1
|
Modica MV, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M, Fassio G, El Koulali K, Barrachina C, Dutertre S. The proteotranscriptomic characterization of venom in the white seafan Eunicella singularis elucidates the evolution of Octocorallia arsenal. Open Biol 2025; 15:250015. [PMID: 40068811 PMCID: PMC11896702 DOI: 10.1098/rsob.250015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
All the members of the phylum Cnidaria are characterized by the production of venom in specialized structures, the nematocysts. Venom of jellyfish (Medusozoa) and sea anemones (Anthozoa) has been investigated since the 1970s, revealing a remarkable molecular diversity. Specifically, sea anemones harbour a rich repertoire of neurotoxic peptides, some of which have been developed in drug leads. However, venoms of the vast majority of Anthozoa species remain uncharacterized, particularly in the class Octocorallia. To fill this gap, we applied a proteo-transcriptomic approach to investigate venom composition in Eunicella singularis, a gorgonian species common in Mediterranean hard-bottom benthic communities. Our results highlighted the peculiarities of the venom of E. singularis with respect to sea anemones, which is reflected in the presence of several toxins with novel folds, worthy of functional characterization. A comparative genomic survey across the octocoral radiation allowed us to generalize these findings and provided insights into the evolutionary history, molecular diversification patterns and putative adaptive roles of venom toxins. A comparison of whole-body and nematocyst proteomes revealed the presence of different cytolytic toxins inside and outside the nematocysts. Two instances of differential maturation patterns of toxin precursors were also identified, highlighting the intricate regulatory pathways underlying toxin expression.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Didier Aurelle
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Marco Oliverio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | | | - Célia Barrachina
- Platform MGX, IGF, University of Montpellier, Montpellier, France
| | | |
Collapse
|
2
|
Ortjohann M, Leippe M. Characterization of NK-lysin A, a potent antimicrobial peptide from the zebrafish Danio rerio. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105266. [PMID: 39303911 DOI: 10.1016/j.dci.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Antimicrobial peptides (AMPs) are important players of the innate immune system with a major role in the defense against invading pathogens. AMPs belonging to the family of saposin-like proteins (SAPLIPs) include the porcine NK-lysin and the human granulysin. In the zebrafish Danio rerio, transcript analyses of NK-lysin encoding genes have been reported, but biochemical characterizations at the protein level are missing so far. Here, we present the recombinant expression, purification, and characterization of one of these homologs, namely of NK-lysin A (DaNKlA). To remove the affinity tag from DaNKlA, we made use of a self-splicing intein. Recombinant DaNKlA depolarized liposomes over a broad pH range and showed a preference for negatively charged lipids. DaNKlA inhibited the growth of and killed different Gram-positive and Gram-negative bacteria, including the fish pathogenic bacterium Vibrio anguillarum, by membrane permeabilization but displayed substantially lower activity against yeast cells. Structural modelling and bioinformatic comparison of DaNKlA with characterized SAPLIPs suggest membrane destabilization accompanied by strong electrostatic interactions as the mode of action.
Collapse
Affiliation(s)
- Marius Ortjohann
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
3
|
Ortjohann M, Leippe M. Molecular Characterization of Ancient Prosaposin-like Proteins from the Protist Dictyostelium discoideum. Biochemistry 2024; 63:2768-2777. [PMID: 39421968 PMCID: PMC11542183 DOI: 10.1021/acs.biochem.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
To combat the permanent exposure to potential pathogens every organism relies on an immune system. Important factors in innate immunity are antimicrobial peptides (AMPs) that are structurally highly diverse. Some AMPs are known to belong to the saposin-like proteins (SAPLIPs), a group of polypeptides with a broad functional spectrum. The model organism Dictyostelium discoideum possesses a remarkably large arsenal of potential SAPLIPs, which are termed amoebapore-like peptides (Apls), but the knowledge about these proteins is very limited. Here, we report about the biochemical characterization of AplE1, AplE2, AplK1, and AplK2, which are derived from the two precursor proteins AplE and AplK, thereby resembling prosaposins of vertebrates. We produced these Apls as recombinant polypeptides in Escherichia coli using a self-splicing intein to remove an affinity tag used for purification. All recombinant Apls exhibited pore-forming activity in a pH-dependent manner, as evidenced by liposome depolarization, showing higher activities the more acidic the setting was. Lipid preference was detected for negatively charged phospholipids and in particular for cardiolipin. Antimicrobial activity against various bacteria was found to be inferior in classical microdilution assays. However, all of the Apls studied permeabilized the cytoplasmic membrane of live Bacillus subtilis. Collectively, we assume that the selected Apls interact by their cationic charge with negatively charged bacterial membranes in acidic environments such as phagolysosomes and eventually lyse the target cells by pore formation.
