1
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez DG, Athonvarangkul D, Shin J, Dann P, Haberman AM, Kim LK, Ferguson SM, Choi J, Wysolmerski J. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci 2024; 81:29. [PMID: 38212474 PMCID: PMC10784359 DOI: 10.1007/s00018-023-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gabriel Talaia
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wonnam Kim
- Division of Phamacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Junho Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaehun Shin
- Integrated Science Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Shawn M Ferguson
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Zhang M, Ma Z, Qi H, Cui X, Li R, Gao X. Comparative transcriptomic analysis of mammary gland tissues reveals the critical role of GPR110 in palmitic acid-stimulated milk protein and fat synthesis. Br J Nutr 2023; 130:1665-1677. [PMID: 36946032 DOI: 10.1017/s0007114523000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The G protein-coupled receptors (GPCR) sensing nutritional signals (amino acids, fatty acids, glucose, etc.) are not fully understood. In this research, we used transcriptome sequencing to analyse differentially expressed genes (DEG) in mouse mammary gland tissues at puberty, lactation and involution stages, in which eight GPCR were selected out and verified by qRT-PCR assay. It was further identified the role of GPR110-mediating nutrients including palmitic acid (PA) and methionine (Met) to improve milk synthesis using mouse mammary epithelial cell line HC11. PA but not Met affected GPR110 expression in a dose-dependent manner. GPR110 knockdown decreased milk protein and fat synthesis and cell proliferation and blocked the stimulation of PA on mechanistic target of rapamycin (mTOR) phosphorylation and sterol-regulatory element binding protein 1c (SREBP-1c) expression. In summary, these experimental results disclose DEG related to lactation and reveal that GPR110 mediates PA to activate the mTOR and SREBP-1c pathways to promote milk protein and fat synthesis.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| | - Zonghua Ma
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| | - Hao Qi
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| | - Xu Cui
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| | - Rui Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou434025, People's Republic of China
| |
Collapse
|
3
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez D, Athonvarangkul D, Shin J, Dann P, Haberman A, Kim LK, Ferguson S, Choi J, Wysolmerski J. Intracellular Calcium links Milk Stasis to Lysosome Dependent Cell Death by Activating a TGFβ3/TFEB/STAT3 Pathway Early during Mammary Gland Involution. RESEARCH SQUARE 2023:rs.3.rs-3030763. [PMID: 37398309 PMCID: PMC10312953 DOI: 10.21203/rs.3.rs-3030763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFβ signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFβ signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Yale School of Medicine: Yale University School of Medicine
| | | | - Gabriel Talaia
- Yale School of Medicine: Yale University School of Medicine
| | | | | | | | | | - David Gonzalez
- Yale School of Medicine: Yale University School of Medicine
| | | | | | - Pamela Dann
- Yale School of Medicine: Yale University School of Medicine
| | - Ann Haberman
- Yale School of Medicine: Yale University School of Medicine
| | | | - Shawn Ferguson
- Yale School of Medicine: Yale University School of Medicine
| | | | | |
Collapse
|
4
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
5
|
Study and Experimental Validation of the Functional Components and Mechanisms of Hemerocallis citrina Baroni in the Treatment of Lactation Deficiency. Foods 2021; 10:foods10081863. [PMID: 34441640 PMCID: PMC8391212 DOI: 10.3390/foods10081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
The function of Hemerocallis citrina Baroni (daylily) on promoting lactation is reported in several ancient Chinese medicine books. However, nowadays, there is no conclusive data to support this statement. In this study, we investigated the effect of Hemerocallis citrina Baroni extract (HCE) on lactation insufficiency in chronic unpredictable mild stress (CUMS) dams and further explored the mechanism and functional components through network pharmacology. The results showed that HCE could increase the offspring’s weight, serum prolactin (PRL), and oxytocin (OT) level of CUMS dams. Network pharmacology analysis revealed that the facilitation of HCE on lactation is the result of the comprehensive action of 62 components on 209 targets and 260 pathways, among this network, quercetin, kaempferol, thymidine, etc., were the vital material basis, signal transducer and activator of transcription 3 (STAT3), mitogen activity protein kinase 1 (MAPK1), tumor protein P53 (TP53), etc., were the core targets, and the prolactin signaling pathway was the core pathway. In addition, verification test results showed that HCE regulated the abnormal expression of the prolactin signaling pathway, including STAT3, cyclin D1 (CCND1), MAPK1, MAPK8, nuclear factor NF-kappa-B p105 subunit (NFKB1), and tyrosine-protein kinase (JAK2). In conclusion, HCE exhibited a facilitation of lactation insufficiency, in which quercetin, kaempferol, thymidine, etc., were the most important material basis. The mechanism of this promotional effect is mediated by the prolactin signaling pathway in mammary gland.
