1
|
Klingl YE, Petrauskas A, Jaślan D, Grimm C. TPCs: FROM PLANT TO HUMAN. Physiol Rev 2025; 105:1695-1732. [PMID: 40197126 DOI: 10.1152/physrev.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.
Collapse
Affiliation(s)
- Yvonne Eileen Klingl
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Arnas Petrauskas
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Dash BK, Urano Y, Mita Y, Ashida Y, Hirose R, Noguchi N. Unconventional secretion of PARK7 requires lysosomal delivery via chaperone-mediated autophagy and specialized SNARE complex. Proc Natl Acad Sci U S A 2025; 122:e2414790122. [PMID: 40327696 PMCID: PMC12088447 DOI: 10.1073/pnas.2414790122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/09/2025] [Indexed: 05/08/2025] Open
Abstract
PARK7/DJ-1, a redox-sensitive protein implicated in neurodegeneration, cancer, and inflammation, exhibits increased secretion under stress. We previously demonstrated that, as a leaderless protein, PARK7 relies on an unconventional autophagy pathway for stress-induced secretion. The current study delves deeper into the mechanisms governing PARK7 secretion under oxidative stress triggered by the neurotoxin 6-hydroxydopamine (6-OHDA). Here, we revealed that 6-OHDA-induced autophagic flux is critical for PARK7 secretion. Downregulation of syntaxin 17 (STX17), a SNARE protein crucial for autophagosome-lysosome fusion and cargo degradation, hindered PARK7 secretion. Likewise, impairing lysosomal function with bafilomycin A1 (BafA1) or chloroquine (CQ) diminished PARK7 release, highlighting the importance of functional lysosomes, potentially in the form of secretory autolysosomes, in PARK7 release. We also found that 6-OHDA appeared to promote the unfolding of PARK7, allowing its selective recognition by the chaperone HSPA8 via KFERQ-like motifs, leading to PARK7 translocation to the lysosomal membrane through LAMP2 via chaperone-mediated autophagy (CMA). Additionally, a dedicated SNARE complex comprising Qabc-SNAREs (STX3/4, VTI1B, and STX8) and R-SNARE SEC22B mediates the fusion of PARK7-containing autolysosomes with the plasma membrane, facilitating the extracellular release of PARK7. Hence, this study uncovers a mechanism where 6-OHDA-induced autophagic flux drives the unconventional secretion of PARK7, involving CMA for PARK7 translocation to lysosomes and specialized SNARE complexes for membrane fusion events.
Collapse
Affiliation(s)
- Biplab Kumar Dash
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yuki Ashida
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Ryoma Hirose
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| |
Collapse
|
3
|
Lopez A, Siddiqi FH, Villeneuve J, Ureshino RP, Jeon HY, Koulousakis P, Keeling S, McEwan WA, Fleming A, Rubinsztein DC. Carbonic anhydrase inhibition ameliorates tau toxicity via enhanced tau secretion. Nat Chem Biol 2025; 21:577-587. [PMID: 39482469 PMCID: PMC11949835 DOI: 10.1038/s41589-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Tauopathies are neurodegenerative diseases that manifest with intracellular accumulation and aggregation of tau protein. These include Pick's disease, progressive supranuclear palsy, corticobasal degeneration and argyrophilic grain disease, where tau is believed to be the primary disease driver, as well as secondary tauopathies, such as Alzheimer's disease. There is a need to develop effective pharmacological therapies. Here we tested >1,400 clinically approved compounds using transgenic zebrafish tauopathy models. This revealed that carbonic anhydrase (CA) inhibitors protected against tau toxicity. CRISPR experiments confirmed that CA depletion mimicked the effects of these drugs. CA inhibition promoted faster clearance of human tau by promoting lysosomal exocytosis. Importantly, methazolamide, a CA inhibitor used in the clinic, also reduced total and phosphorylated tau levels, increased neuronal survival and ameliorated neurodegeneration in mouse tauopathy models at concentrations similar to those seen in people. These data underscore the feasibility of in vivo drug screens using zebrafish models and suggest serious consideration of CA inhibitors for treating tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Farah H Siddiqi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Julien Villeneuve
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Rodrigo Portes Ureshino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hee-Yeon Jeon
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Philippos Koulousakis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|
4
|
Kuz CA, Ning K, Hao S, McFarlin S, Zhang X, Cheng F, Qiu J. Identification of the role of SNARE proteins in rAAV vector production through interaction with the viral MAAP. Mol Ther Methods Clin Dev 2025; 33:101392. [PMID: 39807420 PMCID: PMC11728075 DOI: 10.1016/j.omtm.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells. We found that MAAP2 indirectly interacted with STX7 or SNAP23, and that the knockout of STX7 or SNAP23 not only enhanced rAAV secretion into the media but also increased total vector yield during rAAV vector production in HEK293 cells. Thus, our study revealed a practical approach for producing higher yields of rAAV vectors from the media, easing downstream processes in rAAV manufacturing.
