1
|
Longshore-Neate F, Ceravolo C, Masuga C, Tahti EF, Blount JM, Smith SN, Amacher JF. The conformation of the nSrc specificity-determining loop in the Src SH3 domain is modulated by a WX conserved sequence motif found in SH3 domains. Front Mol Biosci 2024; 11:1487276. [PMID: 39698111 PMCID: PMC11653366 DOI: 10.3389/fmolb.2024.1487276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome. These domains are often described as quite versatile, and indeed, SH3 domains can bind ligands in opposite orientations dependent on target sequence. Furthermore, recent work has identified diverse modes of binding for SH3 domains and a wide variety of sequence motifs that are recognized by various domains. Specificity is often attributed to the RT and nSrc loops near the peptide-binding cleft in this domain family, particularly for Class I binding, which is defined as RT and nSrc loop interactions with the N-terminus of the ligand. Here, we used the Src and Abl SH3 domains as a model to further investigate the role of the RT and nSrc loops in SH3 specificity. We created chimeric domains with both the RT and nSrc loop sequences swapped between these SH3 domains, and used fluorescence anisotropy assays to test how relative binding affinities were affected for Src SH3- and Abl SH3-specific ligands. We also used Alphafold-Multimer to model our SH3:peptide complexes in combination with molecular dynamics simulations. We identified a position that contributes to the nSrc loop conformation in Src SH3, the amino acid immediately following a highly conserved Trp that creates a hydrophobic pocket critical for SH3 ligand recognition. We defined this as the WX motif, where X = Trp for Src and Cys for Abl. A broad importance of this position for modulating nSrc loop conformation in SH3 domains is suggested by analyses of previously deposited SH3 structures, multiple sequence alignment of SH3 domains in the human proteome, and our biochemical and computational data of mutant Src and Abl SH3 domains. Overall, our work uses experimental approaches and structural modeling to better understand specificity determinants in SH3 domains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeanine F. Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
2
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
3
|
Xu J, Li Y, Chen X, Yang J, Xia H, Huang W, Zeng S. Opportunities and challenges for targeting HPK1 in cancer immunotherapy. Bioorg Chem 2024; 153:107866. [PMID: 39369461 DOI: 10.1016/j.bioorg.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.
Collapse
Affiliation(s)
- Jiamei Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yingzhou Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xinyi Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Junyi Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Heye Xia
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Fu S, Wei J, Li C, Zhang N, Yue H, Yang A, Xu J, Dong K, Xing Y, Tong M, Shi X, Xi Z, Wang H, Hou Y, Zhao Y. Design, synthesis, and biological evaluation of 2,4-diaminopyrimidine derivatives as potent Hematopoietic Progenitor Kinase 1 (HPK1) inhibitors. Bioorg Chem 2024; 148:107454. [PMID: 38795581 DOI: 10.1016/j.bioorg.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
HPK1 also referred to as MAP4K1, belongs to the category of mammalian STE20-like protein serine/threonine kinases. Its physiological function involves the down-regulation of T cell signals, and it is regarded as a new immune checkpoint of tumor immunology. In this study, we commenced our investigation with the hit compounds, focusing the efforts on structural optimization and SAR exploration to identify a novel class of 2,4-diaminopyrimidine HPK1 inhibitors. Notably, compound 14g exhibited a remarkable inhibitory effect on HPK1 kinase (IC50 = 0.15 nM), significantly suppressed the phosphorylation of the downstream adaptor protein SLP76 (pSLP76 IC50 = 27.92 nM), and effectively stimulated the secretion of the T cell activation marker IL-2 (EC50 = 46.64 nM). In vitro microsomal stability assay, compound 14g showed moderate stability in HLMs with T1/2 = 38.2 min and CLint = 36.4 µL·min-1·mg-1 proteins. In vivo pharmacokinetic studies, compound 14g demonstrated heightened plasma exposure (AUC0-inf = 644 ng·h·mL-1), extended half-life (T1/2 = 9.98 h), and reduced plasma clearance (CL = 52.3 mL·min-1·kg-1) compared to the reference compound after a single intravenous dose of 2 mg/kg in rats. These results indicated that compound 14g emerged as a promising inhibitor of HPK1.