Collapse
|
6
|
Xuan R, Chao T, Wang A, Zhang F, Sun P, Liu S, Guo M, Wang G, Ji Z, Wang J, Cheng M. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One 2020; 15:e0234427. [PMID: 32511270 PMCID: PMC7279595 DOI: 10.1371/journal.pone.0234427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating mammary gland development and lactation. We previously analyzed miRNA expression profiles in Laoshan dairy goat mammary glands at the early (20 d postpartum), peak (90 d postpartum) and late lactation (210 d postpartum) stages. To further enrich and clarify the miRNA expression profiles during the lactation physiological cycle, we sequenced miRNAs in the mammary gland tissues of Laoshan dairy goats at three newly selected stages: the late lactation (240 d postpartum), dry period (300 d postpartum) and late gestation (140 d after mating) stages. We obtained 4038 miRNAs and 385 important miRNA families, including mir-10, let-7 and mir-9. We also identified 754 differentially expressed miRNAs in the mammary gland tissue at the 3 different stages and 6 groups of miRNA clusters that had unique expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that GO terms such as mammary gland development (GO:0030879) and mammary gland morphogenesis (GO:0060443) and important signaling pathways, including the insulin signaling pathway (chx04910), hippo signaling pathway (chx04390) and estrogen signaling pathway (chx04915), were enriched. We screened miRNAs and potential target genes that may be involved in the regulation of lactation, mammary gland growth and differentiation, cell apoptosis, and substance transport and synthesis and detected the expression patterns of important genes at the three stages. These miRNAs and critical target genes may be important factors for mammary gland development and lactation regulation and potentially valuable molecular markers, which may provide a theoretical reference for further investigation of mammary gland physiology.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Fuhong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ping Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Maosen Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao, Shandong Province, P.R. China
| |
Collapse
|
7
|
Wehde BL, Rädler PD, Shrestha H, Johnson SJ, Triplett AA, Wagner KU. Janus Kinase 1 Plays a Critical Role in Mammary Cancer Progression. Cell Rep 2019; 25:2192-2207.e5. [PMID: 30463015 DOI: 10.1016/j.celrep.2018.10.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/18/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
Janus kinases (JAKs) and their downstream STAT proteins play key roles in cytokine signaling, tissue homeostasis, and cancer development. Using a breast cancer model that conditionally lacks Janus kinase 1, we show here that JAK1 is essential for IL-6-class inflammatory cytokine signaling and plays a critical role in metastatic cancer progression. JAK1 is indispensable for the oncogenic activation of STAT1, STAT3, and STAT6 in ERBB2-expressing cancer cells, suggesting that ERBB2 receptor tyrosine kinase complexes do not directly activate these STAT proteins in vivo. A genome-wide gene expression analysis revealed that JAK1 signaling has pleiotropic effects on several pathways associated with cancer progression. We established that FOS and MAP3K8 are targets of JAK1/STAT3 signaling, which promotes tumorsphere formation and cell migration. The results highlight the significance of JAK1 as a rational therapeutic target to block IL-6-class cytokines, which are master regulators of cancer-associated inflammation.
Collapse
Affiliation(s)
- Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stevi J Johnson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R Street, EL01TM, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Cheng AA, Li W, Hernandez LL. Transcriptomic analysis investigating the interaction between peripheral serotonin and high-fat diet feeding on mammary gene expression in midlactation mice. Physiol Genomics 2019; 52:47-55. [PMID: 31814535 DOI: 10.1152/physiolgenomics.00073.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand the role of peripheral serotonin and its interaction with diet in midlactation mammary gene expression, our study uses tryptophan hydroxylase 1 knockout (Tph1-KO) mice fed a high-fat diet (HFD). It has previously been demonstrated that HFD feeding increases inflammatory and immune pathways in peak lactation mammary glands of mice and increases pup mortality in wild-type (WT) mice compared with dams fed a low-fat diet (LFD). Peripheral serotonin inhibition has been associated with resistance to obesity in male mice fed an HFD. Little is known about the function of Tph1 and how peripheral serotonin affects mammary gland function during pregnancy and lactation. In this study, WT and Tph1-KO models were used to investigate global transcriptomic changes in peak lactation mammary glands when dams were fed either an HFD or LFD. WT and Tph1-KO female mice were assigned to either an LFD or HFD beginning at 3 wk of age (n = 4/group). Dams were euthanized on lactation day 11. Differentially expressed genes (DEGs) were first filtered by adjusted P value (cutoff ≤ 0.05) and fold-change (FC, cutoff ≥2). Genes were further filtered by mean normalized read count with a cutoff 310. We did not observe many differentially expressed genes in WT and Tph1-KO dams fed LFD. However, 3,529 DEGs were observed between WT-HFD and Tph1-KO-HFD mice, including cell cycle regulation and MAPK pathways being significantly enriched. Further research is required to completely understand the physiological significance of our results on peak lactation mammary physiology and the contribution of serotonin.
Collapse
Affiliation(s)
- A A Cheng
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - W Li
- United States Department of Agriculture Dairy Forage, Madison, Wisconsin
| | - L L Hernandez
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
10
|
Li H, Wang G, Lin S, Wang C, Zha J. Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp Ther Med 2019; 17:3101-3107. [PMID: 30936981 PMCID: PMC6434258 DOI: 10.3892/etm.2019.7315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
In bronchopulmonary dysplasia (BPD), decreased angiogenesis and alveolarization is associated with pulmonary cell death and inflammation. It is commonly observed in premature infants who required mechanical ventilation and oxygen therapy. Since enhanced interleukin-6 (IL-6) expression has been reported in infants with BPD, it was hypothesized that a decrease in IL-6 may enhance lung inflammation and decrease hyperoxia-induced neonatal lung injury in mice. In the current study, newborn wild-type (WT) and IL-6 null mice were treated with 85% O2 (hyperoxia) or 21% O2 (normoxia) for 96 h. Although the increased volume and decreased quantity of alveoli was triggered by hyperoxia in WT and IL-6 null mice, transcription and translation of proinflammatory cytokines (monocyte chemoattractant protein-1, IL-10, IL-12 and tumor necrosis factor-α) and pulmonary cell death (caspase stimulation and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining) were significantly enhanced in IL-6 null mice compared with WT mice. These results suggest that the crosstalk between inflammation and cell death may be involved in hyperoxia-induced lung injury in BPD. Future treatment approaches for bronchopulmonary dysplasia should be based on the suppression of cytokine expression.
Collapse
Affiliation(s)
- Hengtao Li
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Genzai Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Shuzhu Lin
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Chunyan Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Jianzhong Zha
- Department of Pediatrics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
11
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
12
|
Willi M, Yoo KH, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res 2016; 44:10277-10291. [PMID: 27694626 PMCID: PMC5137441 DOI: 10.1093/nar/gkw844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022] Open
Abstract
Cytokines utilize the transcription factor STAT5 to control cell-specific genes at a larger scale than universal genes, with a mechanistic explanation yet to be supplied. Genome-wide studies have identified putative STAT5-based mammary-specific and universal enhancers, an opportunity to investigate mechanisms underlying their differential response to cytokines. We have now interrogated the integrity and function of both categories of regulatory elements using biological and genetic approaches. During lactation, STAT5 occupies mammary-specific and universal cytokine-responsive elements. Following lactation, prolactin levels decline and mammary-specific STAT5-dependent enhancers are decommissioned within 24 h, while universal regulatory complexes remain intact. These differential sensitivities are linked to STAT5 concentrations and the mammary-specific Stat5 autoregulatory enhancer. In its absence, mammary-specific enhancers, but not universal elements, fail to be fully established. Upon termination of lactation STAT5 binding to a subset of mammary enhancers is substituted by STAT3. No STAT3 binding was observed at the most sensitive STAT5 enhancers suggesting that upon hormone withdrawal their chromatin becomes inaccessible. Lastly, we demonstrate that the mammary-enriched transcription factors GR, ELF5 and NFIB associate with STAT5 at sites lacking bona fide binding motifs. This study provides, for the first time, molecular insight into the differential sensitivities of mammary-specific and universal cytokine-sensing enhancers.
