1
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
2
|
McGee SR, Rajamanickam S, Adhikari S, Falayi OC, Wilson TA, Shayota BJ, Cooley Coleman JA, Skinner C, Caylor RC, Stevenson RE, Quaio CRDAC, Wilke BC, Bain JM, Anyane-Yeboa K, Brown K, Greally JM, Bijlsma EK, Ruivenkamp CAL, Politi K, Arbogast LA, Collard MW, Huggenvik JI, Elsea SH, Jensik PJ. Expansion and mechanistic insights into de novo DEAF1 variants in DEAF1-associated neurodevelopmental disorders. Hum Mol Genet 2023; 32:386-401. [PMID: 35981081 PMCID: PMC10310974 DOI: 10.1093/hmg/ddac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
De novo deleterious and heritable biallelic mutations in the DNA binding domain (DBD) of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of disorders termed DEAF1-associated neurodevelopmental disorders (DAND). RNA-sequencing using hippocampal RNA from mice with conditional deletion of Deaf1 in the central nervous system indicate that loss of Deaf1 activity results in the altered expression of genes involved in neuronal function, dendritic spine maintenance, development, and activity, with reduced dendritic spines in hippocampal regions. Since DEAF1 is not a dosage-sensitive gene, we assessed the dominant negative activity of previously identified de novo variants and a heritable recessive DEAF1 variant on selected DEAF1-regulated genes in 2 different cell models. While no altered gene expression was observed in cells over-expressing the recessive heritable variant, the gene expression profiles of cells over-expressing de novo variants resulted in similar gene expression changes as observed in CRISPR-Cas9-mediated DEAF1-deleted cells. Altered expression of DEAF1-regulated genes was rescued by exogenous expression of WT-DEAF1 but not by de novo variants in cells lacking endogenous DEAF1. De novo heterozygous variants within the DBD of DEAF1 were identified in 10 individuals with a phenotypic spectrum including autism spectrum disorder, developmental delays, sleep disturbance, high pain tolerance, and mild dysmorphic features. Functional assays demonstrate these variants alter DEAF1 transcriptional activity. Taken together, this study expands the clinical phenotypic spectrum of individuals with DAND, furthers our understanding of potential roles of DEAF1 on neuronal function, and demonstrates dominant negative activity of identified de novo variants.
Collapse
Affiliation(s)
- Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Sandeep Adhikari
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | | | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Department of Pediatrics, Division of Genetics, University of Utah, Salt Lake City, UT
| | | | | | | | | | - Caio Robledo D' Angioli Costa Quaio
- Instituto da Criança (Children’s Hospital), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, USA
| | - Kaitlyn Brown
- Departments of Pediatrics and Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - John M Greally
- Departments of Pediatrics and Genetics, Albert Einstein College of Medicine, Bronx, NY USA
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, PO box 9600, 2300 RC, Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, PO box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Lydia A Arbogast
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Michael W Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Jodi I Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL USA
| |
Collapse
|
3
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Chen S, Deng X, Xiong J, He F, Yang L, Chen B, Chen C, Zhang C, Yang L, Peng J, Yin F. De novo variants of DEAF1 cause intellectual disability in six Chinese patients. Clin Chim Acta 2021; 518:17-21. [PMID: 33705764 DOI: 10.1016/j.cca.2021.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND It has been reported that de novo heterozygous variants of DEAF1 can cause DEAF1-associated neurodevelopmental disorder. The purpose of this article is to explore the clinical and genetic characteristics of Chinese patients harboring de novo DEAF1 variants. METHODS We assembled a cohort of six unrelated patients with de novo variants in DEAF1. Clinical and genetic features of these patients were summarized. RESULTS Each child showed intellectual disability (ID)/ global developmental delay (GDD). Severe language impairment was prominent. Behavior problems, seizures, sleep disturbance, and a high pain threshold were common features. DEAF1-related seizures were reported to be difficult to treat or intractable. Seizures in our cohort were almost all treatable. Valproic acid was the most commonly used drug. Five heterozygous missense mutations of DEAF1 gene were identified, three of which (p.W234C, p.L203P, p.H275Q) were not published in literature before. CONCLUSION Mutations of DEAF1 gene should be considered in ID/GDD patients with a nonspecific phenotype, comprising intellectual disability, prominent speech delay, abnormal behaviors, especially autism. In our study, DEAF1-related epilepsy is completely treatable in Eastern-Asian individuals when compared to patients in other regions, and valproic acid can be used as a first choice. The knowledge of DEAF1-related neurodevelopmental disorder and the de novo variant database of DEAF1 were expanded.