Collapse
Affiliation(s)
- Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiujuan Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Ren WW, Kawahara R, Suzuki KG, Dipta P, Yang G, Thaysen-Andersen M, Fujita M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. J Cell Biol 2025; 224:e202407068. [PMID: 39751400 PMCID: PMC11697975 DOI: 10.1083/jcb.202407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca2+ necessary for lysosome-plasma membrane fusion. Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kenichi G.N. Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morten Thaysen-Andersen
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
7
|
Huang Q, Lee HH, Volpe B, Zhang Q, Xue C, Liu BC, Abuhasan YR, Li L, Yang JS, Egholm J, Gutierrez-Vazquez C, Li A, Lee A, Tang S, Wong CW, Liu T, Huang Y, Ramos RL, Stout RF, El Ouaamari A, Quintana FJ, Lowell BB, Kahn CR, Pothos EN, Cai W. Deletion of murine astrocytic vesicular nucleotide transporter increases anxiety and depressive-like behavior and attenuates motivation for reward. Mol Psychiatry 2025; 30:506-520. [PMID: 39122778 PMCID: PMC11750621 DOI: 10.1038/s41380-024-02692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP. Using primary cultured astrocytes, we show that loss of vesicular nucleotide transporter (Vnut), a primary transporter responsible for loading cytosolic ATP into the secretory vesicles, dramatically reduces ATP loading into secretory lysosomes and ATP release, without any change in the molecular machinery of exocytosis or total intracellular ATP content. Deletion of astrocytic Vnut in adult mice leads to increased anxiety, depressive-like behaviors, and decreased motivation for reward, especially in females, without significant impact on food intake, systemic glucose metabolism, cognition, or sociability. These behavioral alterations are associated with significant decreases in the basal extracellular dopamine levels in the nucleus accumbens. Likewise, ex vivo brain slices from these mice show a strong trend toward a reduction in evoked dopamine release in the nucleus accumbens. Mechanistically, the reduced dopamine signaling we observed is likely due to an increased expression of monoamine oxidases. Together, these data demonstrate a key modulatory role of astrocytic exocytosis of ATP in anxiety, depressive-like behavior, and motivation for reward, by regulating the mesolimbic dopamine circuitry.
Collapse
Affiliation(s)
- Qian Huang
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bryan Volpe
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Qingchen Zhang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Chang Xue
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Brian C Liu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yahia R Abuhasan
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Lingyun Li
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy S Yang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Julie Egholm
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allen Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alyssa Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Sharon Tang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Chun Wa Wong
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Tiemin Liu
- Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Weikang Cai
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA.
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
8
|
Sakurai M, Kuwahara T. Canonical and noncanonical autophagy: involvement in Parkinson's disease. Front Cell Dev Biol 2025; 13:1518991. [PMID: 39949604 PMCID: PMC11821624 DOI: 10.3389/fcell.2025.1518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Fu BXH, Xu A, Li H, Johnson DE, Grandis JR, Gilbert LA. Loss of Fanconi anemia proteins causes a reliance on lysosomal exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634631. [PMID: 39896609 PMCID: PMC11785144 DOI: 10.1101/2025.01.23.634631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mutations in the FA pathway lead to a rare genetic disease that increases risk of bone marrow failure, acute myeloid leukemia, and solid tumors. FA patients have a 500 to 800-fold increase in head and neck squamous cell carcinoma compared to the general population and the treatment for these malignancies are ineffective and limited due to the deficiency in DNA damage repair. Using unbiased CRISPR-interference screening, we found the loss of FA function renders cells dependent on key exocytosis genes such as SNAP23. Further investigation revealed that loss of FA pathway function induced deficiencies in lysosomal health, dysregulation of autophagy and increased lysosomal exocytosis. The compromised cellular state caused by the loss of FA genes is accompanied with decreased lysosome abundance and increased lysosomal membrane permeabilization in cells. We found these signatures in vitro across multiple cell types and cell lines and in clinically relevant FA patient cancers. Our findings are the first to connect the FA pathway to lysosomal exocytosis and thus expands our understanding of FA as a disease and of induced dependencies in FA mutant cancers.
