1
|
Hossain L, Gomes KP, Safarpour S, Gibson SB. The microenvironment of secondary lymphedema. The key to finding effective treatments? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167677. [PMID: 39828048 DOI: 10.1016/j.bbadis.2025.167677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lymphedema is characterized by the swelling of extremities due to the accumulation of interstitial fluids. It is a painful and devastating disease that increases the risk of infections and destroys patients' quality of life. Secondary lymphedema is caused by damage to the lymphatic system due to infections, obesity, surgery, and cancer treatments. This damage fails to be repaired and leads to fluid accumulation, tissue remodeling, inflammation, and ultimately fibrosis. The lymphedema microenvironment is altered by stress, immune dysfunction, and changes in metabolism. Stress in the microenvironment includes increased hypoxia and oxidative stress but how this contributes to lymphedema progression is unclear. The immune system plays a critical role in lymphedema through T cell helper type 2 (Th2) immune responses and the infiltration of macrophages into lymphedematous tissue. The inflammatory cytokines released by immune cells lead to tissue remodeling and fibrosis. There are also changes in metabolism in the lymphedema microenvironment with altered lipid oxidation, ketone body oxidation, and glycolysis. How these changes affect lymphedema and treatment interventions has been the focus of clinical trials. Lymphedema is also associated with cancer and obesity through damage to the lymphatic system. This review will illustrate microenvironmental changes in lymphedema and how this relates to cancer and obesity. In addition, we will discuss new therapeutic strategies to treat lymphedema. Finally, we will address the prospects of lymphedema research in the context of the microenvironment.
Collapse
Affiliation(s)
- Lazina Hossain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Karina P Gomes
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Samaneh Safarpour
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Spencer B Gibson
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Wu Q, Fu J, Zhu B, Meng W, Ma J, Lv Y, Zhao W, Wang F, Liu J, Wang Y, Peng C, Zhang S. VEGFR3 mitigates hypertensive nephropathy by enhancing mitophagy via regulating crotonylation of HSPA1L. Cell Commun Signal 2025; 23:52. [PMID: 39875989 PMCID: PMC11773936 DOI: 10.1186/s12964-025-02045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear. In the present study, hypertensive nephropathy was established by angiotensin II (Ang II). We found that VEGFR3 was highly increased in PTCs of Ang II-infused mice. Activation of VEGFR3 mitigated renal dysfunction, pathological damage, and oxidative stress in Ang II-induced hypertensive mice. Moreover, we found that VEGFR3 restored mitophagy deficiency induced by Ang II both in vivo and in vitro to alleviate oxidative stress injury in PTCs. Furthermore, in vitro experiment demonstrated that VEGFR3 improved abnormal mitophagy by enhancing PARKIN mitochondrial translocation. LC-MS/MS and Co-IP assays identified HSPA1L as the interacted protein of VEGFR3, which promoted the mitochondrial translocation of PARKIN. Mechanistically, VEGFR3 disorder domain bound to HSPA1L, and crotonylation modification of HSPA1L at K130 by VEGFR3 was required for mitophagy regulation in the context of Ang II-induced PTCs. Finally, the protective effect of VEGFR3 on mitophagy and oxidative stress were attenuated by transfection K130 (HSPA1L-K130R) mutant plasmid in vivo and in vitro. These findings indicated that VEGFR3 alleviated oxidative stress by promoting PARKIN-dependent mitophagy pathway via regulating HSPA1L crotonylation at K130 site in Ang II-induced PTCs, which provided a mechanistic basis for the therapeutic target in hypertensive renal injury.
Collapse
Affiliation(s)
- Qiuwen Wu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jiaxin Fu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Bin Zhu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Wei Meng
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jingyi Ma
- Department of Endocrinology and Diabetes, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Lv
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Wenqi Zhao
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Fan Wang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yongshun Wang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Cong Peng
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China
| | - Shuo Zhang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, China.
| |
Collapse
|
3
|
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells 2023; 13:68. [PMID: 38201272 PMCID: PMC10778007 DOI: 10.3390/cells13010068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
5
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
6
|
Quadros Gomes AR, da Rocha Galucio NC, de Albuquerque KCO, Brígido HPC, Varela ELP, Castro ALG, Vale VV, Bahia MO, Rodriguez Burbano RM, de Molfeta FA, Carneiro LA, Percario S, Dolabela MF. Toxicity evaluation of Eleutherine plicata Herb. extracts and possible cell death mechanism. Toxicol Rep 2021; 8:1480-1487. [PMID: 34401358 PMCID: PMC8353407 DOI: 10.1016/j.toxrep.2021.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023] Open
Abstract
Ethanol extract of Eleutherine plicata showed low in vitro and in vivo cytotoxic potential. The dichloromethane fraction was cytotoxic to HepG2 and caused DNA. However, no toxicity was observed in vivo. Isoeleutherin caused DNA damage by the comet method and activated caspase-8 in the in silico study.
Eleutherine plicata has been shown to be a promising medicinal plant, and its activity has been associated with naphthoquinones. The present study aimed at evaluating the cytotoxicity, genotoxicity, and oral toxicity of the ethanol extract (EEEp), dichloromethane fraction (FDMEp) of E. plicata, and isoeleutherin. For the cytotoxicity evaluation, the viability test (MTT) was used. Genotoxicity was accessed through the Comet assay (alkaline version), acute and subacute oral toxicities were also evaluated. The antioxidant capacity of the samples in the wells where the cells were treated with E. plicata was evaluated. Furthermore, the participation of caspase-8 in the possible mechanism of action of isoeleutherin, eleutherin, and eleutherol was also investigated through a docking study. FDMEp and isoeleutherin were cytotoxic, with higher rates of DNA fragmentation observed for FDMEp and isoeleutherin, and all samples displayed higher antioxidant potential than the control. In the acute oral toxicity test, EEEp, FDMEp, and isoeleutherin did not cause significant clinical changes. In the subacute toxicity assay, EEEp and FDMEp also did not cause clinical, hematological, or biochemical changes. The three compounds bound similarly to caspase-8. Despite the results of cytotoxicity, in vitro studies demonstrated that the use of EEEp appears to be safe and cell death may involve its binding to caspase-8.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BCRJ, Cell bank of Rio de Janeiro
- BFS, bovine fetal serum
- Caspase-8
- DARP, dopamine releasing protein
- DMEM, Dulbecco's Modified Eagle's Medium
- DMSO, dimethyl sulfoxide
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EDTA, ethylenediaminetetraacetic
- EEEp, ethanol extract of Eleutherine plicata
- Eleutherin
- Eleutherine plicata
- Eleutherol
- FADD, Fas associated death domain
- FDMEp, dichloromethane fraction of Eleutherine plicata
- FrAE, ethyl acetate fraction of Elutherine plicata
- GA, Genetic Algorithm
- GOLD, Genetic Optimization for Ligand Docking
- HPLC, high performance liquid chromatography
- IC50, 50 % cytotoxic concentration
- Isoeleutherin
- MD, molecular dynamics
- MTT, ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide])
- NMR, nuclear magnetic resonance
- NMU, N-methyl-N-nitrosurea
- OECD, Organization for Economic Co-Operation and Development
- PDB, Protein Data Bank
- ROS, reactive oxygen species
- RPMI, Roswell Park Memorial Institute medium
- RSMD, root mean square deviation
- TLC, tin layer chromatography
- TNFR, tumour necrosis fator receptor
- Toxicity
- rpm, rotations per minute
Collapse
Affiliation(s)
- Antonio Rafael Quadros Gomes
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Natasha Costa da Rocha Galucio
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | | | - Heliton Patrick Cordovil Brígido
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Everton Luiz Pompeu Varela
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Ana Laura Gadelha Castro
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Marcelo Oliveira Bahia
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Rommel Mario Rodriguez Burbano
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Fábio Alberto de Molfeta
- Postgraduate Program in Chemistry, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | | | - Sandro Percario
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil.,Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Av. Augusto Corrêa, 1, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
7
|
Hase K, Kase S, Kanda A, Shinmei Y, Noda K, Ishida S. Expression of Vascular Endothelial Growth Factor-C in the Trabecular Meshwork of Patients with Neovascular Glaucoma and Primary Open-Angle Glaucoma. J Clin Med 2021; 10:jcm10132977. [PMID: 34279462 PMCID: PMC8267742 DOI: 10.3390/jcm10132977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
To investigate the expression of vascular endothelial growth factor (VEGF)-C and vascular endothelial growth factor receptor (VEGFR)3 in the trabecular meshwork (TM) of patients with glaucoma and cultured TM cells. Methods: The expressions of VEGF-C in angle tissues collected by trabeculectomy from patients with glaucoma and non-glaucomatous choroidal malignant melanoma were analyzed by immunohistochemistry. Additionally, VEGF-C concentrations were determined in the aqueous humor of patients with glaucoma by ELISA. The expressions of VEGFR3, which is a receptor of VEGF-C in cultured TM cells, were analyzed by Western blot analysis and immunocytochemistry. Cultured TM cells were stimulated by oxidative stress, hypoxia, or high glucose conditions, and VEGF-C concentrations in supernatants and cell lysates were determined by ELISA. Results: VEGF-C immunoreactivity was positive in TM tissues of glaucoma patients, but not in those of non-glaucomatous controls. VEGF-C concentrations in the aqueous humor of patients with neovascular glaucoma and primary open-angle glaucoma were lower than those with non-glaucoma patients. VEGFR3 was expressed in cultured TM cells. VEGF-C concentrations in supernatants or cell lysates of TM cells cultured under oxidative stress and hypoxia were significantly elevated compared with those under steady conditions (p < 0.05). VEGF-C concentrations in supernatants and cell lysates of TM cells cultured in high glucose were significantly higher than those in low glucose (p < 0.01). Conclusions: VEGF-C was expressed in TM tissues of patients with glaucoma, which was secreted from cultured TM cells under various pathological conditions. These results suggest that VEGF-C may be involved in the pathology of glaucoma.