Collapse
Affiliation(s)
- Shimeng Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.
| |
Collapse
|
5
|
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, Stevens C, Reichert J, Mulhern MS, Artomov M, Gerges S, Sheppard B, Xu X, Bhaduri A, Norman U, Brand H, Schwartz G, Nguyen R, Guerrero EE, Dias C, Betancur C, Cook EH, Gallagher L, Gill M, Sutcliffe JS, Thurm A, Zwick ME, Børglum AD, State MW, Cicek AE, Talkowski ME, Cutler DJ, Devlin B, Sanders SJ, Roeder K, Daly MJ, Buxbaum JD. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020; 180:568-584.e23. [PMID: 31981491 PMCID: PMC7250485 DOI: 10.1016/j.cell.2019.12.036] [Citation(s) in RCA: 1344] [Impact Index Per Article: 268.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/08/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
Abstract
We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.
Collapse
Affiliation(s)
- F Kyle Satterstrom
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack A Kosmicki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jiebiao Wang
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joon-Yong An
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Minshi Peng
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ryan Collins
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christine Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Reichert
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maureen S Mulhern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mykyta Artomov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brooke Sheppard
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xinyi Xu
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Utku Norman
- Computer Engineering Department, Bilkent University, Ankara, Turkey
| | - Harrison Brand
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Schwartz
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Nguyen
- Center for Autism Research and Translation, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth E Guerrero
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA, USA
| | - Caroline Dias
- Division of Genetics, Boston Children's Hospital, Boston, MA, USA; Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James S Sutcliffe
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Audrey Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Ercument Cicek
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA; Computer Engineering Department, Bilkent University, Ankara, Turkey
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA; Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Impaired memory and marble burying activity in deformed epidermal autoregulatory factor 1 (Deaf1) conditional knockout mice. Behav Brain Res 2019; 380:112383. [PMID: 31783086 DOI: 10.1016/j.bbr.2019.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/24/2022]
Abstract
Deleterious mutations within the DNA binding domain of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. While whole animal deletion of Deaf1 in mice is lethal, mice with conditional disruption of the gene in neuronal precursor cells can display memory deficits and increased anxiety-like behavior. This study aimed to further characterize learning and memory alterations and assess changes in marble burying activity and hippocampal size in mice with conditional deletion of Deaf1. Mice lacking DEAF1 in the CNS (NKO) displayed reduced memory in both contextual fear conditioning and a 3-day massed trials Morris water maze paradigm. NKO mice had reduced marble burying activity in full cage marble burying tests. Using a half-cage marble test, NKO mice again buried fewer marbles and spent significantly more time on the side of the cage away from the marbles compared to control animals. The area of the dorsal hippocampus of NKO mice was decreased compared to control and animals with a single Deaf1 allele. These results continue to establish the importance of DEAF1 in cognitive behavior and provide new evidence that DEAF1 regulates hippocampal morphology.
Collapse
|
7
|
A novel autosomal recessive DEAF1 nonsense variant: expanding the clinical phenotype. Clin Dysmorphol 2019; 29:114-117. [PMID: 31688097 DOI: 10.1097/mcd.0000000000000306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Nabais Sá MJ, Jensik PJ, McGee SR, Parker MJ, Lahiri N, McNeil EP, Kroes HY, Hagerman RJ, Harrison RE, Montgomery T, Splitt M, Palmer EE, Sachdev RK, Mefford HC, Scott AA, Martinez-Agosto JA, Lorenz R, Orenstein N, Berg JN, Amiel J, Heron D, Keren B, Cobben JM, Menke LA, Marco EJ, Graham JM, Pierson TM, Karimiani EG, Maroofian R, Manzini MC, Cauley ES, Colombo R, Odent S, Dubourg C, Phornphutkul C, de Brouwer APM, de Vries BBA, Vulto-vanSilfhout AT. De novo and biallelic DEAF1 variants cause a phenotypic spectrum. Genet Med 2019; 21:2059-2069. [PMID: 30923367 DOI: 10.1038/s41436-019-0473-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.
