1
|
Daida T, Shin BC, Cepeda C, Devaskar SU. Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3. Nutrients 2024; 16:2363. [PMID: 39064806 PMCID: PMC11279700 DOI: 10.3390/nu16142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood-brain barrier and neuronal membranes, respectively, are associated with multiple neurodevelopmental disorders including epilepsy, dyslexia, ADHD, and autism spectrum disorder (ASD). Dietary therapies, such as the ketogenic diet, are widely accepted treatments for patients with the GLUT1 deficiency syndrome, while ameliorating certain symptoms associated with GLUT3 deficiency in animal models. A ketogenic diet, high-fat diet, and calorie/energy restriction during prenatal and postnatal stages can also alter the placental and brain GLUTs expression with long-term consequences on neurobehavior. This review focuses primarily on the role of diet/energy perturbations upon GLUT isoform-mediated emergence of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomoko Daida
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| |
Collapse
|
2
|
Tena-Morraja P, Riqué-Pujol G, Müller-Sánchez C, Reina M, Martínez-Estrada OM, Soriano FX. Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics. Int J Mol Sci 2023; 24:ijms24020922. [PMID: 36674431 PMCID: PMC9864932 DOI: 10.3390/ijms24020922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.
Collapse
Affiliation(s)
- Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Guillem Riqué-Pujol
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Francesc X. Soriano
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
3
|
Sharma V, Singh TG, Mannan A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem Res 2022; 47:2173-2186. [PMID: 35596882 DOI: 10.1007/s11064-022-03620-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is a leading cause of death in the globe, with a large societal cost. Deprivation of blood flow, together with consequent glucose and oxygen shortage, activates a variety of pathways that result in permanent brain damage. As a result, ischemia raises energy demand, which is linked to significant alterations in brain energy metabolism. Even at the low glucose levels reported in plasma during ischemia, glucose transport activity may adjust to assure the supply of glucose to maintain normal cellular function. Glucose transporters in the brain are divided into two groups: sodium-independent glucose transporters (GLUTs) and sodium-dependent glucose cotransporters (SGLTs).This review assess the GLUT structure, expression, regulation, pathobiology of GLUT in cerebral ischemia and regulators of GLUT and it also provides the synopsis of the literature exploring the relationship between GLUT and the various downstream signalling pathways for e.g., AMP-activated protein kinase (AMPK), CREB (cAMP response element-binding protein), Hypoxia-inducible factor 1 (HIF)-1, Phosphatidylinositol 3-kinase (PI3-K), Mitogen-activated protein kinase (MAPK) and adenylate-uridylate-rich elements (AREs). Therefore, the aim of the present review was to elaborate the therapeutic implications of GLUT in the cerebral ischemia.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India.
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| |
Collapse
|
4
|
Resveratrol Prevents GLUT3 Up-Regulation Induced by Middle Cerebral Artery Occlusion. Brain Sci 2020; 10:brainsci10090651. [PMID: 32962200 PMCID: PMC7563146 DOI: 10.3390/brainsci10090651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Glucose transporter (GLUT)3 up-regulation is an adaptive response activated to prevent cellular damage when brain metabolic energy is reduced. Resveratrol is a natural polyphenol with anti-oxidant and anti-inflammatory features that protects neurons against damage induced in cerebral ischemia. Since transcription factors sensitive to oxidative stress and inflammation modulate GLUT3 expression, the purpose of this work was to assess the effect of resveratrol on GLUT3 expression levels after ischemia. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by different times of reperfusion. Resveratrol (1.9 mg/kg; i. p.) was administered at the onset of the restoration of the blood flow. Quantitative-PCR and Western blot showed that MCAO provoked a substantial increase in GLUT3 expression in the ipsilateral side to the lesion of the cerebral cortex. Immunofluorescence assays indicated that GLUT3 levels were upregulated in astrocytes. Additionally, an important increase in GLUT3 occurred in other cellular types (e.g., damaged neurons, microglia, or infiltrated macrophages). Immunodetection of the microtubule-associated protein 2 (MAP2) showed that MCAO induced severe damage to the neuronal population. However, the administration of resveratrol at the time of reperfusion resulted in injury reduction. Resveratrol also prevented the MCAO-induced increase of GLUT3 expression. In conclusion, resveratrol protects neurons from damage induced by ischemia and prevents GLUT3 upregulation in the damaged brain that might depend on AMPK activation.
Collapse
|
5
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, Mendenhall MD, Reagan LP, Craven RJ, Thibault O. Elevating Insulin Signaling Using a Constitutively Active Insulin Receptor Increases Glucose Metabolism and Expression of GLUT3 in Hippocampal Neurons. Front Neurosci 2020; 14:668. [PMID: 32733189 PMCID: PMC7358706 DOI: 10.3389/fnins.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRβ show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRβ treatment. Quantification of Western immunoblots show that IRβ is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.
Collapse
Affiliation(s)
- Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gabriel J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
6
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Shin BC, Ghosh S, Dai Y, Byun SY, Calkins KL, Devaskar SU. Early life high-fat diet exposure maintains glucose tolerance and insulin sensitivity with a fatty liver and small brain size in the adult offspring. Nutr Res 2019; 69:67-81. [PMID: 31639589 PMCID: PMC6934265 DOI: 10.1016/j.nutres.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Diet during pregnancy has long lasting consequences on the offspring, warranting a study on the impact of early exposure to a high fat diet on the adult offspring. We hypothesized that a prenatal n-6 enriched diet will have adverse metabolic outcomes on the adult offspring that may be reversed with a postnatal n-3 enriched diet. To test this hypothesis, we examined the adult offspring from three groups: (1) n-6 group: during gestation and lactation, dams consumed an n-6 polyunsaturated fatty acid enriched diet, (2) n-3 group: gestational n-6 diet was followed by an n-3 enriched diet during lactation, and (3) a control (CD) group that received standard diet throughout gestation and lactation. Offspring from all groups weaned to a control diet ad libitum. Beginning at postnatal day 2 (P < .03) and persisting at 360 days in males (P < .04), an increase in hypothalamic AgRP expression occurred in the n-6 and n-3 groups, with an increase in food intake (P = .01), and the n-3 group displaying lower body (P < .03) and brain (P < .05) weights. At 360 days, the n-6 and n-3 groups remained glucose tolerant and insulin sensitive, with increased phosphorylated-AMP-activated protein kinase (P < .05). n-6 group developed hepatic steatosis with reduced hepatic reflected as higher plasma microRNA-122 (P < .04) that targets pAMPK. We conclude that early life exposure to n-6 and n-3 led to hypothalamic AgRP-related higher food intake, with n-6 culminating in a fatty liver partially mitigated by postnatal n-3. While both diets preserved glucose tolerance and insulin sensitivity, postnatal n-3 displayed detrimental effects on the brain.