Collapse
Affiliation(s)
| | - Satoru Kase
- Correspondence: ; Tel.: +81-11-706-5944; Fax: +81-11-706-5948
| | | | | | | | | |
Collapse
|
8
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
9
|
Tai HC, Lee TH, Tang CH, Chen LP, Chen WC, Lee MS, Chen PC, Lin CY, Chi CW, Chen YJ, Lai CT, Chen SS, Liao KW, Lee CH, Wang SW. Phomaketide A Inhibits Lymphangiogenesis in Human Lymphatic Endothelial Cells. Mar Drugs 2019; 17:md17040215. [PMID: 30959907 PMCID: PMC6520718 DOI: 10.3390/md17040215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphangiogenesis is an important biological process associated with cancer metastasis. The development of new drugs that block lymphangiogenesis represents a promising therapeutic strategy. Marine fungus-derived compound phomaketide A, isolated from the fermented broth of Phoma sp. NTOU4195, has been reported to exhibit anti-angiogenic and anti-inflammatory effects. However, its anti-lymphangiogenic activity has not been clarified to date. In this study, we showed that phomaketide A inhibited cell growth, migration, and tube formation of lymphatic endothelial cells (LECs) without an evidence of cytotoxicity. Mechanistic investigations revealed that phomaketide A reduced LECs-induced lymphangiogenesis via vascular endothelial growth factor receptor-3 (VEGFR-3), protein kinase Cδ (PKCδ), and endothelial nitric oxide synthase (eNOS) signalings. Furthermore, human proteome array analysis indicated that phomaketide A significantly enhanced the protein levels of various protease inhibitors, including cystatin A, serpin B6, tissue factor pathway inhibitor (TFPI), and tissue inhibitor matrix metalloproteinase 1 (TIMP-1). Importantly, phomaketide A impeded tumor growth and lymphangiogenesis by decreasing the expression of LYVE-1, a specific marker for lymphatic vessels, in tumor xenograft animal model. These results suggest that phomaketide A may impair lymphangiogenesis by suppressing VEGFR-3, PKCδ, and eNOS signaling cascades, while simultaneously activating protease inhibitors in human LECs. We document for the first time that phomaketide A inhibits lymphangiogenesis both in vitro and in vivo, which suggests that this natural product could potentially treat cancer metastasis.
Collapse
Affiliation(s)
- Huai-Ching Tai
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City 242, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan.
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan.
| | - Lei-Po Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 104, Taiwan.
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 104, Taiwan.
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Ming-Shian Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.
| | - Pei-Chi Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Cheng-Ta Lai
- Division of Colon and Rectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Shiou-Sheng Chen
- Division of Urology, Taipei City Hospital HepingFuyou Branch, Taipei 100, Taiwan.
- Commission for General Education, National United University, Miaoli 360, Taiwan.
| | - Kuang-Wen Liao
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 300, Taiwan.
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, Ivanisenko VA. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics 2019; 12:47. [PMID: 30871556 PMCID: PMC6417156 DOI: 10.1186/s12920-019-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. METHODS In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. RESULTS An assessment of the quality of prioritization was performed using criteria, which involved an analysis of the enrichment of the top-most priority genes by genes, which are known to have simultaneous interactions with lymphedema and endothelial cell apoptosis, as well as by genes differentially expressed in murine model of lymphedema. In particular, among genes involved in endothelial apoptosis, KDR, TNF, TEK, BMPR2, SERPINE1, IL10, CD40LG, CCL2, FASLG and ABL1 had the highest priority. The identified priority genes can be considered as candidates for genotyping in the studies involving the search for associations with lymphedema. CONCLUSIONS Analysis of interactions of these genes in the associative gene network of lymphedema can improve understanding of mechanisms of interaction between endothelial apoptosis and lymphangiogenesis, and shed light on the role of disturbance of these processes in the development of edema, chronic inflammation and connective tissue transformation during the progression of the disease.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Vadim V. Nimaev
- Laboratory of Surgical Lymphology and Lymphodetoxication, Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, st. Timakova 2, Novosibirsk, 630117 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Dilovarkhuja B. Usmonov
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
- Department of Neurosurgery, Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, st. Frunze 17, Novosibirsk, 630091 Russia
| | - Pavel S. Demenkov
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Timofey V. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Inna N. Lavrik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Medical Faculty, Pfalzer Platz 28, 39106 Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| |
Collapse
|
11
|
Synchronous vascular endothelial growth factor protein profiles in both tissue and serum identify metastasis and poor survival in colorectal cancer. Sci Rep 2019; 9:4228. [PMID: 30862805 PMCID: PMC6414611 DOI: 10.1038/s41598-019-40862-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. We examined if tumor tissue and circulating protein levels of all vascular endothelial growth factors (VEGFs) and VEGF receptors (VEGFRs) were synchronous and different in Taiwan patients with metastatic CRC (mCRC) vs. non-mCRC. We analyzed samples from 109 patients enrolled from 2005–2017, 50 with stages I/II and 59 with stages III/IV CRC. We found that VEGF-A, -B, -C, -D, placental growth factor (PlGF), VEGFR-1, VEGFR-2, and VEGFR-3 were higher in tumor tissues than non-tumor tissues. Metastatic patients had higher levels of circulating VEGFs and soluble VEGFRs (sVEGFRs) than healthy subjects, as well as higher VEGF-A, -B, -C, -D, and PlGF proteins in both tumor tissue and serum than non-metastatic patients. Protein levels of VEGF and VEGFR were mainly associated with the patient’s age, tumor site, tumor size, tumor stage, and lymph node metastasis. Patients exhibiting high levels of VEGF, VEGFR, and sVEGFR had a shorter overall survival and disease-free survival than those with low levels. We conclude that synchronous changes in VEGF and VEGFR levels in CRC tissue and serum VEGF can discriminate between metastatic and non-metastatic subjects and high levels are associated with poor survival in CRC.
