as a Strategy to Prevent Blindness. Front Endocrinol (Lausanne) 2021; 12:734360. [PMID: 34912295 PMCID: PMC8667804 DOI: 10.3389/fendo.2021.734360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a potentially devastating complication of diabetes because it puts patients at risk of blindness. Diabetes is a common cause of blindness in the U.S. and worldwide and is dramatically increasing in global prevalence. Thus new approaches are needed to prevent this dreaded complication. There is extensive data that indicates beta cell secretory failure is a risk factor for DR, independent of its influence on glycemic control. This perspective article will provide evidence for insufficient endogenous insulin secretion as an important factor in the development of DR. The areas of evidence discussed are: (a) Presence of insulin receptors in the retina, (b) Clinical studies that show an association of beta cell insufficiency with DR, (c) Treatment with insulin in type 2 diabetes, a marker for endogenous insulin deficiency, is an independent risk factor for DR, (d) Recent clinical studies that link DR with an insulin deficient form of type 2 diabetes, and (e) Beta cell replacement studies that demonstrate endogenous insulin prevents progression of DR. The cumulative data drive our conclusion that beta cell replacement will have an important role in preventing DR and/or mitigating its severity in both type 1 diabetes and insulinopenic type 2 diabetes.
Collapse
Affiliation(s)
- Eli Ipp
- Department of Medicine, The Lundquist Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| |
Collapse
|
6
|
Zolov SN, Imai H, Losiewicz MK, Singh RSJ, Fort PE, Gardner TW. Insulin-like growth factor-2 regulates basal retinal insulin receptor activity. J Biol Chem 2021; 296:100712. [PMID: 33915127 PMCID: PMC8138762 DOI: 10.1016/j.jbc.2021.100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
The retinal insulin receptor (IR) exhibits basal kinase activity equivalent to that of the liver of fed animals, but unlike the liver, does not fluctuate with feeding and fasting; it also declines rapidly after the onset of insulin-deficient diabetes. The ligand(s) that determine basal IR activity in the retina has not been identified. Using a highly sensitive insulin assay, we found that retinal insulin concentrations remain constant in fed versus fasted rats and in diabetic versus control rats; vitreous fluid insulin levels were undetectable. Neutralizing antibodies against insulin-like growth factor 2 (IGF-2), but not insulin-like growth factor 1 (IGF-1) or insulin, decreased IR kinase activity in normal rat retinas, and depletion of IGF-2 from serum specifically reduced IR phosphorylation in retinal cells. Immunoprecipitation studies demonstrated that IGF-2 induced greater phosphorylation of the retinal IR than the IGF-1 receptor. Retinal IGF-2 mRNA content was 10-fold higher in adults than pups and orders of magnitude higher than in liver. Diabetes reduced retinal IGF-2, but not IGF-1 or IR, mRNA levels, and reduced IGF-2 and IGF-1 content in vitreous fluid. Finally, intravitreal administration of IGF-2 (mature and pro-forms) increased retinal IR and Akt kinase activity in diabetic rats. Collectively, these data reveal that IGF-2 is the primary ligand that defines basal retinal IR activity and suggest that reduced ocular IGF-2 may contribute to reduced IR activity in response to diabetes. These findings may have importance for understanding the regulation of metabolic and prosurvival signaling in the retina.
Collapse
Affiliation(s)
- Sergey N Zolov
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; The Division of Pulmonary & Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Hisanori Imai
- Department of Ophthalmology, Kobe University Medical School, Kobe, Japan
| | - Mandy K Losiewicz
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Patrice E Fort
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W Gardner
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
DPP-4 Inhibitor Linagliptin is Neuroprotective in Hyperglycemic Mice with Stroke via the AKT/mTOR Pathway and Anti-apoptotic Effects. Neurosci Bull 2019; 36:407-418. [PMID: 31808042 DOI: 10.1007/s12264-019-00446-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors have been shown to have neuroprotective effects in diabetic patients suffering from stroke, but less research has focused on patients with mild hyperglycemia below the threshold for a diagnosis of diabetes. In this investigation, a hyperglycemic mouse model was generated by intraperitoneal injection of streptozotocin and then subjected to focal cerebral ischemia. We demonstrated that the DPP-4 inhibitor linagliptin significantly decreased the infarct volume, reduced neuronal cell death, decreased inflammation, and improved neurological deficit compared with control mice. Linagliptin up-regulated the expression of p-Akt and p-mTOR and regulated the apoptosis factors Bcl-2, Bax, and caspase 9. Taken together, these results suggest that linagliptin exerts a neuroprotective action likely through activation of the Akt/mTOR pathway along with anti-apoptotic and anti-inflammatory mechanisms. Therefore, linagliptin may be considered as a therapeutic treatment for stroke patients with mild hyperglycemia.
Collapse
|
8
|
Jones MK, Lu B, Chen DZ, Spivia WR, Mercado AT, Ljubimov AV, Svendsen CN, Van Eyk JE, Wang S. In Vitro and In Vivo Proteomic Comparison of Human Neural Progenitor Cell-Induced Photoreceptor Survival. Proteomics 2019; 19:e1800213. [PMID: 30515959 PMCID: PMC6422354 DOI: 10.1002/pmic.201800213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/01/2018] [Indexed: 12/31/2022]
Abstract
Retinal degenerative diseases lead to blindness with few treatments. Various cell-based therapies are aimed to slow the progression of vision loss by preserving light-sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co-culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co-cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid-derived 2)-like 2 (NRF2) mediated oxidative response signaling as an hNPC-induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Bin Lu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Dawn Z. Chen
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Weston R. Spivia
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
| | - Augustus T. Mercado
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Alexander V. Ljubimov
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Clive N. Svendsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Shaomei Wang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
9
|
Biocompatibility and safety of insulin-loaded chitosan nanoparticles/ PLGA-PEG-PLGA hydrogel (ICNPH) delivered by subconjunctival injection in rats. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Tarchick MJ, Cutler AH, Trobenter TD, Kozlowski MR, Makowski ER, Holoman N, Shao J, Shen B, Anand-Apte B, Samuels IS. Endogenous insulin signaling in the RPE contributes to the maintenance of rod photoreceptor function in diabetes. Exp Eye Res 2018; 180:63-74. [PMID: 30543793 DOI: 10.1016/j.exer.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023]
Abstract
In diabetes, there are two major physiological aberrations: (i) Loss of insulin signaling due to absence of insulin (type 1 diabetes) or insulin resistance (type 2 diabetes) and (ii) increased blood glucose levels. The retina has a high proclivity to damage following diabetes, and much of the pathology seen in diabetic retinopathy has been ascribed to hyperglycemia and downstream cascades activated by increased blood glucose. However, less attention has been focused on the direct role of insulin on retinal physiology, likely due to the fact that uptake of glucose in retinal cells is not insulin-dependent. The retinal pigment epithelium (RPE) is instrumental in maintaining the structural and functional integrity of the retina. Recent studies have suggested that RPE dysfunction is a precursor of, and contributes to, the development of diabetic retinopathy. To evaluate the role of insulin on RPE cell function directly, we generated a RPE specific insulin receptor (IR) knockout (RPEIRKO) mouse using the Cre-loxP system. Using this mouse, we sought to determine the impact of insulin-mediated signaling in the RPE on retinal function under physiological control conditions as well as in streptozotocin (STZ)-induced diabetes. We demonstrate that loss of RPE-specific IR expression resulted in lower a- and b-wave electroretinogram amplitudes in diabetic mice as compared to diabetic mice that expressed IR on the RPE. Interestingly, RPEIRKO mice did not exhibit significant differences in the amplitude of the RPE-dependent electroretinogram c-wave as compared to diabetic controls. However, loss of IR-mediated signaling in the RPE reduced levels of reactive oxygen species and the expression of pro-inflammatory cytokines in the retina of diabetic mice. These results imply that IR-mediated signaling in the RPE regulates photoreceptor function and may play a role in the generation of oxidative stress and inflammation in the retina in diabetes.