Collapse
Affiliation(s)
- Bo-Chul Shin
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shubhamoy Ghosh
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Yun Dai
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shin Yun Byun
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Kara L Calkins
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Sherin U Devaskar
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752.
| |
Collapse
|
8
|
Maggiotto LV, Sondhi M, Shin BC, Garg M, Devaskar SU. Circulating blood cellular glucose transporters - Surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems. Mol Genet Metab 2019; 127:166-173. [PMID: 31182397 PMCID: PMC8230733 DOI: 10.1016/j.ymgme.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We examined Red Blood Cell (RBC) Glucose Transporter isoform 1 (GLUT1) and White Blood Cell (WBC) Glucose Transporter isoform 3 (GLUT3) protein concentrations to assess their potential as surrogate biomarkers for the presence of hypoxic-ischemic encephalopathy (HIE) and response to therapeutic hypothermia (TH), with respect to the neurodevelopmental prognosis. STUDY DESIGN A prospective feasibility study of 10 infants with HIE and 8 age-matched control subjects was undertaken. Following parental consent, blood samples were obtained at baseline before institution of TH (<6 h of life), during TH, at rewarming and post-TH in the HIE group with a baseline sample from the control group. GLUT1 and GLUT3 were measured by Enzyme-linked immunosorbent assay (ELISA) with brain biomarkers, Neuron-Specific Enolase (NSE) and Glial Fibrillary Acidic Protein (GFAP). Novel "HIE-high risk" and "Neurological" scores were developed to help identify HIE and to assess severity and prognosis, respectively. RESULTS RBC GLUT1 concentrations were increased at the baseline pre-TH time point in HIE versus control subjects (p = .006), normalizing after TH (p = .05). An association between GLUT1 and NSE concentrations (which was reflective of the HIE-high risk and the Neuro-scores) in controls and HIE pre-TH was seen (R2 = 0.36, p = .008), with GLUT1 demonstrating 90% sensitivity and 88% specificity for presence of HIE identified by Sarnat Staging. WBC GLUT3 concentrations were low and no different in HIE versus control, and GFAP concentrations trended higher during re-warming (p = .11) and post-TH (p = .16). We demonstrated a significant difference between HIE and controls for both the "HIE-high risk" and the "Neurological" Scores. The latter score revealing the severity of clinical neurological illness correlated with the corresponding RBC GLUT1 (R2 value = 0.39; p = .006). CONCLUSION Circulating RBC GLUT1 concentrations with NSE demonstrate a significant potential in reflecting the severity of HIE pre-TH and gauging effectiveness of TH. In contrast, the low neonatal WBC GLUT3 concentrations make discerning differences between degrees of HIE as well as assessing effectiveness of TH difficult. The HIE-high risk and Neurological scores may extend the "Sarnat staging" towards assessing severity and neuro-developmental prognosis of HIE.
Collapse
Affiliation(s)
- Liesbeth V Maggiotto
- Department of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA and the UCLA Mattel Children's Hospital, Los Angeles, CA 90095-1752, United States of America
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA and the UCLA Mattel Children's Hospital, Los Angeles, CA 90095-1752, United States of America
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA and the UCLA Mattel Children's Hospital, Los Angeles, CA 90095-1752, United States of America
| | - Meena Garg
- Department of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA and the UCLA Mattel Children's Hospital, Los Angeles, CA 90095-1752, United States of America
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA and the UCLA Mattel Children's Hospital, Los Angeles, CA 90095-1752, United States of America.
| |
Collapse
|
9
|
Decrease in glucose transporter 1 levels and translocation of glucose transporter 3 in the dentate gyrus of C57BL/6 mice and gerbils with aging. Lab Anim Res 2018; 34:58-64. [PMID: 29937912 PMCID: PMC6010402 DOI: 10.5625/lar.2018.34.2.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
In the present study, we compared the cell-specific expression and changes protein levels in the glucose transporters (GLUTs) 1 and 3, the major GLUTs in the mouse and gerbil brains using immunohistochemistry and Western blot analysis. In both mouse and gerbils, GLUT1 immunoreactivity was mainly found in the blood vessels in the dentate gyrus, while GLUT3 immunoreactivity was detected in the subgranular zone and the molecular layer of the dentate gyrus. GLUT1-immunoreactivity in blood vessels and GLUT1 protein levels were significantly decreased with age in the mice and gerbils, respectively. In addition, few GLUT3-immunoreactive cells were found in the subgranular zone in aged mice and gerbils, but GLUT3-immunoreactivity was abundantly found in the polymorphic layer of dentate gyrus in mice and gerbils with a dot-like pattern. Based on the double immunofluorescence study, GLUT3-immunoreactive structures in gerbils were localized in the glial fibrillary acidic protein-immunoreactive astrocytes in the dentate gyrus. Western blot analysis showed that GLUT3 expression in the hippocampal homogenates was slightly, although not significantly, decreased with age in mice and gerbils, respectively. These results indicate that the reduction in GLUT1 in the blood vessels of dentate gyrus and GLUT3 in the subgranular zone of dentate gyrus may be associated with the decrease in uptake of glucose into brain and neuroblasts in the dentate gyrus. In addition, the expression of GLUT3 in the astrocytes in polymorphic layer of dentate gyrus may be associated with metabolic changes in glucose in aged hippocampus.
Collapse
|
10
|
Segarra-Mondejar M, Casellas-Díaz S, Ramiro-Pareta M, Müller-Sánchez C, Martorell-Riera A, Hermelo I, Reina M, Aragonés J, Martínez-Estrada OM, Soriano FX. Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO J 2018; 37:e97368. [PMID: 29615453 PMCID: PMC5920244 DOI: 10.15252/embj.201797368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose transporter Glut3 and rate-limiting enzymes of glycolysis, resulting in enhanced glucose uptake and metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain developmental disorders.
Collapse
Affiliation(s)
- Marc Segarra-Mondejar
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Sergi Casellas-Díaz
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Alejandro Martorell-Riera
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Ismaïl Hermelo
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Julián Aragonés
- Research Unit, Hospital of La Princesa, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Ofelia M Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Criscuoli M, Filippi I, Osti D, Aldinucci C, Guerrini G, Pelicci G, Carraro F, Naldini A. The Shc protein RAI promotes an adaptive cell survival program in hypoxic neuroblastoma cells. J Cell Physiol 2017; 233:4282-4293. [DOI: 10.1002/jcp.26247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Mattia Criscuoli
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Irene Filippi
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
- Istituto Toscano TumoriFirenzeItaly
| | - Daniela Osti
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Carlo Aldinucci
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Giuditta Guerrini
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Giuliana Pelicci
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
- Department of Translational MedicinePiemonte Orientale University “Amedeo Avogadro”NovaraItaly
| | - Fabio Carraro
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
- Istituto Toscano TumoriFirenzeItaly
| | - Antonella Naldini
- Cellular and Molecular Physiology UnitDepartment of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| |
Collapse
|
12
|
Yoo DY, Lee KY, Park JH, Jung HY, Kim JW, Yoon YS, Won MH, Choi JH, Hwang IK. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia. Neural Regen Res 2016; 11:1254-9. [PMID: 27651772 PMCID: PMC5020823 DOI: 10.4103/1673-5374.189189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Postnatal changes in glucose transporter 3 expression in the dentate gyrus of the C57BL/6 mouse model. Lab Anim Res 2016; 32:1-7. [PMID: 27051437 PMCID: PMC4816992 DOI: 10.5625/lar.2016.32.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we observed the ontogenetic changes in glucose transporter 3 (GLUT3) immunoreactivity, a major neuronal GLUT, in the dentate gyrus of mouse brains at various ages: postnatal day (P) 1, 7, 14, 28, and 56. At P1, cresyl violet staining showed abundant neurons in the dentate gyrus, whereas the granule cell layer was ill-defined. At P7, the granule cell layer was observed, and cresyl violet-positive cells were dispersed throughout the polymorphic layer. At P14, the granule cell layer was well-defined, and cresyl violet positive cells were detected abundantly in the polymorphic layer. At P28 and P56, cresyl violet-positive cells were observed in the granule cell layer, as well as in the polymorphic layer. At P1, GLUT3 immunoreactivity was detected in the dentate gyrus. At P7, GLUT3 immunoreactive cells were scattered in the polymorphic and molecular layer. However, at P14, GLUT3 immunoreactivity was observed in the polymorphic layer as well as subgranular zone of the dentate gyrus. At P28, GLUT3 immunoreactivity was detected in the polymorphic layer of the dentate gyrus. At P56, GLUT3 immunoreactivity was observed predominantly in the subgranular zone of the dentate gyrus. GLUT3 immunoreactive cells were mainly colocalized with doublecortin, which is a marker for differentiated neuroblasts, in the polymorphic layer and subgranular zone of dentate gyrus at P14 and P56. These results suggest that the expression of GLUT3 is closely associated with postnatal development of the dentate gyrus and adult neurogenesis.