Collapse
Affiliation(s)
- Maria J Nabais Sá
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, OPD2 Northern General Hospital, Sheffield, UK
| | - Nayana Lahiri
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust & St George's, University of London, London, UK
| | - Evan P McNeil
- Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis School of Medicine, Sacramento, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, Sacramento, CA, USA
| | - Rachel E Harrison
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Tara Montgomery
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Miranda Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington-Seattle, Seattle, WA, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Naama Orenstein
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan N Berg
- Department of Clinical Genetics, Ninewells Hospital and Medical School, Dundee, Angus, UK.,Clinical Genetics, University of Dundee, Dundee, Angus, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Delphine Heron
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Jan-Maarten Cobben
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,North West Thames Genetics NHS, Northwick Park Hospital, London, UK
| | - Leonie A Menke
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elysa J Marco
- Department of Child Neurology, Cortica Healthcare, San Rafael, CA, USA
| | - John M Graham
- Division of Clinical Genetics and Dysmorphology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tyler Mark Pierson
- Department of Pediatrics, Department of Neurology, and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, UK
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, UK
| | - M Chiara Manzini
- GW Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Edmund S Cauley
- GW Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roberto Colombo
- Faculty of Medicine"Agostino Gemelli"Catholic University of the Sacred Heart, Rome, Italy.,Center for the Study of Rare Inherited Diseases (CeSMER), Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Sylvie Odent
- Service de Génétique Clinique, CLAD-Ouest CHU Rennes, Univ Rennes, CNRS 6290 Institut de Génétique et Développement de Rennes (IGDR), Rennes, France
| | | | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
9
|
Chen L, Jensik PJ, Alaimo JT, Walkiewicz M, Berger S, Roeder E, Faqeih EA, Bernstein JA, Smith ACM, Mullegama SV, Saffen DW, Elsea SH. Functional analysis of novel DEAF1 variants identified through clinical exome sequencing expands DEAF1-associated neurodevelopmental disorder (DAND) phenotype. Hum Mutat 2017; 38:1774-1785. [PMID: 28940898 PMCID: PMC5679464 DOI: 10.1002/humu.23339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022]
Abstract
Deformed epidermal autoregulatory factor-1 (DEAF1), a transcription factor essential for central nervous system and early embryonic development, has recently been implicated in a series of intellectual disability-related neurodevelopmental anomalies termed, in this study, as DEAF1-associated neurodevelopmental disorder (DAND). We identified six potentially deleterious DEAF1 variants in a cohort of individuals with DAND via clinical exome sequencing (CES) and in silico analysis, including two novel de novo variants: missense variant c.634G > A p.Gly212Ser in the SAND domain and deletion variant c.913_915del p.Lys305del in the NLS domain, as well as c.676C > T p.Arg226Trp, c.700T > A p.Trp234Arg, c.737G > C p.Arg246Thr, and c.791A > C p.Gln264Pro. Luciferase reporter, immunofluorescence staining, and electrophoretic mobility shift assays revealed that these variants had decreased transcriptional repression activity at the DEAF1 promoter and reduced affinity to consensus DEAF1 DNA binding sequences. In addition, c.913_915del p.K305del localized primarily to the cytoplasm and interacted with wild-type DEAF1. Our results demonstrate that variants located within the SAND or NLS domains significantly reduce DEAF1 transcriptional regulatory activities and are thus, likely to contribute to the underlying clinical concerns in DAND patients. These findings illustrate the importance of experimental characterization of variants with uncertain significance identified by CES to assess their potential clinical significance and possible use in diagnosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Joseph T. Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Departments of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Eissa A. Faqeih
- Department of Pediatrics Subspecialty, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Ann C. M. Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sureni V. Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David W. Saffen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Brain Science, Fudan University, Shanghai, China
- State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, China
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| |
Collapse
|
10
|
Mullegama SV, Jensik P, Li C, Dorrani N, Kantarci S, Blumberg B, Grody WW, Strom SP. Coupling clinical exome sequencing with functional characterization studies to diagnose a patient with familial Mediterranean fever and MED13L haploinsufficiency syndromes. Clin Case Rep 2017; 5:833-840. [PMID: 28588821 PMCID: PMC5458005 DOI: 10.1002/ccr3.904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/28/2017] [Accepted: 02/11/2017] [Indexed: 02/06/2023] Open
Abstract
Clinicians should consider that clinical exome sequencing provides the unique potential to disentangle complex phenotypes into multiple genetic etiologies. Further, functional studies on variants of uncertain significance are necessary to arrive at an accurate diagnosis for the patient.