Collapse
Affiliation(s)
- Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Janus Kinase 1 Is Essential for Inflammatory Cytokine Signaling and Mammary Gland Remodeling. Mol Cell Biol 2016; 36:1673-90. [PMID: 27044867 DOI: 10.1128/mcb.00999-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/25/2016] [Indexed: 01/04/2023] Open
Abstract
Despite a wealth of knowledge about the significance of individual signal transducers and activators of transcription (STATs), essential functions of their upstream Janus kinases (JAKs) during postnatal development are less well defined. Using a novel mammary gland-specific JAK1 knockout model, we demonstrate here that this tyrosine kinase is essential for the activation of STAT1, STAT3, and STAT6 in the mammary epithelium. The loss of JAK1 uncouples interleukin-6-class ligands from their downstream effector, STAT3, which leads to the decreased expression of STAT3 target genes that are associated with the acute-phase response, inflammation, and wound healing. Consequently, JAK1-deficient mice exhibit impaired apoptosis and a significant delay in mammary gland remodeling. Using RNA sequencing, we identified several new JAK1 target genes that are upregulated during involution. These include Bmf and Bim, which are known regulators of programmed cell death. Using a BMF/BIM-double-knockout epithelial transplant model, we further validated that the synergistic action of these proapoptotic JAK1 targets is obligatory for the remodeling of the mammary epithelium. The collective results of this study suggest that JAK1 has nonredundant roles in the activation of particular STAT proteins and this tyrosine kinase is essential for coupling inflammatory cytokine signals to the cell death machinery in the differentiated mammary epithelium.
Collapse
|
14
|
Dang HV, Sakai T, Pham TA, Tran DH, Yorita K, Shishido Y, Fukui K. Nucling, a novel apoptosis-associated protein, controls mammary gland involution by regulating NF-κB and STAT3. J Biol Chem 2015; 290:24626-35. [PMID: 26269594 DOI: 10.1074/jbc.m115.673848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Postpartum mammary gland involution is the physiological process by which the lactating gland returns to its pre-pregnant state. In rodent models, the microenvironment of mammary gland involution is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Therefore, a deeper understanding of the physiological regulation of involution may provide in-depth information on breast cancer therapy. We herein identified Nucling as an important regulator of involution of the mammary gland. A knock-out mouse model was generated and revealed that postpartum involution were impaired in mice lacking Nucling. Involution is normally associated with an increase in the activation of NF-κB and STAT3, which is required for the organized regulation of involution, and was observed in WT glands, but not in the absence of Nucling. Furthermore, the loss of Nucling led to the suppression of Calpain-1, IL-6, and C/EBPδ factors, which are known to be essential for normal involution. The number of M2 macrophages, which are crucial for epithelial cell death and adipocyte repopulation after weaning, was also reduced in Nucling-KO glands. Taken together, the results of the present study demonstrated that Nucling played an important role in mammary gland involution by regulating NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Huy Van Dang
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takashi Sakai
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tuan Anh Pham
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Diem Hong Tran
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kazuko Yorita
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuji Shishido
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
15
|
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0126355. [PMID: 26020962 PMCID: PMC4447353 DOI: 10.1371/journal.pone.0126355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2015] [Indexed: 12/11/2022] Open
Abstract
Background Dietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord. Objective We analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio). Methods Beginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study. Results DEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females. Conclusion D3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
Collapse
Affiliation(s)
- Elnaz Moghimi
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Russo J, Santucci-Pereira J, Russo IH. The genomic signature of breast cancer prevention. Genes (Basel) 2014; 5:65-83. [PMID: 24705287 PMCID: PMC3978512 DOI: 10.3390/genes5010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 11/16/2022] Open
Abstract
The breast of parous postmenopausal women exhibits a specific signature that has been induced by a full term pregnancy. This signature is centered in chromatin remodeling and the epigenetic changes induced by methylation of specific genes which are important regulatory pathways induced by pregnancy. Through the analysis of the genes found to be differentially methylated between women of varying parity, multiple positions at which beta-catenin production and use is inhibited were recognized. The biological importance of the pathways identified in this specific population cannot be sufficiently emphasized because they could represent a safeguard mechanism mediating the protection of the breast conferred by full term pregnancy.
Collapse
Affiliation(s)
- Jose Russo
- The Irma H. Russo MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Julia Santucci-Pereira
- The Irma H. Russo MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Irma H Russo
- The Irma H. Russo MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
17
|
Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382:560-569. [PMID: 23541951 PMCID: PMC3748257 DOI: 10.1016/j.mce.2013.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023]
Abstract
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- S Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Puppa MJ, Gao S, Narsale AA, Carson JA. Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia. FASEB J 2013; 28:998-1009. [PMID: 24145720 DOI: 10.1096/fj.13-240580] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation is associated with cachexia-induced skeletal muscle mass loss in cancer. Levels of IL-6 cytokine family members are increased during cancer-related cachexia and induce intracellular signaling through glycoprotein130 (gp130). Although muscle STAT3 and circulating IL-6 are implicated in cancer-induced muscle wasting, there is limited understanding of muscle gp130's role in this process. Therefore, we investigated the role of skeletal muscle gp130 (skm-gp130) in cancer-induced alterations in the regulation of muscle protein turnover. Lewis lung carcinoma (LLC) cells were injected into 8-wk-old skm-gp130-knockout (KO) mice or wild-type mice. Skeletal muscle loss was attenuated by 16% in gp130-KO mice, which coincided with attenuated LLC-induced phosphorylation of muscle STAT3, p38, and FOXO3. gp130 KO did not restore mTOR inhibition or alter AMP-activated protein kinase (AMPK) expression. The induction of atrogin expression and p38 phosphorylation in C2C12 myotubes exposed to LLC-treated medium was attenuated by gp130 inhibition, but mTOR inhibition was not restored. STAT signaling inhibition in LLC-treated myotubes did not attenuate the induction of p38 or AMPK phosphorylation. We concluded that, during LLC-induced cachexia, skm-gp130 regulates muscle mass signaling through STAT3 and p38 for the activation of FOXO3 and atrogin, but does not directly regulate the suppression of mTOR.