Collapse
|
14
|
Li YF, Chen M, Wang C, Li XX, Ouyang SH, He CC, Mao ZF, Tsoi B, Kurihara H, He RR. Theacrine, a purine alkaloid derived from Camellia assamica var. kucha , ameliorates impairments in learning and memory caused by restraint-induced central fatigue. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis 2014; 4:479-90. [PMID: 24924227 DOI: 10.1017/s2040174413000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Earlier, we showed that rearing of newborn rats on a high-carbohydrate (HC) milk formula resulted in the onset of hyperinsulinemia, its persistence in the post-weaning period and adult-onset obesity. DNA methylation of CpG dinucleotides in the proximal promoter region and modifications in the N-terminal tail of histone 3 associated with the neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc) genes were investigated to decipher the molecular mechanisms supporting the development of obesity in HC females. Although there were no differences in the methylation status of CpG dinucleotides in the proximal promoter region of the Pomc gene, altered methylation of specific CpG dinucleotides proximal to the transcription start site was observed for the Npy gene in the hypothalami of 16- and 100-day-old HC rats compared with their methylation status in mother-fed (MF) rats. Investigation of histone tail modifications on hypothalamic chromatin extracts from 16-day-old rats indicated decreased acetylation of lysine 9 in histone 3 (H3K9) for the Pomc gene and increased acetylation for the same residue for the Npy gene, without changes in histone methylation (H3K9) in both genes in HC rats. These findings are consistent with the changes in the levels of Npy and Pomc mRNAs in the hypothalami of HC rats compared with MF animals. Our results suggest that epigenetic modifications could contribute to the altered gene expression of the Npy and Pomc genes in the hypothalami of HC rats and could be a mechanism leading to hyperphagia and the development of obesity in adult female HC rats.
Collapse
|
16
|
Raychaudhuri N, Thamotharan S, Srinivasan M, Mahmood S, Patel MS, Devaskar SU. Postnatal exposure to a high-carbohydrate diet interferes epigenetically with thyroid hormone receptor induction of the adult male rat skeletal muscle glucose transporter isoform 4 expression. J Nutr Biochem 2014; 25:1066-76. [PMID: 25086780 DOI: 10.1016/j.jnutbio.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/09/2014] [Accepted: 05/18/2014] [Indexed: 12/19/2022]
Abstract
Early life nutritional intervention causes adult-onset insulin resistance and obesity in rats. Thyroid hormone receptor (TR), in turn, transcriptionally enhances skeletal muscle Glut4 expression. We tested the hypothesis that reduced circulating thyroid-stimulating hormone and T4 concentrations encountered in postnatal (PN4-PN24) high-carbohydrate (HC) milk formula-fed versus the mother-fed controls (MF) would epigenetically interfere with TR induction of adult (100 days) male rat skeletal muscle Glut4 expression, thereby providing a molecular mechanism mediating insulin resistance. We observed increased DNA methylation of the CpG island with enhanced recruitment of Dnmt3a, Dnmt3b and MeCP2 in the glut4 promoter region along with reduced acetylation of histone (H)2A.Z and H4 particularly at the H4.lysine (K)16 residue, which was predominantly mediated by histone deacetylase 4 (HDAC4). This was followed by enhanced recruitment of heterochromatin protein 1β to the glut4 promoter with increased Suv39H1 methylase concentrations. These changes reduced TR binding of the T3 response element of the glut4 gene (TREs; -473 to -450 bp) detected qualitatively in vivo (electromobility shift assay) and quantified ex vivo (chromatin immunoprecipitation). In addition, the recruitment of steroid receptor coactivator and CREB-binding protein to the glut4 promoter-protein complex was reduced. Co-immunoprecipitation experiments confirmed the interaction between TR and CBP to be reduced and HDAC4 to be enhanced in HC versus MF groups. These molecular changes were associated with diminished skeletal muscle Glut4 mRNA and protein concentrations. We conclude that early postnatal exposure to HC diet epigenetically reduced TR induction of adult male skeletal muscle Glut4 expression, uncovering novel molecular mechanisms contributing to adult insulin resistance and obesity.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA
| | - Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Mulchand S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
17
|
Zhang S, Zuo W, Guo XF, He WB, Chen NH. Cerebral glucose transporter: The possible therapeutic target for ischemic stroke. Neurochem Int 2014; 70:22-9. [DOI: 10.1016/j.neuint.2014.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/02/2014] [Accepted: 03/08/2014] [Indexed: 02/01/2023]
|
18
|
Yu S, Cheng Q, Li L, Liu M, Yang Y, Ding F. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3. Toxicol Appl Pharmacol 2014; 277:259-69. [PMID: 24726522 DOI: 10.1016/j.taap.2014.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/20/2014] [Accepted: 03/29/2014] [Indexed: 12/16/2022]
Abstract
Salidroside is proven to be a neuroprotective agent of natural origin, and its analog, 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside (named SalA-4g), has been synthesized in our lab. In this study, we showed that SalA-4g promoted neuronal survival and inhibited neuronal apoptosis in primary hippocampal neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to ischemia by transient middle cerebral artery occlusion (MCAO), respectively, and that SalA-4g was more neuroprotective than salidroside. We further found that SalA-4g elevated glucose uptake in OGD-injured primary hippocampal neurons and increased the expression and recruitment of glucose transporter 3 (GLUT3) in ischemic brain. Signaling analysis revealed that SalA-4g triggered the phosphorylation of CREB, and increased the expression of PKA RII in primary hippocampal neurons exposed to OGD injury, while inhibition of PKA/CREB by H-89 alleviated the elevation in glucose uptake and GLUT3 expression, and blocked the protective effects of SalA-4g. Moreover, SalA-4g was noted to inhibit intracellular Ca(2+) influx and calpain1 activation in OGD-injured primary hippocampal neurons. Our results suggest that SalA-4g neuroprotection might be mediated by increased glucose uptake and elevated GLUT3 expression through calpain1/PKA/CREB pathway.