Collapse
Affiliation(s)
- Matthew J Tarchick
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia H Cutler
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Timothy D Trobenter
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael R Kozlowski
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emily R Makowski
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Holoman
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jianning Shao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bailey Shen
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Department of Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ivy S Samuels
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
11
|
Ribosomal protein S6 kinase 1 promotes the survival of photoreceptors in retinitis pigmentosa. Cell Death Dis 2018; 9:1141. [PMID: 30442943 PMCID: PMC6237824 DOI: 10.1038/s41419-018-1198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited disorders caused by mutations in genes that are mostly expressed by rod photoreceptors, which results in initial death of rods followed by cone photoreceptors. The molecular mechanisms that lead to both rod and cone degeneration are not yet fully understood. The mTOR pathway is implicated in RP. However, it remains unclear whether S6K1 plays an essential role downstream of the mTOR pathway in mediating photoreceptor survival in RP. Our in vitro studies demonstrated that PTEN (phosphatase and tensin homolog) overexpression deactivated mTOR activity and induced 661W cone cell apoptosis. In addition, we identified that S6K1 but not 4EBP1 was the downstream effector of PTEN neurotoxicity using gain- and loss-of-function approaches. Moreover, our in vivo data corroborated the results of our in vitro studies. S6K1 overexpression either in rods or cones promoted these cell survival and function and improved visual performance in the rd10 mouse model of RP. Our data demonstrated that S6K1 was the downstream effector of mTOR and that S6K1 was critical for both rod and cone survival in RP. Our findings make a strong case for targeting S6K1 as a promising therapeutic strategy for promoting the survival of photoreceptors in RP.
Collapse
|
12
|
Ruebsam A, Dulle JE, Myers AM, Sakrikar D, Green KM, Khan NW, Schey K, Fort PE. A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI Insight 2018; 3:97919. [PMID: 29467334 DOI: 10.1172/jci.insight.97919] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Anne Ruebsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Katelyn M Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Schey
- Department of Biochemistry and Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
14
|
Neuroprotective Effect of Curcumin Against Cerebral Ischemia-Reperfusion Via Mediating Autophagy and Inflammation. J Mol Neurosci 2017; 64:129-139. [PMID: 29243061 DOI: 10.1007/s12031-017-1006-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Curcumin, a polyphenolic compound extracted from Curcuma longa, has drawn attention for its effective bioactivities against ischemia-induced injury. This study aimed to evaluate the neuroprotective effect of curcumin and investigate the underlying mechanism that mediates autophagy and inflammation in an animal model of middle cerebral artery occlusion (MCAO) in rats. Curcumin was delivered to Sprague Dawley male rats at a dose of 200 mg/kg curcumin by intraperitoneal injection 30 min after ischemia-reperfusion (I/R). LY294002, a specific inhibitor of the PI3K/Akt/mTOR pathway, as well as anisomycin, an activator of TLR4/p38/MAPK, was administered by ventricle injection 30 min before MCAO. The same volume of saline was given as a control. Brain infarction and neurological function were determined 24 h post-MCAO. Immunoblotting and immunofluorescence were used to detect alterations in autophagy-relevant proteins Akt, p-Akt, mTOR, p-mTOR, LC3-II, and LC3-I, and inflammation-related proteins TLR4, p-38, p-p38, and IL-1 in the ipsilateral hemisphere. Cerebral I/R injury resulted in significant alterations of LC3-II/LC3-I, IL-1, TLR4, and p-p38. Curcumin in MCAO rats significantly improved brain damage and neurological function by upregulating p-Akt and p-mTOR and downregulating LC3-II/LC3-I, IL-1, TLR4, p-38, and p-p38. However, these protective effects against ischemia could be suppressed when LY294002 or anisomycin was included. Curcumin exerts neuroprotective effects by attenuating autophagic activities through mediating the PI3K/Akt/mTOR pathway, while also suppressing an inflammatory reaction by regulating the TLR4/p38/MAPK pathway. Furthermore, this study indicates that curcumin could be an effective therapy for patients afflicted with ischemia.
Collapse
|
15
|
Kong D, Gong L, Arnold E, Shanmugam S, Fort PE, Gardner TW, Abcouwer SF. Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt. Exp Eye Res 2016; 151:82-95. [PMID: 27511131 DOI: 10.1016/j.exer.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Lijie Gong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Edith Arnold
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Palleria C, Leporini C, Maida F, Succurro E, De Sarro G, Arturi F, Russo E. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol 2016; 42:76-92. [PMID: 27521218 DOI: 10.1016/j.yfrne.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease that can cause serious damage to various organs. Among the best-known complications, an important role is played by cognitive impairment. Impairment of cognitive functioning has been reported both in type 1 and 2 diabetes mellitus. While this comorbidity has long been known, no major advances have been achieved in clinical research; it is clear that appropriate control of blood glucose levels represents the best current (although unsatisfactory) approach in the prevention of cognitive impairment. We have focused our attention on the possible effect on the brain of antidiabetic drugs, despite their effects on blood glucose levels, giving a brief rationale on the mechanisms (e.g. GLP-1, BDNF, ghrelin) that might be involved. Indeed, GLP-1 agonists are currently clinically studied in other neurodegenerative diseases (i.e. Parkinson's and Alzheimer's disease); furthermore, also other antidiabetic drugs have proven efficacy in preclinical studies. Overall, promising results are already available and finding new intervention strategies represents a current need in this field of research.