Collapse
|
10
|
Ahn J, Jang SH, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 is secreted from stressed tumor cells to activate T cell-mediated tumor surveillance via Lck-ERK signaling. Neoplasia 2025; 59:101094. [PMID: 39615106 DOI: 10.1016/j.neo.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in multiple types of human malignancies. Nevertheless, the molecular basis for the XAF1-mediated tumor suppression remains largely undefined. Here, we report that XAF1 is secreted from cells under various cytotoxic stress conditions and activates T cell-mediated tumor surveillance. In cancer cells exposed to interferon -γ, tumor necrosis factor -α, and etoposide, XAF1 is elevated and actively secreted through the unconventional endo-lysosomal trafficking pathway and the zinc finger 4 domain of XAF1 plays an essential for this secretion. Secreted XAF1 is internalized into nearby T cells through clathrin-mediated endocytosis and stimulates proliferation, migration, and tumor infiltration of T cells. Internalized XAF1 activates RAF-MEK-ERK signaling through the direct interaction with and phosphorylation of lymphocyte-specific protein tyrosine kinase. In response to interferon -γ injection, Xaf1+/+ tumors display significantly higher regression rate and T cell infiltration compared to Xaf1-/- tumors while Xaf1-/- tumors are markedly reduced by injection of recombinant Xaf1. XAF1 expression is associated with overall survival in T cell-enriched cancer patients and also correlates with prognosis in T cell-based immunotherapies. Together, our study identifies XAF1 as a novel secretory immune-modulatory tumor suppressor, illuminating the mechanistic consequence of its inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Jieun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Saffi GT, To L, Kleine N, Melo CM, Chen K, Genc G, Lee KD, Chow JTS, Jang GH, Gallinger S, Botelho RJ, Salmena L. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J Cell Biol 2024; 223:e202401012. [PMID: 39120584 PMCID: PMC11317760 DOI: 10.1083/jcb.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Collapse
Affiliation(s)
- Golam T. Saffi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Lydia To
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Nicholas Kleine
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ché M.P. Melo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - K.C. Daniel Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
12
|
Hutchings AJ, Hambrecht B, Veh A, Giridhar NJ, Zare A, Angerer C, Ohnesorge T, Schenke M, Selvaraj BT, Chandran S, Sterneckert J, Petri S, Seeger B, Briese M, Stigloher C, Bischler T, Hermann A, Damme M, Sendtner M, Lüningschrör P. Plekhg5 controls the unconventional secretion of Sod1 by presynaptic secretory autophagy. Nat Commun 2024; 15:8622. [PMID: 39366938 PMCID: PMC11452647 DOI: 10.1038/s41467-024-52875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Increasing evidence suggests an essential function for autophagy in unconventional protein secretion (UPS). However, despite its relevance for the secretion of aggregate-prone proteins, the mechanisms of secretory autophagy in neurons have remained elusive. Here we show that the lower motoneuron disease-associated guanine exchange factor Plekhg5 drives the UPS of Sod1. Mechanistically, Sod1 is sequestered into autophagosomal carriers, which subsequently fuse with secretory lysosomal-related organelles (LROs). Exocytosis of LROs to release Sod1 into the extracellular milieu requires the activation of the small GTPase Rab26 by Plekhg5. Deletion of Plekhg5 in mice leads to the accumulation of Sod1 in LROs at swollen presynaptic sites. A reduced secretion of toxic ALS-linked SOD1G93A following deletion of Plekhg5 in SOD1G93A mice accelerated disease onset while prolonging survival due to an attenuated microglia activation. Using human iPSC-derived motoneurons we show that reduced levels of PLEKHG5 cause an impaired secretion of ALS-linked SOD1. Our findings highlight an unexpected pathophysiological mechanism that converges two motoneuron disease-associated proteins into a common pathway.
Collapse
Affiliation(s)
- Amy-Jayne Hutchings
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bita Hambrecht
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Neha Jadhav Giridhar
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christina Angerer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorben Ohnesorge
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maren Schenke
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, USA
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080, Würzburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section Albrecht-Kossel, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
14
|
Trojani MC, Santucci-Darmanin S, Breuil V, Carle GF, Pierrefite-Carle V. Lysosomal exocytosis: From cell protection to protumoral functions. Cancer Lett 2024; 597:217024. [PMID: 38871244 DOI: 10.1016/j.canlet.2024.217024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
Collapse
Affiliation(s)
- Marie-Charlotte Trojani
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; INSERM, Paris, France.
| |
Collapse
|
15
|
Zhang HL, Hu BX, Ye ZP, Li ZL, Liu S, Zhong WQ, Du T, Yang D, Mai J, Li LC, Chen YH, Zhu XY, Li X, Feng GK, Zhu XF, Deng R. TRPML1 triggers ferroptosis defense and is a potential therapeutic target in AKT-hyperactivated cancer. Sci Transl Med 2024; 16:eadk0330. [PMID: 38924427 DOI: 10.1126/scitranslmed.adk0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.
Collapse
Affiliation(s)
- Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Medical Oncology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wen-Qing Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tian Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li-Chao Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xian-Ying Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
16
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
17
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
18
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Joshi S, Prakhya KS, Smith AN, Chanzu H, Zhang M, Whiteheart SW. The complementary roles of VAMP-2, -3, and -7 in platelet secretion and function. Platelets 2023; 34:2237114. [PMID: 37545110 PMCID: PMC10564522 DOI: 10.1080/09537104.2023.2237114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Platelet secretion requires Soluble N-ethylmaleimide Sensitive Attachment Protein Receptors (SNAREs). Vesicle SNAREs/Vesicle-Associated Membrane Proteins (v-SNAREs/VAMPs) on granules and t-SNAREs in plasma membranes mediate granule release. Platelet VAMP heterogeneity has complicated the assessment of how/if each is used and affects hemostasis. To address the importance of VAMP-7 (V7), we analyzed mice with global deletions of V3 and V7 together or platelet-specific deletions of V2, V3, and global deletion of V7. We measured the kinetics of cargo release, and its effects on three injury models to define the context-specific roles of these VAMPs. Loss of V7 minimally affected dense and α granule release but did affect lysosomal release. V3-/-7-/- and V2Δ3Δ7-/- platelets showed partial defects in α and lysosomal release; dense granule secretion was unaffected. In vivo assays showed that loss of V2, V3, and V7 caused no bleeding or occlusive thrombosis. These data indicate a role for V7 in lysosome release that is partially compensated by V3. V7 and V3, together, contribute to α granule release, however none of these deletions affected hemostasis/thrombosis. Our results confirm the dominance of V8. When it is present, deletion of V2, V3, or V7 alone or in combination minimally affects platelet secretion and hemostasis.