Collapse
Affiliation(s)
- Shu Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China
| | - Qiong Cheng
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China
| | - Lu Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China
| | - Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, 19 Qixiu Road, Nantong JS 226001, PR China.
| |
Collapse
|
19
|
Prenatal caloric restriction enhances DNA methylation and MeCP2 recruitment with reduced murine placental glucose transporter isoform 3 expression. J Nutr Biochem 2013; 25:259-66. [PMID: 24445052 DOI: 10.1016/j.jnutbio.2013.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 11/24/2022]
Abstract
Diminished transplacental glucose transport plays an important role in prenatal calorie restriction (CR) induced reduction in fetal growth. Fetal growth restriction (FGR) has an impact in shaping the adult phenotype with transgenerational implications. To understand the mechanisms underlying prenatal CR-induced transplacental glucose transport, we examined the epigenetic regulation of placental glucose transporter (Glut1 and Glut3) expression. We restricted calories by 50% in C57BL6 pregnant mice from gestational days 10 to 19 (CR; n=8) vs. controls (CON; n=8) and observed a 50% diminution in placental Glut3 expression (P<.05) with no effect on Glut1 expression by reverse transcription and quantitative real-time polymerase chain reaction (PCR). CR enhanced DNA methylation of a CpG island situated ~1000 bp upstream from the transcriptional start site of the glut3 gene, with no such effect on the glut1 gene as assessed by methylation-sensitive PCR and bisulfite sequencing. Chromatin immunoprecipitation (ChIP) assays demonstrated enhanced MeCP2 binding to the CpG island of the glut3 gene in response to CR vs. CON (P<.05). Sequential ChIP demonstrated that enhanced MeCP2 binding of the glut3-(m)CpG island enhanced histone deacetylase 2 recruitment (P<.05) but interfered with Sp1 binding (P<.001), although it did not affect Sp3 or Creb/pCreb interaction. We conclude that late-gestation CR enhanced DNA methylation of the placental glut3 gene. This epigenetic change augmented specific nuclear protein-DNA complex formation that was associated with prenatal CR-induced reduction of placental glut3 expression and thereby transplacental glucose transport. This molecular complex provides novel targets for developing therapeutic interventions aimed at reversing FGR.
Collapse
|
20
|
Chen Y, Shin BC, Thamotharan S, Devaskar SU. Creb1-Mecp2-(m)CpG complex transactivates postnatal murine neuronal glucose transporter isoform 3 expression. Endocrinology 2013; 154:1598-611. [PMID: 23493374 PMCID: PMC3602632 DOI: 10.1210/en.2012-2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The murine neuronal facilitative glucose transporter isoform 3 (Glut3) is developmentally regulated, peaking in expression at postnatal day (PN)14. In the present study, we characterized a canonical CpG island spanning the 5'-flanking region of the glut3 gene. Methylation-specific PCR and bisulfite sequencing identified methylation of this CpG ((m)CpG) island of the glut3 gene, frequency of methylation increasing 2.5-fold with a 1.6-fold increase in DNA methyl transferase 3a concentrations noted with advancing postnatal age (PN14 vs PN3). 5'-flanking region of glut3-luciferase reporter transient transfection in HT22 hippocampal neurons demonstrated that (m)CpGs inhibit glut3 transcription. Contrary to this biological function, glut3 expression rises synchronously with (m)CpGs in PN14 vs PN3 neurons. Chromatin immunoprecipitation (IP) revealed that methyl-CpG binding protein 2 (Mecp2) bound the glut3-(m)CpGs. Depending on association with specific coregulators, Mecp2, a dual regulator of gene transcription, may repress or activate a downstream gene. Sequential chromatin IP uncovered the glut3-(m)CpGs to bind Mecp2 exponentially upon recruitment of Creb1 rather than histone deacetylase 1. Co-IP and coimmunolocalization confirmed that Creb1 associated with Mecp2 and cotransfection with glut3-(m)CpG in HT22 cells enhanced glut3 transcription. Separate 5-aza-2'-deoxycytidine pretreatment or in combination with trichostatin A reduced (m)CpG and specific small interference RNAs targeting Mecp2 and Creb1 separately or together depleting Mecp2 and/or Creb1 binding of glut3-(m)CpGs reduced glut3 expression in HT22 cells. We conclude that Glut3 is a methylation-sensitive neuronal gene that recruits Mecp2. Recruitment of Creb1-Mecp2 by glut3-(m)CpG contributes towards transactivation, formulating an escape from (m)CpG-induced gene suppression, and thereby promoting developmental neuronal glut3 gene transcription and expression.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine University of California LosAngeles, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
21
|
Thamotharan S, Raychaudhuri N, Tomi M, Shin BC, Devaskar SU. Hypoxic adaptation engages the CBP/CREST-induced coactivator complex of Creb-HIF-1α in transactivating murine neuroblastic glucose transporter. Am J Physiol Endocrinol Metab 2013; 304:E583-98. [PMID: 23321477 PMCID: PMC3602690 DOI: 10.1152/ajpendo.00513.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown in vitro a hypoxia-induced time-dependent increase in facilitative glucose transporter isoform 3 (GLUT3) expression in N2A murine neuroblasts. This increase in GLUT3 expression is partially reliant on a transcriptional increase noted in actinomycin D and cycloheximide pretreatment experiments. Transient transfection assays in N2A neuroblasts using murine glut3-luciferase reporter constructs mapped the hypoxia-induced enhancer activities to -857- to -573-bp and -203- to -177-bp regions. Hypoxia-exposed N2A nuclear extracts demonstrated an increase in HIF-1α and p-Creb binding to HRE (-828 to -824 bp) and AP-1 (-187 to -180 bp) cis-elements, respectively, in electromobility shift and supershift assays, which was confirmed by chromatin immunoprecipitation assays. In addition, the interaction of CBP with Creb and HIF-1α and CREST with CBP in hypoxia was detected by coimmunoprecipitation. Furthermore, small interference (si)RNA targeting Creb in these cells decreased endogenous Creb concentrations that reduced by twofold hypoxia-induced glut3 gene transcription. Thus, in N2A neuroblasts, phosphorylated HIF-1α and Creb mediated the hypoxia-induced increase in glut3 transcription. Coactivation by the Ca⁺⁺-dependent CREST and CBP proteins may enhance cross-talk between p-Creb-AP-1 and HIF-1α/HRE of the glut3 gene. Collectively, these processes can facilitate an adaptive response to hypoxic energy depletion targeted at enhancing glucose transport and minimizing injury while fueling the proliferative potential of neuroblasts.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
22
|
Thamotharan S, Stout D, Shin BC, Devaskar SU. Temporal and spatial distribution of murine placental and brain GLUT3-luciferase transgene as a readout of in vivo transcription. Am J Physiol Endocrinol Metab 2013. [PMID: 23193055 PMCID: PMC3566432 DOI: 10.1152/ajpendo.00214.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate in vivo transcription of the facilitative glucose transporter isoform-GLUT3 gene, we created GLUT3-firefly luciferase transgenic mouse lines that demonstrate tissue-specific [adult: brain > testis ≥ skeletal muscle > placenta; postnatal (PN): skeletal muscle > brain = skin], temporal, and spatial distribution of the reporter gene/enzyme activity that is unique from endogenous GLUT3 mRNA/protein. In this mouse model, luciferase expression/activity serving as a readout of in vivo transcription peaked at 12 days gestation along with proliferating cell nuclear antigen (cell replication) in placenta and embryonic brain preceding peak GLUT3 protein expression at 18-19 days gestation. In contrast, a postnatal increase in brain luciferase mRNA peaked with endogenous GLUT3 mRNA, but after that of NeuroD6 protein (neurogenesis) at PN7. Luciferase activity paralleled GLUT3 protein expression with Na(+)-K(+)-ATPase (membrane expansion) and synaptophysin (synaptogenesis) proteins, peaking at PN14 and lasting until 60 days in the adult. Thus GLUT3 transcription in placenta and embryonic brain coincided with cell proliferation and in postnatal brain with synaptogenesis. Longitudinal noninvasive bioluminescence (BLI) monitoring of in vivo brain GLUT3 transcription reflected cross-sectional ex vivo brain luciferase activity only between PN7 and PN21. Hypoxia/reoxygenation at PN7 revealed transcriptional increase in brain GLUT3 expression reflected by in vivo BLI and ex vivo luciferase activity. These observations collectively support a temporal contribution by transcription toward ensuring adequate tissue-specific, developmental (placenta and embryonic brain), and postnatal hypoxic brain GLUT3 expression.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
23
|
Jin N, Qian W, Yin X, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer's disease. Nucleic Acids Res 2013; 41:3240-56. [PMID: 23341039 PMCID: PMC3597642 DOI: 10.1093/nar/gks1227] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired brain glucose uptake and metabolism precede the appearance of clinical symptoms in Alzheimer disease (AD). Neuronal glucose transporter 3 (GLUT3) is decreased in AD brain and correlates with tau pathology. However, what leads to the decreased GLUT3 is yet unknown. In this study, we found that the promoter of human GLUT3 contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2 and CRE3. Overexpression of CRE-binding protein (CREB) or activation of cAMP-dependent protein kinase significantly increased GLUT3 expression. CREB bound to the CREs and promoted luciferase expression driven by human GLUT3-promoter. Among the CREs, CRE2 and CRE3 were required for the promotion of GLUT3 expression. Full-length CREB was decreased and truncation of CREB was increased in AD brain. This truncation was correlated with calpain I activation in human brain. Further study demonstrated that calpain I proteolysed CREB at Gln28–Ala29 and generated a 41-kDa truncated CREB, which had less activity to promote GLUT3 expression. Importantly, human brain GLUT3 was correlated with full-length CREB positively and with activation of calpain I negatively. These findings suggest that overactivation of calpain I caused by calcium overload proteolyses CREB, resulting in a reduction of GLUT3 expression and consequently impairing glucose uptake and metabolism in AD brain.
