1
|
Sheng G, Li F, Jin W, Wang K. Pan-caner analysis identifies PSMA7 as a targets for amplification at 20q13.33 in tumorigenesis. Sci Rep 2024; 14:3034. [PMID: 38321088 PMCID: PMC10847487 DOI: 10.1038/s41598-024-53585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
The chromosome 20 long arm (20q) is one of the genomic hotspots where copy number alterations frequently occur in multiple types of tumors. However, it remains elusive which genes are implicated in 20q-related tumorigenesis. Here, by querying TCGA and GEO databases, we observed frequent copy number amplification at 20q and the chromosome subband 20q13.33 was amplificated in multiple cancers. Among those genes at 20q13.33, PSMA7 was found with the strongest correlation with cancers. Further analysis revealed that PSMA7 amplification was the most frequent genetic alteration event conferring adverse prognosis in various cancers. Consistent with the strong positive correlation between PSMA7 amplification and gene expression, elevated PSMA7 expression was observed in 20 of 33 types of cancers with a close link to adverse outcomes in certain tumors. In addition, PSMA7 was essential for the growth of almost 1095 cancer lines. Mechanistically, aberrant PSMA7 most probably influenced the proteasome and protease-related pathways to promote tumorigenesis and might be antagonized by several compounds, e.g., Docetaxel in relevant cancers. The current in-depth pan-cancer analysis refines our understanding of the crucial oncogenic role of copy number amplifications at PSMA7 loci at the novel chromosome amplicon 20q13.33 across different tumors.
Collapse
Affiliation(s)
- Guangying Sheng
- State Key Laboratory of Medical Genomics, Ruijin Hospital Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- Ruijin Hospital, Sino-French Research Center for Life Sciences and Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyu Li
- State Key Laboratory of Medical Genomics, Ruijin Hospital Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- Ruijin Hospital, Sino-French Research Center for Life Sciences and Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Jin
- State Key Laboratory of Medical Genomics, Ruijin Hospital Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics, Ruijin Hospital Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
- Ruijin Hospital, Sino-French Research Center for Life Sciences and Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
4
|
Colombo F, Casella G, Podini P, Finardi A, Racchetti G, Norton EG, Cocucci E, Furlan R. Polarized cells display asymmetric release of extracellular vesicles. Traffic 2021; 22:98-110. [PMID: 33314523 DOI: 10.1111/tra.12775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs), a broad term for the lipid microparticles known as microvesicles and exosomes, are discharged by cells into their surrounding space. Microvesicles are discharged upon outward plasma membrane budding, while exosomes are secreted after multivesicular body (MVB) fusion with the plasma membrane. The majority of information regarding EV biology comes from studies performed in non-polarized cells. Here we characterize EV release in polarized cells. We found a substantial asymmetry in the number and composition of EVs produced and released from the apical membrane of epithelial cells as compared to the basolateral membrane. We showed that the quantitative difference is related to the polarized distribution of two phosphoinositide species between the two cell surfaces and that the peculiar biochemical composition of resultant EVs reflects their site of origin. In particular, apical and basolateral exosomes may derive from distinct classes of MVBs originating from and fusing with the same plasma membrane. We identify VAMP8/Endobrevin as a regulator of the basolateral release of exosomes, whereas the mechanism responsible for apical EV release requires further study.
Collapse
Affiliation(s)
- Federico Colombo
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Casella
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Erienne Grace Norton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Flores-Espinoza E, Meizoso-Huesca A, Villegas-Comonfort S, Reyes-Cruz G, García-Sáinz JA. Effect of docosahexaenoic acid, phorbol myristate acetate, and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins. Eur J Pharmacol 2020; 889:173595. [PMID: 32986985 DOI: 10.1016/j.ejphar.2020.173595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aldo Meizoso-Huesca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
de-Los-Santos-Cocotle G, Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Effects of agonists and phorbol esters on α 1A-adrenergic receptor-Rab protein interactions. Eur J Pharmacol 2020; 885:173423. [PMID: 32750368 DOI: 10.1016/j.ejphar.2020.173423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
In a cell line, stably expressing α1A-adrenoceptors fused to the mCherry red fluorescent protein, noradrenaline, methoxamine, and oxymetazoline induced concentration-dependent increases in intracellular calcium. All of these agents increase α1A-adrenoceptor phosphorylation and internalization. Transient co-expression of these receptors with Rab proteins tagged with the enhanced Green Fluorescent Protein was employed to estimate α1A-adrenoceptor-Rab interaction using Förster Resonance Energy Transfer. Noradrenaline and methoxamine increased α1A-adrenoceptor interaction with Rab5 and Rab7 but did not modify it with Rab9. Oxymetazoline induced adrenoceptor interaction with Rab5 and Rab9 and only an insignificant increase in Rab7 signal. Phorbol myristate acetate increased α1A-adrenoceptor interaction with Rab5 and Rab9 but did not modify it with Rab7. The agonists and the active phorbol ester, all of which induce receptor phosphorylation and internalization, favor receptor interaction with Rab5, i.e., association with early endosomes. Cell stimulation with phorbol myristate acetate induced the α1A-adrenoceptors to interact with the late endosomal marker, Rab9, suggesting that the receptors are directed to slow recycling endosomes once they have transited to the Trans-Golgi network to be retrieved to the plasma membrane. The agonists noradrenaline and methoxamine likely induce a faster recycling and might direct some of the adrenoceptors toward degradation and/or very slow recycling to the plasma membrane. Oxymetazoline produced a mixed pattern of interaction with the Rab proteins. These data indicate that α1A-adrenoceptor agonists can trigger different vesicular traffic and receptor fates within the cells.