Collapse
Affiliation(s)
- Siyu Fu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jiakuan Wei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Hao Yue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Ao Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jichang Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Kuan Dong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Yongpeng Xing
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Xuan Shi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Zhiguo Xi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Han Wang
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Johansson J, Lidéus S, Frykholm C, Gunnarsson C, Mihalic F, Gudmundsson S, Ekvall S, Molin AM, Pham M, Vihinen M, Lagerstedt-Robinson K, Nordgren A, Jemth P, Ameur A, Annerén G, Wilbe M, Bondeson ML. Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Eur J Hum Genet 2024; 32:333-341. [PMID: 37277488 PMCID: PMC10923852 DOI: 10.1038/s41431-023-01392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Filip Mihalic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mai Pham
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden
| | - Kristina Lagerstedt-Robinson
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Zeng S, Jin Y, Xia H, Shang Y, Li Y, Wang Z, Huang W. Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling. Bioorg Chem 2024; 143:107016. [PMID: 38086239 DOI: 10.1016/j.bioorg.2023.107016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a promising target for immune-oncology therapy. It has been recently demonstrated that loss of HPK1 kinase activity can enhance T cell receptor (TCR) signaling. However, many essential functions mediated by the HPK1 scaffolding role are still beyond the reach of any kinase inhibitor. Proteolysis targeting chimera (PROTAC) has emerged as a promising strategy for pathogenic proteins degradation with the characteristics of rapid, reversible, and low-cost versus RNA interference or DNA knock-out technology. Herein we first disclosed the design, synthesis, and evaluation of a series of thalidomide-based PROTAC molecules and identified B1 as a highly efficient HPK1 degrader with DC50 value of 1.8 nM. Further mechanism investigation demonstrated that compound B1 inhibits phosphorylation of the SLP76 protein with IC50 value of 496.1 nM, and confirmed that B1 is a bona fide HPK1-PROTAC degrader. Thus, this study provides a basis for HPK1 degraders development and the candidate could be used as a potential chemical tool for further investigation of the kinase-independent signaling of HPK1 in TCR.
Collapse
Affiliation(s)
- Shenxin Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| | - Yuyuan Jin
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Heye Xia
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yanwei Shang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yingzhou Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Zunyuan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| |
Collapse
|
7
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
8
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
9
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Liao TJ, Jang H, Nussinov R, Fushman D. High-Affinity Interactions of the nSH3/cSH3 Domains of Grb2 with the C-Terminal Proline-Rich Domain of SOS1. J Am Chem Soc 2020; 142:3401-3411. [PMID: 31970984 PMCID: PMC8459210 DOI: 10.1021/jacs.9b10710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Grb2 is an adaptor protein that recruits Ras-specific guanine nucleotide exchange factor, Son of Sevenless 1 (SOS1), to the plasma membrane. SOS1 exchanges GDP by GTP, activating Ras. Grb2 consists of an SH2 domain flanked by N- and C-terminal SH3 domains (nSH3/cSH3). Grb2 nSH3/cSH3 domains have strong binding affinity for the SOS1 proline-rich (PR) domain that mediates the Grb2-SOS1 interaction. The nSH3/cSH3 domains have distinct preferred binding motifs: PxxPxR for nSH3 and PxxxRxxKP for cSH3 (x represents any natural amino acid). Several nSH3-binding motifs have been identified in the SOS1 PR domain but none specific for cSH3 binding. Even though both nSH3 and cSH3 exhibit the strongest binding to the SOS1 peptide PVPPPVPPRRRP, this mutually exclusive binding combined with other potential nSH3/cSH3 binding regions in SOS1 makes understanding the Grb2-SOS1 interaction challenging. To identify the SOS1-cSH3 binding sites, we selected seven potential binding segments in SOS1. The synthesized peptides were tested for their binding to nSH3/cSH3. Our NMR data reveal that the PKLPPKTYKREH peptide has strong binding affinity for cSH3, but very weak for nSH3. The binding specificity suggests that the most likely Grb2-SOS1 binding mode is through nSH3-PVPPPVPPRRRP and cSH3-PKLPPKTYKREH interactions, which is supported by replica-exchange simulations for the Grb2-SOS1 complex models. We propose that nSH3/cSH3 binding peptides, which effectively interrupt Grb2-SOS1 association, can serve as tumor suppressors. The Grb2-SOS1 mechanism outlined here offers new venues for future therapeutic strategies for upstream mutations in cancer, such as in EGFR.