Collapse
Affiliation(s)
- Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lo MC, Peterson LF, Yan M, Cong X, Jin F, Shia WJ, Matsuura S, Ahn EY, Komeno Y, Ly M, Ommen HB, Chen IM, Hokland P, Willman CL, Ren B, Zhang DE. Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 2012; 120:1473-84. [PMID: 22740448 PMCID: PMC3423785 DOI: 10.1182/blood-2011-12-395335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/16/2012] [Indexed: 12/24/2022] Open
Abstract
Chromosome translocation 8q22;21q22 [t(8;21)] is commonly associated with acute myeloid leukemia (AML), and the resulting AML1-ETO fusion proteins are involved in the pathogenesis of AML. To identify novel molecular and therapeutic targets, we performed combined gene expression microarray and promoter occupancy (ChIP-chip) profiling using Lin(-)/Sca1(-)/cKit(+) cells, the major leukemia cell population, from an AML mouse model induced by AML1-ETO9a (AE9a). Approximately 30% of the identified common targets of microarray and ChIP-chip assays overlap with the human t(8;21)-gene expression molecular signature. CD45, a protein tyrosine phosphatase and a negative regulator of cytokine/growth factor receptor and JAK/STAT signaling, is among those targets. Its expression is substantially down-regulated in leukemia cells. Consequently, JAK/STAT signaling is enhanced. Re-expression of CD45 suppresses JAK/STAT activation, delays leukemia development, and promotes apoptosis of t(8;21)-positive cells. This study demonstrates the benefit of combining gene expression and promoter occupancy profiling assays to identify molecular and potential therapeutic targets in human cancers and describes a previously unappreciated signaling pathway involving t(8;21) fusion proteins, CD45, and JAK/STAT, which could be a potential novel target for treating t(8;21) AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- DNA, Neoplasm/metabolism
- Enzyme Activation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks/genetics
- Genes, Neoplasm/genetics
- Humans
- Janus Kinases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukocyte Common Antigens/metabolism
- Mice
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Reproducibility of Results
- STAT Transcription Factors/metabolism
- Signal Transduction/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Miao-Chia Lo
- Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao L, Lv C, Xu C, Li Y, Cui X, Gu H, Ni X. Differential regulation of glucose transporters mediated by CRH receptor type 1 and type 2 in human placental trophoblasts. Endocrinology 2012; 153:1464-71. [PMID: 22234467 DOI: 10.1210/en.2011-1673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose transport across the placenta is mediated by glucose transporters (GLUT), which is critical for normal development and survival of the fetus. Regulatory mechanisms of GLUT in placenta have not been elucidated. Placental CRH has been implicated to play a key role in the control of fetal growth and development. We hypothesized that CRH, produced locally in placenta, could act to modulate GLUT in placenta. To investigate this, we obtained human placentas from uncomplicated term pregnancies and isolated and cultured trophoblast cells. GLUT1 and GLUT3 expressions in placenta were determined, and effects of CRH on GLUT1 and GLUT3 were examined. GLUT1 and GLUT3 were identified in placental villous syncytiotrophoblasts and the endothelium of vessels. Treatment of cultured placental trophoblasts with CRH resulted in an increase in GLUT1 expression while a decrease in GLUT3 expression in a dose-dependent manner. Cells treated with either CRH antibody or nonselective CRH receptor (CRH-R) antagonist astressin showed a decrease in GLUT1 and an increase in GLUT3 expression. CRH-R1 antagonist antalarmin decreased GLUT1 expression while increased GLUT3 expression. CRH-R2 antagonist astressin2b increased the expression of both GLUT1 and GLUT3. Knockdown of CRH-R1 decreased GLUT1 expression while increased GLUT3 expression. CRH-R2 knockdown caused an increase in both GLUT1 and GLUT3 expression. Our data suggest that, in placenta, CRH produced locally regulates GLUT1 and GLUT3 expression, CRHR1 and CRHR2-mediated differential regulation of GLUT1 and GLUT3 expression. Placental CRH may regulate the growth of fetus and placenta by modulating the expression of GLUT in placenta during pregnancy.
Collapse
Affiliation(s)
- Lu Gao
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu J, Li J, Zhang S, Xu X, Zheng M, Jiang G, Li F. IGF-1 induces hypoxia-inducible factor 1α-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells. Brain Res 2011; 1430:18-24. [PMID: 22104347 DOI: 10.1016/j.brainres.2011.10.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/18/2022]
Abstract
Glucose metabolism is essential for most mammalian neurons, and the passage of glucose across cell membranes is mainly facilitated by glucose transporter 3 (GLUT3). In ischemia/reperfusion injured brains, increase of IGF-1 secretion and GLUT3 up-regulation, are regarded as protective processes. Recent works have shown that various growth factors and cytokines including IGF-1 can stimulate HIF-1α expression, thereby triggering transcription of numerous hypoxia-inducible genes by oxygen-independent mechanisms. So, we hypothesized that HIF-1α might play important role in the process of IGF-1 induced GLUT3. Using echinomycin, a HIF-1 inhibitor, and HIF-1α siRNA, we demonstrated IGF-1 induced GLUT3 expression through HIF-1α in neuronal PC12 cells. Moreover, IGF-1 stimulated HIF-1α and GLUT3 protein expression through phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR dependent pathways. Analysis of GLUT3 promoter deletion sequences indicated that a putative hypoxia-response element (HRE) was critical in GLUT3 promoter activity when PC12 cells were treatment with CoCl(2) and IGF-1. In conclusion, we showed that the expression of GLUT3 in response to IGF-1 was dependent on PI-3-kinase and mTOR activity, and required the transcription factor HIF-1α.