Collapse
Affiliation(s)
- Sureni V Mullegama
- UCLA Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,UCLA Clinical Genomics Center David Geffen School of Medicine University of California, Los Angeles Los Angeles California
| | - Phillip Jensik
- Department of Physiology Southern Illinois University School of Medicine Carbondale Illinois
| | - Chen Li
- Department of Cellular and Genetic Medicine School of Basic Medical Sciences Fudan University Shanghai China
| | - Naghmeh Dorrani
- UCLA Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,UCLA Clinical Genomics Center David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,Department of Human Genetics David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,Department of Pediatrics David Geffen School of Medicine University of California, Los Angeles Los Angeles California
| | | | - Sibel Kantarci
- UCLA Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,UCLA Clinical Genomics Center David Geffen School of Medicine University of California, Los Angeles Los Angeles California
| | | | - Wayne W Grody
- UCLA Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,UCLA Clinical Genomics Center David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,Department of Human Genetics David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,Department of Pediatrics David Geffen School of Medicine University of California, Los Angeles Los Angeles California
| | - Samuel P Strom
- UCLA Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles California.,UCLA Clinical Genomics Center David Geffen School of Medicine University of California, Los Angeles Los Angeles California
| |
Collapse
|
11
|
Jensik PJ, Arbogast LA. Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and Elongin B/C interaction. Mol Cell Endocrinol 2015; 401:130-41. [PMID: 25448846 PMCID: PMC4373541 DOI: 10.1016/j.mce.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Cytokine-inducible SH2-containing protein (CIS) inhibits prolactin receptor (PRLR) signaling and acts as part of an E3 ubiquitin ligase complex through interactions with Elongin B/C proteins. This study aimed to identify CIS lysine ubiquitination sites and determine roles of ubiquitination and Elongin B/C interactions on CIS protein stability and PRLR signaling inhibition. Site-directed mutations revealed that CIS can be ubiquitinated on all six lysine residues. Elongin B/C interaction box mutation had no influence on CIS ubiquitination. CIS stability was increased by mutation of lysine residues and further enhanced by co-mutation of Elongin B/C interaction domain. CIS inhibition of STAT5B phosphorylation and casein promoter activation was dependent on CIS interactions with Elongin B/C, but not on CIS ubiquitination. These data indicate CIS protein stability is regulated through multiple mechanisms, including ubiquitination and interaction with Elongin B/C proteins, whereas CIS functional inhibition of PRLR signaling is dependent on the Elongin B/C interaction.
Collapse
|
12
|
Yip L, Fuhlbrigge R, Taylor C, Creusot RJ, Nishikawa-Matsumura T, Whiting CC, Schartner JM, Akter R, von Herrath M, Fathman CG. Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. Diabetes 2015; 64:604-17. [PMID: 25187368 PMCID: PMC4303971 DOI: 10.2337/db14-0803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peripheral tolerance is partially controlled by the expression of peripheral tissue antigens (PTAs) in lymph node stromal cells (LNSCs). We previously identified a transcriptional regulator, deformed epidermal autoregulatory factor 1 (Deaf1), that can regulate PTA expression in LNSCs of the pancreatic lymph nodes (PLNs). During the pathogenesis of type 1 diabetes (T1D), Deaf1 is spliced to form the dominant-negative isoform Deaf1-Var1. Here we show that Deaf1-Var1 expression correlates with the severity of disease in NOD mice and is reduced in the PLNs of mice that do not develop hyperglycemia. Inflammation and hyperglycemia independently drive Deaf1 splicing through activation of the splicing factors Srsf10 and Ptbp2, respectively. Inflammation induced by injection of activated splenocytes increased Deaf1-Var1 and Srsf10, but not Ptbp2, in the PLNs of NOD.SCID mice. Hyperglycemia induced by treatment with the insulin receptor agonist S961 increased Deaf1-Var1 and Ptbp2, but not Srsf10, in the PLNs of NOD.B10 and NOD mice. Overexpression of PTBP2 and/or SRSF10 also increased human DEAF1-VAR1 and reduced PTA expression in HEK293T cells. These data suggest that during the progression of T1D, inflammation and hyperglycemia mediate the splicing of DEAF1 and loss of PTA expression in LNSCs by regulating the expression of SRSF10 and PTBP2.
Collapse
Affiliation(s)
- Linda Yip
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Cariel Taylor
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY
| | | | - Chan C Whiting
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Jill M Schartner
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Rahima Akter
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| | - Matthias von Herrath
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - C Garrison Fathman
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA
| |
Collapse
|
13
|
Jensik PJ, Vargas JD, Reardon SN, Rajamanickam S, Huggenvik JI, Collard MW. DEAF1 binds unmethylated and variably spaced CpG dinucleotide motifs. PLoS One 2014; 9:e115908. [PMID: 25531106 PMCID: PMC4274154 DOI: 10.1371/journal.pone.0115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
DEAF1 is a transcriptional regulator associated with autoimmune and neurological disorders and is known to bind TTCG motifs. To further ascertain preferred DEAF1 DNA ligands, we screened a random oligonucleotide library containing an "anchored" CpG motif. We identified a binding consensus that generally conformed to a repeated TTCGGG motif, with the two invariant CpG dinucleotides separated by 6-11 nucleotides. Alteration of the consensus surrounding the dual CpG dinucleotides, or cytosine methylation of a single CpG half-site, eliminated DEAF1 binding. A sequence within the Htr1a promoter that resembles the binding consensus but contains a single CpG motif was confirmed to have low affinity binding with DEAF1. A DEAF1 binding consensus was identified in the EIF4G3 promoter and ChIP assay showed endogenous DEAF1 was bound to the region. We conclude that DEAF1 preferentially binds variably spaced and unmethylated CpG-containing half-sites when they occur within an appropriate consensus.