Collapse
Affiliation(s)
- Caterina Palleria
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Christian Leporini
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesca Maida
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
17
|
Imai H, Misra GP, Wu L, Janagam DR, Gardner TW, Lowe TL. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats. Invest Ophthalmol Vis Sci 2016; 56:7839-46. [PMID: 26658505 DOI: 10.1167/iovs.15-16998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. METHODS The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. RESULTS The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. CONCLUSIONS The developed hydrogels have great potential to sustain release of insulin to the retina via subconjunctival implantation to minimize DR without the risk of hypoglycemia.
Collapse
Affiliation(s)
- Hisanori Imai
- Department of Ophthalmology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States
| | - Gauri P Misra
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States
| | - Linfeng Wu
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 3Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Thomas W Gardner
- Department of Ophthalmology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 4Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao L Lowe
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 3Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
18
|
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J Diabetes Res 2016; 2016:9508541. [PMID: 27123463 PMCID: PMC4830713 DOI: 10.1155/2016/9508541] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- *Cristina Hernández: and
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- *Giovanni Casini:
| |
Collapse
|
19
|
Banday AR, Baumgartner M, Al Seesi S, Karunakaran DKP, Venkatesh A, Congdon S, Lemoine C, Kilcollins AM, Mandoiu I, Punzo C, Kanadia RN. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons. Cell Cycle 2015; 13:2526-41. [PMID: 25486194 DOI: 10.4161/15384101.2015.941757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as "replication-dependent." Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons.
Collapse
Affiliation(s)
- Abdul Rouf Banday
- a Department of Physiology and Neurobiology ; University of Connecticut ; Storrs , CT USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Popovic M, Stanojevic Z, Tosic J, Isakovic A, Paunovic V, Petricevic S, Martinovic T, Ciric D, Kravic-Stevovic T, Soskic V, Kostic-Rajacic S, Shakib K, Bumbasirevic V, Trajkovic V. Neuroprotective arylpiperazine dopaminergic/serotonergic ligands suppress experimental autoimmune encephalomyelitis in rats. J Neurochem 2015; 135:125-38. [PMID: 26083644 DOI: 10.1111/jnc.13198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
Abstract
Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D2 /5-HT1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of neuroinflammation. Both compounds (10 mg/kg i.p.) reduced EAE clinical signs in spinal cord homogenate-immunized Dark Agouti rats. Compound 6b was more efficient in delaying the disease onset and reducing the maximal clinical score, which correlated with its higher affinity for D2 and 5-HT1A receptors. The protection was retained if treatment was limited to the effector (from day 8 onwards), but not the induction phase (day 0-7) of EAE. Compound 6b reduced CNS immune infiltration and expression of mRNA encoding the proinflammatory cytokines tumor necrosis factor, IL-6, IL-1, and GM-CSF, TH 1 cytokine IFN-γ, TH 17 cytokine IL-17, as well as the signature transcription factors of TH 1 (T-bet) and TH 17 (RORγt) cells. Arylpiperazine treatment reduced apoptosis and increased the activation of anti-apoptotic mediators Akt and p70S6 kinase in the CNS of EAE animals. The in vitro treatment with 6b protected oligodendrocyte cell line OLN-93 and neuronal cell line PC12 from mitogen-activated normal T cells or myelin basic protein-activated encephalitogenic T cells. In conclusion, arylpiperazine dopaminergic/serotonergic ligands suppress EAE through a direct neuroprotective action and decrease in CNS inflammation. Arylpiperazine dopaminergic/serotonergic ligands reduce neurological symptoms of acute autoimmune encephalomyelitis in rats without affecting the activation of autoreactive immune response, through mechanisms involving a decrease in CNS immune infiltration, as well as direct protection of CNS from immune-mediated damage. These data indicate potential usefulness of arylpiperazine-based compounds in the treatment of neuroinflammatory disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Marjan Popovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Darko Ciric
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Kaveh Shakib
- Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11:177-86. [PMID: 24712647 DOI: 10.2174/1567202611666140408104831] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these individuals, approximately 800,000 of these cerebrovascular events occur in the United States (US) alone. The incidence of stroke in the US has declined from the third leading cause of death to the fourth, a result that can be attributed to multiple factors that include improved vascular disease management, reduced tobacco use, and more rapid time to treatment in patients that are clinically appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for the majority of stroke patients are extremely limited and represent a critical void for care. A number of new therapeutic considerations for stroke are under consideration, but it is the mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis, cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR signaling sometimes lead to disparate clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
22
|
Smith ED, Prieto GA, Tong L, Sears-Kraxberger I, Rice JD, Steward O, Cotman CW. Rapamycin and interleukin-1β impair brain-derived neurotrophic factor-dependent neuron survival by modulating autophagy. J Biol Chem 2014; 289:20615-29. [PMID: 24917666 PMCID: PMC4110274 DOI: 10.1074/jbc.m114.568659] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Indexed: 12/24/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF's support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF's suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1β impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Erica D. Smith
- From the Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, and
| | - G. Aleph Prieto
- From the Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, and
| | - Liqi Tong
- From the Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, and
| | - Ilse Sears-Kraxberger
- the Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
| | - Jeffrey D. Rice
- From the Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, and
| | - Oswald Steward
- the Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
| | - Carl W. Cotman
- From the Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, and
| |
Collapse
|
23
|
Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 2014; 8:182. [PMID: 25071443 PMCID: PMC4080263 DOI: 10.3389/fncel.2014.00182] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Differential expression of microRNAs (miRs) in the brain of patients with neurodegenerative diseases suggests that they may have key regulatory roles in the development of these disorders. Two such miRs, miR-7, and miR-153 have recently been shown to target α-synuclein, a protein critically involved in the pathological process of Parkinson's disease. By using a well-established in culture Parkinson's disease model that of neurotoxin 1-Methyl-4-Phenyl-Pyridinium (MPP+), we examined whether miR-7 and miR-153 display neuroprotective properties. Herein, we demonstrate that treatment of cortical neurons with MPP+ induced a dose-dependent cell death with apoptotic characteristics. This was reflected in altered intracellular signaling characterized by increased levels of activated kinases p38MAPK and ERK1/2 and reduced levels of activated AKT, p70S6K, and SAPK/JNK. Overexpression of miR-7 or miR-153 by adenoviral transduction protected cortical neurons from MPP+-induced toxicity, restored neuronal viability and anti-apoptotic BCL-2 protein levels while attenuated activation of caspase-3. Moreover, both miR-7 and miR-153 interfered with MPP+-induced alterations in intracellular signaling pathways in a partially overlapping manner; specifically, they preserved activation of mTOR and SAPK/JNK signaling pathways in the MPP+-treated neurons, while miR-153 also attenuated MPP+-induced activation of p38MAPK. No major effects were observed in the rest of signaling cascades or proteins investigated. Furthermore, the neuroprotective effect of miR-7 and miR-153 was alleviated when MPP+ was co-administered with rapamycin. Taken together, our results suggest that miR-7 and miR-153 protect neurons from cell death by interfering with the MPP+-induced downregulation of mTOR signaling.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Epaminondas Doxakis
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
24
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
25
|
Mechanisms of action of brain insulin against neurodegenerative diseases. J Neural Transm (Vienna) 2014; 121:611-26. [PMID: 24398779 DOI: 10.1007/s00702-013-1147-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.