Collapse
|
12
|
Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis 2019; 10:219. [PMID: 30833548 PMCID: PMC6399322 DOI: 10.1038/s41419-019-1436-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have demonstrated that chronic inflammation-induced lymphangiogenesis plays a crucial role in the progression of various renal diseases, including diabetic nephropathy. SAR131675 is a selective vascular endothelial cell growth factor receptor-3 (VEGFR-3)-tyrosine kinase inhibitor that acts as a ligand for VEGF-C and VEGF-D to inhibit lymphangiogenesis. In this study, we evaluated the effect of SAR131675 on renal lymphangiogenesis in a mouse model of type 2 diabetes. Male C57BLKS/J db/m and db/db mice were fed either a regular chow diet or a diet containing SAR131675 for 12 weeks from 8 weeks of age. In addition, we studied palmitate-induced lymphangiogenesis in human kidney-2 (HK2) cells and RAW264.7 monocytes/macrophages, which play a major role in lymphangiogenesis in the kidneys. SAR131475 ameliorated dyslipidemia, albuminuria, and lipid accumulation in the kidneys of db/db mice, with no significant changes in glucose and creatinine levels and body weight. Diabetes-induced systemic inflammation as evidenced by increased systemic monocyte chemoattractant protein-1 and tumor necrosis factor-α level was decreased by SAR131475. SAR131475 ameliorated the accumulation of triglycerides and free fatty acids and reduced inflammation in relation to decreased chemokine expression and pro-inflammatory M1 macrophage infiltration in the kidneys. Downregulation of VEGF-C and VEGFR-3 by SAR131475 inhibited lymphatic growth as demonstrated by decreased expression of LYVE-1 and podoplanin that was further accompanied by reduced tubulointerstitial fibrosis, and inflammation in relation to improvement in oxidative stress and apoptosis. Treatment with SAR131475 improved palmitate-induced increase in the expression of VEGF-C, VEGFR-3, and LYVE-1, along with improvement in cytosolic and mitochondrial oxidative stress in RAW264.7 and HK2 cells. Moreover, the enhanced expression of M1 phenotypes in RAW264.7 cells under palmitate stress was reduced by SAR131475 treatment. The results suggest that modulation of lymphatic proliferation in the kidneys is a new treatment approach for type 2 diabetic nephropathy and that SAR131675 is a promising therapy to ameliorate renal damage by reducing lipotoxicity-induced lymphangiogenesis.
Collapse
|
13
|
Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther 2018; 9:275. [PMID: 30359307 PMCID: PMC6202803 DOI: 10.1186/s13287-018-1021-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
Background Human decidua basalis mesenchymal stem/multipotent stromal cells (DBMSCs) inhibit endothelial cell activation by inflammation induced by monocytes. This property makes them a promising candidate for cell-based therapy to treat inflammatory diseases, such as atherosclerosis. This study was performed to examine the ability of DBMSCs to protect endothelial cell functions from the damaging effects resulting from exposure to oxidatively stress environment induced by H2O2 and monocytes. Methods DBMSCs were co-cultured with endothelial cells isolated from human umbilical cord veins in the presence of H2O2 and monocytes, and various functions of endothelial cell were then determined. The effect of DBMSCs on monocyte adhesion to endothelial cells in the presence of H2O2 was also examined. In addition, the effect of DBMSCs on HUVEC gene expression under the influence of H2O2 was also determined. Results DBMSCs reversed the effect of H2O2 on endothelial cell functions. In addition, DBMSCs reduced monocyte adhesion to endothelial cells and also reduced the stimulatory effect of monocytes on endothelial cell proliferation in the presence of H2O2. Moreover, DBMSCs modified the expression of many genes mediating important endothelial cell functions. Finally, DBMSCs increased the activities of glutathione and thioredoxin reductases in H2O2-treated endothelial cells. Conclusions We conclude that DBMSCs have potential for therapeutic application in inflammatory diseases, such as atherosclerosis by protecting endothelial cells from oxidative stress damage. However, more studies are needed to elucidate this further.
Collapse
|
14
|
Basmaeil YS, Al Subayyil AM, Khatlani T, Bahattab E, Al-Alwan M, Abomaray FM, Kalionis B, Alshabibi MA, AlAskar AS, Abumaree MH. Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose. Stem Cell Res Ther 2018; 9:238. [PMID: 30241570 PMCID: PMC6150972 DOI: 10.1186/s13287-018-0984-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (H2O2). In diabetes, elevated levels of glucose (hyperglycaemia) induce H2O2 production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose. METHODS pMSCs isolated from the chorionic villi of human term placentae were cultured with endothelial cells isolated from human umbilical cord veins in the presence of glucose. Endothelial cell functions were then determined. The effect of pMSCs on gene expression in glucose-treated endothelial cells was also determined. RESULTS pMSCs reversed the effect of glucose on key endothelial cell functions including proliferation, migration, angiogenesis, and permeability. In addition, pMSCs altered the expression of many genes that mediate important endothelial cell functions including survival, apoptosis, adhesion, permeability, and angiogenesis. CONCLUSIONS This is the first comprehensive study to provide evidence that pMSCs protect endothelial cells from glucose-induced damage. Therefore, pMSCs have potential therapeutic value as a stem cell-based therapy to repair glucose-induced vascular injury and prevent the adverse complications associated with diabetes and cardiovascular disease. However, further studies are necessary to reveal more detailed aspects of the mechanism of action of pMSCs on glucose-induced endothelial damage in vitro and in vivo.
Collapse
Affiliation(s)
- Y S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A M Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - M Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Collage of Medicine, Al-Faisal University, MBC-03, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - F M Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - M A Alshabibi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.
| |
Collapse
|
15
|
Wu H, Rahman HA, Dong Y, Liu X, Lee Y, Wen A, To KH, Xiao L, Birsner AE, Bazinet L, Wong S, Song K, Brophy ML, Mahamud MR, Chang B, Cai X, Pasula S, Kwak S, Yang W, Bischoff J, Xu J, Bielenberg DR, Dixon JB, D’Amato RJ, Srinivasan RS, Chen H. Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest 2018; 128:4025-4043. [PMID: 30102256 PMCID: PMC6118634 DOI: 10.1172/jci96063] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C-induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C-induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src-dependent but VEGF-C-independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.
Collapse
Affiliation(s)
- Hao Wu
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - H.N. Ashiqur Rahman
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Yunzhou Dong
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yang Lee
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kim H.T. To
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Amy E. Birsner
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Lauren Bazinet
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kai Song
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Megan L. Brophy
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - M. Riaj Mahamud
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Baojun Chang
- Vascular Medicine Institute, Pulmonary, Allergy and Critical Care Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Sukyoung Kwak
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Wenxia Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Joyce Bischoff
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jian Xu
- Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Diane R. Bielenberg
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hong Chen
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Maañón J, Perez D, Rhode A, Callejón G, Rivas-Ruiz F, Perez-Ruiz E, Rodrigo I, Ramos B, Medina F, Villatoro R, Redondo M, Rueda A. High serum vascular endothelial growth factor C predicts better relapse-free survival in early clinically node-negative breast cancer. Oncotarget 2018; 9:28131-28140. [PMID: 29963266 PMCID: PMC6021352 DOI: 10.18632/oncotarget.25577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 05/19/2018] [Indexed: 11/25/2022] Open
Abstract
A recent meta-analysis indicated that higher tumoral expression of vascular endothelial growth factor C (VEGF-C) was related to poorer relapse-free and overall survival in breast cancer patients. However, a retrospective study found that higher circulating VEGF-C levels were associated with better survival in breast cancer patients. In 2009, we initiated a prospective study to determine the utility of preoperative serum VEGF-C levels for predicting the risk of sentinel lymph node involvement in early breast cancer and to assess serum VEGF-C levels as a prognostic factor for relapse-free and overall survival. We analyzed serum samples from 174 patients with early breast cancer who underwent sentinel lymph node biopsies. VEGF-C levels were determined using an ELISA. Serum VEGF-C levels were normally distributed, with a median value of 6561.5 pg/mL, and did not correlate with any other clinical or pathological variables. During a median follow-up period of 58 months, the five-year relapse-free survival rate was higher in patients with VEGF-C levels above the median than in patients with lower levels (95.3% vs. 85.9%, p < 0.04). No association was found between VEGF-C levels and overall survival. Our study demonstrates that the prognosis was better for early breast cancer patients with high serum VEGF-C levels.