Collapse
Affiliation(s)
- Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | - Alexis N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Harry Chanzu
- GenScript USA Inc., 860 Centennial Ave. Piscataway, NJ 08854, USA
| | - Ming Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Shao Q, Wijaya CS, Wang S, Meng X, Yuan C, Ma C, Xu S. The SNARE complex formed by RIC-4/SEC-22/SYX-2 promotes C. elegans epidermal wound healing. Cell Rep 2023; 42:113349. [PMID: 37910502 DOI: 10.1016/j.celrep.2023.113349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Maintaining cellular viability relies on the integrity of the plasma membrane, which must be repaired upon damage. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is a crucial mechanism involved in membrane repair. In C. elegans epidermal cell hyp 7, syntaxin-2 (SYX-2) facilitates large membrane wound repair; however, the underlying molecular mechanism remains unclear. Here, we found that SNAP-25 protein RIC-4 and synaptobrevin protein SEC-22 are required for SYX-2 recruitment at the wound site. They interact to form a SNARE complex to promote membrane repair in vivo and fusion in vitro. Moreover, we found that SEC-22 localized in multiple intracellular compartments, including endosomes and the trans-Golgi network, which recruited to the wounds. Furthermore, inhibition of RAB-5 disrupted SEC-22 localization and prevented its interaction with SYX-2. Our findings suggest that RAB-5 facilitates the formation of the RIC-4/SEC-22/SYX-2 SNARE complex and provides valuable insights into the molecular mechanism of how cells repair large membrane wounds.
Collapse
Affiliation(s)
- Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chandra Sugiarto Wijaya
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Yuan
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
21
|
Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V, Fu M. Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives. Cells 2023; 12:2648. [PMID: 37998383 PMCID: PMC10670313 DOI: 10.3390/cells12222648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential for maintaining endothelial viability. These components orchestrate complex mechanisms, including exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery, often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell membrane repair is critically important for understanding the pathogenesis of CVD and stroke and developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the recent advances in understanding the mechanisms of endothelial cell membrane repair. The future directions of this research area are also highlighted.
Collapse
Affiliation(s)
- Duoduo Zha
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA;
| | - Paula Monaghan-Nichols
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Venkatesh Sampath
- Department of Pediatric, Children’s Mercy Hospital, Children’s Mercy Research Institute, Kansas City, MO 64108, USA;
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| |
Collapse
|
22
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
23
|
Liu C, Liu D, Wang S, Gan L, Yang X, Ma C. Identification of the SNARE complex that mediates the fusion of multivesicular bodies with the plasma membrane in exosome secretion. J Extracell Vesicles 2023; 12:e12356. [PMID: 37700095 PMCID: PMC10497535 DOI: 10.1002/jev2.12356] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Exosomes play crucial roles in local and distant cellular communication and are involved in various physiological and pathological processes. Tumour-derived exosomes are pivotal to tumorigenesis, but the precise mechanisms underlying their secretion remain elusive. In particular, the SNARE proteins that mediate the fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in tumour cells are subject to debate. In this study, we identified syntaxin-4, SNAP-23, and VAMP-7 as the SNAREs responsible for exosome secretion in MCF-7 breast cancer cells and found that a SNARE complex consisting of these SNAREs can drive membrane fusion in vitro. Deletion of any of these SNAREs in MCF-7 cells did not affect MVB biogenesis and transportation, indicating their specific involvement in MVB-PM fusion. In addition, syntaxin-4, SNAP-23, and VAMP-7 play equivalent roles in exosome secretion in both HeLa cervical cancer cells and A375 melanoma cells, suggesting their conserved function in exosome secretion. Furthermore, deletion of VAMP-7 in 4T1 mammary carcinoma cells efficiently inhibited exosome secretion and led to significant attenuation of tumour growth and lung metastasis in mouse models, implying that VAMP-7 may hold promise as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chuqi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Dexiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouGuangdongP. R. China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Elfmark LA, Wenzel EM, Wang L, Pedersen NM, Stenmark H, Raiborg C. Protrudin-mediated ER-endosome contact sites promote phagocytosis. Cell Mol Life Sci 2023; 80:216. [PMID: 37468729 PMCID: PMC10356898 DOI: 10.1007/s00018-023-04862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
During phagocytosis, endosomes both contribute with membrane to forming phagosomes and promote phagosome maturation. However, how these vesicles are delivered to the phagocytic cup and the phagosome has been unknown. Here, we show that Protrudin-mediated endoplasmic reticulum (ER)-endosome contact sites facilitate anterograde translocation of FYCO1 and VAMP7-positive late endosomes and lysosomes (LELys) to forming phagocytic cups in a retinal pigment epithelial-derived cell line (RPE1). Protrudin-dependent phagocytic cup formation required SYT7, which promotes fusion of LELys with the plasma membrane. RPE1 cells perform phagocytosis of dead cells (efferocytosis) that expose phosphatidylserine (PS) on their surface. Exogenous addition of apoptotic bodies increased the formation of phagocytic cups, which further increased when Protrudin was overexpressed. Overexpression of Protrudin also led to elevated uptake of silica beads coated with PS. Conversely, Protrudin depletion or abrogation of ER-endosome contact sites inhibited phagocytic cup formation resulting in reduced uptake of PS-coated beads. Thus, the Protrudin pathway delivers endosomes to facilitate formation of the phagocytic cup important for PS-dependent phagocytosis.