Collapse
Affiliation(s)
- Marius Ortjohann
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
4
|
Carruthers VB. Apicomplexan Pore-Forming Toxins. Annu Rev Microbiol 2024; 78:277-291. [PMID: 39088861 DOI: 10.1146/annurev-micro-041222-025939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Pore-forming toxins (PFTs) are released by one cell to directly inflict damage on another cell. Hosts use PFTs, including members of the membrane attack complex/perforin protein family, to fight infections and cancer, while bacteria and parasites deploy PFTs to promote infection. Apicomplexan parasites secrete perforin-like proteins as PFTs to egress from infected cells and traverse tissue barriers. Other protozoa, along with helminth parasites, utilize saposin-like PFTs prospectively for nutrient acquisition during infection. This review discusses seminal and more recent advances in understanding how parasite PFTs promote infection and describes how they are regulated and fulfill their roles without causing parasite self-harm. Although exciting progress has been made in defining mechanisms of pore formation by PFTs, many open questions remain to be addressed to gain additional key insights into these remarkable determinants of parasitic infections.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
5
|
Mathur S, Kaushik S, Kothari SL, Srivastava VK. Role of various virulence factors involved in the pathogenesis of Entamoeba histolytica. Exp Parasitol 2024; 266:108841. [PMID: 39362393 DOI: 10.1016/j.exppara.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Developing countries continuously face challenges to get rid of amoebiasis, a protozoan disease caused by Entamoeba histolytica. Every year around 900 million people get affected by amoebiasis, among them only 10 % of people show the symptoms of the disease while 90 % of people do not show any symptoms but still, serve as carriers of the disease. Asymptomatic persons carry cysts of Entamoeba in their fecal matter, which is carried by house flies to contaminate the food and water. Entamoeba histolytica is a very successful pathogen because it has very well-developed virulence factors that function in infection to host as well as in overcoming the host's immune response. However, researchers have very little information about the clear relationship between virulence factors and the virulence of Entamoeba histolytica, through various research, researchers have been able to identify key pathogenic factors that are crucial to the pathogenesis of amoebiasis and have provided valuable insights into the development of the disease. The objective of this review is to underscore various virulence factors (Monosaccharides, Gal/GalNAc lectin, extracellular vesicles, cysteine proteases, amoeba-pores, and actin microfilament) involved in pathogenesis which may be helpful for designing of future drug or therapy.
Collapse
Affiliation(s)
- Shubham Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | | |
Collapse
|
6
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
7
|
Diaz N, Lico C, Capodicasa C, Baschieri S, Dessì D, Benvenuto E, Fiori PL, Rappelli P. Production and Functional Characterization of a Recombinant Predicted Pore-Forming Protein (TVSAPLIP12) of Trichomonas vaginalis in Nicotiana benthamiana Plants. Front Cell Infect Microbiol 2020; 10:581066. [PMID: 33117734 PMCID: PMC7561387 DOI: 10.3389/fcimb.2020.581066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pore-forming proteins (PFPs) are a group of functionally versatile molecules distributed in all domains of life, and several microbial pathogens notably use members of this class of proteins as cytotoxic effectors. Among pathogenic protists, Entamoeba histolytica, and Naegleria fowleri display a range of pore-forming toxins belonging to the Saposin-Like Proteins (Saplip) family: Amoebapores and Naegleriapores. Following the genome sequencing of Trichomonas vaginalis, we identified a gene family of 12 predicted saposin-like proteins (TvSaplips): this work focuses on investigating the potential role of TvSaplips as cytopathogenetic effectors. We provide evidence that TvSaplip12 gene expression is potently upregulated upon T. vaginalis contact with target cells. We cloned and expressed recombinant TvSaplip12 in planta and we demonstrate haemolytic, cytotoxic, and bactericidal activities of rTvSaplip12 in vitro. Also, evidence for TvSaplip subcellular discrete distribution in cytoplasmic granules is presented. Altogether, our results highlight the importance of TvSaplip in T. vaginalis pathogenesis, depicting its involvement in the cytolytic and bactericidal activities during the infection process, leading to predation on host cells and resident vaginal microbiota for essential nutrients acquisition. This hence suggests a potential key role for TvSaplip12 in T. vaginalis pathogenesis as a candidate Trichopore.
Collapse
Affiliation(s)
- Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Cristina Capodicasa
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| |
Collapse
|
8
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Abstract
Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.
Collapse
Affiliation(s)
- Xing Liu
- Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences, Shanghai 200031, China;
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
10
|
Lettau M, Dietz M, Dohmen K, Leippe M, Kabelitz D, Janssen O. Granulysin species segregate to different lysosome-related effector vesicles (LREV) and get mobilized by either classical or non-classical degranulation. Mol Immunol 2019; 107:44-53. [DOI: 10.1016/j.molimm.2018.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
|
11
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
pH dependent membrane binding of the Solanum tuberosum plant specific insert: An in silico study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2608-2618. [PMID: 30291921 DOI: 10.1016/j.bbamem.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
The Solanum tuberosum plant-specific insert (StPSI) has been shown to possess potent antimicrobial activity against both human and plant pathogens. Furthermore, in vitro, the StPSI is capable of fusing phospholipid vesicles, provided the conditions of net anionic vesicle charge and acidic pH are met. Constant pH replica-exchange simulations indicate several acidic residues on the dimer have highly perturbed pKas (<3.0; E15, D28, E85 & E100) due to involvement in salt bridges. After setting the pH of the system to either 3.0 or 7.4, all-atom simulations provided details of the effect of pH on secondary structural elements, particularly in the previously unresolved crystallographic structure of the loop section. Coarse-grained dimer-bilayer simulations demonstrated that at pH 7.4, the dimer had no affinity for neutral or anionic membranes over the course of 1 μs simulations. Conversely, at pH 3.0 two binding modes were observed. Mode 1 is mediated primarily via strong N-terminal interactions on one monomer only, whereas in mode 2, N- and C-terminal residues of one monomer and numerous polar and basic residues on the second monomer, particularly in the third helix, participate in membrane interactions. Mode 2 was accompanied by re-orientation of the dimer to a more vertical position with respect to helices 1 and 4, positioning the dimer for membrane interactions. These results offer the first examination at near-atomic resolution of residues mediating the StPSI-membrane interactions, and allow for the postulation of a possible fusion mechanism.