Collapse
|
26
|
Szabadfi K, Pinter E, Reglodi D, Gabriel R. Neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:1-121. [PMID: 24952915 DOI: 10.1016/b978-0-12-800179-0.00001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Erika Pinter
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE MTA Lendulet-PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
27
|
Heise EA, Marozas LM, Grafton SA, Green KM, Kirwin SJ, Fort PE. Strain-independent increases of crystallin proteins in the retina of type 1 diabetic rats. PLoS One 2013; 8:e82520. [PMID: 24349305 PMCID: PMC3862628 DOI: 10.1371/journal.pone.0082520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 12/18/2022] Open
Abstract
Diabetic retinopathy is the leading cause of vision loss in working-age individuals in the United States and is expected to continue growing with the increased prevalence of diabetes. Streptozotocin-induced hyperglycemia in rats is the most commonly used model for diabetic retinopathy. Previous studies have shown that this model can lead to different inflammatory changes in the retina depending on the strain of rat. Our previous work has shown that crystallin proteins, including members of the alpha- and beta/gamma-crystallin subfamilies, are upregulated in the STZ rat retina. Crystallin proteins have been implicated in a number of cellular processes, such as neuroprotection, non-native protein folding and vascular remodeling. In this current study, we have demonstrated that unlike other strain-dependent changes, such as inflammatory cytokines and growth factor levels, in the STZ rat, the protein upregulation of crystallins is consistent across the Brown Norway, Long-Evans and Sprague-Dawley rat strains in the context of diabetes. Taken together, these data illustrate the potential critical role played by crystallins, and especially alpha-crystallins, in the retina in the context of diabetes.
Collapse
Affiliation(s)
- Erich A. Heise
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lauren M. Marozas
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sean A. Grafton
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katelyn M. Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stefanie J. Kirwin
- Biological Science, Allergan Incorporated, Irvine, California, United States of America
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
28
|
Huang CCY, Ko ML, Ko GYP. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors. PLoS One 2013; 8:e73315. [PMID: 23977383 PMCID: PMC3747127 DOI: 10.1371/journal.pone.0073315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rajala A, Dighe R, Agbaga MP, Anderson RE, Rajala RVS. Insulin receptor signaling in cones. J Biol Chem 2013; 288:19503-15. [PMID: 23673657 DOI: 10.1074/jbc.m113.469064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. In retinitis pigmentosa (RP), cone cell death precedes rod cell death. Systemic administration of insulin delays the death of cones in RP mouse models lacking rods. To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl) knock-out mouse retinas compared with wild type rod-dominant retinas. We previously reported that conditional deletion of the p85α subunit of phosphoinositide 3-kinase (PI3K) in cones resulted in age-related cone degeneration, and the phenotype was not rescued by healthy rods, raising the question of why cones are not protected by the rod-derived cone survival factors. Interestingly, systemic administration of insulin has been shown to delay the death of cones in mouse models of RP lacking rods. These observations led to the hypothesis that cones may have their own endogenous neuroprotective pathway, or rod-derived cone survival factors may be signaled through cone PI3K. To test this hypothesis we generated p85α(-/-)/Nrl(-/-) double knock-out mice and also rhodopsin mutant mice lacking p85α and examined the effect of the p85α subunit of PI3K on cone survival. We found that the rate of cone degeneration is significantly faster in both of these models compared with respective mice with competent p85α. These studies suggest that cones may have their own endogenous PI3K-mediated neuroprotective pathway in addition to the cone viability survival signals derived from rods.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean A McGee Eye Institute, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
30
|
Chong ZZ, Yao Q, Li HH. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal 2013; 25:1598-607. [PMID: 23563259 DOI: 10.1016/j.cellsig.2013.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023]
Abstract
Given the current limitation of therapeutic approach for ischemic stroke, a leading cause of disability and mortality in the developed countries, to develop new therapeutic strategies for this devastating disease is urgently necessary. As a serine/threonine kinase, mammalian target of rapamycin (mTOR) activation can mediate broad biological activities that include protein synthesis, cytoskeleton organization, and cell survival. mTOR functions through mTORC1 and mTORC2 complexes and their multiple downstream substrates, such as eukaryotic initiation factor 4E-binding protein 1, p70 ribosomal S6 kinase, sterol regulatory element-binding protein 1, hypoxia inducible factor-1, and signal transducer and activator transcription 3, Yin Ying 1, Akt, protein kinase c-alpha, Rho GTPase, serum-and gucocorticoid-induced protein kinase 1, etc. Specially, the role of mTOR in the central nervous system has been attracting considerable attention. Based on the ability of mTOR to prevent neuronal apoptosis, inhibit autophagic cell death, promote neurogenesis, and improve angiogenesis, mTOR may acquire the capability of limiting the ischemic neuronal death and promoting the neurological recovery. Consequently, to regulate the activity of mTOR holds a potential as a novel therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology and Neurosciences, Cancer Center, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA.