Collapse
Affiliation(s)
- Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| | - Jesse D. Vargas
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Sara N. Reardon
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jodi I. Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| |
Collapse
|
14
|
Joseph S, Kwan AH, Stokes PH, Mackay JP, Cubeddu L, Matthews JM. The structure of an LIM-only protein 4 (LMO4) and Deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4. PLoS One 2014; 9:e109108. [PMID: 25310299 PMCID: PMC4195752 DOI: 10.1371/journal.pone.0109108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Ann H. Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Philippa H. Stokes
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Liza Cubeddu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, University of Western Sydney, Campbelltown, NSW Australia
| | | |
Collapse
|
15
|
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, Vergult S, de Rocker N, Newhall KJ, Raghavan R, Reardon SN, Jarrett K, McIntyre T, Bulinski J, Ownby SL, Huggenvik JI, McKnight GS, Rose GM, Cai X, Willaert A, Zweier C, Endele S, de Ligt J, van Bon BWM, Lugtenberg D, de Vries PF, Veltman JA, van Bokhoven H, Brunner HG, Rauch A, de Brouwer APM, Carvill GL, Hoischen A, Mefford HC, Eichler EE, Vissers LELM, Menten B, Collard MW, de Vries BBA. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94:649-61. [PMID: 24726472 DOI: 10.1016/j.ajhg.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.
Collapse
Affiliation(s)
| | - Shivakumar Rajamanickam
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J Jensik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Nina de Rocker
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Kathryn J Newhall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ramya Raghavan
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sara N Reardon
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Kelsey Jarrett
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Tara McIntyre
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Joseph Bulinski
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Stacy L Ownby
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jodi I Huggenvik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Gregory M Rose
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Xiang Cai
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Andy Willaert
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Petra F de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Michael W Collard
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
16
|
Joseph S, Kwan AHY, Mackay JP, Cubeddu L, Matthews JM. Backbone and side-chain assignments of a tethered complex between LMO4 and DEAF-1. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:141-144. [PMID: 23417771 DOI: 10.1007/s12104-013-9470-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The transcriptional regulator LMO4 and the transcription factor DEAF-1 are both essential for brain and skeletal development. They are also implicated in human breast cancers; overexpression of LMO4 is an indicator of poor prognosis, and overexpression of DEAF-1 promotes epithelial breast cell proliferation. We have generated a stable LMO4-DEAF-1 complex comprising the C-terminal LIM domain of LMO4 and an intrinsically disordered LMO4-interaction domain from DEAF-1 tethered by a glycine/serine linker. Here we report the (1)H, (15)N and (13)C assignments of this construct. Analysis of the assignments indicates the presence of structure in the DEAF-1 part of the complex supporting the presence of a physical interaction between the two proteins.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
17
|
Fuhlbrigge R, Yip L. Self-antigen expression in the peripheral immune system: roles in self-tolerance and type 1 diabetes pathogenesis. Curr Diab Rep 2014; 14:525. [PMID: 25030265 DOI: 10.1007/s11892-014-0525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by the ectopic expression of peripheral tissue antigens (PTAs) in lymph nodes. Various subsets of lymph node stromal cells and certain hematopoietic cells play a role in maintaining T cell tolerance. These specialized cells have been shown to endogenously transcribe, process, and present a range of PTAs to naive T cells and mediate the clonal deletion or inactivation of autoreactive cells. During the progression of T1D, inflammation leads to reduced PTA expression in the pancreatic lymph nodes and the production of novel islet antigens that T cells are not tolerized against. These events allow for the escape and activation of autoreactive T cells and may contribute to the pathogenesis of T1D. In this review, we discuss recent findings in this area and propose possible therapies that may help reestablish self-tolerance during T1D.
Collapse
Affiliation(s)
- Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, 269 Campus Drive, CCSR Room 2240, Stanford, CA, 94305-5166, USA,
| | | |
Collapse
|
18
|
Ordureau A, Enesa K, Nanda S, Le Francois B, Peggie M, Prescott A, Albert PR, Cohen P. DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA. J Biol Chem 2013; 288:24569-80. [PMID: 23846693 PMCID: PMC3750155 DOI: 10.1074/jbc.m113.479550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Double-stranded (ds) RNA of viral origin, a ligand for Melanoma Differentiation-associated gene 5 (MDA5) and Toll-Like Receptor 3 (TLR3), induces the TANK-Binding Kinase 1 (TBK1)-dependent phosphorylation and activation of Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1, which are required for interferon β (IFNβ) gene transcription. Here, we report that Pellino1 interacts with the transcription factor Deformed Epidermal Autoregulatory Factor 1 (DEAF1). The interaction is independent of the E3 ligase activity of Pellino1, but weakened by the phosphorylation of Pellino1. We show that DEAF1 binds to the IFNβ promoter and to IRF3 and IRF7, that it is required for the transcription of the IFNβ gene and IFNβ secretion in MEFs infected with Sendai virus or transfected with poly(I:C). DEAF1 is also needed for TLR3-dependent IFNβ production. Taken together, our results identify DEAF1 as a novel component of the signal transduction network by which dsRNA of viral origin stimulates IFNβ production.