Collapse
|
13
|
Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol 2018; 48:621-639. [DOI: 10.1016/j.ijpara.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
|
14
|
Dhakshinamoorthy R, Bitzhenner M, Cosson P, Soldati T, Leippe M. The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:73. [PMID: 29662839 PMCID: PMC5890168 DOI: 10.3389/fcimb.2018.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 11/15/2022] Open
Abstract
Due to their archaic life style and microbivor behavior, amoebae may represent a source of antimicrobial peptides and proteins. The amoebic protozoon Dictyostelium discoideum has been a model organism in cell biology for decades and has recently also been used for research on host-pathogen interactions and the evolution of innate immunity. In the genome of D. discoideum, genes can be identified that potentially allow the synthesis of a variety of antimicrobial proteins. However, at the protein level only very few antimicrobial proteins have been characterized that may interact directly with bacteria and help in fighting infection of D. discoideum with potential pathogens. Here, we focus on a large group of gene products that structurally belong to the saposin-like protein (SAPLIP) family and which members we named provisionally Apls (amoebapore-like peptides) according to their similarity to a comprehensively studied antimicrobial and cytotoxic pore-forming protein of the protozoan parasite Entamoeba histolytica. We focused on AplD because it is the only Apl gene that is reported to be primarily transcribed further during the multicellular stages such as the mobile slug stage. Upon knock-out (KO) of the gene, aplD− slugs became highly vulnerable to virulent Klebsiella pneumoniae. AplD− slugs harbored bacterial clumps in their interior and were unable to slough off the pathogen in their slime sheath. Re-expression of AplD in aplD− slugs rescued the susceptibility toward K. pneumoniae. The purified recombinant protein rAplD formed pores in liposomes and was also capable of permeabilizing the membrane of live Bacillus megaterium. We propose that the multifarious Apl family of D. discoideum comprises antimicrobial effector polypeptides that are instrumental to interact with bacteria and their phospholipid membranes. The variety of its members would allow a complementary and synergistic action against a variety of microbes, which the amoeba encounters in its environment.
Collapse
Affiliation(s)
| | - Moritz Bitzhenner
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Gilmartin AA, Petri WA. Exploring the mechanism of amebic trogocytosis: the role of amebic lysosomes. MICROBIAL CELL 2017; 5:1-3. [PMID: 29354646 PMCID: PMC5772035 DOI: 10.15698/mic2018.01.606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Allissia A Gilmartin
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - William A Petri
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Pathology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Mares RE, Ramos MA. An amebic protein disulfide isomerase (PDI) complements the yeast PDI1 mutation but is unable to support cell viability under ER or thermal stress. FEBS Open Bio 2017; 8:49-55. [PMID: 29321956 PMCID: PMC5757170 DOI: 10.1002/2211-5463.12350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, protein disulfide isomerases (PDI) are oxidoreductases that catalyze the proper disulfide bond formation during protein folding. The pathobiology of the protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, depends on secretion of several virulence factors, such as pore‐forming peptides and cysteine proteinases. Although the native conformation of these factors is stabilized by disulfide bonds, there is little information regarding the molecular machinery involved in the oxidative folding of amebic proteins. Whereas testing gene function in their physiological background would be the most suitable approach, we have taken advantage of the cellular benefits offered by the yeast Saccharomyces cerevisiae (as a model of eukaryotic cell) to examine the functional role of an amebic PDI (EhPDI). As the yeast PDI homolog is essential for cell viability, a functional complementation assay was carried out to test the ability of EhPDI to circumvent the lethal phenotype of a yeast PDI1 mutant. Also, its proficiency under stressful conditions was explored by examining the survival outcome following endoplasmic reticulum (ER) stress induced by a reductant agent (DTT) or thermal stress promoted by a nonpermissive temperature (37 °C). Our results indicate that EhPDI is functionally active when physiological conditions are stable. Nonetheless, when conditions are stressful (e.g., by the accumulation of misfolded proteins in the ER compartment), its functionality is exceeded, suggesting an inability to prevent unfolding, suppress aggregation, or assist refolding of proteins. Despite the latter, our findings constitute the initial step toward determining the participation of EhPDI in cellular mechanisms related to protein homeostasis.
Collapse
Affiliation(s)
- Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería Universidad Autónoma de Baja California Tijuana Baja California México
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería Universidad Autónoma de Baja California Tijuana Baja California México
| |
Collapse
|
17
|
Krishnamoorthy A, Witkowski A, Tran JJ, Weers PMM, Ryan RO. Characterization of secondary structure and lipid binding behavior of N-terminal saposin like subdomain of human Wnt3a. Arch Biochem Biophys 2017; 630:38-46. [PMID: 28754322 DOI: 10.1016/j.abb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Wnt signaling is essential for embryonic development and adult homeostasis in multicellular organisms. A conserved feature among Wnt family proteins is the presence of two structural domains. Within the N-terminal (NT) domain there exists a motif that is superimposable upon saposin-like protein (SAPLIP) family members. SAPLIPs are found in plants, microbes and animals and possess lipid surface seeking activity. To investigate the function of the Wnt3a saposin-like subdomain (SLD), recombinant SLD was studied in isolation. Bacterial expression of this Wnt fragment was achieved only when the core SLD included 82 NT residues of Wnt3a (NT-SLD). Unlike SAPLIPs, NT-SLD required the presence of detergent to achieve solubility at neutral pH. Deletion of two hairpin loop extensions present in NT-SLD, but not other SAPLIPs, had no effect on the solubility properties of NT-SLD. Far UV circular dichroism spectroscopy of NT-SLD yielded 50-60% α-helix secondary structure. Limited proteolysis of isolated NT-SLD in buffer and detergent micelles showed no differences in cleavage kinetics. Unlike prototypical saposins, NT-SLD exhibited weak membrane-binding affinity and lacked cell lytic activity. In cell-based canonical Wnt signaling assays, NT-SLD was unable to induce stabilization of β-catenin or modulate the extent of β-catenin stabilization induced by full-length Wnt3a. Taken together, the results indicate neighboring structural elements within full-length Wnt3a affect SLD conformational stability. Moreover, SLD function(s) in Wnt proteins appear to have evolved away from those commonly attributed to SAPLIP family members.