Collapse
Affiliation(s)
- Melissa J Puppa
- 1University of South Carolina, Department of Exercise Science, Public Health Research Center, Room 405, 921 Assembly Street, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
19
|
Park KW, Nozell SE, Benveniste EN. Protective role of STAT3 in NMDA and glutamate-induced neuronal death: negative regulatory effect of SOCS3. PLoS One 2012; 7:e50874. [PMID: 23226414 PMCID: PMC3511325 DOI: 10.1371/journal.pone.0050874] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/25/2012] [Indexed: 12/20/2022] Open
Abstract
The present study investigates the involvement of the IL-6 family of cytokines, activation of the transcription factor Signal Transducer and Activator of Transcription-3 (STAT3), and the role of Suppressor Of Cytokine Signaling-3 (SOCS3) in regulating excitotoxic neuronal death in vitro. Biochemical evidence demonstrates that in primary cortical neurons and SH-SY5Y neuroblastoma cells, IL-6 cytokine family members, OSM and IL-6 plus the soluble IL-6R (IL-6/R), prevent NMDA and glutamate-induced neuronal toxicity. As well, OSM and IL-6/R induce tyrosine and serine phosphorylation of STAT3 in primary cortical neurons and SH-SY5Y cells. Studies using Pyridine 6 (P6), a pan-JAK inhibitor, demonstrate that the protective effect of OSM and IL-6/R on neuronal death is mediated by the JAK/STAT3 signaling pathway. In parallel to STAT3 phosphorylation, OSM and IL-6/R induce SOCS3 expression at the mRNA and protein level. P6 treatment inhibits SOCS3 expression, indicating that STAT3 is required for OSM and IL-6/R-induced SOCS3 expression. Lentiviral delivery of SOCS3, an inhibitor of STAT3 signaling, into primary neurons and SH-SY5Y cells inhibits OSM and IL-6/R-induced phosphorylation of STAT3, and also reverses the protective effect of OSM and IL-6/R on NMDA and glutamate-induced neurotoxicity in primary cortical neurons. In addition, treatment with IL-6 cytokines increases expression of the anti-apoptotic protein Bcl-xL and induces activation of the Akt signaling pathway, which are also negatively regulated by SOCS3 expression. Thus, IL-6/R and OSM-induced SOCS3 expression may be an important factor limiting the neuroprotective effects of activated STAT3 against NMDA and glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Keun W. Park
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Susan E. Nozell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Etty N. Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Allen-Petersen BL, Miller MR, Neville MC, Anderson SM, Nakayama KI, Reyland ME. Loss of protein kinase C delta alters mammary gland development and apoptosis. Cell Death Dis 2011; 1:e17. [PMID: 21364618 PMCID: PMC3032509 DOI: 10.1038/cddis.2009.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) −/− mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ −/− mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ −/− mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ −/− mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ −/− mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo.
Collapse
Affiliation(s)
- B L Allen-Petersen
- Stem Cells and Development, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mani O, Körner M, Ontsouka CE, Sorensen MT, Sejrsen K, Bruckmaier RM, Albrecht C. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells--implications for milk cholesterol secretion. J Dairy Sci 2011; 94:1265-76. [PMID: 21338792 DOI: 10.3168/jds.2010-3521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022]
Abstract
The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used to test whether 1) ABCA1 and ABCG1 protein expression and subcellular localization in mammary epithelial cells (MEC) change during the pregnancy-lactation cycle, and 2) these 2 proteins were present in milk fat globules (MFG). Expression and localization in MEC were investigated in bovine MG tissues at the end of lactation, during the dry period (DP), and early lactation using immunohistochemical and immunofluorescence approaches. The presence of ABCA1 and ABCG1 in MFG isolated from fresh milk was determined by immunofluorescence. The ABCA1 protein expression in MEC, expressed as arbitrary units, was higher during the end of lactation (12.2±0.24) and the DP (12.5±0.22) as compared with during early lactation (10.2±0.65). In contrast, no significant change in ABCG1 expression existed between the stages. Throughout the cycle, ABCA1 and ABCG1 were detected in the apical (41.9±24.8 and 49.0±4.96% of cows, respectively), basal (56.2±28.1 and 54.6±7.78% of cows, respectively), or entire cytoplasm (56.8±13.4 and 61.6±14.4% of cows, respectively) of MEC, or showed combined localization. Unlike ABCG1, ABCA1 was absent at the apical aspect of MEC during early lactation. Immunolabeling experiments revealed the presence of ABCA1 and ABCG1 in MFG membranes. Findings suggest a differential, functional stage-dependent role of ABCA1 and ABCG1 in cholesterol homeostasis of the MG epithelium. The presence of ABCA1 and ABCG1 in MFG membranes suggests that these proteins are involved in cholesterol exchange between MEC and alveolar milk.
Collapse
Affiliation(s)
- O Mani
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Bertucci PY, Quaglino A, Pozzi AG, Kordon EC, Pecci A. Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation. Endocrinology 2010; 151:5730-40. [PMID: 20881248 DOI: 10.1210/en.2010-0517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation, and regression. During lactation, the signal transducer and activator of transcription factor (STAT)-5A and the glucocorticoid receptor (GR) synergize to induce milk protein expression and also act as survival factors. During involution, STAT3 activation mediates epithelial cell apoptosis and mammary gland remodeling. It has been shown that the administration of glucocorticoids at weaning prevents epithelial cell death, probably by extracellular matrix breakdown prevention. Our results show that the synthetic glucocorticoid dexamethasone (DEX) modulates STAT5A and STAT3 signaling and inhibits apoptosis induction in postlactating mouse mammary glands, only when administered within the first 48 h upon cessation of suckling. DEX administration right after weaning delayed STAT5A inactivation and degradation, preserving gene expression of target genes as β-casein (bcas) and prolactin induced protein (pip). Weaning-triggered GR down-regulation is also delayed by the hormone treatment. Moreover, DEX administration delayed STAT3 activation and translocation into epithelial cells nuclei. In particular, DEX treatment impaired the increment in gene expression of signal transducer subunit gp130, normally up-regulated from lactation to involution and responsible for STAT3 activation. Therefore, the data shown herein indicate that glucocorticoids are able to modulate early involution by controlling the strong cross talk that GR, STAT5, and STAT3 pathways maintains in the mammary epithelium.