Collapse
Affiliation(s)
- Alban Ordureau
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cubeddu L, Joseph S, Richard DJ, Matthews JM. Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4. PLoS One 2012; 7:e39218. [PMID: 22723967 PMCID: PMC3378519 DOI: 10.1371/journal.pone.0039218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
Collapse
Affiliation(s)
- Liza Cubeddu
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| | - Soumya Joseph
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Derek J. Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| |
Collapse
|
20
|
Jensik PJ, Huggenvik JI, Collard MW. Deformed epidermal autoregulatory factor-1 (DEAF1) interacts with the Ku70 subunit of the DNA-dependent protein kinase complex. PLoS One 2012; 7:e33404. [PMID: 22442688 PMCID: PMC3307728 DOI: 10.1371/journal.pone.0033404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Deformed Epidermal Autoregulatory Factor 1 (DEAF1) is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70) and the XRCC5 (Ku80) subunits of DNA dependent protein kinase (DNA-PK) complex were identified by mass spectrometry, and the DNA-PK catalytic subunit was identified by immunoblotting. Interaction of DEAF1 with Ku70 and Ku80 was confirmed to occur within cells by co-immunoprecipitation of epitope-tagged proteins, and was mediated through interaction with the Ku70 subunit. Using in vitro GST-pulldowns, interaction between DEAF1 and the Ku70 subunit was mapped to the DEAF1 DNA binding domain and the C-terminal Bax-binding region of Ku70. In transfected cells, DEAF1 and Ku70 colocalized to the nucleus, but Ku70 could not relocalize a mutant cytoplasmic form of DEAF1 to the nucleus. Using an in vitro kinase assay, DEAF1 was phosphorylated by DNA-PK in a DNA-independent manner. Electrophoretic mobility shift assays showed that DEAF1 or Ku70/Ku80 did not interfere with the DNA binding of each other, but DNA containing DEAF1 binding sites inhibited the DEAF1-Ku70 interaction. The data demonstrates that DEAF1 can interact with the DNA-PK complex through interactions of its DNA binding domain with the carboxy-terminal region of Ku70 that contains the Bax binding domain, and that DEAF1 is a potential substrate for DNA-PK.
Collapse
Affiliation(s)
| | | | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Antony PMA, Mäntele S, Mollenkopf P, Boy J, Kehlenbach RH, Riess O, Schmidt T. Identification and functional dissection of localization signals within ataxin-3. Neurobiol Dis 2009; 36:280-92. [DOI: 10.1016/j.nbd.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022] Open
|
22
|
Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol 2009; 10:1026-33. [PMID: 19668219 PMCID: PMC2752139 DOI: 10.1038/ni.1773] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/16/2009] [Indexed: 01/30/2023]
Abstract
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by peripheral tissue antigen (PTA) expression in lymph nodes. Here we show that the transcriptional regulator deformed epidermal autoregulatory factor 1 (Deaf1) controls PTA gene expression in the pancreatic lymph nodes (PLN). The expression of canonical Deaf1 was reduced, while that of an alternatively spliced variant was increased during the onset of destructive insulitis in the PLN of NOD mice. An equivalent variant Deaf1 isoform was identified in the PLN of T1D patients. Both NOD and human Deaf1 variant isoforms suppressed PTA expression by inhibiting the transcriptional activity of canonical Deaf1. Reduced PTA expression resulting from the alternative splicing of Deaf1 may contribute to T1D pathogenesis.
Collapse
|
23
|
Flisikowski K, Schwarzenbacher H, Wysocki M, Weigend S, Preisinger R, Kjaer JB, Fries R. Variation in neighbouring genes of the dopaminergic and serotonergic systems affects feather pecking behaviour of laying hens. Anim Genet 2008; 40:192-9. [PMID: 19120086 DOI: 10.1111/j.1365-2052.2008.01821.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Feather pecking is a behavioural disorder of laying hens and has serious animal welfare and economic implications. One of the several aetiological hypotheses proposes that the disorder results from redirected exploratory behaviour. Variation in the gene encoding the dopamine D4 receptor (DRD4) has been shown to be associated with exploratory behaviour in several species, including in a passerine bird species. We therefore considered DRD4 as a candidate gene for feather pecking. We have annotated DRD4 in the chicken genome and have re-sequenced it in 140 animals belonging to: experimental layer lines divergently selected for high and low propensity to feather pecking; the unselected founder population; and two commercial lines with low and high propensity to feather pecking. We have identified two sub-haplotypes of DRD4 that are highly significantly associated with feather pecking behaviour in the experimental (P = 7.30 x 10(-7)) as well as in the commercial lines (P = 2.78 x 10(-6)). Linkage disequilibrium (LD) extends into a neighbouring gene encoding deformed epidermal autoregulatory factor 1 (DEAF1). The product of DEAF1 regulates the transcription of the gene encoding the serotonin (5-hydroxytryptamine) 1A receptor. Thus, DEAF1 represents another candidate gene for feather pecking. Re-sequencing of five animals homozygous for the 'low-pecking' sub-haplotype and of six animals homozygous for the 'high-pecking' sub-haplotype delineated an LD block of 14 833 bases spanning the two genes. None of the variants in the LD block is obviously functional. However, the haplotype information will be useful to select against the propensity to feather pecking in chicken and to elucidate the functional implications of the variants.