Collapse
Affiliation(s)
- Jian Yu
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Fung C, Evans E, Shin D, Shin BC, Zhao Y, Sankar R, Chaudhuri G, Devaskar SU. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice. J Neurosci Res 2011; 88:3386-98. [PMID: 20857507 DOI: 10.1002/jnr.22487] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We examined the effects of 45-min hypoxia (FiO(2) 0.08; Hx) vs. normoxia (FiO(2) 0.21; Nx) on the ipsilateral (Ipsi) and contralateral (Ctrl) sides of the brain in neuronal glucose transporter isoform 3 (Glut3) heterozygous null mice (glut3(+/-)) and their wild-type littermates (WT), undergoing unilateral carotid artery ligation. Glut3(+/-) mice, under Nx, demonstrated a compensatory increase in blood-brain barrier/glial Glut1 protein concentration and a concomitant increase in neuronal nitric oxide synthase (nNOS) enzyme activity and Bax protein, with a decrease in procaspase 3 protein (P < 0.05 each). After Hx, reoxygenation in FiO(2) of 0.21 led to no comparable adaptive up-regulation of the ipsilateral brain Glut3 or Glut1 protein at 4 hr and Glut1 at 24 hr in glut3(+/-) vs. WT. These brain Glut changes in glut3(+/-) but not WT mice were associated with an increase in proapoptotic Bax protein and caspase-3 enzyme activity (P < 0.01 each) and a decline in the antiapoptotic Bcl-2 and procaspase-3 proteins (P < 0.05 each). Glut3(+/-) mice after Hx demonstrated TUNEL-positive neurons with nuclear pyknosis in most ipsilateral (hypoxic-ischemia) brain regions. A subset (∼55%) of glut3(+/-) mice developed spontaneous seizures after hypoxic-ischemia, confirmed by electroencephalography, but the WT mice remained seizure-free. Pentylenetetrazole testing demonstrated an increased occurrence of longer lasting clinical seizures at a lower threshold in glut3(+/-) vs. WT mice, with no detectable differences in monamine neurotransmitters. We conclude that hypoxic-ischemic brain injury in glut3(+/-) mice exacerbates cellular apoptosis and necrosis and precipitates spontaneous seizures.
Collapse
Affiliation(s)
- Camille Fung
- Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Roeske D, Ludwig KU, Neuhoff N, Becker J, Bartling J, Bruder J, Brockschmidt FF, Warnke A, Remschmidt H, Hoffmann P, Müller-Myhsok B, Nöthen MM, Schulte-Körne G. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Mol Psychiatry 2011; 16:97-107. [PMID: 19786962 DOI: 10.1038/mp.2009.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dyslexia is one of the most common learning disorders affecting about 5% of all school-aged children. It has been shown that event-related potential measurements reveal differences between dyslexic children and age-matched controls. This holds particularly true for mismatch negativity (MMN), which reflects automatic speech deviance processing and is altered in dyslexic children. We performed a whole-genome association analysis in 200 dyslexic children, focusing on MMN measurements. We identified rs4234898, a marker located on chromosome 4q32.1, to be significantly associated with the late MMN component. This association could be replicated in an independent second sample of 186 dyslexic children, reaching genome-wide significance in the combined sample (P = 5.14e-08). We also found an association between the late MMN component and a two-marker haplotype of rs4234898 and rs11100040, one of its neighboring single nucleotide polymorphisms (SNPs). In the combined sample, this marker combination withstands correction for multiple testing (P = 6.71e-08). Both SNPs lie in a region devoid of any protein-coding genes; however, they both show significant association with mRNA-expression levels of SLC2A3 on chromosome 12, the predominant facilitative glucose transporter in neurons. Our results suggest a possible trans-regulation effect on SLC2A3, which might lead to glucose deficits in dyslexic children and could explain their attenuated MMN in passive listening tasks.
Collapse
Affiliation(s)
- D Roeske
- Max-Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8:1547-57. [PMID: 20870738 DOI: 10.1158/1541-7786.mcr-10-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cancer cells exhibit increased rates of uptake and metabolism of glucose compared with normal cells. Glucose uptake in mammalian cells is mediated by the glucose transporter (GLUT) family. Here, we report that DNA-damaging anticancer agents such as Adriamycin and etoposide suppressed the expression of GLUT3, but not GLUT1, in HeLa cells and a tumorigenic HeLa cell hybrid. Suppression of GLUT3 expression determined by the real-time PCR was also evident with another DNA-damaging agent, camptothecin, which reduced the promoter's activity as determined with a luciferase-linked assay. The suppression by these agents seemed to be induced independently of p53, and it was evident when wild-type p53 was overproduced in these cells. In contrast, the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) kinase (MEK) inhibitor U0126 (but not the phosphoinositide 3-kinase inhibitor LY294002) prevented the drug-induced suppression as determined by reverse transcription-PCR and promoter assays. Furthermore, overexpression of GLUT3 in HeLa cell hybrids increased resistance to these drugs, whereas depletion of the gene by small interfering RNA rendered the cells more sensitive to the drugs, decreasing glucose consumption. The results suggest that DNA-damaging agents reduce GLUT3 expression in cancer cells through activation of the MEK-ERK pathway independently of p53, leading to cell death or apoptosis. The findings may contribute to the development of new chemotherapeutic drugs based on the GLUT3-dependent metabolism of glucose.
Collapse
Affiliation(s)
- Masaru Watanabe
- Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
30
|
Huang CY, Liou YF, Chung SY, Pai PY, Kan CB, Kuo CH, Tsai CH, Tsai FJ, Chen JL, Lin JY. Increased expression of glucose transporter 3 in gerbil brains following magnesium sulfate treatment and focal cerebral ischemic injury. Cell Biochem Funct 2010; 28:313-20. [PMID: 20517896 DOI: 10.1002/cbf.1659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glucose is the primary energy substrate for neurons. Glucose transporter 3 (Glut3) localizes at the neuronal cellular membrane, which transports glucose from the extracelluar space into neurons. Ischemia results in an increased energy demand that is associated with profound changes in brain energy metabolism. Magnesium sulfate (MgSO(4)) ameliorates ischemia-induced neuronal death in the rat and gerbil model. We investigated the effects of MgSO(4) administration on the expression of Glut3 in cortex and hippocampus of gerbils during ischemia. The focal cerebral ischemia was produced by unilateral occlusion of the right common carotid artery and right middle cerebral artery. Following ischemia, Glut3 expression increased significantly versus non-ischemic (contra-lateral) cortex and hippocampus. MgSO(4) treatment significantly increased the level of Glut3 expression in the non-ischemic and ischemic cortex and hippocampus. We found that the MgSO(4)-induced increase in Glut3 expression was not reversed by administration of U0126, a MEK kinase inhibitor. These results suggest that other factors may function to modulate the MgSO(4)-induced Glut3 response. In all, our data showed that MgSO(4) increases the expression of Glut3 in the cortex and hippocampus of gerbil brains both in non-ischemia and ischemia status. However, the MEK signaling pathway might not be involved in MgSO(4)-induced Glut3 expression following focal ischemia.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Y, Fung C, Shin D, Shin BC, Thamotharan S, Sankar R, Ehninger D, Silva A, Devaskar SU. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders. Mol Psychiatry 2010; 15:286-99. [PMID: 19506559 PMCID: PMC4208914 DOI: 10.1038/mp.2009.51] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.