Collapse
Affiliation(s)
- Paola Y Bertucci
- Instituto de Fisiología Biología y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
23
|
McFarland-Mancini MM, Funk HM, Paluch AM, Zhou M, Giridhar PV, Mercer CA, Kozma SC, Drew AF. Differences in Wound Healing in Mice with Deficiency of IL-6 versus IL-6 Receptor. THE JOURNAL OF IMMUNOLOGY 2010; 184:7219-28. [DOI: 10.4049/jimmunol.0901929] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res 2009; 148:51-9. [PMID: 20005910 DOI: 10.1016/j.virusres.2009.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 12/25/2022]
Abstract
The mechanism by which hepatitis B virus (HBV) infection causes severe inflammatory liver diseases is multifactorial and related to interactions with cell signaling pathways and the ensuing inflammatory response. Activation of JAK/STAT/SOCS signaling is essential for the induction of cellular antiviral responses, contributes to apoptosis and is negatively regulated by SOCS proteins. Recent reports have shown that SOCS3 activation interferes with viral protein expression and treatment response and thereby plays a major role in hepatitis virus infections. We analyzed the expression of SOCS3 in liver specimens from HBV-infected patients using immunohistochemistry (IHC) and determined the effect of HBV on STAT/SOCS signaling in functional cell culture experiments (HuH-7) using HBV-expressing adenoviral constructs (AdHBV). Increased expression of SOCS3 protein was identified in liver specimens from patients with chronic HBV-infection and this correlated with the severity of liver inflammation. In accordance with the IHC-findings, in vitro analyses demonstrated that HBV infection of HuH7 cells was associated with increased expression of SOCS3 protein. In spite of the over expression of its negative regulator SOCS3 we observed a constitutive activation of STAT3. SOCS1 levels were not increased while pSTAT1 was suppressed in HBV-infected HuH7 cells. Our results demonstrate that STAT/SOCS-signaling is dysregulated in HBV-infected hepatocytes both in vivo and in vitro and this correlated with the severity of liver inflammatory changes. This interference of STAT/SOCS signaling by HBV may result in an ineffective immune response against HBV and potentially contributes to viral pathogenesis, malignant transformation and may represent an important mechanism of viral persistence.
Collapse
|
25
|
Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia 2009; 14:181-91. [PMID: 19404726 PMCID: PMC2693781 DOI: 10.1007/s10911-009-9123-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/16/2009] [Indexed: 12/15/2022] Open
Abstract
Postlactational involution is the process following weaning during which the mammary gland undergoes massive cell death and tissue remodeling as it returns to the pre-pregnant state. Lobular involution is the process by which the breast epithelial tissue is gradually lost with aging of the mammary gland. While postlactational involution and lobular involution are distinct processes, recent studies have indicated that both are related to breast cancer development. Experiments using a variety of rodent models, as well as observations in human populations, suggest that deregulation of postlactational involution may act to facilitate tumor formation. By contrast, new human studies show that completion of lobular involution protects against subsequent breast cancer incidence.
Collapse
Affiliation(s)
- Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | |
Collapse
|
26
|
Starvaggi Cucuzza L, Motta M, Miretti S, Accornero P, Baratta M. Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling. Exp Mol Med 2009; 40:647-57. [PMID: 19116450 DOI: 10.3858/emm.2008.40.6.647] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Curcumin (from the rhizome of Curcuma longa) is well documented for its medicinal properties in Indian and Chinese systems of medicine where it is widely used for the treatment of several diseases. Epidemiological observations are suggestive that curcumin consumption may reduce the risk of some form of cancers and provide other protective biological effects in humans. These biological properties have been attributed to curcuminoids that have been widely studied for their anti-inflammatory, anti-angiogenic, antioxidant, wound healing and anti-cancer effects. In this study we have investigated on the effect of a curcumin phospholipid complex on mammary epithelial cell viability. HC11 and BME-UV cell lines, validated models to study biology of normal, not tumoral, mammary epithelial cells, were used to analyse these effects. We report that curcumin acts on STAT-3 signal pathway to reduce cell viability and increase apoptosis evaluated by the the amount of activated caspase 3. Further it reduces MAPK and AKT activations. JSI-124, a STAT-3 inhibitor (100 nM) was able to block the negative effect of curcumin on cell viability and caspase 3 activation. Finally the negative effect of cucumin on cell viability has been impaired in STAT-3i HC11, where STAT-3 protein was greatly reduced by shRNA-interference. These results indicate that curcumin presents a potential adverse effect to normal mammary epithelial cells and that it has a specific effect on signal trasduction in mammary epithelium.
Collapse
Affiliation(s)
- Laura Starvaggi Cucuzza
- Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095, Grugliasco 10095, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
27
|
Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics 2008; 37:12-22. [PMID: 19018045 DOI: 10.1152/physiolgenomics.90341.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular physiology underlying human milk production is largely unknown because of limitations in obtaining tissue samples. Determining gene expression in normal lactating women would be a potential step toward understanding why some women struggle with or fail at breastfeeding their infants. Recently, we demonstrated the utility of RNA obtained from breast milk fat globule (MFG) to detect mammary epithelial cell (MEC)-specific gene expression. We used MFG RNA to determine the gene expression profile of human MEC during lactation. Microarray studies were performed using Human Ref-8 BeadChip arrays (Illumina). MFG RNA was collected every 3 h for 24 h from five healthy, exclusively breastfeeding women. We determined that 14,070 transcripts were expressed and represented the MFG transcriptome. According to GeneSpring GX 9, 156 ontology terms were enriched (corrected P < 0.05), which include cellular (n = 3,379 genes) and metabolic (n = 2,656) processes as the most significantly enriched biological process terms. The top networks and pathways were associated primarily with cellular activities most likely involved with milk synthesis. Multiple sampling over 24 h enabled us to demonstrate core circadian clock gene expression and the periodicity of 1,029 genes (7%) enriched for molecular functions involved in cell development, growth, proliferation, and cell morphology. In addition, we found that the MFG transcriptome was comparable to the metabolic gene expression profile described for the lactating mouse mammary gland. This paper is the first to describe the MFG transcriptome in sequential human samples over a 24 h period, providing valuable insights into gene expression in the human MEC.