Collapse
Affiliation(s)
- K Flisikowski
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Hochfeldweg 1, 85354 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Minakhina S, Druzhinina M, Steward R. Zfrp8, the Drosophila ortholog of PDCD2, functions in lymph gland development and controls cell proliferation. Development 2007; 134:2387-96. [PMID: 17522156 DOI: 10.1242/dev.003616] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have identified a new gene, Zfrp8, as being essential for hematopoiesis in Drosophila. Zfrp8 (Zinc finger protein RP-8) is the Drosophila ortholog of the PDCD2 (programmed cell death 2) protein of unknown function, and is highly conserved in all eukaryotes. Zfrp8 mutants present a developmental delay, lethality during larval and pupal stages and hyperplasia of the hematopoietic organ, the lymph gland. This overgrowth results from an increase in proliferation of undifferentiated hemocytes throughout development and is accompanied by abnormal differentiation of hemocytes. Furthermore, the subcellular distribution of gamma-Tubulin and Cyclin B is affected. Consistent with this, the phenotype of the lymph gland of Zfpr8 heterozygous mutants is dominantly enhanced by the l(1)dd4 gene encoding Dgrip91, which is involved in anchoring gamma-Tubulin to the centrosome. The overgrowth phenotype is also enhanced by a mutation in Cdc27, which encodes a component of the anaphase-promoting complex (APC) that regulates the degradation of cyclins. No evidence for an apoptotic function of Zfrp8 was found. Based on the phenotype, genetic interactions and subcellular localization of Zfrp8, we propose that the protein is involved in the regulation of cell proliferation from embryonic stages onward, through the function of the centrosome, and regulates the level and localization of cell-cycle components. The overproliferation of cells in the lymph gland results in abnormal hemocyte differentiation.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
25
|
Wang Y, Kakinuma N, Zhu Y, Kiyama R. Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of β-catenin. J Cell Sci 2006; 119:4002-10. [PMID: 16968744 DOI: 10.1242/jcs.03169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human Kank protein has a role in controlling the formation of the cytoskeleton by regulating actin polymerization. Besides the cytoplasmic localization as reported before, we observed the nuclear localization of Kank in OS-RC-2 cells. To uncover the mechanism behind this phenomenon, we focused on the nuclear localization signal (NLS) and the nuclear export signal (NES). We found one NLS (NLS1) and two NESs (NES1 and NES2) in the N-terminal region of Kank-L that were absent in Kank-S, and another NLS (NLS2) and NES (NES3) in the common region. These signals were active as mutations introduced into them abolished the nuclear import (for NLS1 and NLS2) or the nuclear export (for NES1 to NES3) of Kank. The localization of Kank in the cells before and after treatment with leptomycin B suggested that the transportation of Kank from the nucleus to the cytoplasm was mediated by a CRM1-dependent mechanism. TOPFLASH reporter assays revealed a positive relationship between the nuclear import of Kank and the activation of β-catenin-dependent transcription. Kank can bind to β-catenin and regulate the subcellular distribution of β-catenin. Based on the findings shown here, we propose that Kank has multiple functions in the cells and plays different roles in the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
26
|
Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR. Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J Neurosci 2006; 26:1864-71. [PMID: 16467535 PMCID: PMC6793620 DOI: 10.1523/jneurosci.2643-05.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is the primary somatodendritic autoreceptor that inhibits the activity of serotonergic raphe neurons and is also expressed in nonserotonergic cortical and limbic neurons. Alterations in 5-HT1A receptor levels are implicated in mood disorders, and a functional C(-1019)G 5-HT1A promoter polymorphism has been associated with depression, suicide, and panic disorder. We examined the cell-specific activity of identified transcription factors, human nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR)/Deaf-1 and Hes5, at the 5-HT1A C(-1019) site. In serotonergic raphe RN46A cells, Deaf-1 and Hes5 repressed the 5-HT1A receptor gene at the C(-1019)-allele but not the G(-1019)-allele. However, in nonserotonergic cells that express 5-HT1A receptors (septal SN48, neuroblastoma SKN-SH, and neuroblastoma/glioma NG108-15 cells), Deaf-1 enhanced 5-HT1A promoter activity at the C(-1019)-allele but not the G-allele, whereas Hes5 repressed in all cell types. The enhancer activity of Deaf-1 was orientation independent and competed out Hes5 repression. To test whether Deaf-1 activity is intrinsic, the activity of a Gal4DBD (DNA binding domain)-Deaf-1 fusion protein at a heterologous Gal4 DNA element was examined. Gal4DBD-Deaf-1 repressed transcription in RN46A cells but enhanced transcription in SN48 cells, indicating that these opposite activities are intrinsic to Deaf-1. Repressor or enhancer activities of Deaf-1 or Gal4DBD-Deaf-1 were blocked by histone deacetylase inhibitor trichostatin A. Thus, the intrinsic activity of Deaf-1 at the 5-HT1A promoter is opposite in presynaptic versus postsynaptic neuronal cells and requires deacetylation. Cell-specific regulation by Deaf-1 could underlie region-specific alterations in 5-HT1A receptor expression in different mood disorders.