Collapse
Affiliation(s)
- Aparna Krishnamoorthy
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jesse J Tran
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Robert O Ryan
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
18
|
Abstract
Entamoeba histolytica ingests fragments of live host cells in a nibbling-like process termed amebic trogocytosis. Amebic trogocytosis is required for cell killing and contributes to tissue invasion, which is a hallmark of invasive amebic colitis. Work done prior to the discovery of amebic trogocytosis showed that acid vesicles are required for amebic cytotoxicity. In the present study, we show that acidified lysosomes are required for amebic trogocytosis and cell killing. Interference with lysosome acidification using ammonium chloride, a weak base, or concanamycin A, a vacuolar H+ ATPase inhibitor, decreased amebic trogocytosis and amebic cytotoxicity. Our data suggest that the inhibitors do not impair the ingestion of an initial fragment but rather block continued trogocytosis and the ingestion of multiple fragments. The acidification inhibitors also decreased phagocytosis, but not fluid-phase endocytosis. These data suggest that amebic lysosomes play a crucial role in amebic trogocytosis, phagocytosis, and cell killing.IMPORTANCEE. histolytica is a protozoan parasite that is prevalent in low-income countries, where it causes potentially fatal diarrhea, dysentery, and liver abscesses. Tissue destruction is a hallmark of invasive E. histolytica infection. The parasite is highly cytotoxic to a wide range of human cells, and parasite cytotoxic activity is likely to drive tissue destruction. E. histolytica is able to kill human cells through amebic trogocytosis. This process also contributes to tissue invasion. Trogocytosis has been observed in other organisms; however, little is known about the mechanism in any system. We show that interference with lysosomal acidification impairs amebic trogocytosis, phagocytosis, and cell killing, indicating that amebic lysosomes are critically important for these processes.
Collapse
|
19
|
Malinina L, Patel DJ, Brown RE. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annu Rev Biochem 2017; 86:609-636. [PMID: 28375742 DOI: 10.1146/annurev-biochem-061516-044445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| |
Collapse
|
20
|
All-atom molecular dynamics simulations of lung surfactant protein B: Structural features of SP-B promote lipid reorganization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3082-3092. [DOI: 10.1016/j.bbamem.2016.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 01/07/2023]
|
21
|
Walther FJ, Gordon LM, Waring AJ. Design of Surfactant Protein B Peptide Mimics Based on the Saposin Fold for Synthetic Lung Surfactants. Biomed Hub 2016; 1. [PMID: 28503550 PMCID: PMC5424708 DOI: 10.1159/000451076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the saposin or saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here, we review the synthesis, molecular biophysics and activity of synthetic analogs of saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Andrä J, Gutsmann T, Garidel P, Brandenburg K. Invited review: Mechanisms of endotoxin neutralization by synthetic cationic compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120050201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A basic challenge in the treatment of septic patients in critical care units is the release of bacterial pathogenicity factors such as lipopolysaccharide (LPS, endotoxin) from the cell envelope of Gram-negative bacteria due to killing by antibiotics. LPS aggregates may interact with serum and membrane proteins such as LBP (lipopolysaccharide-binding protein) and CD14 leading to the observed strong reaction of the immune system. Thus, an effective treatment of patients infected by Gram-negative bacteria must comprise beside bacterial killing the neutralization of endotoxins. Here, data are summarized for synthetic compounds indicating the stepwise development to very effective LPS-neutralizing agents. These data include synthetic peptides, based on the endotoxin-binding domains of natural binding proteins such as lactoferrin, Limulus anti-LPS factor, NK-lysin, and cathelicidins or based on LPS sequestering polyamines. Many of these compounds could be shown to act not only in vitro, but also in vivo (e.g . in animal models of sepsis), and might be useful in future clinical trials and in sepsis therapy.
Collapse
Affiliation(s)
- Jörg Andrä
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Patrick Garidel
- Institut für Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany,
| |
Collapse
|
23
|
Role of cysteine residues in the redox-regulated oligomerization and nucleotide binding to EhRabX3. Mol Biochem Parasitol 2016; 208:84-90. [PMID: 27485554 DOI: 10.1016/j.molbiopara.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
The enteric protozoan parasite, Entamoeba histolytica, an etiological agent of amebiasis, is involved in the adhesion and destruction of human tissues. Worldwide, the parasite causes about 50 million cases of amebiasis and 100,000 deaths annually. EhRabX3, a unique amoebic Rab GTPase with tandem G-domains, possesses an unusually large number of cysteine residues in its N-terminal domain. Crystal structure of EhRabX3 revealed an intra-molecular disulfide bond between C39 and C163 which is critical for maintaining the 3-dimensional architecture and biochemical function of this protein. The remaining six cysteine residues were found to be surface exposed and predicted to be involved in inter-molecular disulfide bonds. In the current study, using biophysical and mutational approaches, we have investigated the role of the cysteine residues in the assembly of EhRabX3 oligomer. The self-association of EhRabX3 is found to be redox sensitive, in vitro. Furthermore, the oligomeric conformation of EhRabX3 failed to bind and exchange the guanine nucleotide, indicating structural re-organization of the active site. Altogether, our results provide valuable insights into the redox-dependent oligomerization of EhRabX3 and its implication on nucleotide binding.