Collapse
Affiliation(s)
- Gustavo de-Los-Santos-Cocotle
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional 2508; Col, San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
7
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Buneeva OA, Medvedev AE. [Ubiquitin-independent protein degradation in proteasomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:134-148. [PMID: 29723144 DOI: 10.18097/pbmc20186402134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: the ATP-dependent addition of (typically four sequential) residues of the low-molecular ubiquitin protein, involving the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin ligase. The cytoplasm and nucleoplasm proteins labeled in this way are then digested in 26S proteasomes. However, in recent years it has become increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent protein degradation in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate further increase. Since 26S of proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles and whole cells, has the most serious consequences for the whole organism.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Sci Rep 2019; 9:6066. [PMID: 30988392 PMCID: PMC6465299 DOI: 10.1038/s41598-019-42331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Impaired functional plasma membrane (PM) expression of the hERG K+-channel is associated with Long-QT syndrome type-2 (LQT2) and increased risk of cardiac arrhythmia. Reduced PM-expression is primarily attributed to retention and degradation of misfolded channels by endoplasmic reticulum (ER) protein quality control (QC) systems. However, as the molecular pathogenesis of LQT2 was defined using severely-misfolded hERG variants with limited PM-expression, the potential contribution of post-ER (peripheral) QC pathways to the disease phenotype remains poorly established. Here, we investigate the cellular processing of mildly-misfolded Per-Arnt-Sim (PAS)-domain mutant hERGs, which display incomplete ER-retention and PM-expression defects at physiological temperature. We show that the attenuated PM-expression of hERG is dictated by mutation-specific contributions from both the ER and peripheral QC systems. At the ER, PAS-mutants experience inefficient conformational maturation coupled with rapid ubiquitin-dependent proteasomal degradation. In post-ER compartments, they are rapidly endocytosed from the PM via a ubiquitin-independent mechanism and rapidly targeted for lysosomal degradation. Conformational destabilization underlies aberrant cellular processing at both ER- and post-ER compartments, since conformational correction by a hERG-specific pharmacochaperone or low-temperatures can restore WT-like trafficking. Our results demonstrate that the post-ER QC alone or jointly with the ER QC determines the loss-of-PM-expression phenotype of a subset of LQT2 mutations.
Collapse
|
10
|
S1P 1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Biosci Rep 2018; 38:BSR20181612. [PMID: 30366961 PMCID: PMC6294635 DOI: 10.1042/bsr20181612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor–Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor–Rab5 interaction, although with different time courses. S1P1 receptor–Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor–Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.
Collapse
|
11
|
Buneeva OA, Medvedev AE. Ubiquitin-Independent Degradation of Proteins in Proteasomes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
13
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
14
|
Jang ER, Jang H, Shi P, Popa G, Jeoung M, Galperin E. Spatial control of Shoc2-scaffold-mediated ERK1/2 signaling requires remodeling activity of the ATPase PSMC5. J Cell Sci 2015; 128:4428-41. [PMID: 26519477 DOI: 10.1242/jcs.177543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
The scaffold protein Shoc2 accelerates activity of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) pathway. Mutations in Shoc2 result in Noonan-like RASopathy, a developmental disorder with a wide spectrum of symptoms. The amplitude of the ERK1/2 signals transduced through the complex is fine-tuned by the HUWE1-mediated ubiquitylation of Shoc2 and its signaling partner RAF-1. Here, we provide a mechanistic basis of how ubiquitylation of Shoc2 and RAF-1 is controlled. We demonstrate that the newly identified binding partner of Shoc2, the (AAA+) ATPase PSMC5, triggers translocation of Shoc2 to endosomes. At the endosomes, PSMC5 displaces the E3 ligase HUWE1 from the scaffolding complex to attenuate ubiquitylation of Shoc2 and RAF-1. We show that a RASopathy mutation that changes the subcellular distribution of Shoc2 leads to alterations in Shoc2 ubiquitylation due to the loss of accessibility to PSMC5. In summary, our results demonstrate that PSMC5 is a new and important player involved in regulating ERK1/2 signal transmission through the remodeling of Shoc2 scaffold complex in a spatially-defined manner.
Collapse
Affiliation(s)
- Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ping Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Gabriel Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Myoungkun Jeoung
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Agola JO, Sivalingam D, Cimino DF, Simons PC, Buranda T, Sklar LA, Wandinger-Ness A. Quantitative bead-based flow cytometry for assaying Rab7 GTPase interaction with the Rab-interacting lysosomal protein (RILP) effector protein. Methods Mol Biol 2015; 1298:331-54. [PMID: 25800855 PMCID: PMC6033261 DOI: 10.1007/978-1-4939-2569-8_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Rab7 facilitates vesicular transport and delivery from early endosomes to late endosomes as well as from late endosomes to lysosomes. The role of Rab7 in vesicular transport is dependent on its interactions with effector proteins, among them Rab-interacting lysosomal protein (RILP), which aids in the recruitment of active Rab7 (GTP-bound) onto dynein-dynactin motor complexes to facilitate late endosomal transport on the cytoskeleton. Here we detail a novel bead-based flow cytometry assay to measure Rab7 interaction with the Rab-interacting lysosomal protein (RILP) effector protein and demonstrate its utility for quantitative assessment and studying drug-target interactions. The specific binding of GTP-bound Rab7 to RILP is readily demonstrated and shown to be dose-dependent and saturable enabling K d and B max determinations. Furthermore, binding is nearly instantaneous and temperature-dependent. In a novel application of the assay method, a competitive small molecule inhibitor of Rab7 nucleotide binding (CID 1067700 or ML282) is shown to inhibit the Rab7-RILP interaction. Thus, the assay is able to distinguish that the small molecule, rather than incurring the active conformation, instead 'locks' the GTPase in the inactive conformation. Together, this work demonstrates the utility of using a flow cytometry assay to quantitatively characterize protein-protein interactions involving small GTPases and which has been adapted to high-throughput screening. Further, the method provides a platform for testing small molecule effects on protein-protein interactions, which can be relevant to drug discovery and development.
Collapse
Affiliation(s)
- Jacob O Agola
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sánchez-Lanzas R, Castaño JG. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation. Biomolecules 2014; 4:1140-54. [PMID: 25534281 PMCID: PMC4279173 DOI: 10.3390/biom4041140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
The mammalian 20S proteasome is a heterodimeric cylindrical complex (α7β7β7α7), composed of four rings each composed of seven different α or β subunits with broad proteolytic activity. We review the mammalian proteins shown to directly interact with specific 20S proteasomal subunits and those subjected to ubiquitin-independent proteasomal degradation (UIPD). The published reports of proteins that interact with specific proteasomal subunits, and others found on interactome databases and those that are degraded by a UIPD mechanism, overlap by only a few protein members. Therefore, systematic studies of the specificity of the interactions, the elucidation of the protein regions implicated in the interactions (that may or may not be followed by degradation) and competition experiments between proteins known to interact with the same proteasomal subunit, are needed. Those studies should provide a coherent picture of the molecular mechanisms governing the interactions of cellular proteins with proteasomal subunits, and their relevance to cell proteostasis and cell functioning.