| | | | | |
Collapse
|
31
|
Miao XY, Gu ZY, Liu P, Hu Y, Li L, Gong YP, Shu H, Liu Y, Li CL. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides 2013; 39:71-9. [PMID: 23116613 DOI: 10.1016/j.peptides.2012.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), an effective therapeutic agent for the treatment of diabetes, has been proven to protect pancreatic beta cells through many pathways. Recent evidence demonstrates that AMP-activated protein kinase (AMPK), as a metabolic regulator, coordinates beta-cell protein synthesis through regulation of the mammalian target of rapamycin (mTOR) signaling pathway. The purpose of the present study was to explore whether liraglutide, a human GLP-1 analogue, protects beta cells via AMPK/mTOR signaling. We evaluated INS-1 beta-cell line proliferation using the Cell Counting Kit-8, and examined the effect of GLP-1 on cellular ATP levels using an ATP assay kit. mTOR pathway protein expression levels were tested by Western blotting and glucolipotoxicity-induced cell apoptosis was evaluated by flow cytometry. Liraglutide increased beta-cell viability at an optimum concentration of 100 nmol/L in the presence of 11.1 or 30 mmol/L glucose. Liraglutide (100 nmol/L) activated mTOR and its downstream effectors, 70-kDa ribosomal protein S6 kinase and eIF4E-binding protein-1, in INS-1 cells. This effect was abated by pathway blockers: the AMPK activator AICAR and the mTOR inhibitor rapamycin. Furthermore, the effect of liraglutide on beta-cell proliferation was inhibited by AICAR and rapamycin. Liraglutide increased cellular ATP levels. In addition, liraglutide protected beta cells from glucolipotoxicity-induced apoptosis. This response was also prevented by rapamycin treatment. These results suggest that the enhancement of beta-cell proliferation by that GLP-1 receptor agonist liraglutide is mediated, at least in part, by AMPK/mTOR signaling. Liraglutide also prevents beta-cell glucolipotoxicity by activating mTOR.
Collapse
Affiliation(s)
- Xin-Yu Miao
- Department of Geriatric Endocrinology, General Hospital of PLA, 100853 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2012; 19:51-60. [PMID: 23265840 DOI: 10.1016/j.molmed.2012.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/18/2012] [Accepted: 11/03/2012] [Indexed: 12/17/2022]
Abstract
The mammalian target of rapamycin (mTOR), the key component of the protein complexes mTORC1 and mTORC2, plays a critical role in cellular development, tissue regeneration, and repair. mTOR signaling can govern not only stem cell development and quiescence but also cell death during apoptosis or autophagy. Recent studies highlight the importance of both traditional and newly recognized interactors of mTOR, such as p70S6K, 4EBP1, GSK-3β, REDD1/RTP801, TSC1/TSC2, growth factors, wingless, and forkhead transcription factors, that influence Alzheimer's disease, Parkinson's disease, Huntington's disease, tuberous sclerosis, and epilepsy. Targeting mTOR in the nervous system can offer exciting new avenues of drug discovery, but crucial to this premise is elucidating the complexity of mTOR signaling for robust and safe clinical outcomes.
Collapse
|
33
|
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16:1203-14. [PMID: 22924465 PMCID: PMC3500415 DOI: 10.1517/14728222.2012.719499] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. AREAS COVERED Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), β-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. EXPERT OPINION The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, β-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth Maiese
- New Jersey Health Sciences University, Cancer Institute of New Jersey, Laboratory of Cellular and Molecular Signaling, F 1220, 205 South Orange Avenue, Newark, New Jersey 07101, USA.
| | | | | | | |
Collapse
|
34
|
Chong ZZ, Shang YC, Wang S, Maiese K. A Critical Kinase Cascade in Neurological Disorders: PI 3-K, Akt, and mTOR. FUTURE NEUROLOGY 2012; 7:733-748. [PMID: 23144589 DOI: 10.2217/fnl.12.72] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders lead to disability and death in a significant proportion of the world's population. However, many disorders of the nervous system remain with limited effective treatments. Kinase pathways in the nervous system that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR) offer exciting prospects for the understanding of neurodegenerative pathways and the development of new avenues of treatment. PI 3-K, Akt, and mTOR pathways are vital cellular components that determine cell fate during acute and chronic disorders, such as Huntington's disease, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, and trauma. Yet, the elaborate relationship among these kinases and the variable control of apoptosis and autophagy can lead to unanticipated biological and clinical outcomes. Crucial for the successful translation of PI 3-K, Akt, and mTOR into robust and safe clinical strategies will be the further elucidation of the complex roles that these kinase pathways hold in the nervous system.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey 07101 ; New Jersey Health Sciences University, Newark, New Jersey 07101
| | | | | | | |
Collapse
|
35
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
36
|
McNeilly AD, Williamson R, Balfour DJK, Stewart CA, Sutherland C. A high-fat-diet-induced cognitive deficit in rats that is not prevented by improving insulin sensitivity with metformin. Diabetologia 2012; 55:3061-70. [PMID: 22898768 DOI: 10.1007/s00125-012-2686-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS We previously demonstrated that animals fed a high-fat (HF) diet for 10 weeks developed insulin resistance and behavioural inflexibility. We hypothesised that intervention with metformin would diminish the HF-feeding-evoked cognitive deficit by improving insulin sensitivity. METHODS Rats were trained in an operant-based matching and non-matching to position task (MTP/NMTP). Animals received an HF (45% of kJ as lard; n = 24), standard chow (SC; n = 16), HF + metformin (144 mg/kg in diet; n = 20) or SC + metformin (144 mg/kg in diet; n = 16) diet for 10 weeks before retesting. Body weight and plasma glucose, insulin and leptin were measured. Protein lysates from various brain areas were analysed for alterations in intracellular signalling or production of synaptic proteins. RESULTS HF-fed animals developed insulin resistance and an impairment in switching task contingency from matching to non-matching paradigm. Metformin attenuated the insulin resistance and weight gain associated with HF feeding, but had no effect on performance in either MTP or NMTP tasks. No major alteration in proteins associated with insulin signalling or synaptic function was detected in response to HF diet in the hypothalamus, hippocampus, striatum or cortex. CONCLUSIONS/INTERPRETATION Metformin prevented the metabolic but not cognitive alterations associated with HF feeding. The HF diet protocol did not change basal insulin signalling in the brain, suggesting that the brain did not develop insulin resistance. These findings indicate that HF diet has deleterious effects on neuronal function over and above those related to insulin resistance and suggest that weight loss may not be sufficient to reverse some damaging effects of poor diet.