Collapse
Affiliation(s)
- José Maañón
- Obstetrics and Gynecology Unit, Breast Cancer Unit, Hospital Costa de Sol, Málaga University, Málaga, Spain
| | - Diego Perez
- Medical Oncology Unit, Breast Cancer Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Alejandro Rhode
- Obstetrics and Gynecology Unit, Breast Cancer Unit, Hospital Costa de Sol, Marbella, Málaga, Spain
| | - Gonzalo Callejón
- Clinical Analysis Laboratory Unit, Hospital Costa de Sol, Marbella, Málaga, Spain
| | - Francisco Rivas-Ruiz
- Support for Research Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Elisabeth Perez-Ruiz
- Medical Oncology Unit, Breast Cancer Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Isabel Rodrigo
- Pathology Unit, Breast Cancer Unit, Hospital Costa de Sol, Marbella, Málaga, Spain
| | - Belén Ramos
- Radiology Unit, Breast Cancer Unit, Hospital Costa de Sol, Marbella, Málaga, Spain
| | - Francisco Medina
- General and Digestive Surgery Unit, Breast Cancer Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Rosa Villatoro
- Medical Oncology Unit, Breast Cancer Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Maximino Redondo
- Hospital Tumor Registry, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| | - Antonio Rueda
- Medical Oncology Unit, Breast Cancer Unit, Hospital Costa de Sol, (REDISSEC), Marbella, Málaga, Spain
| |
Collapse
|
17
|
Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:171-195. [PMID: 29282684 DOI: 10.1007/978-981-10-6020-5_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.
Collapse
|
18
|
Zhao T, Jin W, Pan H, Li H, Zhao Y, Feng Y. Rosbin, a synthetic small molecule, induces A549 cells apoptosis through a ROS-mediated pathway. Cell Biol Int 2016; 41:221-226. [DOI: 10.1002/cbin.10714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/10/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ting Zhao
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming Yunnan 6505001 P.R. China
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 P.R. China
| | - Wenling Jin
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 P.R. China
| | - Hui Pan
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 P.R. China
| | - Haizhou Li
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 P.R. China
| | - Yang Zhao
- Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 20000 P.R. China
| | - Yang Feng
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 P.R. China
| |
Collapse
|
19
|
Swaminathan A, Delage H, Chatterjee S, Belgarbi-Dutron L, Cassel R, Martinez N, Cosquer B, Kumari S, Mongelard F, Lannes B, Cassel JC, Boutillier AL, Bouvet P, Kundu TK. Transcriptional Coactivator and Chromatin Protein PC4 Is Involved in Hippocampal Neurogenesis and Spatial Memory Extinction. J Biol Chem 2016; 291:20303-14. [PMID: 27471272 DOI: 10.1074/jbc.m116.744169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/12/2023] Open
Abstract
Although the elaborate combination of histone and non-histone protein complexes defines chromatin organization and hence regulates numerous nuclear processes, the role of chromatin organizing proteins remains unexplored at the organismal level. The highly abundant, multifunctional, chromatin-associated protein and transcriptional coactivator positive coactivator 4 (PC4/Sub1) is absolutely critical for life, because its absence leads to embryonic lethality. Here, we report results obtained with conditional PC4 knock-out (PC4(f/f) Nestin-Cre) mice where PC4 is knocked out specifically in the brain. Compared with the control (PC4(+/+) Nestin-Cre) mice, PC4(f/f) Nestin-Cre mice are smaller with decreased nocturnal activity but are fertile and show no motor dysfunction. Neurons in different areas of the brains of these mice show sensitivity to hypoxia/anoxia, and decreased adult neurogenesis was observed in the dentate gyrus. Interestingly, PC4(f/f) Nestin-Cre mice exhibit a severe deficit in spatial memory extinction, whereas acquisition and long term retention were unaffected. Gene expression analysis of the dorsal hippocampus of PC4(f/f) Nestin-Cre mice revealed dysregulated expression of several neural function-associated genes, and PC4 was consistently found to localize on the promoters of these genes, indicating that PC4 regulates their expression. These observations indicate that non-histone chromatin-associated proteins like PC4 play a significant role in neuronal plasticity.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Hélène Delage
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Snehajyoti Chatterjee
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | | | - Raphaelle Cassel
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Nicole Martinez
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Brigitte Cosquer
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France
| | - Sujata Kumari
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Fabien Mongelard
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Béatrice Lannes
- the Département de Pathologie, Hôpital de Hautepierre, Université de Strasbourg, 67081 Strasbourg, France
| | - Jean-Christophe Cassel
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Anne-Laurence Boutillier
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Philippe Bouvet
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France,
| | - Tapas K Kundu
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India,
| |
Collapse
|
20
|
Lee J, Song H, Roh K, Cho S, Lee S, Yeom CH, Park S. Proteomic profiling of lymphedema development in mouse model. Cell Biochem Funct 2016; 34:317-25. [DOI: 10.1002/cbf.3192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Joomin Lee
- Department of food and nutrition, College of Natural Science; Chosun University; Gwangju Republic of Korea
| | - Haeun Song
- Department of Applied Chemistry; Dongduk Women's University; Seoul Republic of Korea
- Yeom's Clinic of Palliative Medicine; Seoul Republic of Korea
| | - Kangsan Roh
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Sungrae Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Chang-Hwan Yeom
- Yeom's Clinic of Palliative Medicine; Seoul Republic of Korea
| | - Seyeon Park
- Department of Applied Chemistry; Dongduk Women's University; Seoul Republic of Korea
| |
Collapse
|
21
|
Zhao T, Feng Y, Jin W, Pan H, Li H, Zhao Y. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism. Cell Biol Int 2016; 40:686-95. [PMID: 27006094 DOI: 10.1002/cbin.10606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/19/2016] [Indexed: 12/26/2022]
Abstract
Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline.
Collapse
Affiliation(s)
- Ting Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yang Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wenling Jin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Hui Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haizhou Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20000, China
| |
Collapse
|
22
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:354517. [PMID: 26221589 PMCID: PMC4499635 DOI: 10.1155/2015/354517] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC "contractile" phenotype to the "synthetic" phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles.
Collapse
Affiliation(s)
- Dmitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow 121552, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| |
Collapse
|
23
|
Bhuiyan M, Kim JC, Hwang SN, Lee MY, Kim S. Ischemic tolerance is associated with VEGF-C and VEGFR-3 signaling in the mouse hippocampus. Neuroscience 2015; 290:90-102. [DOI: 10.1016/j.neuroscience.2015.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
24
|
Stegemann L, Schuermann KC, Strassert CA, Grecco HE. Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5944-5949. [PMID: 25705918 DOI: 10.1021/acsami.5b00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we report on the implementation of photofunctional surfaces for the investigation of cellular responses by means of quantitative fluorescence microscopy. The developed substrates are able to produce reactive oxygen species under the fluorescence microscope upon irradiation with visible light, and the behavior of cells grown on these surfaces can be consequently investigated in situ and in real time. Moreover, a suitable methodology is presented to simultaneously monitor phototriggered morphological changes and the associated molecular pathways with spatiotemporal resolution employing time-resolved fluorescence anisotropy at the single cell level. The results showed that morphological changes can be complemented with a quantitative evaluation of the associated molecular signaling cascades for the unambiguous assignment of reactive oxygen species-related photoinduced apoptosis. Indeed, similar phenotypes are associated with different cellular processes. Our methodology facilitates the in vitro design and evaluation of photosensitizers for the treatment of cancer and infectious diseases with the aid of functional fluorescence microscopy.