Collapse
Affiliation(s)
- Raúl Sánchez-Lanzas
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | - José G Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
17
|
Stasi M, De Luca M, Bucci C. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries. J Biotechnol 2014; 202:105-17. [PMID: 25529347 DOI: 10.1016/j.jbiotec.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries.
Collapse
Affiliation(s)
- Mariangela Stasi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
18
|
Uechi H, Hamazaki J, Murata S. Characterization of the testis-specific proteasome subunit α4s in mammals. J Biol Chem 2014; 289:12365-74. [PMID: 24668818 DOI: 10.1074/jbc.m114.558866] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 26 S proteasome is responsible for regulated proteolysis in eukaryotic cells. It is composed of one 20 S core particle (CP) flanked by one or two 19 S regulatory particles. The CP is composed of seven different α-type subunits (α1-α7) and seven different β-type subunits, three of which are catalytic. Vertebrates encode four additional catalytic β subunits that are expressed predominantly in immune tissues and produce distinct subtypes of CPs particularly well suited for the acquired immune system. In contrast, the diversity of α subunits remains poorly understood. Recently, another α subunit, referred to as α4s, was reported. However, little is known about α4s. Here we provide a detailed characterization of α4s and the α4s-containing CP. α4s is exclusively expressed in germ cells that enter the meiotic prophase and is incorporated into the CP in place of α4. A comparison of structural models revealed that the differences in the primary sequences between α4 and α4s are located on the outer surface of the CP, suggesting that α4s interacts with specific molecules via these unique regions. α4s-containing CPs account for the majority of the CPs in mouse sperm. The catalytic β subunits in the α4s-containing CP are β1, β2, and β5, and immunosubunits are not included in the α4s-containing CP. α4s-containing CPs have a set of peptidase activities almost identical to those of α4-containing CPs. Our results provide a basis for understanding the role of α4s and male germ cell-specific proteasomes in mammals.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- From the Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
19
|
Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 2013; 12:1572-88. [PMID: 23436907 PMCID: PMC3675815 DOI: 10.1074/mcp.m112.021980] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.
Collapse
Affiliation(s)
- Agnès Chapel
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Sylvie Kieffer-Jaquinod
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Corinne Sagné
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Quentin Verdon
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
- §§Graduate School ED 419, Université Paris-Sud 11, Hôpital Bicêtre, F-94276 Le Kremlin Bicêtre France, and
| | - Corinne Ivaldi
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Mourad Mellal
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jaqueline Thirion
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Michel Jadot
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Christophe Bruley
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jérôme Garin
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Bruno Gasnier
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Agnès Journet
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| |
Collapse
|
20
|
Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:665-73. [PMID: 23680626 DOI: 10.1016/j.bbamem.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022]
Abstract
The cytoskeleton and cardiac ion channel expression are closely linked. From the time that newly synthesized channels exit the endoplasmic reticulum, they are either traveling along the microtubule or actin cytoskeletons or likely anchored in the plasma membrane or in internal vesicular pools by those scaffolds. Molecular motors, small GTPases and even the dynamics of the cytoskeletons themselves influence the trafficking and expression of the channels. In some cases, the functioning of the channels themselves has profound influences on the cytoskeleton. Here we provide an overview of the current state of knowledge on the involvement of the actin and microtubule cytoskeletons in the trafficking, targeting and expression of cardiac ion channels and a few channels expressed elsewhere. We highlight, also, some of the many questions that remain about these processes. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- David F Steele
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - David Fedida
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
21
|
Henry L, Fabre C, Guiraud I, Bastide S, Fabbro-Peray P, Martinez J, Lavabre-Bertrand T, Meunier L, Stoebner PE. Clinical use of p-proteasome in discriminating metastatic melanoma patients: Comparative study with LDH, MIA and S100B protein. Int J Cancer 2013; 133:142-8. [DOI: 10.1002/ijc.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Laurent Henry
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | - Cécile Fabre
- Department of Dermatology; Carémeau University Hospital; Nîmes; France
| | - Isabelle Guiraud
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | | | | | - Jean Martinez
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | | | | | | |
Collapse
|
22
|
BasuRay S, Mukherjee S, Romero EG, Seaman MNJ, Wandinger-Ness A. Rab7 mutants associated with Charcot-Marie-Tooth disease cause delayed growth factor receptor transport and altered endosomal and nuclear signaling. J Biol Chem 2012. [PMID: 23188822 DOI: 10.1074/jbc.m112.417766] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab7 belongs to the Ras superfamily of small GTPases and is a master regulator of early to late endocytic membrane transport. Four missense mutations in the late endosomal Rab7 GTPase (L129F, K157N, N161T, and V162M) cause the autosomal dominant peripheral neuropathy Charcot-Marie-Tooth type 2B (CMT2B) disease. As yet, the pathological mechanisms connecting mutant Rab7 protein expression to altered neuronal function are undefined. Here, we analyze the effects of Rab7 CMT2B mutants on epidermal growth factor (EGF)-dependent intracellular signaling and trafficking. Three different cell lines expressing Rab7 CMT2B mutants and stimulated with EGF exhibited delayed trafficking of EGF to LAMP1-positive late endosomes and lysosomes and slowed EGF receptor (EGFR) degradation. Expression of all Rab7 CMT2B mutants altered the Rab7 activation cycle, leading to enhanced and prolonged EGFR signaling as well as variable increases in p38 and ERK1/2 activation. However, due to reduced nuclear translocation of p38 and ERK1/2, the downstream nuclear activation of Elk-1 was decreased along with the expression of immediate early genes like c-fos and Egr-1 by the disease mutants. In conclusion, our results demonstrate that Rab7 CMT2B mutants impair growth factor receptor trafficking and, in turn, alter p38 and ERK1/2 signaling from perinuclear, clustered signaling endosomes. The resulting down-regulation of EGFR-dependent nuclear transcription that is crucial for normal axon outgrowth and peripheral innervation offers a crucial new mechanistic insight into disease pathogenesis that is relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Soumik BasuRay