Collapse
|
24
|
Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:404-419. [PMID: 28357378 PMCID: PMC5354568 DOI: 10.15698/mic2016.09.526] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 02/03/2023]
Abstract
ETIOLOGY Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. Transmission: Trichomoniasis is transmitted by sexual intercourse and transmission via fomites is rare. Epidemiology, incidence and prevalence: The WHO estimates an incidence of 276 million new cases each year and prevalence of 187 million of infected individuals. However, the infection is not notifiable. Pathology/Symptomatology: The T. vaginalis infection results in a variety of clinical manifestations - in most cases the patients are asymptomatic, but some may develop signs typically associated to the disease. Importantly, the main issue concerning trichomoniasis is its relationship with serious health consequences such as cancer, adverse pregnancy outcomes, infertility, and HIV acquisition. Molecular mechanisms of infection: To achieve success in parasitism trichomonads develop a complex process against the host cells that includes dependent- and independent-contact mechanisms. This multifactorial pathogenesis includes molecules such as soluble factors, secreted proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence and cytotoxicity against the host cells. Treatment and curability: The treatment with metronidazole or tinidazole is recommended; however, cure failures remain problematic due to noncompliance, reinfection and/or lack of treatment of sexual partners, inaccurate diagnosis, or drug resistance. Therefore, new therapeutic alternatives are urgently needed. Protection: Strategies for protection including sexual behavior, condom usage, and therapy have not contributed to the decrease on disease prevalence, pointing to the need for innovative approaches. Vaccine development has been hampered by the lack of long-lasting humoral immunity associated to the absence of good animal models.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin. Sci Rep 2015; 5:13901. [PMID: 26354528 PMCID: PMC4564812 DOI: 10.1038/srep13901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023] Open
Abstract
Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl.
Collapse
|
26
|
Olmeda B, García‐Álvarez B, Gómez MJ, Martínez‐Calle M, Cruz A, Pérez‐Gil J. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 2015; 29:4236-47. [DOI: 10.1096/fj.15-273458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bárbara Olmeda
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | | | - Manuel J. Gómez
- Centro de Astrobiología (INTA‐CSIC), Torrejón de ArdozMadridSpain
| | - Marta Martínez‐Calle
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Antonio Cruz
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Jesús Pérez‐Gil
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| |
Collapse
|
27
|
Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31:442-52. [PMID: 26070402 DOI: 10.1016/j.pt.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica was named 'histolytica' (from histo-, 'tissue'; lytic-, 'dissolving') for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that, after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. We review this process, termed 'amoebic trogocytosis' (trogo-, 'nibble'), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. 'Nibbling' processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Michalek M, Leippe M. Mechanistic insights into the lipid interaction of an ancient saposin-like protein. Biochemistry 2015; 54:1778-86. [PMID: 25715682 DOI: 10.1021/acs.biochem.5b00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The members of the expanding family of saposin-like proteins (SAPLIPs) have various biological functions in plants, animals, and humans. In addition to a similar protein backbone, these proteins have in common the fact that they interact with lipid membranes. According to their phylogenetic position, it has long been thought that amoeboid protozoans produce archetypes of SAPLIPs and that these are lytic proteins that can perforate membranes of prokaryotic and eukaryotic target cells. Here, we show that an amoebic SAPLIP from Entamoeba invadens does not form lytic pores in membranes but displays several characteristics that are known from human saposins. The protein named invaposin changes the conformation from a closed to an open form in the presence of lipid membranes, acts in a pH-dependent manner, selectively binds anionic lipids, aggregates lipid vesicles of the preferred composition, and dimerizes upon acidification. Our data indicate that the principal features of the lipid-binding saposins evolved long before the appearance of the vertebrate lineage and push the origin of saposins even deeper down the phylogenetic tree to unicellular organisms.
Collapse
Affiliation(s)
- Matthias Michalek
- Zoological Institute, Comparative Immunobiology, University of Kiel , Olshausenstrasse 40, 24098 Kiel, Germany
| | | |
Collapse
|
29
|
Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). BIOMED RESEARCH INTERNATIONAL 2015; 2015:286972. [PMID: 25695056 PMCID: PMC4324885 DOI: 10.1155/2015/286972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stressful conditions. The EhPDI enzyme (a 38 kDa polypeptide with two active thioredoxin-like domains) has been used as a model to gain insights into protein folding and disulfide bond formation in E. histolytica. Here, we performed a functional complementation assay, using a ΔdsbC mutant of E. coli, to test whether EhPDI exhibits isomerase activity in vivo. Our preliminary results showed that EhPDI exhibits isomerase activity; however, further mutagenic analysis revealed significant differences in the functional role of each thioredoxin-like domain. Additional studies confirmed that EhPDI protects heat-labile enzymes against thermal inactivation, extending our knowledge about its chaperone-like activity. The characterization of EhPDI, as an oxidative folding catalyst with chaperone-like function, represents the initial step to dissect the molecular mechanisms involved in protein folding in E. histolytica.
Collapse
|
30
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
31
|
Leippe M. Pore-forming toxins from pathogenic amoebae. Appl Microbiol Biotechnol 2014; 98:4347-53. [PMID: 24676751 DOI: 10.1007/s00253-014-5673-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Abstract
Some amoeboid protozoans are facultative or obligate parasites in humans and bear an enormous cytotoxic potential that can result in severe destruction of host tissues and fatal diseases. Pathogenic amoebae produce soluble pore-forming polypeptides that bind to prokaryotic and eukaryotic target cell membranes and generate pores upon insertion and oligomerization. This review summerizes the current knowledge of such small protein toxins from amoebae, compares them with related proteins from other species, focuses on their three-dimensional structures, and gives insights into divergent activation mechanisms. The potential use of pore-forming toxins in biotechnology will be briefly outlined.