Collapse
Affiliation(s)
- A D McNeilly
- Medical Research Institute, University of Dundee, Ninewells Medical School, Dundee DD1 9SY, UK
| | | | | | | | | |
Collapse
|
37
|
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012. [PMID: 23203037 PMCID: PMC3509553 DOI: 10.3390/ijms131113830] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
- Author to whom correspondence should be addressed: E-Mail:
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
38
|
Fox TE, Young MM, Pedersen MM, Han X, Gardner TW, Kester M. Diabetes diminishes phosphatidic acid in the retina: a putative mediator for reduced mTOR signaling and increased neuronal cell death. Invest Ophthalmol Vis Sci 2012; 53:7257-67. [PMID: 22952117 DOI: 10.1167/iovs.11-7626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We demonstrated previously that pro-survival insulin receptor, PI3K-Akt, and p70 S6K signaling is diminished in models of diabetic retinopathy. As mammalian target of rapamycin (mTOR), an upstream activator of p70 S6Kinase is, in part, regulated by lipid-derived second messengers, such as phosphatidic acid (PA), we sought to determine if diminished mTOR/p70 S6Kinase signaling in diabetic retinas may reflect diminished PA levels. METHODS Alterations in PA mass from retinas of control and streptozotocin-induced diabetic rats were determined by mass spectrometry. The biochemical and biophysical mechanisms underlying the actions of PA on insulin-activated mTOR/p70 S6Kinase signaling were determined using R28 retinal neuronal cells. RESULTS We demonstrate a significant decrease in PA in R28 retinal neuronal cells exposed to hyperglycemia as well as in streptozotocin-induced diabetic rat retinas. Exogenous PA augmented insulin-induced protection from interleukin-1β-induced apoptosis. Moreover, exogenous PA and insulin cooperatively activated mTOR survival pathways in R28 neuronal cultures. Exogenous PA colocalized with activated mTOR/p70 S6kinase signaling elements within lipid microdomains. The biochemical consequences of this biophysical mechanism is reflected by differential phosphorylation of tuberin at threonine 1462 and serine 1798, respectively, by PA and insulin, which reduce this suppressor of mTOR/S6Kinase signaling within lipid microdomains. CONCLUSIONS These results identify PA-enriched microdomains as a putative lipid-based signaling element responsible for mTOR-dependent retinal neuronal survival. Moreover, diabetic retinal neuronal apoptosis may reflect diminished PA mass. Elevating PA concentrations and restoring mTOR signaling may be an effective therapeutic modality to reduce neuronal cell death in diabetic retinopathy.
Collapse
Affiliation(s)
- Todd E Fox
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
39
|
Dello Russo C, Lisi L, Feinstein DL, Navarra P. mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis. Glia 2012; 61:301-11. [PMID: 23044764 DOI: 10.1002/glia.22433] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 12/26/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase with a central role in the regulation of cell growth and proliferation, and several intracellular processes, such as mRNA transcription and translation, autophagy and cytoskeletal organization. The relevance of this pathway in the regulation of the immune system is well characterized. mTOR is essential for the proper activation and proliferation of effector T cells, restricts the development of regulatory T cells, and downregulates innate immune responses. Recently, a direct role of mTOR in the modulation of glial functions has also been recognized. Data from our group and others support the notion that mTOR is involved in microglial proinflammatory activation. The kinase regulates several intracellular processes in astrocytes, among which the rate of mRNA degradation of the inducible form of NO synthase. Therefore, the inhibition of mTOR kinase activity in glial cells results in anti-inflammatory actions, suggesting possible beneficial effects of mTOR inhibitors (like rapamycin) in the treatment of inflammatory-based pathologies of the central nervous system. In contrast, mTOR plays an important role in the regulation of oligodendrocyte development and myelination process as well as several neuronal functions, which may limit this therapeutic approach. Nevertheless, as reviewed here, there is robust evidence that rapamycin ameliorates the clinical course of both the relapsing-remitting and the chronic experimental autoimmune encephalomyelitis (EAE), and significantly reduces the hyperalgesia observed before clinical development of EAE. These findings may have important clinical implications for the therapy of multiple sclerosis.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | | | | | | |
Collapse
|
40
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
41
|
Wang L, Peng D, Xie B, Jiang K, Fang Y. The extracellular signal-regulated kinase pathway may play an important role in mediating antidepressant-stimulated hippocampus neurogenesis in depression. Med Hypotheses 2012; 79:87-91. [DOI: 10.1016/j.mehy.2012.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/29/2022]
|
42
|
Williamson R, McNeilly A, Sutherland C. Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol 2012; 84:737-45. [PMID: 22634336 DOI: 10.1016/j.bcp.2012.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/21/2023]
Abstract
Life expectancy is rising however with more people living longer there is a concomitant rise in the incidence of dementia. In addition to age-related cognitive decline there is a higher risk of going on to develop vascular dementia and Alzheimer's disease associated with aspects of modern lifestyle. Most worryingly, recent data reports accelerated cognitive decline in adolescents associated with poor diet (high fat and calorie intake). Thus the increase in dementia in 'old-age' may have as much to do with 'new-age' lifestyle as it does with normal ageing. It would seem wise therefore to investigate the molecular connections between lifestyle and cognitive decline in more detail. Epidemiological evidence suggests an increased risk of developing dementia (including Alzheimer's disease) in individuals with obesity and type 2 diabetes but also in those with poor insulin sensitivity without diabetes, implicating a mechanistic link between adiposity, insulin sensitivity and dementia. Insulin receptors are expressed in the brain and physiological roles for insulin in the CNS are starting to be delineated. Indeed disrupted neuronal insulin action may underlie the link between diabetes and neurodegenerative disorders. This review discusses the difficulties in quantifying insulin sensitivity of the brain and why it is vital that we develop technology for this purpose so that we can establish its role in this 'new-age' dementia. This has particular relevance to the design and interpretation of clinical trials in progress to assess potential benefits of insulin and insulin sensitisers on prevention of cognitive decline.