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
23
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Agola JO, Hong L, Surviladze Z, Ursu O, Waller A, Strouse JJ, Simpson DS, Schroeder CE, Oprea TI, Golden JE, Aubé J, Buranda T, Sklar LA, Wandinger-Ness A. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition. ACS Chem Biol 2012; 7:1095-108. [PMID: 22486388 DOI: 10.1021/cb3001099] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | | | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
- Department of Medicinal
Chemistry, University of Kansas, Lawrence,
Kansas 66047, United
States
| | | | | | | |
Collapse
|
25
|
Badri DV, Chaparro JM, Manter DK, Martinoia E, Vivanco JM. Influence of ATP-Binding Cassette Transporters in Root Exudation of Phytoalexins, Signals, and in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2012; 3:149. [PMID: 22783269 PMCID: PMC3389762 DOI: 10.3389/fpls.2012.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/16/2012] [Indexed: 05/02/2023]
Abstract
The roots of plants secrete compounds as a way to exchange information with organisms living in the soil. Here, we report the involvement of seven root-expressed ATP-binding cassette (ABC) transporters corresponding to both full and half-size molecules (Atabcg36, Atabcg37, Atabcc5, Atabcf1, Atabcf3, Atnap5, and Atath10) in root exudation processes using Arabidopsis thaliana. Root exuded phytochemicals were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), and it was determined that some of the root exudates from the corresponding ABC transporter mutants were significantly different compared to the wild type. For example, Atabcg37 and Atabcc5 secreted higher levels of the phytoalexin camalexin, and Atabcg36 secreted higher levels of organic acids, specifically salicylic acid (SA). Furthermore, we analyzed the root tissue metabolites of these seven ABC transporter mutants and found that the levels of SA, quercetin, and kaempferol glucosides were higher in Atabcg36, which was correlated with higher expression levels of defense genes in the root tissues compared with the wild type. We did not observe significant changes in the root exudates of the half-size transporters except for Atabcf1 that showed lower levels of few organic acids. In summary, full-size transporters are involved in root secretion of phytochemicals.
Collapse
Affiliation(s)
- Dayakar V. Badri
- Center for Rhizosphere Biology, Colorado State UniversityFort Collins, CO, USA
| | | | - Daniel K. Manter
- Soil-Plant-Nutrient Research Unit, United States Department of Agriculture-Agricultural Research ServiceFort Collins, CO, USA
| | - Enrico Martinoia
- Zurich-Basel Plant Science Center, Institute of Plant Biology, Molecular Plant Physiology, University of ZurichZurich, Switzerland
| | - Jorge M. Vivanco
- Center for Rhizosphere Biology, Colorado State UniversityFort Collins, CO, USA
- *Correspondence: Jorge M. Vivanco, Center for Rhizosphere Biology, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523-1173, USA. e-mail:
| |
Collapse
|
26
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
27
|
Puri R, Suzuki T, Yamakawa K, Ganesh S. Dysfunctions in endosomal–lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 2011; 21:175-84. [DOI: 10.1093/hmg/ddr452] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
29
|
Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 2011; 22:3289-305. [PMID: 21775626 PMCID: PMC3172256 DOI: 10.1091/mbc.e11-01-0082] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Primary cilia regulate epithelial differentiation and organ function. Failure of mutant polycystins to localize to cilia abolishes flow-stimulated calcium signaling and causes autosomal dominant polycystic kidney disease. We identify a conserved amino acid sequence, KVHPSST, in the C-terminus of polycystin-1 (PC1) that serves as a ciliary-targeting signal. PC1 binds a multimeric protein complex consisting of several GTPases (Arf4, Rab6, Rab11) and the GTPase-activating protein (GAP), ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) in the Golgi, which facilitates vesicle budding and Golgi exocytosis. A related N-terminal ciliary-targeting sequence in polycystin-2 similarly binds Arf4. Deletion of the extreme C-terminus of PC1 ablates Arf4 and ASAP1 binding and prevents ciliary localization of an integral membrane CD16.7-PC1 chimera. Interactions are confirmed for chimeric and endogenous proteins through quantitated in vitro and cell-based approaches. PC1 also complexes with Rab8; knockdown of trafficking regulators Arf4 or Rab8 functionally blocks CD16.7-PC1 trafficking to cilia. Mutations in rhodopsin disrupt a similar signal and cause retinitis pigmentosa, while Bardet-Biedl syndrome, primary open-angle glaucoma, and tumor cell invasiveness are linked to dysregulation of ASAP1 or Rab8 or its effectors. In this paper, we provide evidence for a conserved GTPase-dependent ciliary-trafficking mechanism that is shared between epithelia and neurons, and is essential in ciliary-trafficking and cell homeostasis.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
31
|
Li N, Zhang Z, Zhang W, Wei Q. Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1α activity via the proteasome pathway. Biochem Biophys Res Commun 2011; 405:468-472. [PMID: 21256111 DOI: 10.1016/j.bbrc.2011.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/15/2011] [Indexed: 11/18/2022]
Abstract
The calcineurin (CN) B subunit (CNB) is the regulatory subunit of CN, which is the only serine/threonine-specific protein phosphatase regulated by Ca2+/CaM. It has been shown to have potential as an anticancer agent, and has a positive effect on the phagocytic index and coefficient. We report here that CNB binds to proteasome subunit alpha type 7 (PSMA7) and inhibits the transactivation activity of hypoxia-inducible factor-1α (HIF-1α) via the proteasome pathway. In addition, we show that CNB represses the expression of vascular endothelial growth factor (VEGF), which is regulated by HIF-1α. These results indicate that CNB modulates cellular proteasome activity via a specific interaction with PSMA7. This may provide a molecular basis for its anticancer and antiviral activities.