Collapse
Affiliation(s)
- Linda Stegemann
- †Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Klaus C Schuermann
- ‡Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, D-44227 Dortmund, Germany
| | - Cristian A Strassert
- †Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Hernán E Grecco
- ‡Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, D-44227 Dortmund, Germany
| |
Collapse
|
25
|
Das JK, Voelkel NF, Felty Q. ID3 contributes to the acquisition of molecular stem cell-like signature in microvascular endothelial cells: its implication for understanding microvascular diseases. Microvasc Res 2015; 98:126-38. [PMID: 25665868 DOI: 10.1016/j.mvr.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/06/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023]
Abstract
While significant progress has been made to advance our knowledge of microvascular lesion formation, yet the investigation of how stem-like cells may contribute to the pathogenesis of microvascular diseases is still in its infancy. We assessed whether the inhibitor of DNA binding and differentiation 3 (ID3) contributes to the acquisition of a molecular stem cell-like signature in microvascular endothelial cells. The effects of stable ID3 overexpression and SU5416 treatment - a chemical inducer of microvascular lesions, had on the stemness signature were determined by flow cytometry, immunoblot, and immunohistochemistry. Continuous ID3 expression produced a molecular stemness signature consisting of CD133(+) VEGFR3(+) CD34(+) cells. Cells exposed to SU5416 showed positive protein expression of ID3, VEGFR3, CD34 and increased expression of pluripotent transcription factors Oct-4 and Sox-2. ID3 overexpressing cells supported the formation of a 3-D microvascular lesion co-cultured with smooth muscle cells. In addition, in vivo microvascular lesions from SuHx rodent model showed an increased expression of ID3, VEGFR3, and Pyk2 similar to SU5416 treated human endothelial cells. Further investigations into how normal and stem-like cells utilize ID3 may open up new avenues for a better understanding of the molecular mechanisms which are underlying the pathological development of microvascular diseases.
Collapse
Affiliation(s)
- Jayanta K Das
- Department of Environmental & Occupational Health Florida International University, Miami, FL, USA
| | - Norbert F Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA, USA
| | - Quentin Felty
- Department of Environmental & Occupational Health Florida International University, Miami, FL, USA.
| |
Collapse
|
26
|
Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis 2015; 6:e1591. [PMID: 25590801 PMCID: PMC4669752 DOI: 10.1038/cddis.2014.554] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/29/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
Phosphorylation of the α subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP) is a master regulator of cell adaptation to various forms of stress with implications in antitumor treatments with chemotherapeutic drugs. Herein, we demonstrate that genetic loss of the eIF2α kinases PERK and GCN2 or impaired eIF2αP by genetic means renders immortalized mouse fibroblasts as well as human tumor cells increasingly susceptible to death by oxidative stress. We also show that eIF2αP facilitates Akt activation in cells subjected to oxidative insults. However, whereas Akt activation has a pro-survival role in eIF2αP-proficient cells, the lesser amount of activated Akt in eIF2αP-deficient cells promotes death. At the molecular level, we demonstrate that eIF2αP acts through an ATF4-independent mechanism to control Akt activity via the regulation of mTORC1. Specifically, eIF2αP downregulates mTORC1 activity, which in turn relieves the feedback inhibition of PI3K resulting in the upregulation of the mTORC2-Akt arm. Inhibition of mTORC1 by rapamycin restores Akt activity in eIF2αP-deficient cells but renders them highly susceptible to Akt-mediated death by oxidative stress. Our data demonstrate that eIF2αP acts as a molecular switch that dictates either cell survival or death by activated Akt in response to oxidative stress. Hence, we propose that inactivation of eIF2αP may be a suitable approach to unleash the killing power of Akt in tumor cells treated with pro-oxidant drugs.
Collapse
|
27
|
Multitarget inhibitors derived from crosstalk mechanism involving VEGFR2. Future Med Chem 2014; 6:1771-89. [DOI: 10.4155/fmc.14.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Seven VEGFR small-molecule inhibitors have been approved by the US FDA as anticancer drugs, which confirms the therapeutic value of angiogenesis inhibitors. However, much more evidence indicates that VEGFR inhibition alone is usually not sufficient to block the tumor progress. The potential of some agents targeting VEGFR owes partially to the simultaneous inhibition of additional targets in other signaling pathways. In this review, the crosstalk between VEGFR2 and the additional targets in other signaling pathways, such as EGFR, MET, FGFR, PDGFR, c-Kit, Raf, PI3K and HDAC, and the synergistic effects derived from multitarget activities against these crosstalks are discussed. We also briefly describe the multitarget inhibitors in clinical trials or reported in the literature and patents under the different multitarget categories involving VEGFR2.
Collapse
|
28
|
Kere M, Siriboon C, Liao JW, Lo NW, Chiang HI, Fan YK, Kastelic JP, Ju JC. Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes. Domest Anim Endocrinol 2014; 49:60-9. [PMID: 25061966 DOI: 10.1016/j.domaniend.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor is a multipotent angiogenic factor implicated in cell survival and proliferation. The objective was to determine effects of exogenous recombinant human VEGFA (or VEGFA165) in culture media on porcine oocyte maturation and parthenote development. Adding 5 ng/mL VEGFA to the culture medium improved the maturation rate of denuded oocytes (P < 0.05), although 5, 50, or 500 ng/mL did not significantly affect nuclear maturation of oocytes. Parthenotes from oocytes cultured either in in vitro maturation or in vitro culture medium supplemented with 5 or 50 ng/mL VEGFA had an improved blastocyst rate and increased total numbers of cells (P < 0.05). Moreover, those treated with 5 ng/mL of VEGFA had a higher hatched blastocyst rate (average of 121 cells per blastocyst). All VEGFA-treated oocytes had reduced apoptotic indices (P < 0.05), except for those with a higher dose (500 ng/mL) of VEGFA which had more apoptotic cells (P < 0.05). Adding 5 ng/mL VEGFA to oocytes during the last 22 h of in vitro maturation improved (P < 0.05) blastocyst rates and total numbers of cells, with reduced apoptosis indices similar to that of long-term (44 h) culture. Furthermore, Axitinib (VEGFR inhibitor) reversed the effects of VEGFA on parthenote development (P < 0.05). Follicular fluids from medium (2-6 mm) to large (>6 mm) follicles contained 5.3 and 7.0 ng/mL vascular endothelial growth factor protein, respectively, higher (P < 0.05) than concentrations in small (<2 mm) follicles (0.4 ng/mL). Also, VEGFA and its receptor (VEGFR-2) were detected (immunohistochemistry) in growing follicles and developing blastocysts. In addition, VEGFA inhibited caspase-3 activation in matured oocytes (P < 0.05). In conclusion, this is apparently the first report that VEGFA has proliferative and cytoprotective roles in maturing porcine oocytes and parthenotes. Furthermore, an optimal VEGFA concentration promoted porcine oocyte maturation and subsequent development.
Collapse
Affiliation(s)
- M Kere
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - C Siriboon
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan
| | - J W Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - N W Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan
| | - H I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Y K Fan
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - J P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J C Ju
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan; Agriculture Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Medical Research Department, China Medical University Hospital, Taichung 404, Taiwan; Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
29
|
Sarmiento D, Montorfano I, Cerda O, Cáceres M, Becerra A, Cabello-Verrugio C, Elorza AA, Riedel C, Tapia P, Velásquez LA, Varela D, Simon F. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel. Microvasc Res 2014; 98:187-96. [PMID: 24518820 DOI: 10.1016/j.mvr.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/17/2013] [Accepted: 02/03/2014] [Indexed: 01/19/2023]
Abstract
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Sarmiento
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Montorfano
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro Becerra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Alvaro A Elorza
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Tapia
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Velásquez
- Center for Integrative Medicine and Innovative Science (CIMIS), Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego Varela
- Programa de Fisiopatología, Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
30
|
Dang LTH, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol 2013; 33:193-200. [PMID: 23325476 DOI: 10.1161/atvbaha.112.300142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulated response of endothelial cells to signals in their environment is not only critical for the de novo formation of primordial vascular networks during early development (ie, vasculogenesis), but is also required for the subsequent growth and remodeling of new blood vessels from preexisting ones (ie, angiogenesis). Vascular endothelial growth factors (Vegfs) and their endothelial cell-specific receptors play a crucial role in nearly all aspects of blood vessel growth. How the outputs from these pathways affect and coordinate endothelial behavior is an area of intense research. Recently, numerous studies have highlighted roles for microRNAs in modulating Vegf signaling output in several different contexts. In this review, we will provide an overview of how small RNAs regulate multiple aspects of the Vegf signaling pathway. In particular, we highlight areas where identification of microRNAs and their targets has provided new insight into the role of downstream effectors in modulating Vegf output during development. As Vegf plays a broad role in multiple aspects of endothelial biology and has become a target for therapeutic manipulation of pathological blood vessel growth, microRNAs that affect Vegf signaling output will undoubtedly be major targets of clinical value.