Collapse
Affiliation(s)
- Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
25
|
Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243:125232. [PMID: 37302628 DOI: 10.1016/j.ijbiomac.2023.125232] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | | | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Saghebasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
26
|
Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NY, Plummer G, Pasolli HA, Matthies D, Bellen HJ, Ioannou MS. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol 2023; 222:e202207130. [PMID: 37036445 PMCID: PMC10098143 DOI: 10.1083/jcb.202207130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
During oxidative stress neurons release lipids that are internalized by glia. Defects in this coordinated process play an important role in several neurodegenerative diseases. Yet, the mechanisms of lipid release and its consequences on neuronal health are unclear. Here, we demonstrate that lipid-protein particle release by autolysosome exocytosis protects neurons from ferroptosis, a form of cell death driven by lipid peroxidation. We show that during oxidative stress, peroxidated lipids and iron are released from neurons by autolysosomal exocytosis which requires the exocytic machinery VAMP7 and syntaxin 4. We observe membrane-bound lipid-protein particles by TEM and demonstrate that these particles are released from neurons using cryoEM. Failure to release these lipid-protein particles causes lipid hydroperoxide and iron accumulation and sensitizes neurons to ferroptosis. Our results reveal how neurons protect themselves from peroxidated lipids. Given the number of brain pathologies that involve ferroptosis, defects in this pathway likely play a key role in the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Matthew J. Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Lindsey D. Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Nathanael Y.J. Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Greg Plummer
- Faculty of Medicine & Dentistry Cell Imaging Core, University of Alberta, Edmonton, Canada
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
27
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
28
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
Glucagon hypersecretion from the pancreatic α-cell is a characteristic sign of diabetes, which exacerbates fasting hyperglycemia. Thus, targeting glucagon secretion from α-cells may be a promising approach for combating hyperglucagonemia. We have recently identified stathmin-2 as an α-cell protein that regulates glucagon secretion by directing glucagon toward the endolysosomal system in αTC1-6 cells. We hypothesized that disruption of Stmn2-mediated trafficking of glucagon to the endolysosomes in diabetes contributes to hyperglucagonemia. In isolated islets from male mice treated with streptozotocin (STZ), glucagon secretion and cellular content were augmented, but cellular Stmn2 levels were reduced (p < .01), as measured by both ELISA and immunofluorescence intensity. Using confocal immunofluorescence microscopy, the colocalization of glucagon and Stmn2 in Lamp2A+ lysosomes was dramatically reduced (p < .001) in islets from diabetic mice, and the colocalization of Stmn2, but not glucagon, with the late endosome marker, Rab7, significantly (p < .01) increased. Further studies were conducted in αTC1-6 cells cultured in media containing high glucose (16.7 mM) for 2 weeks to mimic glucagon hypersecretion of diabetes. Surprisingly, treatment of αTC1-6 cells with the lysosomal inhibitor bafilomycin A1 reduced K+-induced glucagon secretion, suggesting that high glucose may induce glucagon secretion from another lysosomal compartment. Both glucagon and Stmn2 co-localized with Lamp1, which marks secretory lysosomes, in cells cultured in high glucose. We propose that, in addition to enhanced trafficking and secretion through the regulated secretory pathway, the hyperglucagonemia of diabetes may also be due to re-routing of glucagon from the degradative Lamp2A+ lysosome toward the secretory Lamp1+ lysosome.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Metabolism & Diabetes and Imaging Programs, Lawson Health Research Institute, London, ON, Canada
- CONTACT Savita Dhanvantari Lawson Health Research Institute, PO Box 5777, Stn B, London, ONN6A 4V2, Canada
| |
Collapse
|
30
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
31
|
Protein Quality Control in Glioblastoma: A Review of the Current Literature with New Perspectives on Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179734. [PMID: 36077131 PMCID: PMC9456419 DOI: 10.3390/ijms23179734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Protein quality control allows eukaryotes to maintain proteostasis under the stress of constantly changing conditions. In this review, we discuss the current literature on PQC, highlighting flaws that must exist for malignancy to occur. At the nidus of PQC, the expression of BAG1-6 reflects the cell environment; each isoform directs proteins toward different, parallel branches of the quality control cascade. The sum of these branches creates a net shift toward either homeostasis or apoptosis. With an established role in ALP, Bag3 is necessary for cell survival in stress conditions including those of the cancerous niche (i.e., hypoxia, hypermutation). Evidence suggests that excessive Bag3–HSP70 activity not only sustains, but also propagates cancers. Its role is anti-apoptotic—which allows malignant cells to persist—and intercellular—with the production of infectious ‘oncosomes’ enabling cancer expansion and recurrence. While Bag3 has been identified as a key prognostic indicator in several cancer types, its investigation is limited regarding glioblastoma. The cochaperone HSP70 has been strongly linked with GBM, while ALP inhibitors have been shown to improve GBM susceptibility to chemotherapeutics. Given the highly resilient, frequently recurrent nature of GBM, the targeting of Bag3 is a necessary consideration for the successful and definitive treatment of GBM.