Collapse
Affiliation(s)
- Ning Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | |
Collapse
|
32
|
BasuRay S, Mukherjee S, Romero E, Wilson MC, Wandinger-Ness A. Rab7 mutants associated with Charcot-Marie-Tooth disease exhibit enhanced NGF-stimulated signaling. PLoS One 2010; 5:e15351. [PMID: 21151572 PMCID: PMC3000344 DOI: 10.1371/journal.pone.0015351] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022] Open
Abstract
Missense mutants in the late endosomal Rab7 GTPase cause the autosomal dominant peripheral neuropathy Charcot-Marie-Tooth disease type 2B (CMT2B). As yet, the pathological mechanisms connecting mutant Rab7 protein expression to altered neuronal function are undefined. Here, we analyze the effects Rab7 CMT2B mutants on nerve growth factor (NGF) dependent intracellular signaling in PC12 cells. The nerve growth factor receptor TrkA interacted similarly with Rab7 wild-type and CMT2B mutant proteins, but the mutant proteins significantly enhanced TrkA phosphorylation in response to brief NGF stimulation. Two downstream signaling pathways (Erk1/2 and Akt) that are directly activated in response to phospho-TrkA were differentially affected. Akt signaling, arising in response to activated TrkA at the plasma membrane was unaffected. However Erk1/2 phosphorylation, triggered on signaling endosomes, was increased. Cytoplasmic phospho-Erk1/2 persisted at elevated levels relative to control samples for up to 24 h following NGF stimulation. Nuclear shuttling of phospho Erk1/2, which is required to induce MAPK phosphatase expression and down regulate signaling, was greatly reduced by the Rab7 CMT2B mutants and explains the previously reported inhibition in PC12 neurite outgrowth. In conclusion, the data demonstrate a mechanistic link between Rab7 CMT2B mutants and altered TrkA and Erk1/2 signaling from endosomes.
Collapse
Affiliation(s)
- Soumik BasuRay
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Sanchita Mukherjee
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Elsa Romero
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Michael C. Wilson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Angela Wandinger-Ness
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhang N, Liang J, Tian Y, Yuan L, Wu L, Miao S, Zong S, Wang L. A novel testis-specific GTPase serves as a link to proteasome biogenesis: functional characterization of RhoS/RSA-14-44 in spermatogenesis. Mol Biol Cell 2010; 21:4312-24. [PMID: 20980621 PMCID: PMC3002385 DOI: 10.1091/mbc.e10-04-0310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We functionally characterized RhoS/RSA-14-44 as a new member of Rho GTPase subfamily in spermatogenesis, which provides a direct link between Rho family GTPase and the proteasome biogenesis. Most Rho family GTPases serve as key molecular switches in a wide spectrum of biological processes. An increasing number of studies have expanded their roles to the spermatogenesis. Several members of Rho family have been confirmed to be essential for mammalian spermatogenesis, but the precise roles of this family in male reproduction have not been well studied yet. Here we report a surprising function of an atypical and testis-specific Rho GTPase, RSA-14-44 in spermatogenesis. Featured by unique structural and expressional patterns, RSA-14-44 is distinguished from three canonical members of Rho cluster. Thus, we define RSA-14-44 as a new member of Rho GTPases family and rename it RhoS (Rho in spermatogenic cells). RhoS associates with PSMB5, a catalytic subunit of the proteasome, in a series of stage-specific spermatogenic cells. More importantly, RhoS does not directly modulate the cellular proteasome activity, but participates in regulating the stability of “unincorporated” PSMB5 precursors. Meanwhile, our data demonstrate that the activation of RhoS is prerequisite for negatively regulating the stability of PSMB5 precursors. Therefore, our finding uncovers a direct and functional connection between the Rho GTPase family and the pathway of proteasome biogenesis and provide new clues for deciphering the secrets of spermatogenesis.
Collapse
Affiliation(s)
- Ning Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hida T, Sohma H, Kokai Y, Kawakami A, Hirosaki K, Okura M, Tosa N, Yamashita T, Jimbow K. Rab7 is a critical mediator in vesicular transport of tyrosinase-related protein 1 in melanocytes. J Dermatol 2010; 38:432-41. [PMID: 21352276 DOI: 10.1111/j.1346-8138.2010.01004.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How melanosomal proteins such as enzymic proteins (tyrosinase and tyrosinase-related proteins, Tyrps) and structural protein (gp100) are transported from Golgi to melanosomal compartments is not yet fully understood. A number of small GTPases have been found to be associated with melanosomes and we have identified one of them, Rab7, a regulator of vesicular transport, organelle motility, phospholipid signaling and cytosolic degradative machinery, as being involved in the transport of Tyrp1 from Golgi to stage I melanosomes. This study further characterizes the role of Rab7 as a regulator of differential sorting of melanosomal proteins in this process. Murine melanocytes were transiently transfected with a plasmid encoding either wild-type (Rab7WT), constitutively active (Rab7Q67L) or dominant-negative (Rab7N125I and Rab7T22N) Rab7. Through immunocytostaining and confocal laser scanning microscopy, we quantitatively compared the bio-distribution of melanosomal proteins between Rab7WT-expressing cells and mutant Rab7-expressing cells. We also characterized their differential elimination from melanosomal compartments by Rab7 by utilizing a proteasome inhibitor, MG132. Our findings indicate that Rab7 plays an important role in differential sorting of tyrosinase, Tyrp1 and gp100 in early melanogenesis cascade, and that it is more specifically involved with Tyrp1 than tyrosinase and gp100 in the trafficking from Golgi to melanosomes and the specific exit from the degradative process.