Collapse
Affiliation(s)
- Lan T H Dang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Graupera M, Potente M. Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 2013; 319:1348-55. [PMID: 23500680 DOI: 10.1016/j.yexcr.2013.02.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are an evolutionary conserved family of lipid kinases that control cell growth, metabolism and survival. By generating lipid second messengers that interact with specialized lipid-binding domains found in a wide spectrum of signaling molecules, PI3Ks instigate signaling through a network of downstream effector pathways. Genetic studies in zebrafish and mice revealed the critical importance of intact PI3K signaling in the endothelium and provided first insights into how individual PI3K isoforms are utilized to control vascular development and function. Here, we review the myriad roles of PI3Ks in the endothelium and the mechanisms through which they couple environmental signals with specific steps of angiogenic vessel growth.
Collapse
Affiliation(s)
- Mariona Graupera
- Vascular Signalling Lab, Angiogenesis Unit, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 3a planta-Gran Via de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
32
|
Nicoli S, Knyphausen CP, Zhu LJ, Lakshmanan A, Lawson ND. miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 2012; 22:418-29. [PMID: 22340502 DOI: 10.1016/j.devcel.2012.01.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/04/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022]
Abstract
Angiogenesis requires coordination of distinct cell behaviors between tip and stalk cells. Although this process is governed by regulatory interactions between the vascular endothelial growth factor (Vegf) and Notch signaling pathways, little is known about the potential role of microRNAs. Through deep sequencing and functional screening in zebrafish, we find that miR-221 is essential for angiogenesis. miR-221 knockdown phenocopied defects associated with loss of the tip cell-expressed Flt4 receptor. Furthermore, miR-221 was required for tip cell proliferation and migration, as well as tip cell potential in mosaic blood vessels. miR-221 knockdown also prevented "hyper-angiogenesis" defects associated with Notch deficiency and miR-221 expression was inhibited by Notch signaling. Finally, miR-221 promoted tip cell behavior through repression of two targets: cyclin dependent kinase inhibitor 1b (cdkn1b) and phosphoinositide-3-kinase regulatory subunit 1 (pik3r1). These results identify miR-221 as an important regulatory node through which tip cell migration and proliferation are controlled during angiogenesis.
Collapse
Affiliation(s)
- Stefania Nicoli
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
33
|
Yan A, Avraham T, Zampell JC, Haviv YS, Weitman E, Mehrara BJ. Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition. Future Oncol 2012; 7:1457-73. [PMID: 22112321 DOI: 10.2217/fon.11.121] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines. MATERIALS & METHODS ASCs were harvested and cultured in media with or without recombinant VEGF-C for 48 h. ASCs were then implanted in mice using Matrigel plugs. Additional groups of animals were implanted with ASCs transfected with a dominant-negative TGF-β1 receptor-II adenovirus with or without VEGF-C stimulation, since TGF-β1 has been shown to have potent antilymphangiogenic effects. Lymphangiogenesis, lymphatic differentiation and cellular proliferation were assessed. RESULTS Stimulation of ASCs with VEGF-C in vitro significantly increased expression of VEGF-A, VEGF-C and Prox-1. ASCs stimulated with VEGF-C prior to implantation induced a significant (threefold increase) lymphangiogenic response as compared with control groups (unstimulated ASCs or empty Matrigel plugs; p < 0.01). This effect was significantly potentiated when TGF-β1 signaling was inhibited using the dominant-negative TGF-β1 receptor-II virus (4.5-fold increase; p < 0.01). Stimulation of ASCs with VEGF-C resulted in a marked increase in the number of donor ASCs (twofold; p < 0.01) and increased the number of proliferating cells (sevenfold; p < 0.01) surrounding the Matrigel. ASCs stimulated with VEGF-C expressed podoplanin, a lymphangiogenic cell marker, whereas unstimulated cells did not. CONCLUSION Short-term stimulation of ASCs with VEGF-C results in increased expression of VEGF-A, VEGF-C and Prox-1 in vitro and is associated with a marked increase lymphangiogenic response after in vivo implantation. This lymphangiogenic response is significantly potentiated by blocking TGF-β1 function. Furthermore, stimulation of ASCs with VEGF-C markedly increases cellular proliferation and cellular survival after in vivo implantation and stimulated cells express podoplanin, a lymphangiogenic cell marker.
Collapse
Affiliation(s)
- Alan Yan
- The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Xu HL, Yu XF, Qu SC, Qu XR, Jiang YF, Sui DY. Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism. Food Chem Toxicol 2012; 50:590-6. [PMID: 22266044 DOI: 10.1016/j.fct.2012.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 01/06/2012] [Indexed: 01/05/2023]
|
35
|
|
36
|
Wang K, Yang R, Xu J, Zhang Y, Zhu L, Lin J, Huang B. DEVELOPMENT OF AN ALPHASCREEN-BASED HIGH-THROUGHPUT SCREENING ASSAY FOR INHIBITORS OF HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-3. J Immunoassay Immunochem 2011; 32:219-32. [DOI: 10.1080/15321819.2011.559296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Bahram F, Claesson-Welsh L. VEGF-mediated signal transduction in lymphatic endothelial cells. PATHOPHYSIOLOGY 2010; 17:253-61. [DOI: 10.1016/j.pathophys.2009.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/18/2009] [Accepted: 10/23/2009] [Indexed: 12/30/2022] Open
|
38
|
Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 2010; 62:245-55. [PMID: 20596890 DOI: 10.1007/s10616-010-9285-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/11/2010] [Indexed: 02/07/2023] Open
Abstract
Tea catechin is one of the compounds that are closely related to obesity and insulin sensitivity. In order to determine the effect of catechin on adipocyte differentiation, we treated 3T3-L1 preadipocytes with different kinds of catechins. Our results showed that catechins, especially epigallocatechin gallate (EGCG), significantly reduced intracellular lipid accumulation and repressed the activity of glycerol-3-phosphate dehydrogenase, an enzyme involved in lipid synthesis. Furthermore, glucose and fatty acid transport were also suppressed by catechin. We then analyzed the activity of transcription factors-forkhead transcription factor class O1 (FoxO1) and sterol regulatory element-binding protein-1c (SREBP1c)-which are involved in adipocyte differentiation and lipid synthesis, respectively. The transcriptional activities of both these factors significantly decreased by EGCG. Western blot analysis revealed that EGCG induced the insulin signal-mediated phosphorylation of FoxO1 (Thr24, Ser256). These results suggest that EGCG suppresses the differentiation of adipocytes through the inactivation of FoxO1 and SREBP1c.
Collapse
Affiliation(s)
- Hyojung Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
39
|
Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. ACTA ACUST UNITED AC 2009; 17:229-51. [PMID: 20036110 DOI: 10.1016/j.pathophys.2009.11.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/11/2009] [Accepted: 10/23/2009] [Indexed: 01/03/2023]
Abstract
Lymphatic metastasis is the main prognostic factor for survival of patients with breast cancer and other epithelial malignancies. Mounting clinical and experimental data suggest that migration of tumor cells into the lymph nodes is greatly facilitated by lymphangiogenesis, a process that generates new lymphatic vessels from pre-existing lymphatics with the aid of circulating lymphatic endothelial progenitor cells. The key protein that induces lymphangiogenesis is vascular endothelial growth factor receptor-3 (VEGFR-3), which is activated by vascular endothelial growth factor-C and -D (VEGF-C and VEGF-D). These lymphangiogenic factors are commonly expressed in malignant, tumor-infiltrating and stromal cells, creating a favorable environment for generation of new lymphatic vessels. Clinical evidence demonstrates that increased lymphatic vessel density in and around tumors is associated with lymphatic metastasis and reduced patient survival. Recent evidence shows that breast cancers induce remodeling of the local lymphatic vessels and the regional lymphatic network in the sentinel and distal lymph nodes. These changes include an increase in number and diameter of tumor-draining lymphatic vessels. Consequently, lymph flow away from the tumor is increased, which significantly increases tumor cell metastasis to draining lymph nodes and may contribute to systemic spread. Collectively, recent advances in the biology of tumor-induced lymphangiogenesis suggest that chemical inhibitors of this process may be an attractive target for inhibiting tumor metastasis and cancer-related death. Nevertheless, this is a relatively new field of study and much remains to be established before the concept of tumor-induced lymphangiogenesis is accepted as a viable anti-metastatic target. This review summarizes the current concepts related to breast cancer lymphangiogenesis and lymphatic metastasis while highlighting controversies and unanswered questions.