Collapse
|
32
|
Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat Commun 2022; 13:4918. [PMID: 35995799 PMCID: PMC9395532 DOI: 10.1038/s41467-022-32625-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Considerable evidence supports the release of pathogenic aggregates of the neuronal protein α-Synuclein (αSyn) into the extracellular space. While this release is proposed to instigate the neuron-to-neuron transmission and spread of αSyn pathology in synucleinopathies including Parkinson’s disease, the molecular-cellular mechanism(s) remain unclear. To study this, we generated a new mouse model to specifically immunoisolate neuronal lysosomes, and established a long-term culture model where αSyn aggregates are produced within neurons without the addition of exogenous fibrils. We show that neuronally generated pathogenic species of αSyn accumulate within neuronal lysosomes in mouse brains and primary neurons. We then find that neurons release these pathogenic αSyn species via SNARE-dependent lysosomal exocytosis. The released aggregates are non-membrane enveloped and seeding-competent. Additionally, we find that this release is dependent on neuronal activity and cytosolic Ca2+. These results propose lysosomal exocytosis as a central mechanism for the release of aggregated and degradation-resistant proteins from neurons. Release of α-synuclein aggregates by neurons instigates spread of pathology in synucleinopathies, but the mechanism remains unclear. Here the authors show that neuronally generated α-synuclein aggregates accumulate within neuronal lysosomes and are released via SNARE-dependent lysosomal exocytosis.
Collapse
|
33
|
Lysosome exocytosis is required for mitosis in mammalian cells. Biochem Biophys Res Commun 2022; 626:211-219. [PMID: 35998546 DOI: 10.1016/j.bbrc.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Mitosis, the accurate segregation of duplicated genetic material into what will become two new daughter cells, is accompanied by extensive membrane remodelling and membrane trafficking activities. Early in mitosis, adherent cells partially detach from the substratum, round up and their surface area decreases. This likely results from an endocytic uptake of plasma membrane material. As cells enter cytokinesis they re-adhere, flatten and exhibit an associated increase in surface area. The identity of the membrane donor for this phase of mitosis remains unclear. In this paper we demonstrate how lysosomes dynamically redistribute during mitosis and exocytose. Antagonism of lysosomal exocytosis by pharmacological and genetic approaches causes mitosis failure in a significant proportion of cells. We speculate that either lysosomal membrane or luminal content release, possibly both, are therefore required for normal mitosis progression. These findings are important as they reveal a new process required for successful cell division.
Collapse
|
34
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
35
|
Vasconcelos-Cardoso M, Batista-Almeida D, Rios-Barros LV, Castro-Gomes T, Girao H. Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. J Cell Sci 2022; 135:275922. [PMID: 35801807 DOI: 10.1242/jcs.259806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Vasconcelos-Cardoso
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Daniela Batista-Almeida
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Laura Valeria Rios-Barros
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
36
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
37
|
A Novel Role of the TRPM4 Ion Channel in Exocytosis. Cells 2022; 11:cells11111793. [PMID: 35681487 PMCID: PMC9180413 DOI: 10.3390/cells11111793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, the widely expressed calcium-activated TRPM4 channel conducts sodium into cells. This sodium influx depolarizes the plasma membrane and reduces the driving force for calcium entry. The aberrant expression or function of TRPM4 has been reported in various diseases, including different types of cancer. TRPM4 is mainly localized in the plasma membrane, but it is also found in intracellular vesicles, which can undergo exocytosis. In this study, we show that calcium-induced exocytosis in the colorectal cancer cell line HCT116 is dependent on TRPM4. In addition, the findings from some studies of prostate cancer cell lines suggest a more general role of TRPM4 in calcium-induced exocytosis in cancer cells. Furthermore, calcium-induced exocytosis depends on TRPM4 ion conductivity. Additionally, an increase in intracellular calcium results in the delivery of TRPM4 to the plasma membrane. This process also depends on TRPM4 ion conductivity. TRPM4-dependent exocytosis and the delivery of TRPM4 to the plasma membrane are mediated by SNARE proteins. Finally, we provide evidence that calcium-induced exocytosis depends on TRPM4 ion conductivity, not within the plasma membrane, but rather in TRPM4-containing vesicles.