Collapse
Affiliation(s)
- Yuanzi Zhao
- Division of Neonatology & Developmental Biology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Camille Fung
- Division of Neonatology & Developmental Biology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Don Shin
- Division of Neurology, Neonatal Research Center1, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Bo-Chul Shin
- Division of Neonatology & Developmental Biology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shanthie Thamotharan
- Division of Neonatology & Developmental Biology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Raman Sankar
- Division of Neurology, Neonatal Research Center1, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Neurology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Dan Ehninger
- Department of Neurobiology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Alcino Silva
- Department of Neurobiology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Sherin U. Devaskar
- Division of Neonatology & Developmental Biology, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752,Address all correspondence to: 10833, Le Conte Avenue, MDCC-B2-375, Los Angeles, CA 90095-1752, Ph. No. 310-825-9436, FAX No. 310-267-0154,
| |
Collapse
|
32
|
Wang Y, Guan X. GLP-2 potentiates L-type Ca2+ channel activity associated with stimulated glucose uptake in hippocampal neurons. Am J Physiol Endocrinol Metab 2010; 298:E156-66. [PMID: 19920220 PMCID: PMC2822481 DOI: 10.1152/ajpendo.00585.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a neuropeptide secreted from endocrine cells in the gut and neurons in the brain. GLP-2 stimulates intestinal crypt cell proliferation and mucosal blood flow while decreasing gastric emptying and gut motility. However, a GLP-2-mediated signaling network has not been fully established in primary cells. Since the GLP-2 receptor mRNA and protein were highly expressed in the mouse hippocampus, we further characterized that human (125)I-labeled GLP-2(1-33) specifically bound to cultured hippocampal neurons with K(d) = 0.48 nM, and GLP-2 acutely induced subcellular translocalization of the early gene c-Fos. Using the whole cell patch clamp, we recorded barium currents (I(Ba)) flowing through voltage-gated Ca(2+) channels (VGCC) in those neurons in the presence of GLP-2 with and without inhibitors. We showed that GLP-2 (20 nM) enhanced the whole cell I(Ba) mediated by L-type VGCC that was defined using an L-type Ca(2+) channel blocker (nifedipine, 10 microM). Moreover, GLP-2-potentiation of L-type VGCC was abolished in neurons pretreated with a PKA inhibitor (PKI(14-22), 1 microM). Finally, using a fluorescent nonmetabolized glucose analog (6-NBDG) tracing imaging, we showed that glucose was taken up directly by cultured neurons. GLP-2 increased 2-deoxy-d-[(3)H]glucose uptake that was dependent upon dosage, activation of PKA, and potentiation of L-type VGCC. We conclude that GLP-2 potentiates L-type VGCC activity through activating PKA signaling, partially stimulating glucose uptake by primary cultured hippocampal neurons. The potentiation of L-type VGCC may be physiologically relevant to GLP-2-induced neuroendocrine modulation of neurotransmitter release and hormone secretion.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | |
Collapse
|
33
|
Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 2008; 295:E242-53. [PMID: 18577699 PMCID: PMC2519757 DOI: 10.1152/ajpendo.90388.2008] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucose metabolism is vital to most mammalian cells, and the passage of glucose across cell membranes is facilitated by a family of integral membrane transporter proteins, the GLUTs. There are currently 14 members of the SLC2 family of GLUTs, several of which have been the focus of this series of reviews. The subject of the present review is GLUT3, which, as implied by its name, was the third glucose transporter to be cloned (Kayano T, Fukumoto H, Eddy RL, Fan YS, Byers MG, Shows TB, Bell GI. J Biol Chem 263: 15245-15248, 1988) and was originally designated as the neuronal GLUT. The overriding question that drove the early work on GLUT3 was why would neurons need a separate glucose transporter isoform? What is it about GLUT3 that specifically suits the needs of the highly metabolic and oxidative neuron with its high glucose demand? More recently, GLUT3 has been studied in other cell types with quite specific requirements for glucose, including sperm, preimplantation embryos, circulating white blood cells, and an array of carcinoma cell lines. The last are sufficiently varied and numerous to warrant a review of their own and will not be discussed here. However, for each of these cases, the same questions apply. Thus, the objective of this review is to discuss the properties and tissue and cellular localization of GLUT3 as well as the features of expression, function, and regulation that distinguish it from the rest of its family and make it uniquely suited as the mediator of glucose delivery to these specific cells.
Collapse
Affiliation(s)
- Ian A Simpson
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 2008; 283:13611-26. [PMID: 18326493 PMCID: PMC2376250 DOI: 10.1074/jbc.m800128200] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/21/2008] [Indexed: 12/14/2022] Open
Abstract
We examined transcriptional and epigenetic mechanism(s) behind diminished skeletal muscle GLUT4 mRNA in intrauterine growth-restricted (IUGR) female rat offspring. An increase in MEF2D (inhibitor) with a decline in MEF2A (activator) and MyoD (co-activator) binding to the glut4 promoter in IUGR versus control was observed. The functional role of MEF2/MyoD-binding sites and neighboring three CpG clusters in glut4 gene transcription was confirmed in C2C12 muscle cells. No differential methylation of these three and other CpG clusters in the glut4 promoter occurred. DNA methyltransferase 1 (DNMT1) in postnatal, DNMT3a, and DNMT3b in adult was differentially recruited with increased MeCP2 (methyl CpG-binding protein) concentrations to bind the IUGR glut4 gene. Covalent modifications of the histone (H) code consisted of H3.K14 de-acetylation by recruitment of histone deacetylase (HDAC) 1 and enhanced association of HDAC4 enzymes. This set the stage for Suv39H1 methylase-mediated di-methylation of H3.K9 and increased recruitment of heterochromatin protein 1alpha, which partially inactivates postnatal and adult IUGR glut4 gene transcription. Further increased interactions in the adult IUGR between DNMT3a/DNMT3b and HDAC1 and MEF2D and HDAC1/HDAC4 and decreased association between MyoD and MEF2A existed. We conclude that epigenetic mechanisms consisting of histone code modifications repress skeletal muscle glut4 transcription in the postnatal period and persist in the adult female IUGR offspring.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Division of Neonatology and Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
35
|
Meneses AM, Medina RA, Kato S, Pinto M, Jaque MP, Lizama I, García MDLA, Nualart F, Owen GI. Regulation of GLUT3 and glucose uptake by the cAMP signalling pathway in the breast cancer cell line ZR-75. J Cell Physiol 2007; 214:110-6. [PMID: 17559076 DOI: 10.1002/jcp.21166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increased glucose uptake as a principal energy source is a requirement for the continued survival of tumour cells. Facilitative glucose transporter-1 (GLUT1) and -3 (GLUT3) have been previously shown to be present and regulated in breast cancer cells and are associated with poor patient prognosis. In cancer cells, the cAMP secondary messenger pathway is known to potentiate described glucose transporter activators and regulate cell fate. However, no regulation of the glucose transporters in breast cancer cells by cAMP has previously been examined. Herein, we determined in the well-characterized breast cancer cell line ZR-75, if the cAMP analogue 8-br-cAMP was capable of regulating GLUT1 and GLUT3 expression and thus glucose uptake. We demonstrated that 8-br-cAMP transiently up-regulates GLUT3 mRNA levels. The use of actinomycin-D and the cloning of 1,200 bp upstream of the human GLUT3 promoter demonstrated that this regulation was transcriptional. Immunocytochemistry and Western blotting confirmed that the increase in mRNA was reflected by an increase in protein levels. No notable regulation of GLUT1 in the presence of 8-br-cAMP was detected. Finally, we determined using the non-metabolizable glucose analogue 2-DOG if this up-regulation in GLUT3 increased glucose uptake. We observed the presence of two uptake components, one corresponding to the Km of GLUT1/4 and the other to GLUT3. A doubling in the uptake velocity was observed only at the Km corresponding to GLUT3. In conclusion, we demonstrate and characterize for the first time, an up-regulation of GLUT3 mRNA, protein and glucose uptake by the cAMP pathway in breast cancer cells.