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 2010; 123:1480-91. [PMID: 20375062 DOI: 10.1242/jcs.051474] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Rab7b is a recently identified member of the Rab GTPase protein family and has high similarity to Rab7. It has been reported that Rab7b is lysosome associated, that it is involved in monocytic differentiation and that it promotes lysosomal degradation of TLR4 and TLR9. Here we investigated further the localization and function of this GTPase. We found that wild-type Rab7b is lysosome associated whereas an activated, GTP-bound form of Rab7b localizes to the Golgi apparatus. In contrast to Rab7, Rab7b is not involved in EGF and EGFR degradation. Depletion of Rab7b or expression of Rab7b T22N, a Rab7b dominant-negative mutant, impairs cathepsin-D maturation and causes increased secretion of hexosaminidase. Moreover, expression of Rab7b T22N or depletion of Rab7b alters TGN46 distribution, cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking, and causes an increase in the levels of the late endosomal markers CI-MPR and cathepsin D. Vesicular stomatitis virus G protein (VSV-G) trafficking, by contrast, is normal in Rab7b-depleted or Rab7b-T22N-expressing cells. In addition, depletion of Rab7b prevents cholera toxin B-subunit from reaching the Golgi. Altogether, these data indicate that Rab7b is required for normal lysosome function, and, in particular, that it is an essential factor for retrograde transport from endosomes to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
38
|
Down-regulating protein kinase C alpha: functional cooperation between the proteasome and the endocytic system. Cell Signal 2009; 21:1607-19. [PMID: 19586612 DOI: 10.1016/j.cellsig.2009.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/31/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
Ubiquitination, proteasome, caveolae and endosomes have been implicated in controlling protein kinase C alpha (PKC alpha) down-regulation. However, the molecular mechanism remained obscure. Here we show that endosomes and proteasome cooperate in phorbol ester 12-O-tetradecanoyl phorbol acetate (TPA)-induced down-regulation of PKC alpha. We show that following TPA treatment and translocation to the plasma membrane, PKC alpha undergoes multimonoubiquitination prior to its degradation by the proteasome. However, to reach the proteasome, PKC alpha must travel through the endocytic system from early to late endosomes. This route requires functional endosomes, whereby endosomal alkalinization, or ablation, abrogates completely PKC alpha degradation maintaining the enzyme at the plasma membrane. This route also depends on synaptotagmin (Syt) II and the Rab7 GTPase, whereby Syt II knock-down or expression of the GDP-locked Rab7 inactive mutant prevents PKC alpha degradation. We further show that proteasome plays a dual role, where an active proteasome is required for deubiquitination of PKC alpha, a step crucial to prevent PKC alpha targeting to the endocytic recycling compartment. Finally, we show that the association with rafts-localized cell surface proteins that internalize in a clathrin-independent fashion is necessary to allow the trafficking of PKC alpha from the plasma membrane to the proteasome, its ultimate degradation station.
Collapse
|
39
|
Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8:1192-205. [PMID: 19204029 DOI: 10.1074/mcp.m800443-mcp200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Novel markers for prostate cancer (PCa) are needed because current established markers such as prostate-specific antigen lack diagnostic specificity and prognostic value. Proteomics analysis of serum from mice grafted with human PCa xenografts resulted in the identification of 44 tumor-derived proteins. Besides secreted proteins we identified several cytoplasmic proteins, among which were most subunits of the proteasome. Native gel electrophoresis and sandwich ELISA showed that these subunits are present as proteasome complexes in the serum from xenograft-bearing mice. We hypothesized that the presence of proteasome subunits and other cytoplasmic proteins in serum of xenografted mice could be explained by the secretion of small vesicles by cancer cells, so-called exosomes. Therefore, mass spectrometry and Western blotting analyses of the protein content of exosomes isolated from PCa cell lines was performed. This resulted in the identification of mainly cytoplasmic proteins of which several had previously been identified in the serum of xenografted mice, including proteasome subunits. The isolated exosomes also contained RNA, including the gene fusion TMPRSS2-ERG product. These observations suggest that although their function is not clearly defined cancer-derived exosomes offer possibilities for the identification of novel biomarkers for PCa.
Collapse
Affiliation(s)
- Flip H Jansen
- Department of Urology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lei JT, Martinez-Moczygemba M. Separate endocytic pathways regulate IL-5 receptor internalization and signaling. J Leukoc Biol 2008; 84:499-509. [PMID: 18511572 DOI: 10.1189/jlb.1207828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are critically dependent on IL-5 for their activation, differentiation, survival, and augmentation of cytotoxic activity. We previously showed that the cytoplasmic domain of the hematopoietic receptor, betac, which is shared by IL-5, IL-3, and GM-CSF, is directly ubiquitinated and degraded by the proteasomes in a JAK2-dependent manner. However, studies describing the spatial distribution, endocytic regulation, and trafficking of betac-sharing receptors in human eosinophils are currently lacking. Using deconvolution microscopy and biochemical methods, we clearly demonstrate that IL-5Rs reside in and are internalized by clathrin- and lipid raft-dependent endocytic pathways. Microscopy analyses in TF1 cells and human eosinophils revealed significant colocalization of betac, IL-5Ralpha, and Cy3-labeled IL-5 with transferrin- (clathrin) and cholera toxin-B- (lipid raft) positive vesicles. Moreover, whereas internalized IL-5Rs were detected in both clathrin- and lipid raft-positive vesicles, biochemical data revealed that tyrosine phosphorylated, ubiquitinated, and proteasome-degraded IL-5Rs partitioned to the soluble, nonraft fractions (clathrin-containing). Lastly, we show that optimal IL-5-induced signaling requires entry of activated IL-5Rs into the intracellular compartment, as coimmunoprecipitation of key signaling molecules with the IL-5R was completely blocked when either endocytic pathway was inhibited. These data provide the first evidence that IL-5Rs segregate and traffic into two distinct plasma membrane compartments, and they further establish that IL-5R endocytosis regulates signaling both positively and negatively.