Collapse
|
38
|
Cesar-Silva D, Pereira-Dutra FS, Moraes Giannini AL, Jacques G. de Almeida C. The Endolysosomal System: The Acid Test for SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23094576. [PMID: 35562967 PMCID: PMC9105036 DOI: 10.3390/ijms23094576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review aims to describe and discuss the different functions of the endolysosomal system, from homeostasis to its vital role during viral infections. We will initially describe endolysosomal system's main functions, presenting recent data on how its compartments are essential for host defense to explore later how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and other coronaviruses subvert these organelles for their benefit. It is clear that to succeed, pathogens' evolution favored the establishment of ways to avoid, escape, or manipulate lysosomal function. The unavoidable coexistence with such an unfriendly milieu imposed on viruses the establishment of a vast array of strategies to make the most out of the invaded cell's machinery to produce new viruses and maneuvers to escape the host's defense system.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
- Correspondence: or
| |
Collapse
|
39
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
40
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
42
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
43
|
Filali L, Puissegur MP, Cortacero K, Cussat-Blanc S, Khazen R, Van Acker N, Frenois FX, Abreu A, Lamant L, Meyer N, Vergier B, Müller S, McKenzie B, Valitutti S. Ultrarapid lytic granule release from CTLs activates Ca 2+-dependent synaptic resistance pathways in melanoma cells. SCIENCE ADVANCES 2022; 8:eabk3234. [PMID: 35171665 PMCID: PMC8849291 DOI: 10.1126/sciadv.abk3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human cytotoxic T lymphocytes (CTLs) exhibit ultrarapid lytic granule secretion, but whether melanoma cells mobilize defense mechanisms with commensurate rapidity remains unknown. We used single-cell time-lapse microscopy to offer high spatiotemporal resolution analyses of subcellular events in melanoma cells upon CTL attack. Target cell perforation initiated an intracellular Ca2+ wave that propagated outward from the synapse within milliseconds and triggered lysosomal mobilization to the synapse, facilitating membrane repair and conferring resistance to CTL induced cytotoxicity. Inhibition of Ca2+ flux and silencing of synaptotagmin VII limited synaptic lysosomal exposure and enhanced cytotoxicity. Multiplexed immunohistochemistry of patient melanoma nodules combined with automated image analysis showed that melanoma cells facing CD8+ CTLs in the tumor periphery or peritumoral area exhibited significant lysosomal enrichment. Our results identified synaptic Ca2+ entry as the definitive trigger for lysosomal deployment to the synapse upon CTL attack and highlighted an unpredicted defensive topology of lysosome distribution in melanoma nodules.
Collapse
Affiliation(s)
- Liza Filali
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Marie-Pierre Puissegur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Kevin Cortacero
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT) - University Toulouse Capitole Centre national de la recherche scientifique (CNRS) UMR5505, Artificial and Natural Intelligence Toulouse Institute, Toulouse, France
| | - Roxana Khazen
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Nathalie Van Acker
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Arnaud Abreu
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Laurence Lamant
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Nicolas Meyer
- Department of Dermatology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Béatrice Vergier
- Service de Pathologie, CHU de Bordeaux, Bordeaux, France
- Equipe INSERM U1053-UMR BaRITOn (Eq 3), Université de Bordeaux, Bordeaux, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| |
Collapse
|
44
|
Xiang C, Liu X, Zhou D, Zhou Y, Wang X, Chen F. Identification of a glioma functional network from gene fitness data using machine learning. J Cell Mol Med 2022; 26:1253-1263. [PMID: 35044082 PMCID: PMC8831986 DOI: 10.1111/jcmm.17182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain tumours that remains incurable despite recent advances in clinical treatments. Previous studies have focused on sub-categorizing patient samples based on clustering various transcriptomic data. While functional genomics data are rapidly accumulating, there exist opportunities to leverage these data to decipher glioma-associated biomarkers. We sought to implement a systematic approach to integrating data from high throughput CRISPR-Cas9 screening studies with machine learning algorithms to infer a glioma functional network. We demonstrated the network significantly enriched various biological pathways and may play roles in glioma tumorigenesis. From densely connected glioma functional modules, we further predicted 12 potential Wnt/β-catenin signalling pathway targeted genes, including AARSD1, HOXB5, ITGA6, LRRC71, MED19, MED24, METTL11B, SMARCB1, SMARCE1, TAF6L, TENT5A and ZNF281. Cox regression modelling with these targets was significantly associated with glioma overall survival prognosis. Additionally, TRIB2 was identified as a glioma neoplastic cell marker in single-cell RNA-seq of GBM samples. This work establishes novel strategies for constructing functional networks to identify glioma biomarkers for the development of diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Chun‐xiang Xiang
- Department of PathologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Xi‐guo Liu
- Department of Head and Neck SurgeryHubei Cancer HospitalWuhan, HubeiChina
| | - Da‐quan Zhou
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Yi Zhou
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Xu Wang
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Feng Chen
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| |
Collapse
|
45
|
Luo L, Wu Z, Wang Y, Li H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J Nanobiotechnology 2021; 19:422. [PMID: 34906146 PMCID: PMC8670141 DOI: 10.1186/s12951-021-01171-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have confirmed the great application potentials of small extracellular vesicles (sEVs) in biological medical field, especially in tissue repair and regeneration. However, the production capability of sEVs by noncancerous cells is very limited, while their dosage requirements in disease treatments are usually very high. Meanwhile, as cell aging, the sEV production capability of cells decreases and the biological function of sEVs changes accordingly. In addition, for special applications, sEVs carrying desired bioactive substances should be designed to perform their expected biological function. Therefore, improving the production of sEVs and precisely regulating their biological function are of great significance for promoting the clinical applications of sEVs. In this review, some of the current classic strategies in affecting the cellular behaviors of donor cells and subsequently regulating the production and biological function of their sEVs are summarized, including gene engineering methods, stress-inducing conditions, chemical regulators, physical methods, and biomaterial stimulations. Through applying these strategies, increased yield of sEVs with required biological function can be obtained for disease treatment and tissue repair, such as bone regeneration, wound healing, nerve function recovery and cancer treatment, which could not only reduce the harvest cost of sEV but promote the practical applications of sEVs in clinic.