Collapse
Affiliation(s)
- Matthias Leippe
- Zoological Institute, Zoophysiology, University of Kiel, Olshausenstrasse 40, 24098, Kiel, Germany,
| |
Collapse
|
32
|
de Guevara YLL, Hidalgo OB, Faure R, Fidalgo LM. In vitro interaction between SURFACEN® and surfactant protein A against Leishmania amazonensis. Chemotherapy 2014; 59:247-50. [PMID: 24401208 DOI: 10.1159/000354771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is caused by a parasite of the Leishmania genus, affecting more than 12 million people in 98 countries. The control of leishmaniasis remains a serious problem. There are currently no vaccines for leishmaniasis. The drugs available are toxic, expensive and frequently ineffective. The in vitro activity of SURFACEN® and SP-A against Leishmania amazonensis was evaluated. The combination of both products resulted in a synergic pharmacology effect, demonstrated by a fractional inhibitory concentration index <0.5. A more effective combination was a SURFACEN/SP-A ratio of 4:1, using a method of fixed ratio. The therapeutic effect of SURFACEN and SP-A as antileishmanial compounds was demonstrated, with a potentiation of activity when they were incubated in conjunction. Our results propose an exploration of these products in order to design new formulations against the Leishmania parasite.
Collapse
|
33
|
Mason L, Amani P, Cross M, Baker J, Bailey UM, Jones MK, Gasser RB, Hofmann A. The Relevance of Structural Biology in Studying Molecules Involved in Parasite–Host Interactions: Potential for Designing New Interventions. Aust J Chem 2014. [DOI: 10.1071/ch14304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New interventions against infectious diseases require a detailed knowledge and understanding of pathogen–host interactions and pathogeneses at the molecular level. The combination of the considerable advances in systems biology research with methods to explore the structural biology of molecules is poised to provide new insights into these areas. Importantly, exploring three-dimensional structures of proteins is central to understanding disease processes, and establishing structure–function relationships assists in identification and assessment of new drug and vaccine targets. Frequently, the molecular arsenal deployed by invading pathogens, and in particular parasites, reveals a common theme whereby families of proteins with conserved three-dimensional folds play crucial roles in infectious processes, but individual members of such families show high levels of specialisation, which is often achieved through grafting particular structural features onto the shared overall fold. Accordingly, the applicability of predictive methodologies based on the primary structure of proteins or genome annotations is limited, particularly when thorough knowledge of molecular-level mechanisms is required. Such instances exemplify the need for experimental three-dimensional structures provided by protein crystallography, which remain an essential component of this area of research. In the present article, we review two examples of key protein families recently investigated in our laboratories, which could represent intervention targets in the metabolome or secretome of parasites.
Collapse
|
34
|
Cabán-Hernández K, Espino AM. Differential expression and localization of saposin-like protein 2 of Fasciola hepatica. Acta Trop 2013; 128:591-7. [PMID: 23988299 DOI: 10.1016/j.actatropica.2013.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022]
Abstract
FhSAP2 is a novel antigen isolated from the adult fluke of Fasciola hepatica. Based on sequence similarity with amoebapores and other related proteins, it belongs to the saposin-like protein (SAPLIP) family. FhSAP2 has been shown to be highly immunogenic and capable of inducing protective immune responses in mice and rabbits challenged with F. hepatica. Moreover, FhSAP2 is also reactive with sera from humans with chronic fascioliasis. In the present study, we investigated the expression of FhSAP2 in various developmental stages of F. hepatica by qPCR and demonstrated that FhSAP2-mRNA species are up-regulated in undeveloped eggs, newly excysted juveniles, and adults, but down-regulated in the miracidium stage. Monoclonal antibodies against FhSAP2 were produced, and two clones that are positive to F. hepatica whole-body extract, but not reactive with extracts from other trematodes, were selected, expanded and used for histolocalization studies. Confocal immunofluorescence revealed the presence of native FhSAP2 in epithelial cells surrounding the gut, toward the outermost part of the tegument, and toward the tegumental cells of both adults and newly excysted juveniles.
Collapse
Affiliation(s)
- Kimberly Cabán-Hernández
- Laboratory of Immunology and Molecular Parasitology, University of Puerto Rico, School of Medicine, Office A-386, San Juan 00936-5067, Puerto Rico
| | | |
Collapse
|
35
|
Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nat Chem Biol 2012; 9:37-42. [PMID: 23143413 DOI: 10.1038/nchembio.1116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/15/2012] [Indexed: 11/08/2022]
Abstract
Human pathogens often produce soluble protein toxins that generate pores inside membranes, resulting in the death of target cells and tissue damage. In pathogenic amoebae, this has been exemplified with amoebapores of the enteric protozoan parasite Entamoeba histolytica. Here we characterize acanthaporin, to our knowledge the first pore-forming toxin to be described from acanthamoebae, which are free-living, bacteria-feeding, unicellular organisms that are opportunistic pathogens of increasing importance and cause severe and often fatal diseases. We isolated acanthaporin from extracts of virulent Acanthamoeba culbertsoni by tracking its pore-forming activity, molecularly cloned the gene of its precursor and recombinantly expressed the mature protein in bacteria. Acanthaporin was cytotoxic for human neuronal cells and exerted antimicrobial activity against a variety of bacterial strains by permeabilizing their membranes. The tertiary structures of acanthaporin's active monomeric form and inactive dimeric form, both solved by NMR spectroscopy, revealed a currently unknown protein fold and a pH-dependent trigger mechanism of activation.
Collapse
|
36
|
Olmeda B, García-Álvarez B, Pérez-Gil J. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:209-22. [DOI: 10.1007/s00249-012-0858-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 02/06/2023]
|
37
|
Pearson MS, Tribolet L, Cantacessi C, Periago MV, Valero MA, Valerio MA, Jariwala AR, Hotez P, Diemert D, Loukas A, Bethony J. Molecular mechanisms of hookworm disease: stealth, virulence, and vaccines. J Allergy Clin Immunol 2012; 130:13-21. [PMID: 22742835 DOI: 10.1016/j.jaci.2012.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
Hookworms produce a vast repertoire of structurally and functionally diverse molecules that mediate their long-term survival and pathogenesis within a human host. Many of these molecules are secreted by the parasite, after which they interact with critical components of host biology, including processes that are key to host survival. The most important of these interactions is the hookworm's interruption of nutrient acquisition by the host through its ingestion and digestion of host blood. This results in iron deficiency and eventually the microcytic hypochromic anemia or iron deficiency anemia that is the clinical hallmark of hookworm infection. Other molecular mechanisms of hookworm infection cause a systematic suppression of the host immune response to both the parasite and to bystander antigens (eg, vaccines or allergens). This is achieved by a series of molecules that assist the parasite in the stealthy evasion of the host immune response. This review will summarize the current knowledge of the molecular mechanisms used by hookworms to survive for extended periods in the human host (up to 7 years or longer) and examine the pivotal contributions of these molecular mechanisms to chronic hookworm parasitism and host clinical outcomes.