Collapse
Affiliation(s)
- Patricia D Maningat
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Quaglino A, Schere-Levy C, Romorini L, Meiss RP, Kordon EC. Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling. Breast Cancer Res 2008; 9:R69. [PMID: 17925034 PMCID: PMC2242666 DOI: 10.1186/bcr1777] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 09/07/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022] Open
Abstract
Introduction It has been demonstrated that leukemia inhibitory factor (LIF) induces epithelium apoptosis through Stat3 activation during mouse mammary gland involution. In contrast, it has been shown that this transcription factor is commonly activated in breast cancer cells, although what causes this effect remains unknown. Here we have tested the hypothesis that locally produced LIF can be responsible for Stat3 activation in mouse mammary tumors. Methods The studies were performed in different tumorigenic and non-tumorigenic mammary cells. The expression of LIF and LIF receptor was tested by RT-PCR analysis. In tumors, LIF and Stat3 proteins were analyzed by immunohistochemistry, whereas Stat3 and extracellular signal-regulated kinase (ERK)1/2 expression and phosphorylation were studied by Western blot analysis. A LIF-specific blocking antibody was used to determine whether this cytokine was responsible for Stat3 phosphorylation induced by conditioned medium. Specific pharmacological inhibitors (PD98059 and Stat3ip) that affect ERK1/2 and Stat3 activation were used to study their involvement in LIF-induced effects. To analyze cell survival, assays with crystal violet were performed. Results High levels of LIF expression and activated Stat3 were found in mammary tumors growing in vivo and in their primary cultures. We found a single mouse mammary tumor cell line, LM3, that showed low levels of activated Stat3. Incidentally, these cells also showed very little expression of LIF receptor. This suggested that autocrine/paracrine LIF would be responsible for Stat3 activation in mouse mammary tumors. This hypothesis was confirmed by the ability of conditioned medium of mammary tumor primary cultures to induce Stat3 phosphorylation, activity that was prevented by pretreatment with LIF-blocking antibody. Besides, we found that LIF increased tumor cell viability. Interestingly, blocking Stat3 activation enhanced this effect in mammary tumor cells. Conclusion LIF is overexpressed in mouse mammary tumors, where it acts as the main Stat3 activator. Interestingly, the positive LIF effect on tumor cell viability is not dependent on Stat3 activation, which inhibits tumor cell survival as it does in normal mammary epithelium.
Collapse
Affiliation(s)
- Ana Quaglino
- IFIBYNE (CONICET), Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Wagner KU, Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 2008; 13:93-103. [PMID: 18228120 DOI: 10.1007/s10911-008-9062-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/02/2008] [Indexed: 12/22/2022] Open
Abstract
During normal mammary gland development, the tyrosine kinase Jak2 and its main substrate, the signal transducer and activator of transcription-5 (Stat5), are critical for the growth and differentiation of alveolar progenitors as well as the survival of secretory mammary epithelial cells. Genetic studies in mouse models support a role for the Stat5 transcription factor as a proto-oncogene in mammary tumor initiation. On the other hand, the analysis of nuclear Stat5 in human breast malignancies suggests a role of the Jak2/Stat5 pathway in the restriction of the metastatic potential of neoplastic mammary epithelial cells. Following an overview on the function of the Jak2/Stat5 pathway during normal mammary gland development, this review discusses recently published observations on human breast cancers as well as experimental evidence from genetically engineered mice that propose a dual role of Jak2/Stat5 signaling in breast cancer initiation and progression. Future studies to further test the concept of contrasting effects of Jak2/Stat5 pathway on breast cancer initiation and metastatic progression are proposed.
Collapse
Affiliation(s)
- Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | |
Collapse
|
30
|
SOCS3 negatively regulates the gp130-STAT3 pathway in mouse skin wound healing. J Invest Dermatol 2008; 128:1821-9. [PMID: 18185532 DOI: 10.1038/sj.jid.5701224] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proliferation and differentiation of keratinocytes during wound healing are regulated by cytokines and chemokines, which are secreted by resident and inflammatory cells and activate the transcription factor signal transducer and activator of transcription (STAT)3. However, it is not clear to what extent STAT3 in keratinocytes is activated by gp130-containing receptors. We addressed this question genetically by deleting the suppressor of cytokine signaling (SOCS)3, a negative regulator of gp130-mediated STAT3 activation. Socs3 alleles flanked by loxP sites were deleted in mice with either an MMTV-Cre or K5-Cre transgene. While both transgenes are active in keratinocytes, the MMTV-Cre deletes floxed genes also in immune cells. Deletion of Socs3 using the MMTV-Cre transgene resulted in aberrant STAT3 activation, impaired wound healing, prolonged secretion of chemokines, a hyperproliferative epidermis, and neutrophil infiltration into wounds. Simultaneous deletion of the Socs3 and gp130 genes restored normal wound healing. Moreover, deletion of Socs3 only in keratinocytes caused impaired wound healing. These results demonstrate that wound healing is controlled in keratinocytes by the gp130-SOCS3-STAT3 pathway and an imbalance of this pathway results in delayed wound healing.