Collapse
|
27
|
Francke F, Richter D, Bächner D. Immunohistochemical distribution of MIZIP and its co-expression with the Melanin-concentrating hormone receptor 1 in the adult rodent brain. ACTA ACUST UNITED AC 2005; 139:31-41. [PMID: 15950311 DOI: 10.1016/j.molbrainres.2005.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
We have recently identified a Melanin-concentrating hormone receptor 1 interacting zinc-finger protein (MIZIP) from a human brain cDNA library. Here, we report the generation of a specific antibody against MIZIP and its distribution in rodent tissues using immunoblotting and immunohistochemical techniques. MIZIP was detected as a 27 kDa protein in brain, liver, and skeletal muscle, and to a lower extend, in lung, testis, and heart. Subcellular fractionation of adult mouse brain revealed the presence of MIZIP and MCHR1 in the cytoplasmic, membrane, and synaptosomal fraction, but not in a postsynaptic density preparation. In cultured rat, embryonic hippocampal neurons MIZIP is somatodendritically localized. In the adult rodent brain, MIZIP is widely distributed. High levels of expression were detected in brain regions involved in olfaction, feeding behavior, sensorimotor integration, and learning and memory, for example, the olfactory bulb, the olfactory tubercle, the caudate putamen, the thalamus and hypothalamus, the nucleus accumbens, the cerebral cortex, the hippocampus formation, and the cerebellum. Co-expression of MIZIP and MCHR1 was observed, for example, in pyramidal neurons of the cerebral cortex and hippocampus, in neurons of the olivary nucleus, lateral hypothalamus, nucleus accumbens, caudate putamen, pontine, and mesencephalic trigeminal nucleus. However, there are also differences in the expression patterns, for example, high expression of MCHR1 was detected in the lateral habenula, but no expression of MIZIP. These data support the notion that MIZIP might interact with MCHR1 in a cell type specific manner in vivo, suggesting a role in the regulation of MCH signalling in distinct regions of the mammalian brain.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
28
|
Ilmarinen T, Eskelin P, Halonen M, Rüppell T, Kilpikari R, Torres GD, Kangas H, Ulmanen I. Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation. Hum Mutat 2005; 26:322-31. [PMID: 16114041 DOI: 10.1002/humu.20224] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare disorder caused by mutations in the autoimmune regulator gene (AIRE) and characterized by a variable combination of organ-specific autoimmune diseases. Studies on AIRE-deficient mice suggest that AIRE is an important factor in the establishment and maintenance of self-tolerance. The AIRE protein contains several structural domains often found in transcriptional regulators and functions as a transcriptional transactivator in vitro. To date, more than 50 patient mutations have been identified in the coding region of the AIRE gene. So far, APECED has been reported to be inherited in an autosomal recessive manner. However, in contrast to all other AIRE mutations, a novel mutation c.682T>G (p.G228W) in the DNA-binding and/or multimerization domain SAND was recently described to be inherited in a dominant fashion. We analyzed the effects of mutant AIRE proteins containing the patient mutations c.682T>G (p.G228W) and c.755C>T (p.P252L) located in the SAND domain on the properties of the wild-type AIRE in a heterozygous situation in vitro. In addition to the patient mutations, we analyzed the effects of a double mutation [c.727A>G;c.728A>C;c.739C>G;c740G>C] (p.K243A;R247A) of positively charged amino acids in the SAND domain. Of the mutants studied, only c.682T>G (p.G228W) mutant changed the subcellular localization and in addition severely disrupted the transactivating capacity of the wild-type AIRE. Our results indicate that the c.682T>G (p.G228W) mutant AIRE protein acts with a dominant negative effect by binding to the wild-type AIRE, thus preventing the protein from forming the complexes needed for transactivation.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|