Collapse
Affiliation(s)
- Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge, Springfield, IL 62794-9678, USA
| | | | | | | |
Collapse
|
40
|
Mouta-Bellum C, Kirov A, Miceli-Libby L, Mancini ML, Petrova TV, Liaw L, Prudovsky I, Thorpe PE, Miura N, Cantley LC, Alitalo K, Fruman DA, Vary CPH. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn 2009; 238:2670-9. [PMID: 19705443 PMCID: PMC2826787 DOI: 10.1002/dvdy.22078] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Collapse
Affiliation(s)
- Carla Mouta-Bellum
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
VEGFR inhibitors are in broad use for the treatment of metastatic renal-cell carcinoma, gastrointestinal stromal tumors and hepatocellular carcinoma and in development in a number of other oncology indications, including colorectal cancer, non-small-cell lung cancer, pancreatic cancer, thyroid malignancies, ovarian cancer, breast cancer and sarcomas. This Review outlines the structure-activity relationships of the 44 VEGFR inhibitors currently in development. An overview of the pharmacokinetic profile of each molecule and its stage in development is provided. Phase III clinical trials being conducted for licensing of these agents for specific indications and phase III developmental efficacy trials are described in detailed tables that include the disease studied, trial design including combination therapy, study end points, and projected or final accrual. The relative frequency of on-target and off-target adverse events observed in 3,060 patients is described for a subset of agents in development in clinical trials sponsored by the National Cancer Institute. No interagent comparisons were undertaken and no data from pharmaceutical pharmacovigilance databases were used. The on-target effects seem to be mechanistically based and predicted by VEGFR inhibition. Small-molecule inhibitors of angiogenesis are active in a wide variety of malignancies and fill a unique niche for cancer therapeutics.
Collapse
|
42
|
Lahdenranta J, Hagendoorn J, Padera TP, Hoshida T, Nelson G, Kashiwagi S, Jain RK, Fukumura D. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res 2009; 69:2801-8. [PMID: 19318557 PMCID: PMC2670480 DOI: 10.1158/0008-5472.can-08-4051] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lymphatic metastasis is a critical determinant of cancer prognosis. Recently, several lymphangiogenic molecules such as vascular endothelial growth factor (VEGF)-C and VEGF-D were identified. However, the mechanistic understanding of lymphatic metastasis is still in infancy. Nitric oxide (NO) plays a crucial role in regulating blood vessel growth and function as well as lymphatic vessel function. NO synthase (NOS) expression correlates with lymphatic metastasis. However, causal relationship between NOS and lymphatic metastasis has not been documented. To this end, we first show that both VEGF receptor-2 and VEGF receptor-3 stimulation activate eNOS in lymphatic endothelial cells and that NO donors induce proliferation and/or survival of cultured lymphatic endothelial cells in a dose-dependent manner. We find that an NOS inhibitor, L-NMMA, blocked regeneration of lymphatic vessels. Using intravital microscopy that allows us to visualize the steps of lymphatic metastasis, we show that genetic deletion of eNOS as well as NOS blockade attenuates peritumor lymphatic hyperplasia of VEGF-C-overexpressing T241 fibrosarcomas and decreases the delivery of metastatic tumor cells to the draining lymph nodes. Genetic deletion of eNOS in the host also leads to a decrease in T241 tumor cell dissemination to the lymph nodes and macroscopic lymph node metastasis of B16F10 melanoma. These findings indicate that eNOS mediates VEGF-C-induced lymphangiogenesis and, consequently, plays a critical role in lymphatic metastasis. Our findings explain the correlation between NOS and lymphatic metastasis seen in a number of human tumors and open the door for potential therapies exploiting NO signaling to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Johanna Lahdenranta
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim HS, Lim IK. Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284:15475-86. [PMID: 19318349 DOI: 10.1074/jbc.m808734200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of p21(Sdi1) downstream of p53 is essential for induction of cellular senescence, although cancer cell senescence can also occur in the p53 null condition. We report herein that senescence-associated phosphorylated extracellular signal-regulated protein kinases 1 and 2 (SA-pErk1/2) enhanced p21(Sdi1) transcription by phosphorylating Sp1 on Ser(59) downstream of protein kinase C (PKC) alpha. Reactive oxygen species (ROS), which was increased in cellular senescence, significantly activated both PKCalpha and PKCbetaI. However, PKCalpha, but not PKCbetaI, regulated ROS generation and cell proliferation in senescent cells along with activation of cdk2, proven by siRNAs. PKCalpha-siRNA also reduced SA-pErk1/2 expression in old human diploid fibroblast cells, accompanied with changes of senescence phenotypes to young cell-like. Regulation of SA-pErk1/2 was also confirmed by using catalytically active PKCalpha and its DN-mutant construct. These findings strongly suggest a new pathway to regulate senescence phenotypes by ROS via Sp1 phosphorylation between PKCalpha and SA-pErk1/2: employing GST-Sp1 mutants and MEK inhibitor analyses, we found that SA-pErk1/2 regulated Sp1 phosphorylation on the Ser(59) residue in vivo, but not threonine, in cellular senescence, which regulated transcription of p21(Sdi1) expression. In summary, PKCalpha, which was activated in senescent cells by ROS strongly activated Erk1/2, and the SA-pErk1/2 in turn phosphorylated Sp1 on Ser(59). Sp1-enhanced transcription of p21(Sdi1) resulted in regulation of cellular senescence in primary human diploid fibroblast cells.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
44
|
Abstract
Hypoxia is widely recognised as a key driving force for tumor angiogenesis by its induction of vascular endothelial growth factor (VEGF) and other direct-acting angiogenic factors. We describe the effect of hypoxia on gene expression and downstream angiogenic signalling; however, the angiogenic process is complex, and many other signalling pathways beyond VEGF are implicated in the formation of new vessels. These include extra-cellular signalling pathways such as the notch/delta, ephrin/Eph receptor, roundabout/slit, and netrin/UNC (uncoordinated) receptor families as well as intracellular proteins such as hedgehog and sprouty. The remarkable diversity in angiogenic signalling pathways provides many opportunities for therapeutic intervention, and anti-angiogenesis is currently a major area of oncology research.
Collapse
Affiliation(s)
- Zubair Ahmed
- Division of Immunity Studies, Institute of Biomedical Research, University of Birmingham, UK
| | | |
Collapse
|
45
|
Jakob S, Schroeder P, Lukosz M, Büchner N, Spyridopoulos I, Altschmied J, Haendeler J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 2008; 283:33155-61. [PMID: 18829466 DOI: 10.1074/jbc.m805138200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aging is one major risk factor for numerous diseases. The enzyme telomerase reverse transcriptase (TERT) plays an important role for aging and apoptosis. Previously, we demonstrated that inhibition of oxidative stress-induced Src kinase family-dependent nuclear export of TERT results in delayed replicative senescence and reduced apoptosis sensitivity. Therefore, the aim of this study was to investigate mechanisms inhibiting nuclear export of TERT. First, we demonstrated that H2O2-induced nuclear export of TERT was abolished in Src, Fyn, and Yes-deficient embryonic fibroblasts. Next, we wanted to identify one potential negative regulator of this export process. One candidate is the protein tyrosine phosphatase Shp-2 (Shp-2), which can counteract activities of the Src kinase family. Indeed, Shp-2 was evenly distributed between the nucleus and cytosol. Nuclear Shp-2 associates with TERT in endothelial cells and dissociates from TERT prior to its nuclear export. Overexpression of Shp-2 wt inhibited H2O2-induced export of TERT. Overexpression of the catalytically inactive, dominant negative Shp-2 mutant (Shp-2(C459S)) reduced endogenous as well as overexpressed nuclear TERT protein and telomerase activity, whereas it had no influence on TERT(Y707F). Binding of TERT(Y707F) to Shp-2 is reduced compared with TERTwt. Ablation of Shp-2 expression led only to an increased tyrosine phosphorylation of TERTwt, but not of TERT(Y707F). Moreover, reduced Shp-2 expression decreased nuclear telomerase activity, whereas nuclear telomerase activity was increased in Shp-2-overexpressing endothelial cells. In conclusion, Shp-2 retains TERT in the nucleus by regulating tyrosine 707 phosphorylation.