Collapse
|
31
|
Wang G, Qian P, Jackson FR, Qian G, Wu G. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol 2007; 40:461-70. [PMID: 17920330 DOI: 10.1016/j.biocel.2007.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/30/2007] [Accepted: 08/21/2007] [Indexed: 01/19/2023]
Abstract
Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | |
Collapse
|
32
|
Robinson GW, Pacher-Zavisin M, Zhu BM, Yoshimura A, Hennighausen L. Socs 3 modulates the activity of the transcription factor Stat3 in mammary tissue and controls alveolar homeostasis. Dev Dyn 2007; 236:654-61. [PMID: 17205581 DOI: 10.1002/dvdy.21058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Signal transducer and activator of transcription 5 and 3 (Stat5 and Stat3) control pregnancy-mediated mammary development and involution-dependent remodeling, respectively. Suppressor of cytokine signaling 3 (Socs3) has been implicated in the modulation of both Stat3 and Stat5 activity. To explore the biology of Socs3 in mammary tissue, the gene was deleted using Cre-mediated recombination. Deletion of the Socs3 gene from mammary stem or early progenitor cells did not grossly alter pregnancy-mediated mammary development but resulted in impaired lactation due to attenuated proliferation. Loss of Socs3 from differentiated luminal cells did not interfere with glandular function during lactation, but resulted in accelerated tissue remodeling upon weaning. Loss of Socs3 led to enhanced and precocious Stat3 activation. Thus, Socs3 serves as a modulator of Stat3 activity to ensure controlled proliferation and apoptosis in pregnancy and involution, respectively.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0822, USA.
| | | | | | | | | |
Collapse
|
33
|
McArthur T, Ohtoshi A. A brain-specific homeobox gene, Bsx, is essential for proper postnatal growth and nursing. Mol Cell Biol 2007; 27:5120-7. [PMID: 17485440 PMCID: PMC1951958 DOI: 10.1128/mcb.00215-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To investigate in vivo roles of a murine hypothalamic homeobox gene, Bsx, we generated and analyzed two mutant alleles, Bsx(DeltaHD) and Bsx(lacZ). Bsx(DeltaHD) lacks the homeodomain, and Bsx(lacZ) is an insertion of a lacZ reporter gene. Bsx-lacZ expression was detected in the hypothalamus and pineal gland and reiterates Bsx expression. Bsx homozygous mutant mice were born at the expected Mendelian ratio, but their growth was impaired. Offspring from Bsx homozygous mutant females exhibited a low survival rate due to a nursing defect. Mammary glands of the mutant females developed normally during pregnancy; however, they involuted quickly after parturition. These results demonstrate that Bsx is required for postnatal growth and maintenance of lactating mammary glands. Thus, mouse Bsx is likely involved in systemic control of suppression of apoptosis of postpartum mammary epithelial cells.
Collapse
Affiliation(s)
- Tara McArthur
- Center of Molecular and Human Genetics, Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | |
Collapse
|
34
|
Omoigui S. The Interleukin-6 inflammation pathway from cholesterol to aging--role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing 2007; 4:1. [PMID: 17374166 PMCID: PMC1845171 DOI: 10.1186/1742-4933-4-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022]
Abstract
We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation.
Collapse
Affiliation(s)
- Sota Omoigui
- Division of Inflammation and Pain Medicine, LA Pain Clinic, 4019 W Rosecrans Ave, Los Angeles, CA 90250, USA.
| |
Collapse
|
35
|
Sutherland KD, Lindeman GJ, Visvader JE. The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 2007; 12:15-23. [PMID: 17323120 DOI: 10.1007/s10911-007-9034-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammary gland involution, characterized by extensive apoptosis and structural remodelling of the gland, is the process by which the gland is returned to the pre-pregnant state. A key advantage of the mammary gland is the ability to synchronize involution through forced weaning, thus allowing the dissection of biochemical pathways involved in the involution process. Over the past few years, significant advances have been made in understanding the signaling pathways and downstream effectors that regulate epithelial cell apoptosis in the first phase of involution, and the importance of matrix metalloproteinases and their inhibitors in both phases of involution. The precise nature of the triggers for apoptosis, however, and the ultimate perpetrators of cell death are not yet clear. This review focuses on genes whose perturbation, either by targeted deletion or overexpression in transgenic mouse models, leads to precocious involution. The accumulating data point to a complex network of signal transduction pathways that synergize to regulate apoptosis in the involuting mammary gland.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | | | | |
Collapse
|
36
|
Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC, Holroyd SL, McManus EJ, Schutz G, Watson CJ, Chodosh LA, Lindeman GJ, Visvader JE. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J 2006; 25:5805-15. [PMID: 17139252 PMCID: PMC1698901 DOI: 10.1038/sj.emboj.7601455] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 10/31/2006] [Indexed: 02/07/2023] Open
Abstract
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - François Vaillant
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Warren S Alexander
- Cancer & Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Tim M Wintermantel
- Molecular Biology of the Cell I, German Cancer Research Centre, Heidelberg, Germany
| | - Natasha C Forrest
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sheridan L Holroyd
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Edward J McManus
- Cancer & Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gunther Schutz
- Molecular Biology of the Cell I, German Cancer Research Centre, Heidelberg, Germany
| | - Christine J Watson
- Mammary Apoptosis and Development Group, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Lewis A Chodosh
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Geoffrey J Lindeman
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jane E Visvader
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia. Tel.: +61 3 9345 2494; Fax: 61 3 9347 0852; E-mail:
| |
Collapse
|
37
|
Nogueira-Silva C, Santos M, Baptista MJ, Moura RS, Correia-Pinto J. IL-6 is constitutively expressed during lung morphogenesis and enhances fetal lung explant branching. Pediatr Res 2006; 60:530-6. [PMID: 16988192 DOI: 10.1203/01.pdr.0000242300.09427.3b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have shown that chorioamnionitis, with increased IL-6, promotes fetal lung maturation and decreases the incidence of respiratory distress syndrome in premature neonates. However, the expression pattern and the effects of IL-6 on fetal lung growth mechanisms remain unknown. IL-6 expression was assessed by in situ hybridization and by real-time PCR between 14.5 and 21.5 d postconception. Normal and nitrofen-induced hypoplastic lung explants were cultured with increasing IL-6 doses or IL-6 neutralizing antibodies. Branching, cellular proliferation (Ki-67) and MAPK phosphorylation in fetal lung explants were analyzed. Pulmonary primitive epithelium expressed IL-6 constitutively throughout all gestational ages, displaying highest levels during earliest stages. In normal and hypoplastic lung explants, IL-6 neutralizing antibodies significantly reduced, whereas IL-6 supplementation induced a biphasic effect (lower doses increased, while the highest dose did not accomplish additional effect) on branching and cellular proliferation. IL-6 enhanced p38-MAPK phosphorylation without changing MEK1/2 and JNK pathways. The present study suggests a physiological role for IL-6 on pulmonary branching mechanisms most likely involving p38-MAPK intracellular signalling pathway.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Fetal and Neonatal Physiology, Life and Health Sciences Research Institute (ICVS), University of Minho, 4709-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