Collapse
Affiliation(s)
- Mark S Pearson
- Center for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Cairns, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The saposin-like protein SPP-12 is an antimicrobial polypeptide in the pharyngeal neurons of Caenorhabditis elegans and participates in defence against a natural bacterial pathogen. Biochem J 2012; 445:205-12. [PMID: 22519640 DOI: 10.1042/bj20112102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caenopores are antimicrobial and pore-forming polypeptides in Caenorhabditis elegans belonging to the saposin-like protein superfamily and are considered important elements of the nematode's intestinal immune system. In the present study, we demonstrate that, unlike the other members of the multifarious gene family (spps) coding for caenopores, spp-12 is expressed exclusively in two pharyngeal neurons. Recombinantly expressed SPP-12 binds to phospholipid membranes and forms pores in a pH-dependent manner characteristic of caenopores. Moreover, SPP-12 kills viable Gram-positive bacteria, yeast cells and amoebae by permeabilizing their membranes, suggesting a wide-target cell spectrum. A spp-12 knockout mutant is more susceptible to pathogenic Bacillus thuringiensis than wild-type worms and is tolerant to non-pathogenic bacteria. By contrast, SPP-1, a caenopore, whose gene is expressed only in the intestine and reported to be regulated by the same pathway as spp-12, is apparently non-protective against pathogenic B. thuringiensis, although it also does display antimicrobial activity. The transcription of spp-1 is down-regulated in wild-type worms in the presence of pathogenic B. thuringiensis and a spp-1 knockout mutant is hyposusceptible to this bacterium. This implies that SPP-12, but not SPP-1, contributes to resistance against B. thuringiensis, a natural pathogen of the nematode.
Collapse
|
39
|
Topology and lipid selectivity of pulmonary surfactant protein SP-B in membranes: Answers from fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1717-25. [DOI: 10.1016/j.bbamem.2012.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 01/13/2023]
|
40
|
Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC. Trichomonas vaginalis pathobiology new insights from the genome sequence. ADVANCES IN PARASITOLOGY 2012; 77:87-140. [PMID: 22137583 DOI: 10.1016/b978-0-12-391429-3.00006-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The draft genome of the common sexually transmitted pathogen Trichomonas vaginalis encodes one of the largest known proteome with 60,000 candidate proteins. This provides parasitologists and molecular cell biologists alike with exciting, yet challenging, opportunities to unravel the molecular features of the parasite's cellular systems and potentially the molecular basis of its pathobiology. Here, recent investigations addressing selected aspects of the parasite's molecular cell biology are discussed, including surface and secreted virulent factors, membrane trafficking, cell signalling, the degradome, and the potential role of RNA interference in the regulation of gene expression.
Collapse
Affiliation(s)
- Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Entamoeba histolytica is the causative agent of amoebiasis in humans and is responsible for an estimated 100 000 deaths annually, making it the second leading cause of death due to a protozoan parasite after Plasmodium. Pathogenesis appears to result from the potent cytotoxic activity of the parasite, which kills host cells within minutes. The mechanism is unknown, but progress has been made in determining that cytotoxicity requires parasite Gal (galactose)/GalNAc (N-acetylgalactosamine) lectin-mediated adherence, target cell calcium influx, dephosphorylation and activation of caspase 3. Putative cytotoxic effector proteins such as amoebapores, proteases and various parasite membrane proteins have also been identified. Nonetheless the bona fide cytotoxic effector molecules remain unknown and it is unclear how the lethal hit is delivered. To better understand the basic mechanism of pathogenesis and to enable the development of new therapeutics, more work will be needed in order to determine how the parasite elicits host cell death.
Collapse
|
42
|
Insights into the membrane interactions of the saposin-like proteins Na-SLP-1 and Ac-SLP-1 from human and dog hookworm. PLoS One 2011; 6:e25369. [PMID: 21991310 PMCID: PMC3184995 DOI: 10.1371/journal.pone.0025369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/01/2011] [Indexed: 12/03/2022] Open
Abstract
Saposin-like proteins (SAPLIPs) from soil-transmitted helminths play pivotal roles in host-pathogen interactions and have a high potential as targets for vaccination against parasitic diseases. We have identified two non-orthologous SAPLIPs from human and dog hookworm, Na-SLP-1 and Ac-SLP-1, and solved their three-dimensional crystal structures. Both proteins share the property of membrane binding as monitored by liposome co-pelleting assays and monolayer adsorption. Neither SAPLIP displayed any significant haemolytic or bactericidal activity. Based on the structural information, as well as the results from monolayer adsorption, we propose models of membrane interactions for both SAPLIPs. Initial membrane contact of the monomeric Na-SLP-1 is most likely by electrostatic interactions between the membrane surface and a prominent basic surface patch. In case of the dimeric Ac-SLP-1, membrane interactions are most likely initiated by a unique tryptophan residue that has previously been implicated in membrane interactions in other SAPLIPs.