Collapse
Affiliation(s)
- Ana Maria Meneses
- Laboratorio de Biología Celular y Molecular, MIFAB, Universidad Nacional Andrés Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Copland JA, Pardini AW, Wood TG, Yin D, Green A, Bodenburg YH, Urban RJ, Stuart CA. IGF-1 controls GLUT3 expression in muscle via the transcriptional factor Sp1. ACTA ACUST UNITED AC 2007; 1769:631-40. [PMID: 17920708 DOI: 10.1016/j.bbaexp.2007.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/02/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
Glucose transporter 3 (GLUT3), while first found in human fetal muscle, is predominantly expressed in brain and neural tissue. By several independent techniques we have previously shown that GLUT3 is expressed in human skeletal muscle cells. The structure of the human GLUT3 gene has not been previously reported nor has there been any evaluation of the 5'-untranslated region (UTR). To this end, we have cloned and sequenced the human GLUT3 gene. Insulin-like growth factor-1 (IGF-1) increased endogenous Glut3 protein in cultured L6 myotubes, and similarly stimulated luciferase activity in a construct of the human GLUT3 5'-UTR linked to a luciferase reporter gene. Actinomycin D, an inhibitor of mRNA synthesis, prevented IGF-1 stimulation of Glut3 protein. Transfection of L6 cells with Sp1 increased Glut3 and augmented IGF-1 stimulation of Glut3 expression. Knockdown of Glut3 expression in cultured L6 muscle cells using small interference RNA (siRNA) specific for Glut3 significantly reduced myocyte glucose uptake. DNAse footprinting and gel shift assays showed Sp1 specifically bound to the human GLUT3 5'-UTR. Substitution mutants of the human GLUT3 5'-UTR luciferase construct indicated that only one of three Sp1 site clusters was involved in IGF-1 action. These data, using both a human GLUT3 5'-UTR construct and L6 cells' endogenous promoter, suggest that IGF-1 plays a role in maintaining muscle GLUT3 expression and basal glucose uptake via the transcriptional factor Sp1.
Collapse
Affiliation(s)
- John A Copland
- The Mayo Clinic Cancer Center, Jacksonville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ganguly A, McKnight RA, Raychaudhuri S, Shin BC, Ma Z, Moley K, Devaskar SU. Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction. Am J Physiol Endocrinol Metab 2007; 292:E1241-55. [PMID: 17213475 DOI: 10.1152/ajpendo.00344.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose transporter isoform-3 (GLUT3) is the trophoblastic facilitative glucose transporter. To investigate the role of this isoform in embryonic development, we created a novel GLUT3-null mouse and observed arrested early embryonic development and loss at neurulation stage when both alleles were mutated. This loss occurred despite the presence of other related isoforms, particularly GLUT1. In contrast, when a single allele was mutated, despite increased embryonic cell apoptosis, adaptive changes in the subcellular localization of GLUT3 and GLUT1 in the preimplantation embryo led to postimplantation survival. This survival was compromised by decreased GLUT3-mediated transplacental glucose transport, causing late-gestation fetal growth restriction. This yielded young male and female adults demonstrating catch-up growth, with normal basal glucose, insulin, insulin-like growth factor-I and IGF-binding protein-3 concentrations, fat and lean mass, and glucose and insulin tolerance. We conclude that GLUT3 mutations cause a gene dose-dependent early pregnancy loss or late-gestation fetal growth restriction despite the presence of embryonic and placental GLUT1 and a compensatory increase in system A amino acid placental transport. This critical life-sustaining functional role for GLUT3 in embryonic development provides the basis for investigating the existence of human GLUT3 mutations with similar consequences during early pregnancy.
Collapse
Affiliation(s)
- Amit Ganguly
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV. Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 2007; 293:C621-31. [PMID: 17442734 DOI: 10.1152/ajpcell.00538.2006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleus pulposus is an aggrecan-rich, avascular tissue that permits the intervertebral disk to resist compressive loads. In the disk, nucleus pulposus cells express hypoxia-inducible factor (HIF)-1alpha, a transcription factor that responds to oxygen tension and regulates glycolysis. The goal of the present study was to examine the importance of HIF-1alpha in rat nucleus pulposus cells and to probe the function of this transcription factor in terms of regulating aggrecan gene expression. We found that HIF-1alpha protein levels and mRNA stability were similar at 20 and 2% O(2); there was a small, but significant increase in HIF-1alpha transactivation domain activity in hypoxia. With respect to HIF-1alpha target genes GAPDH, GLUT-1, and GLUT-3, mRNA and protein levels were independent of the oxygen tension. Other than a modest increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase reporter activity, the oxemic state did not change GAPDH, GLUT-1, and GLUT-3 promoter activities. Treatment of cells with 2-deoxyglucose (2-DG), a glycolytic inhibitor, resulted in a significant suppression in ATP synthesis in normoxia, whereas treatment with mitochondrial inhibitors did not affect ATP production and cell viability. However, measurement of the rate of fatty acid oxidation indicated that these cells contained functioning mitochondria. Finally, we showed that when HIF-1alpha was suppressed, irrespective of the oxemic state, there was a partial loss of aggrecan expression and promoter activity. Moreover, when cells were treated with 2-DG, there was inhibition in aggrecan promoter activity. Results of this study indicate that oxygen-independent stabilization of HIF-1alpha in nucleus pulposus cells is a metabolic adaptation that drives glycolysis and aggrecan expression.
Collapse
Affiliation(s)
- Amit Agrawal
- Dept of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
39
|
Liu KY, Zhou X, Kan K, Wong STC. Bayesian variable selection for gene expression modeling with regulatory motif binding sites in neuroinflammatory events. Neuroinformatics 2006; 4:95-117. [PMID: 16595861 DOI: 10.1385/ni:4:1:95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Multiple transcription factors (TFs) coordinately control transcriptional regulation of genes in eukaryotes. Although numerous computational methods focus on the identification of individual TF-binding sites (TFBSs), very few consider the interdependence among these sites. In this article, we studied the relationship between TFBSs and microarray gene expression levels using both family-wise and memberspecific motifs, under various combination of regression models with Bayesian variable selection, as well as motif scoring and sharing conditions, in order to account for the coordination complexity of transcription regulation. We proposed a three-step approach to model the relationship. In the first step, we preprocessed microarray data and used p-values and expression ratios to preselect upregulated and downregulated genes. The second step aimed to identify and score individual TFBSs within DNA sequence of each gene. A method based on the degree of similarity and the number of TFBSs was employed to calculate the score of each TFBS in each gene sequence. In the last step, linear regression and probit regression were used to build a predictive model of gene expression outcomes using these TFBSs as predictors. Given a certain number of predictors to be used, a full search of all possible predictor sets is usually combinatorially prohibitive. Therefore, this article considered the Bayesian variable selection for prediction using either of the regression models. The Bayesian variable selection has been applied in the context of gene selection, missing value estimation, and regulatory motif identification. In our modeling, the regressor was approximated as a linear combination of the TFBSs and a Gibbs sampler was employed to find the strongest TFBSs. We applied these regression models with the Bayesian variable selection on spinal cord injury gene expression data set. These TFs demonstrated intricate regulatory roles either as a family or as individual members in neuroinflammatory events. Our analysis can be applied to create plausible hypotheses for combinatorial regulation by TFBSs and avoiding false-positive candidates in the modeling process at the same time. Such a systematic approach provides the possibility to dissect transcription regulation, from a more comprehensive perspective, through which phenotypical events at cellular and tissue levels are moved forward by molecular events at gene transcription and translation levels.
Collapse
Affiliation(s)
- Kuang-Yu Liu
- HCNR -- Center for Bioinformatics, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|