Collapse
|
43
|
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012:384017. [PMID: 22500228 PMCID: PMC3303591 DOI: 10.1155/2012/384017] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Duarte
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I. Moreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina R. Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
44
|
Nemoto T, Yanagita T, Satoh S, Maruta T, Kanai T, Murakami M, Wada A. Insulin-induced neurite-like process outgrowth: acceleration of tau protein synthesis via a phosphoinositide 3-kinase~mammalian target of rapamycin pathway. Neurochem Int 2011; 59:880-8. [PMID: 21854819 DOI: 10.1016/j.neuint.2011.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/06/2023]
Abstract
Both insulin and tau, promoting neuronal differentiation (neurite outgrowth, neuronal polarity, and myelination) and cell survival, are associated with neurodegenerative disease (e.g., Alzheimer's disease). The aim of this study was to explore relation between insulin-induced activation of insulin signal and expression of tau protein on neurite-like process outgrowth in adrenal chromaffin cells. Primary cultured bovine adrenal chromaffin cells were incubated with insulin to determine whether stimulant of insulin signal could affect tau expression and neurite-like process outgrowth. Chronic treatment with insulin (⩾6h) led neurite-like process outgrowth as well as increased tau protein level by ∼99% in a concentration (EC(50) 5.5nM)- and time-dependent manner, without changing Ser(396)-phosphorylated tau level. The insulin-induced increase of tau protein level was abolished by LY294002 [an inhibitor of phosphoinositide 3-kinase (PI3K)] and rapamycin [an inhibitor of mammalian target of rapamycin (mTOR)], but not by PD98059 and U0126 [two inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK)]. Additionally, insulin-induced increase of tau was blocked by cyclohexamide (an inhibitor of protein synthesis), but not by actinomycin D (an inhibitor of gene transcription). Pulse-label followed by polyacrylamide gel electrophoresis revealed that insulin accelerated tau protein synthesis rate (t(1/2)) from 2.6 to 1.9h. Insulin did not change tau mRNA level. Taken together, these results suggest that insulin-induced activation of PI3K∼mTOR pathway up-regulated tau protein via acceleration of protein synthesis, on which insulin promoted neurite-like process outgrowth.
Collapse
Affiliation(s)
- Takayuki Nemoto
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Fox TE, Young MM, Pedersen MM, Giambuzzi-Tussey S, Kester M, Gardner TW. Insulin signaling in retinal neurons is regulated within cholesterol-enriched membrane microdomains. Am J Physiol Endocrinol Metab 2011; 300:E600-9. [PMID: 21205932 PMCID: PMC3279305 DOI: 10.1152/ajpendo.00641.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal cell death is an early pathological feature of diabetic retinopathy. We showed previously that insulin receptor signaling is diminished in retinas of animal models of diabetes and that downstream Akt signaling is involved in insulin-mediated retinal neuronal survival. Therefore, further understanding of the mechanisms by which retinal insulin receptor signaling is regulated could have therapeutic implications for neuronal cell death in diabetes. Here, we investigate the role of cholesterol-enriched membrane microdomains to regulate PKC-mediated inhibition of Akt-dependent insulin signaling in R28 retinal neurons. We demonstrate that PKC activation with either a phorbol ester or exogenous application of diacylglycerides impairs insulin-induced Akt activation, whereas PKC inhibition augments insulin-induced Akt activation. To investigate the mechanism by which PKC impairs insulin-stimulated Akt activity, we assessed various upstream mediators of Akt signaling. PKC activation did not alter the tyrosine phosphorylation of the insulin receptor or IRS-2. Additionally, PKC activation did not impair phosphatidylinositol 3-kinase activity, phosphoinositide-dependent kinase phosphorylation, lipid phosphatase (PTEN), or protein phosphatase 2A activities. Thus, we next investigated a biophysical mechanism by which insulin signaling could be disrupted and found that disruption of lipid microdomains via cholesterol depletion blocks insulin-induced Akt activation and reduces insulin receptor tyrosine phosphorylation. We also demonstrated that insulin localizes phosphorylated Akt to lipid microdomains and that PMA reduces phosphorylated Akt. In addition, PMA localizes and recruits PKC isotypes to these cholesterol-enriched microdomains. Taken together, these results demonstrate that both insulin-stimulated Akt signaling and PKC-induced inhibition of Akt signaling depend on cholesterol-enriched membrane microdomains, thus suggesting a putative biophysical mechanism underlying insulin resistance in diabetic retinopathy.
Collapse
Affiliation(s)
- Todd E Fox
- Dept. of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yang DQ, Halaby MJ, Li Y, Hibma JC, Burn P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today 2011; 16:332-8. [PMID: 21315178 DOI: 10.1016/j.drudis.2011.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. The gene mutated in this disease, Atm (A-T mutated), encodes a serine/threonine protein kinase that has been traditionally considered to be a nuclear protein controlling cell-cycle progression. However, many of the growth abnormalities observed in patients with A-T, including neuronal degeneration and insulin resistance, remain difficult to explain with nuclear localization of ATM. Here, recent advances in elucidating the cytoplasmic localization and function of ATM are reviewed. Particular attention is given to the role of ATM in insulin signaling and Akt activation. The potential for cytoplasmic ATM protein kinase to be an emerging therapeutic target for treating diabetes, cancer and neuronal degeneration is discussed.
Collapse
Affiliation(s)
- Da-Qing Yang
- The Sanford Project, Sanford Research/USD, Sanford Health, and The Department of Pediatrics, Sanford School of Medicine of The University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | | | | | | | | |
Collapse
|
47
|
Nakai N, Kawano F, Oke Y, Nomura S, Ohira T, Fujita R, Ohira Y. Mechanical stretch activates signaling events for protein translation initiation and elongation in C2C12 myoblasts. Mol Cells 2010; 30:513-8. [PMID: 20957453 DOI: 10.1007/s10059-010-0147-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/02/2023] Open
Abstract
It has been proposed that mechanically induced tension is the critical factor in the induction of muscle hypertrophy. However, the molecular mechanisms involved in this process are still under investigation. In the present study, the effect of mechanical stretch on intracellular signaling for protein translation initiation and elongation was studied in C2C12 myoblasts. Cells were grown on a silicone elastomer chamber and subjected to 30-min of 5 or 15% constant static or cyclic (60 cycles/min) uniaxial stretch. Western blot analyses revealed that p70 S6 kinase (p70S6K) and eukaryotic elongation factor 2 (eEF2), which are the markers for translation initiation and peptide chain elongation, respectively, were activated by both static and cyclic stretch. The magnitude of activation was greater in response to the 15% cyclic stretch. Cyclic stretch also increased the phosphorylation of MAP kinases (p38 MAPK, ERK1/2 and JNK). However, the pharmacological inhibition of MAP kinases did not block the stretch-induced activation of p70S6K and eEF2. An inhibitor of the mammalian target of rapamycin (mTOR) blocked the stretch-induced phosphorylation of p70S6K but did not affect the eEF2 activation. A broad-range tyrosine kinase inhibitor, genistein, blocked the stretch-induced activation of p70S6K and eEF2, whereas Src tyrosine kinase and Janus kinase (JAK) inhibitors did not. These results suggest that the stretch-induced activation of protein translation initiation and elongation in mouse myoblast cell lines is mediated by tyrosine kinase(s), except for Src kinase or JAK.