Collapse
Affiliation(s)
- Lei Luo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhi Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
46
|
SNARE Proteins Mediate α-Synuclein Secretion via Multiple Vesicular Pathways. Mol Neurobiol 2021; 59:405-419. [PMID: 34705229 DOI: 10.1007/s12035-021-02599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
The cell-to-cell transmission of pathological α-synuclein (α-syn) has been proposed to be a critical event in the development of synucleinopathies. Recent studies have begun to reveal the underlying molecular mechanism of α-syn propagation. As one of the central steps, α-syn secretion is reported to be Ca2+-dependent and mediated by unconventional exocytosis. However, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) requirement and vesicle identity of α-syn secretion remain elusive. Here we found that α-syn secretion is SNARE-dependent by systematically knocking down Q-SNAREs and R-SNAREs in exocytosis pathways. α-Syn secretion was mainly mediated by syntaxin 4 (STX4) and synaptosomal-associated protein 23 (SNAP23), but did not require STX1 and SNAP25, in differentiated SH-SY5Y cells. On the other hand, vesicle-associated membrane protein 3 (VAMP3), VAMP7, and VAMP8 were all involved in α-syn secretion, most likely in overlapping pathways. Application of super-resolution microscopy revealed localization of both endogenous and overexpressed α-syn in endosomes, lysosomes, and autophagosomes in rat primary cortical neurons. α-Syn co-localized with microtubule-associated protein 1 light chain 3 (LC3) most extensively, suggesting its tight association with the autophagy pathway. Consistently, α-syn secretion was regulated by the autophagy-lysosome pathway. Collectively, our data suggest that α-syn secretion is SNARE-dependent and is mediated by multiple vesicular pathways including exocytosis of recycling endosomes, multivesicular bodies, autophagosomes, and lysosomes.
Collapse
|
47
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
48
|
Escrevente C, Bento-Lopes L, Ramalho JS, Barral DC. Rab11 is required for lysosome exocytosis through the interaction with Rab3a, Sec15 and GRAB. J Cell Sci 2021; 134:jcs246694. [PMID: 34100549 PMCID: PMC8214760 DOI: 10.1242/jcs.246694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of Ca2+-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) as well as Rab3a, which we have previously described to be a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.
Collapse
Affiliation(s)
| | | | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
49
|
Clague MJ, Urbé S. Data mining for traffic information. Traffic 2021; 21:162-168. [PMID: 31596015 DOI: 10.1111/tra.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Modern cell biology is now rich with data acquired at the whole genome and proteome level. We can add value to this data through integration and application of specialist knowledge. To illustrate, we will focus on the SNARE and RAB proteins; key regulators of intracellular fusion specificity and organelle identity. We examine published mass spectrometry data to gain an estimate of protein copy number and organelle distribution in HeLa cells for each family member. We also survey recent global CRISPR/Cas9 screens for essential genes from these families. We highlight instances of co-essentiality with other genes across a large panel of cell lines that allows for the identification of functionally coherent clusters. Examples of such correlations include RAB10 with the SNARE protein Syntaxin4 (STX4) and RAB7/RAB21 with the WASH and the CCC (COMMD/CCDC22/CCDC93) complexes, both of which are linked to endosomal recycling pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Bowman SL, Le L, Zhu Y, Harper DC, Sitaram A, Theos AC, Sviderskaya EV, Bennett DC, Raposo-Benedetti G, Owen DJ, Dennis MK, Marks MS. A BLOC-1-AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. J Cell Biol 2021; 220:212016. [PMID: 33886957 PMCID: PMC8077166 DOI: 10.1083/jcb.202005173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.
Collapse
Affiliation(s)
- Shanna L. Bowman
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Linfield University, McMinnville, OR
| | - Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Yueyao Zhu
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anand Sitaram
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | | - Elena V. Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Dorothy C. Bennett
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Graça Raposo-Benedetti
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, Compartiments de Structure et de Membrane, Paris, France
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge, UK
| | - Megan K. Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Marist College, Poughkeepsie, NY
| | - Michael S. Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Correspondence to Michael S. Marks:
| |
Collapse
|