Collapse
|
43
|
Ralston KS, Petri WA. Tissue destruction and invasion by Entamoeba histolytica. Trends Parasitol 2011; 27:254-63. [PMID: 21440507 PMCID: PMC3104091 DOI: 10.1016/j.pt.2011.02.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 11/17/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, a disease that is a major source of morbidity and mortality in the developing world. The potent cytotoxic activity of the parasite appears to underlie disease pathogenesis, although the mechanism is unknown. Recently, progress has been made in determining that the parasite activates apoptosis in target cells and some putative effectors have been identified. Recent studies have also begun to unravel the host genetic determinants that influence infection outcome. Thus, we are beginning to get a clearer picture of how this parasite manages to infect, invade and ultimately inflict devastating tissue destruction.
Collapse
Affiliation(s)
- Katherine S. Ralston
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA
| | - William A. Petri
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA
| |
Collapse
|
44
|
Ramos MA, Mares RE, Magaña PD, Rivas ID, Meléndez-López SG. Entamoeba histolytica: Biochemical characterization of a protein disulfide isomerase. Exp Parasitol 2011; 128:76-81. [DOI: 10.1016/j.exppara.2011.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/05/2011] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
|
45
|
Hayat F, Moseley E, Salahuddin A, Van Zyl RL, Azam A. Antiprotozoal activity of chloroquinoline based chalcones. Eur J Med Chem 2011; 46:1897-905. [PMID: 21377771 DOI: 10.1016/j.ejmech.2011.02.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
46
|
Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 2010; 427:477-88. [PMID: 20187872 DOI: 10.1042/bj20091607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphatidylglycerol is a widely used mimetic to study the effects of AMPs (antimicrobial peptides) on the bacterial cytoplasmic membrane. However, the antibacterial activities of novel NK-2-derived AMPs could not be sufficiently explained by using this simple model system. Since the LPS (lipopolysaccharide)-containing outer membrane is the first barrier of Gram-negative bacteria, in the present study we investigated interactions of NK-2 and a shortened variant with viable Escherichia coli WBB01 and Proteus mirabilis R45, and with model membranes composed of LPS isolated from these two strains. Differences in net charge and charge distribution of the two LPS have been proposed to be responsible for the differential sensitivity of the respective bacteria to other AMPs. As imaged by TEM (transmission electron microscopy) and AFM (atomic force microscopy), NK-2-mediated killing of these bacteria was corroborated by structural alterations of the outer and inner membranes, the release of E. coli cytoplasma, and the formation of unique fibrous structures inside P. mirabilis, suggesting distinct and novel intracellular targets. NK-2 bound to and intercalated into LPS bilayers, and eventually induced the formation of transient heterogeneous lesions in planar lipid bilayers. However, the discriminative activity of NK-2 against the two bacterial strains was independent of membrane intercalation and lesion formation, which both were indistinguishable for the two LPS. Instead, differences in activity originated from the LPS-binding step, which could be demonstrated by NK-2 attachment to intact bacteria, and to solid-supported LPS bilayers on a surface acoustic wave biosensor.
Collapse
|
47
|
Mysliwy J, Dingley AJ, Stanisak M, Jung S, Lorenzen I, Roeder T, Leippe M, Grötzinger J. Caenopore-5: the three-dimensional structure of an antimicrobial protein from Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:323-330. [PMID: 19917307 DOI: 10.1016/j.dci.2009.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 05/28/2023]
Abstract
The caenopore-5 protein encoded by the spp-5 gene is one of the 33 caenopores identified in Caenorhabditis elegans and is a pore-forming peptide which plays an important role in the elimination of Escherichia coli ingested by the worm. Thus, caenopore-5 appears to contribute to the nutrition of the worm while simultaneously protecting the organism against pathogens. Here, three-dimensional heteronuclear NMR spectroscopy was used to solve the solution structure of caenopore-5. The NMR data revealed that two conformers of caenopore-5 exist in solution which differ by the isomerization of the peptide bond of Pro-81. The overall structure of the two caenopore-5 conformers consists of five amphiphatic helices connected by three disulfide bonds. The five helices are arranged in a folded leaf which is the characteristic signature of the SAPLIP family. The structure presented here is the first of an effector protein of the defensive system elucidated for the well-known model organism C. elegans.
Collapse
Affiliation(s)
- Justyna Mysliwy
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cell-free synthesis and combinatorial selective 15N-labeling of the cytotoxic protein amoebapore A from Entamoeba histolytica. Protein Expr Purif 2009; 68:22-7. [DOI: 10.1016/j.pep.2009.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 11/21/2022]
|
49
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|
50
|
Martin-Visscher LA, Gong X, Duszyk M, Vederas JC. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 2009; 284:28674-81. [PMID: 19692336 PMCID: PMC2781411 DOI: 10.1074/jbc.m109.036459] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Carnocyclin A (CclA) is a potent antimicrobial peptide from Carnobacterium maltaromaticum UAL307 that displays a broad spectrum of activity against numerous Gram-positive organisms. An amide bond links the N and C termini of this bacteriocin, imparting stability and structural integrity to this 60-amino acid peptide. CclA interacts with lipid bilayers in a voltage-dependent manner and forms anion selective pores. Several other circular bacteriocins have been reported, yet only one (enterocin AS-48) has been structurally characterized. We have now determined the solution structure of CclA by NMR and further examined its anion binding and membrane channel properties. The results reveal that CclA preferentially binds halide anions and has a structure that is surprisingly similar to that of AS-48 despite low sequence identity, different oligomeric state, and disparate function. CclA folds into a compact globular bundle, comprised of four helices surrounding a hydrophobic core. NMR studies show two fluoride ion binding modes for CclA. Our findings suggest that although other circular bacteriocins are likely to have diverse mechanisms of action, many may have a common structural motif. This shared three-dimensional arrangement resembles the fold of mammalian saposins, peptides that either directly lyse membranes or serve as activators of lipid-degrading enzymes.
Collapse
|