38
|
Chen CL, Hsieh FC, Lin J. Systemic evaluation of total Stat3 and Stat3 tyrosine phosphorylation in normal human tissues. Exp Mol Pathol 2006; 80:295-305. [PMID: 16427042 DOI: 10.1016/j.yexmp.2005.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/24/2005] [Indexed: 01/04/2023]
Abstract
Stat3 plays important roles in many biological phenomena including cell survival, growth, proliferation, differentiation and cancer malignancies. As Stat3 emerges as a new therapeutic target for treatment of cancers in which the Stat3 is constitutively activated, the overall evaluation of basal expression of Stat3 and phosphorylated Stat3 at tyrosine residue 705 in human tissues would be very important and informative. We took a pilot study to examine the expression patterns of total Stat3 and phosphorylated Stat3 protein (p-Stat3) using immunohistochemistry in 47 different adult normal human tissues of 10 organ systems. Immunohistochemistry showed that total Stat3 protein was almost universally detected in all tissues except peripheral nerve. Interestingly, majorities of tissues showed to have moderate to high expression levels of total Stat3 protein. Several heart tissues displayed a unique perinuclear immunostaining for both Stat3 and p-Stat3, most likely in Golgi complexes. Based on the cell types, the p-Stat3 was also expressed in glandular, secretory, mucosal epithelial, circulatory endothelial, lymphoid, proliferative, and reabsorption-active cells.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, OH 43205, USA
| | | | | |
Collapse
|
39
|
Abstract
Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
40
|
Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L, Huang AM, Sterneck E. C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 2005; 132:4675-85. [PMID: 16192306 DOI: 10.1242/dev.02050] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The STAT3 transcription factor is an important initiator of mammary gland involution in the mouse. This work shows that the STAT3 target gene CCAAT/enhancer binding protein delta (C/EBPdelta) is a crucial mediator of pro-apoptotic gene expression events in mammary epithelial cells. In the absence of C/EBPdelta, involution is delayed, the pro-apoptotic genes encoding p53, BAK, IGFBP5 and SGP2/clusterin are not activated, while the anti-apoptotic genes coding for BFL1 and Cyclin D1 are not repressed. Consequently, p53 targets such as survivin, BRCA1, BRCA2 and BAX are not regulated appropriately and protease activation is delayed. Furthermore, expression of MMP3 and C/EBPdelta during the second phase of involution is perturbed in the absence of C/EBPdelta. In HC11 cells, C/EBPdelta alone is sufficient to induce IGFBP5 and SGP2. It also suppresses Cyclin D1 expression and cooperates with p53 to elicit apoptosis. This study places C/EBPdelta between STAT3 and several pro- and anti-apoptotic genes promoting the physiological cell death response in epithelial cells at the onset of mammary gland involution.
Collapse
Affiliation(s)
- Muthusamy Thangaraju
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, Wang Y, Byrne K, Tellam R. Construction and validation of a Bovine Innate Immune Microarray. BMC Genomics 2005; 6:135. [PMID: 16176586 PMCID: PMC1261263 DOI: 10.1186/1471-2164-6-135] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/22/2005] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. RESULTS The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/microg of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A (ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were up-regulated between 2-8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. CONCLUSION The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.
Collapse
Affiliation(s)
- Laurelea Donaldson
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - Tony Vuocolo
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - Christian Gray
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - Ylva Strandberg
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - Antonio Reverter
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - Sean McWilliam
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| | - YongHong Wang
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
| | - Keren Byrne
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
| | - Ross Tellam
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St Lucia 4067, QLD, Australia
- Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William St, Melbourne, 3000, VIC, Australia
| |
Collapse
|
42
|
Lee JY, Hennighausen L. The transcription factor Stat3 is dispensable for pancreatic β-cell development and function. Biochem Biophys Res Commun 2005; 334:764-8. [PMID: 16026757 DOI: 10.1016/j.bbrc.2005.06.162] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
The transcription factor Stat3 is activated by multiple cytokines, including leptin and those signaling through the gp130 receptor. In two independent studies, mice in which the Stat3 gene was inactivated using a RIP-Cre transgene led to glucose intolerance, defects in early-phase insulin secretion, and mild obesity [S. Gorogawa, Y. Fujitani, H. Kaneto, Y. Hazama, H. Watada, Y. Miyamoto, K. Takeda, S. Akira, M. Magnuson, Y. Yamasaki, Y. Kajimoto, M. Hori, Insulin secretory defects and impaired islet architecture in pancreatic beta-cell-specific STAT3 knockout mice, Biochem. Biophys. Res. Commun. 319 (2004) 1159; Y. Cui, L. Huang, F. Elefteriou, G. Yang, J. Shelton, J. Giles, O. Oz, T. Pourbahrami, C. Lu, J. Richardson, G. Karsenty, C. Li, Essential role of STAT3 in body weight and glucose homeostasis, Mol. Cell. Biol. 24 (2004) 258]. However, since the RIP-Cre transgene is also expressed in the hypothalamus, and thereby Stat3 was deleted from neurons expressing the leptin receptor, it was not clear as to which of the metabolic defects were due to the loss of Stat3 from beta-cells or the hypothalamus. We have addressed this issue through the inactivation of Stat3 from pancreatic beta-cells using a Pdx1-Cre transgene. Complete loss of Stat3 was observed in islets from mice, which carry two floxed Stat3 alleles and the Pdx1-Cre transgene. However, these mice did not develop glucose intolerance or obesity over a period of 6 months, demonstrating that Stat3 is dispensable for the generation and physiology of beta-cells. Similarly, mice that express only the Pdx1-Cre transgene display a normal physiology. In contrast, mice that expressed only the RIP-Cre transgene developed glucose intolerance as early as 6 weeks of age. The finding that RIP-Cre transgenic mice in a C57B/6 dominated background develop glucose intolerance is important as this line has been used in several studies.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|