Collapse
Affiliation(s)
- Jonathan T Lei
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
41
|
Geetha T, Wooten MW. TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent. Traffic 2008; 9:1146-56. [PMID: 18419753 DOI: 10.1111/j.1600-0854.2008.00751.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gaps in our knowledge exist regarding the degradation of the tropomyosin-regulated kinase A (TrkA) receptor after addition of neurotrophin, nerve growth factor (NGF). TrkA is rapidly and transiently ubiquitinated upon addition of NGF. Here, we demonstrate that the polyubiquitin tag plays a definitive role in receptor sorting. Treatment of PC12 cells with lactacystin prevented NGF-dependent deubiquitination and degradation of TrkA. However, treatment with methylamine, bafilomycin or leupeptin, did not prevent NGF-dependent deubiquitination but blocked the degradation of TrkA. Employing co-immunoprecipitation, biochemical fractionation and confocal microscopy, the kinetics of receptor trafficking post-internalization was observed to occur as a sequel from endosome/multivesicular body, proteasomes, culminating with degradation in the lysosomes. The trafficking of the polyubiquitin-deficient TrkA receptor mutant K485R was impaired and likewise failed to degrade revealing that the receptor escapes degradation. The interaction of TrkA with proteasomes was confirmed by purification and co-immunoprecipitation. We provide evidence that proteasomal deubiquitinating enzymes trim K63-ubiquitin chains from the TrkA receptor prior to its delivery to lysosomes for degradation. Taken together, our results reveal the existence of a novel proteasome-dependent step in receptor degradation.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Biological Sciences, Program in Cellular and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
42
|
Kawakami A, Sakane F, Imai SI, Yasuda S, Kai M, Kanoh H, Jin HY, Hirosaki K, Yamashita T, Fisher DE, Jimbow K. Rab7 regulates maturation of melanosomal matrix protein gp100/Pmel17/Silv. J Invest Dermatol 2008; 128:143-50. [PMID: 17625594 DOI: 10.1038/sj.jid.5700964] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosome biogenesis consists of multistep processes that involve synthesis of melanosomal protein, which is followed by vesicle transport/fusion and post-translational modifications such as glycosylation, proteolysis, and oligomerization. Because of its complexity, the details of the molecular mechanism of melanosome biogenesis are not yet fully understood. Here, we report that, in MMAc melanoma cells, wild-type (WT) Rab7 and its dominant-active mutant (Rab7-Q67L), but not its dominant-negative mutant (Rab7-T22N), were colocalized in the perinuclear region with granules containing Stage I melanosomes, where the full-length, immature gp100/Pmel17/Silv was present. It was also found that overexpression of Rab7-Q67L and, to a lesser extent, Rab7-WT increased the amount of proteolytically processed, mature gp100. However, Rab7-T22N did not show such an effect. Moreover, siRNA-mediated Rab7 knockdown considerably inhibited gp100 maturation. These results collectively suggest that the GTP-bound form of Rab7 promotes melanogenesis through the regulation of gp100 maturation in melanoma cells.
Collapse
Affiliation(s)
- Akinori Kawakami
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shah AH, Cianciola NL, Mills JL, Sönnichsen FD, Carlin C. Adenovirus RIDalpha regulates endosome maturation by mimicking GTP-Rab7. ACTA ACUST UNITED AC 2007; 179:965-80. [PMID: 18039930 PMCID: PMC2099200 DOI: 10.1083/jcb.200702187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1L (ORP1L) are guanosine triphosphate (GTP)-Rab7 effectors that instigate minus end-directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation alpha (RIDalpha), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135-144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299-8306). RIDalpha localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDalpha compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu(2+) binding to RIDalpha residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDalpha-RILP interaction and RIDalpha activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDalpha activity during an acute adenovirus infection. We conclude that RIDalpha coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.
Collapse
Affiliation(s)
- Ankur H Shah
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
44
|
Mani K, Cheng F, Fransson LA. Heparan Sulfate Degradation Products Can Associate with Oxidized Proteins and Proteasomes. J Biol Chem 2007; 282:21934-44. [PMID: 17540770 DOI: 10.1074/jbc.m701200200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The S-nitrosylated proteoglycan glypican-1 recycles via endosomes where its heparan sulfate chains are degraded into anhydromannose-containing saccharides by NO-catalyzed deaminative cleavage. Because heparan sulfate chains can be associated with intracellular protein aggregates, glypican-1 autoprocessing may be involved in the clearance of misfolded recycling proteins. Here we have arrested and then reactivated NO-catalyzed cleavage in the absence or presence of proteasome inhibitors and analyzed the products present in endosomes or co-precipitating with proteasomes using metabolic radiolabeling and immunomagnet isolation as well as by confocal immunofluorescence microscopy. Upon reactivation of deaminative cleavage in T24 carcinoma cells, [(35)S]sulfate-labeled degradation products appeared in Rab7-positive vesicles and co-precipitated with a 20 S proteasome subunit. Simultaneous inhibition of proteasome activity resulted in a sustained accumulation of degradation products. We also demonstrated that the anhydromannose-containing heparan sulfate degradation products are detected by a hydrazide-based method that also identifies oxidized, i.e. carbonylated, proteins that are normally degraded in proteasomes. Upon inhibition of proteasome activity, pronounced colocalization between carbonyl-staining, anhydro-mannose-containing degradation products, and proteasomes was observed in both T24 carcinoma and N2a neuroblastoma cells. The deaminatively generated products that co-precipitated with the proteasomal subunit contained heparan sulfate but were larger than heparan sulfate oligosaccharides and resistant to both acid and alkali. However, proteolytic degradation released heparan sulfate oligosaccharides. In Niemann-Pick C-1 fibroblasts, where deaminative degradation of heparan sulfate is defective, carbonylated proteins were abundant. Moreover, when glypican-1 expression was silenced in normal fibroblasts, the level of carbonylated proteins increased raising the possibility that deaminative heparan sulfate degradation is involved in the clearance of misfolded proteins.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Experimental Medical Science, Section of Neuroscience, Lund University, Biomedical Centre A13, Lund, Sweden.
| | | | | |
Collapse
|
45
|
Sakane A, Hatakeyama S, Sasaki T. Involvement of Rabring7 in EGF receptor degradation as an E3 ligase. Biochem Biophys Res Commun 2007; 357:1058-64. [PMID: 17462600 DOI: 10.1016/j.bbrc.2007.04.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 01/29/2023]
Abstract
Rab7, a member of the Rab family small G proteins, is involved in the late stage of the endocytic pathway. We previously identified a Rab7 target protein, Rabring7, which contains a RING finger domain at its C termini, but the precise role of Rabring7 remains unknown. In this study, we demonstrate using an in vitro ubiquitination assay with recombinant E1 and E2 proteins that Rabring7 has E3 ligase activity and that it preferentially reacts with Ubc4 and Ubc5 as its E2 proteins. Rabring7 ubiquitinated itself but not Rab7, and a mutation at Cys-229 in the RING finger domain (Rabring7C229S) completely diminished its E3 ligase activity. In the ligand-induced degradation of EGF receptor (EGFR), Rabring7 accelerated the degradation of EGFR, whereas Rabring7C229S inhibited the degradation induced by cCbl, another E3 ligase. These results suggest that Rabring7 is involved in the endocytic trafficking of EGFR through its E3 ligase activity.