Collapse
Affiliation(s)
- Naoya Nakai
- Section of Applied Physiology, Department of Health and Sports Sciences, Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:374-91. [PMID: 21307646 PMCID: PMC3154047 DOI: 10.4161/oxim.3.6.14787] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) and its associated cell signaling pathways have garnered significant attention for their roles in cell biology and oncology. Interestingly,the explosion of information in this field has linked mTOR to neurological diseases with promising initial studies. mTOR, a 289 kDa serine/threonine protein kinase, plays an important role in cell growth and proliferation and is activated through phosphorylation in response to growth factors, mitogens and hormones. Growth factors, amino acids, cellular nutrients and oxygen deficiency can downregulate mTOR activity. The function of mTOR signaling is mediated primarily through two mTOR complexes: mTORC1 and mTORC2. mTORC1 initiates cap-dependent protein translation, a rate-limiting step of protein synthesis, through the phosphorylation of the targets eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and p70 ribosomal S6 kinase (p70S6K). In contrast, mTORC2 regulates development of the cytoskeleton and also controls cell survival. Although closely tied to tumorigenesis, mTOR and the downstream signaling pathways are significantly involved in the central nervous system (CNS) with synaptic plasticity, memory retention, neuroendocrine regulation associated with food intake and puberty and modulation of neuronal repair following injury. The signaling pathways of mTOR also are believed to be a significant component in a number of neurological diseases, such as Alzheimer disease, Parkinson disease and Huntington disease, tuberous sclerosis, neurofibromatosis, fragile X syndrome, epilepsy, traumatic brain injury and ischemic stroke. Here we describe the role of mTOR in the CNS and illustrate the potential for new strategies directed against neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology and Neurosciences, Cancer Center, University of Medicine and Dentistry - New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
49
|
Shao JL, Wan XH, Chen Y, Bi C, Chen HM, Zhong Y, Heng XH, Qian JQ. H2S protects hippocampal neurons from anoxia-reoxygenation through cAMP-mediated PI3K/Akt/p70S6K cell-survival signaling pathways. J Mol Neurosci 2010; 43:453-60. [PMID: 20967511 DOI: 10.1007/s12031-010-9464-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/05/2010] [Indexed: 01/22/2023]
Abstract
The study aims to investigate the effect of hydrogen sulfide (H(2)S) on the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70S6K) signal transduction pathway after oxygen glucose deprivation/reoxygenation (OGD/R) in the rat hippocampus. Newborn Wister rats were decapitated under anesthesia, and hippocampal tissue was dissected. Cells were plated at 1.0 × 10(5) cells/mL on polylysine-treated 96-well and 6-well plates. After 7 days in culture, cells were randomly assigned to six groups: control, OGD/R, sodium hydrosulfide (NaHS) following OGD/R, NaHS/triciribine following OGD/R, NaHS/rapamycin following OGD/R, and NaHS/triciribine/rapamycin following OGD/R. Neuronal purity and cell viability were assessed in each group, as well as apoptosis and expression of cyclic adenosine 3', 5'-monophosphate (cAMP), PI3K, Akt, and p70S6K. NaHS enhanced cAMP concentration and expression of PI3K, Akt, and p70S6K. In addition, neuronal viability was increased and apoptotic neuronal numbers decreased (P<0.01). Triciribine inhibited Akt and p70S6K, as well as decreased cell survival and viability compared with the NaHS group (P<0.05 or P<0.01). Rapamycin resulted in decreased p70S6K expression and neuronal viability, as well as increased number of apoptotic neurons compared with the NaHS group (P<0.05 or P<0.01). H(2)S acted via cAMP-mediated PI3K/Akt/p70S6K signal transduction pathways to inhibit hippocampal neuronal apoptosis and protect neurons from OGD/R-induced injury.
Collapse
Affiliation(s)
- Jian-Lin Shao
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, 650032, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu LY, Sun ZG, Wen YM, Cheng GZ, Wang SL, Zhao HB, Zhang XR. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience 2010; 169:1046-62. [PMID: 20678995 DOI: 10.1016/j.neuroscience.2010.05.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/23/2010] [Accepted: 05/20/2010] [Indexed: 12/25/2022]
Abstract
The protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal S6 protein kinase (p70S6K) signaling pathway, as a central controller of cell growth, proliferation, survival, and differentiation in response to extracellular signals, growth factors, nutrient availability, energy status of the cell, and stress, has recently gained attention in neuroscience. The effects of this signaling pathway on repair of spinal cord injury (SCI), however, have not been well elucidated. ATP is increasingly recognized as an important regulator of signal transduction pathways, and plays important roles in functional recovery after nervous system injury. In the present study, we examined the ATP-induced changes of the Akt/mTOR/p70S6K signaling pathway in injured spinal cord of adult rats and potential therapeutic effects of this pathway on SCI-induced locomotor dysfunction. SCI was produced by extradural weight-drop using modified Allen's stall with damage energy of 50 g-cm force. The rats were divided into four groups: SCI plus ATP, SCI plus saline, SCI plus ATP and rapamycin, and sham-operated. Using immunostaining studies, Western blot analyses and real-time qualitative RT-PCR analyses, we demonstrated that the Akt/mTOR/p70S6K signaling pathway is present in the injured spinal cord and the expression of its components at the protein and mRNA levels is significantly elevated by exogenous administration of ATP following SCI. We observed the effectiveness of the activated Akt/mTOR/p70S6K signaling pathway in improving locomotor recovery, significantly increasing the expression of nestin, neuronal nuclei (NeuN), neuron specific enolase (NSE), and neurofilament 200 (NF200), and relatively inhibiting excessive reactive astrogliosis after SCI in a rapamycin-sensitive manner. We concluded that ATP injection produced a significant activation of the Akt/mTOR/p70S6K signaling pathway in the injured spinal cord and that enhancement of rapamycin-sensitive signaling produces beneficial effects on SCI-induced motor function defects and repair potential. We suggest that modulation of this protein kinase signaling pathway activity should be considered as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- L Y Hu
- Second Clinical Medical College, Lanzhou University, 82 Cui Ying Men, Lanzhou 730030, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|