Collapse
Affiliation(s)
- Sascha Jakob
- Department of Molecular Cell & Aging Research, IUF at the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Poyer F, Coquerel B, Pegahi R, Cazin L, Norris V, Vannier JP, Lamacz M. Secretion of MMP-2 and MMP-9 induced by VEGF autocrine loop correlates with clinical features in childhood acute lymphoblastic leukemia. Leuk Res 2008; 33:407-17. [PMID: 18829111 DOI: 10.1016/j.leukres.2008.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/30/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
Abstract
In children with acute lymphoblastic leukemia (ALL), leukemic cells express several members of the VEGF family and the three VEGF receptors which, via an autocrine loop are responsible for secretion of MMP-2/-9. MMP activity and the presence of elements of the autocrine loop are correlated with clinical and prognostic parameters as follows: i) high basal MMP-9 activity with tumoral syndrome, ii) MMP-2 activity with treatment failure, iii) VEGFR-1/-3 co-expression with high hemoglobin level and iv) expression of the VEGF-A 121 isoform and favorable response to treatment. These data implicate autocrine VEGF-induced secretion of MMP-2/-9 in the physiopathology of childhood ALL.
Collapse
Affiliation(s)
- Florent Poyer
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré M.E.R.C.I., Faculté de Médecine-Pharmacie, Université de Rouen; 22 bd Gambetta, 76183 Rouen, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Cai YJ, Lu JJ, Zhu H, Xie H, Huang M, Lin LP, Zhang XW, Ding J. Salvicine triggers DNA double-strand breaks and apoptosis by GSH-depletion-driven H2O2 generation and topoisomerase II inhibition. Free Radic Biol Med 2008; 45:627-35. [PMID: 18582559 DOI: 10.1016/j.freeradbiomed.2008.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Glutathione (GSH), as the major small-molecule antioxidant in cells, has been implicated in the regulation of cell proliferation and apoptosis. Salvicine (SAL), a novel diterpenoid quinone compound, exhibits potent antitumor activities both in vitro and in vivo by poisoning topoisomerase II (Topo II) and has entered Phase II clinical trials for cancer therapy. Herein, we provide further evidence that SAL-induced DNA double-strand breaks (DSBs) and apoptosis by GSH depletion drives H2O2 generation and Topo II inhibition. Our data reveal that treatment with SAL results in a pronounced increase in intracellular H2O2 and is accompanied by the occurrence of DNA DSBs and apoptosis in epithelial HeLa cells. Furthermore, SAL was also noted to trigger a dramatic depletion of intracellular GSH via its direct reaction with GSH. Importantly, the introduction of GSH and overexpression of catalase antagonized SAL-mediated DNA DSBs and apoptosis, and the GSH synthesis inhibitor dl-buthionine-[S,R]-sulfoximine reduced SAL-mediated H2O2 generation, indicating that SAL-mediated H2O2 generation is derived from intracellular GSH depletion. Notably, SAL-mediated Topo II inhibition was also concentration-dependently reversed by GSH. Furthermore, we found that Topo II-defective HL-60/MX2 cells were almost completely resistant to SAL-induced DNA DSBs, suggesting that, in addition to its direct inhibitory effect on Topo II, SAL-mediated H2O2 generation may also trigger DNA DSBs via poisoning of Topo II. All these findings together suggest that GSH-depletion-driven H2O2 generation and Topo II inhibition are both critical for SAL-induced DNA DSBs and apoptosis.
Collapse
Affiliation(s)
- Yu-Jun Cai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rosivatz E. Imaging the boundaries-innovative tools for microscopy of living cells and real-time imaging. J Chem Biol 2008; 1:3-15. [PMID: 19568794 PMCID: PMC2698318 DOI: 10.1007/s12154-008-0004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/11/2008] [Indexed: 01/17/2023] Open
Abstract
Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells.
Collapse
Affiliation(s)
- Erika Rosivatz
- Division of Cell and Molecular Biology, Imperial College London, SW7 2AZ, London, UK,
| |
Collapse
|
49
|
Roy S, Khanna S, Sen CK. Redox regulation of the VEGF signaling path and tissue vascularization: Hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med 2008; 44:180-92. [PMID: 18191754 DOI: 10.1016/j.freeradbiomed.2007.01.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/14/2006] [Accepted: 01/05/2007] [Indexed: 12/17/2022]
Abstract
Vascularization, under physiological or pathophysiological conditions, typically takes place by one or more of the following processes: angiogenesis, vasculogenesis, arteriogenesis, and lymphangiogenesis. Although all of these mechanisms of vascularization have sufficient contrasting features to warrant consideration under separate cover, one common feature shared by all is their sensitivity to the VEGF signaling pathway. Conditions such as wound healing and physical exercise result in increased production of reactive oxygen species such as H(2)O(2), and both are associated with increased tissue vascularization. Understanding these two scenarios of adult tissue vascularization in tandem offers the potential to unlock the significance of redox regulation of the VEGF signaling pathway. Does H(2)O(2) support tissue vascularization? H(2)O(2) induces the expression of the most angiogenic form of VEGF, VEGF-A, by a HIF-independent and Sp1-dependent mechanism. Ligation of VEGF-A to VEGFR2 results in signal transduction leading to tissue vascularization. Such ligation generates H(2)O(2) via an NADPH oxidase-dependent mechanism. Disruption of VEGF-VEGFR2 ligation-dependent H(2)O(2) production or decomposition of such H(2)O(2) stalls VEGFR2 signaling. Numerous antioxidants exhibit antiangiogenic properties. Current evidence lends firm credence to the hypothesis that low-level endogenous H(2)O(2) supports vascular growth.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
50
|
Abstract
Tumor metastasis to sentinel lymph nodes represents the first step of tumor dissemination in most human cancers and serves as a major prognostic indicator for disease progression. Recent studies have revealed that tumors can actively induce the formation of lymphatic vessels, and that tumor lymphangiogenesis is correlated with lymph node metastasis in experimental cancer models and in several types of human cancers. Metastatic tumor cells may continue to promote lymphatic vessel growth even after their metastasis to sentinel lymph nodes, likely promoting further cancer spread. Vascular endothelial growth factor-C (VEGF-C) and VEGF-D were the first specific lymphangiogenesis factors identified, acting predominantly via VEGF receptor-3 (VEGFR-3) that is expressed by lymphatic endothelial cells, and a large number of clinical studies have shown a correlation between tumor expression of VEGF-C or VEGF-D and lymph node metastasis. VEGFR-3 activation promotes lymphatic endothelial cell proliferation, migration, and survival via the extracellular signal-regulated kinase 1/2, the phosphatidylinositol 3-kinase/AKT, and the c-Jun NH(2)-terminal kinase 1/2 pathways. Additional tumor lymphangiogenesis factors have been recently identified, including VEGF-A. Importantly, blockade of the VEGFR-3 pathway by specific antibodies, by soluble receptor constructs, and by small molecule kinase inhibitors efficiently inhibits experimental tumor lymphangiogenesis and metastasis and might also represent a novel therapeutic avenue for the treatment of human cancers.
Collapse
Affiliation(s)
- Christoph Wissmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|