Collapse
Affiliation(s)
- Ayuko Sakane
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
46
|
Gillardon F, Kloss A, Berg M, Neumann M, Mechtler K, Hengerer B, Dahlmann B. The 20S proteasome isolated from Alzheimer's disease brain shows post-translational modifications but unchanged proteolytic activity. J Neurochem 2007; 101:1483-90. [PMID: 17286585 DOI: 10.1111/j.1471-4159.2006.04438.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic neurodegenerative diseases are characterized by the accumulation of aggregated protein species, and functional impairment of the ubiquitin proteasome system has been hypothesized to contribute to neuronal cell loss. Decreased proteolytic activity of the 20S proteasome has been shown postmortem in crude brain lysates from Alzheimer's disease (AD) patients. In the present study, we demonstrate, however, that catalytic activity of the 20S proteasome increases during chromatographic purification from AD brains as compared with age-matched controls. By two-dimensional difference gel electrophoresis we detected pI shifts in several proteasome subunits in AD samples pointing to differential post-translational modifications. Moreover, we identified N-terminal acetylation and dephosphorylation of subunit alpha7 in AD by tandem mass spectrometry. Thus, reduced peptidase activity in AD brain extracts is not an intrinsic property of the 20S proteasome, but may be resulting from the presence of endogenous inhibitory proteins or substrates. Post-translational modifications of non-catalytic subunits in situ may contribute to the trend towards enhanced hydrolytic activity of the isolated 20S proteasome after removal of the endogenous inhibitors.
Collapse
Affiliation(s)
- Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co, KG, CNS Research, Biberach an der Riss, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kleijnen MF, Kirkpatrick DS, Gygi SP. The ubiquitin-proteasome system regulates membrane fusion of yeast vacuoles. EMBO J 2006; 26:275-87. [PMID: 17183369 PMCID: PMC1783458 DOI: 10.1038/sj.emboj.7601486] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 11/14/2006] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin-proteasome regulation may be involved in membrane fusion elsewhere.
Collapse
Affiliation(s)
- Maurits F Kleijnen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
48
|
Progida C, Spinosa MR, De Luca A, Bucci C. RILP interacts with the VPS22 component of the ESCRT-II complex. Biochem Biophys Res Commun 2006; 347:1074-9. [PMID: 16857164 DOI: 10.1016/j.bbrc.2006.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 01/26/2023]
Abstract
The Rab-interacting lysosomal protein (RILP) has been identified as an effector for the small GTPases Rab7 and Rab34. It has been demonstrated that Rab7 and RILP are key proteins for the biogenesis of lysosomes and phagolysosomes. Indeed, expression of dominant negative mutants of Rab7 or of the C-terminal half of RILP impairs biogenesis and function of these organelles. In this study we have isolated, using the yeast two-hybrid system, the EAP30/SNF8/VPS22 subunit of the ESCRT-II complex as a RILP interacting protein. We demonstrated that VPS22 interacts with the N-terminal half of RILP. The interaction data obtained with the two-hybrid system were confirmed by co-immunoprecipitation. In addition, confocal immunofluorescence revealed colocalization of GFP-RILP and HA-VPS22. These data suggest that RILP could have a role in the biogenesis of multivesicular bodies.
Collapse
Affiliation(s)
- Cinzia Progida
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | |
Collapse
|
49
|
Almeida CG, Takahashi RH, Gouras GK. Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 2006; 26:4277-88. [PMID: 16624948 PMCID: PMC6673997 DOI: 10.1523/jneurosci.5078-05.2006] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence links intraneuronal beta-amyloid (Abeta42) accumulation with the pathogenesis of Alzheimer's disease (AD). In Abeta precursor protein (APP) mutant transgenic mice and in human AD brain, progressive intraneuronal accumulation of Abeta42 occurs especially in multivesicular bodies (MVBs). We hypothesized that this impairs the MVB sorting pathway. We used the trafficking of the epidermal growth factor receptor (EGFR) and TrkB receptor to investigate the MVB sorting pathway in cultured neurons. We report that, during EGF stimulation, APP mutant neurons demonstrated impaired inactivation, degradation, and ubiquitination of EGFR. EGFR degradation is dependent on translocation from MVB outer to inner membranes, which is regulated by the ubiquitin-proteasome system (UPS). We provide evidence that Abeta accumulation in APP mutant neurons inhibits the activities of the proteasome and deubiquitinating enzymes. These data suggest a mechanism whereby Abeta accumulation in neurons impairs the MVB sorting pathway via the UPS in AD.
Collapse
|
50
|
Mukherjee S, Tessema M, Wandinger-Ness A. Vesicular Trafficking of Tyrosine Kinase Receptors and Associated Proteins in the Regulation of Signaling and Vascular Function. Circ Res 2006; 98:743-56. [PMID: 16574915 DOI: 10.1161/01.res.0000214545.99387.e3] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Receptor tyrosine kinases (RTKs) play a pivotal role in the development and function of the cardiovascular system. Ligand-activated RTKs promote numerous downstream signal transduction pathways that lead to vascular permeability, as well as proliferation, migration, and differentiation of vascular endothelia and smooth muscle cells. Ligand binding also promotes internalization of the activated receptors either to downregulate the signaling via degradation of the ligand/receptor complex or to signal from endosomes. However, the outcomes of receptor internalization via clathrin-dependent or caveolar pathways and trafficking mechanisms are incompletely clarified in vascular systems. Activity modulation through endocytosis and vesicular trafficking significantly impacts downstream targets of RTKs such as endothelial nitric oxide synthase (eNOS) and VE-cadherin. RTKs and their associated targets are also transported to the nucleus, where they may directly impact nuclear signaling. Although the nuclear transport pathways are just beginning to be unraveled, it appears that endocytosis and vesicular trafficking are involved. In this review, we discuss the mechanisms by which activated RTKs and the downstream targets eNOS and VE-cadherin may be internalized and transported to various intracellular compartments. How localization and interacting proteins impact protein function and influence signaling is an important theme, as is the potential for modulating signaling through therapeutic targeting of activated receptors and components of the endocytic machinery.
Collapse
Affiliation(s)
- Sanchita Mukherjee
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5301, USA
| | | | | |
Collapse
|