Collapse
Affiliation(s)
- Tsung-Jen Liao
- Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - David Fushman
- Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
11
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci 2019; 20:ijms20081996. [PMID: 31018575 PMCID: PMC6515277 DOI: 10.3390/ijms20081996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Adam Bermeister
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Neil O Robertson
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
13
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
15
|
Arya R, Dangi RS, Makwana PK, Kumar A, Upadhyay SK, Sundd M. Grb2 carboxyl-terminal SH3 domain can bivalently associate with two ligands, in an SH3 dependent manner. Sci Rep 2017; 7:1284. [PMID: 28455498 PMCID: PMC5430726 DOI: 10.1038/s41598-017-01364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Src homology domain containing leukocyte protein of 65 kDa (SLP65), the growth factor receptor binding protein 2 (Grb2), and the guanine nucleotide exchange factor for the Rho family GTPases (Vav), self associate in unstimulated B cells as components of the preformed B cell receptor transducer module, in an SH3-dependent manner. The complex enables the B cell to promptly respond to BCR aggregation, resulting in signal amplification. It also facilitates Vav translocation to the membrane rafts, for activation. Here we uncover the molecular mechanism by which the complex may be formed in the B cell. The C-terminal SH3 domain (SH3C) of Grb2 bivalently interacts with the atypical non-PxxP proline rich region of SLP65, and the N-terminal SH3 domain (SH3N) of Vav, both the interactions crucial for the proper functioning of the B cell. Most surprisingly, the two ligands bind the same ligand binding site on the surface of Grb2 SH3C. Addition of SLP65 peptide to the Grb2-Vav complex abrogates the interaction completely, displacing Vav. However, the addition of Vav SH3N to the SLP65-Grb2 binary complex, results in a trimeric complex. Extrapolating these results to the in vivo conditions, Grb2 should bind the SLP65 transducer module first, and then Vav should associate.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pinakin K Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Santosh Kumar Upadhyay
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110 020, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
16
|
Kelil A, Dubreuil B, Levy ED, Michnick SW. Exhaustive search of linear information encoding protein-peptide recognition. PLoS Comput Biol 2017; 13:e1005499. [PMID: 28426660 PMCID: PMC5417721 DOI: 10.1371/journal.pcbi.1005499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL. Here we describe the first strategy for the exhaustive search of the linear information encoding protein-peptide recognition; an approach that has previously been physically unfeasible because the combinatorial space of polypeptide sequences is too vast. The search covers the entire space of sequences with no restriction on motif length or composition, and includes all possible combinations of amino acids at distinct positions of each sequence, as well as positions with correlated preferences for amino acids.
Collapse
Affiliation(s)
- Abdellali Kelil
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephen W. Michnick
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
18
|
Higo K, Oda M, Morii H, Takahashi J, Harada Y, Ogawa S, Abe R. Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, Gads and p85 PI3K. Immunol Invest 2014; 43:278-91. [DOI: 10.3109/08820139.2013.875039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Structural basis for recognition of the third SH3 domain of full-length R85 (R85FL)/ponsin by ataxin-7. FEBS Lett 2013; 587:2905-11. [PMID: 23892081 DOI: 10.1016/j.febslet.2013.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/01/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
Ataxin-7 (Atx7) is a component of the nuclear transcription co-activator complex; its polyglutamine (polyQ) expansion may cause nuclear accumulation and recruit numerous proteins to the intranuclear inclusion bodies. Full-length R85 (R85FL) is such a protein sequestered by polyQ-expanded Atx7. Here, we report that Atx7 specifically interacts with the third SH3 domain (SH3C) of R85FL through its second portion of proline-rich region (PRR). NMR structural analysis of the SH3C domain and its complex with PRR revealed that SH3C contains a large negatively charged surface for binding with the RRTR motif of Atx7. Microscopy imaging demonstrated that sequestration of R85FL by the polyQ-expanded Atx7 in cell is mediated by this specific SH3C-PRR interaction, which is implicated in the pathogenesis of spinocerebellar ataxia 7.
Collapse
|
20
|
Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riaño A, Hoerter JAH, Feller SM, Wülfing C, Gascoigne NRJ, Acuto O. GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. THE JOURNAL OF IMMUNOLOGY 2013; 190:3749-56. [PMID: 23460737 DOI: 10.4049/jimmunol.1203389] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocyte-expressed molecule involved in selection (THEMIS) is a recently identified regulator of thymocyte positive selection. THEMIS's mechanism of action is unknown, and whether it has a role in TCR-proximal signaling is controversial. In this article, we show that THEMIS and the adapter molecule growth factor receptor-bound protein 2 (GRB2) associate constitutively through binding of a conserved PxRPxK motif within the proline-rich region 1 of THEMIS to the C-terminal SH3-domain of GRB2. This association is indispensable for THEMIS recruitment to the immunological synapse via the transmembrane adapter linker for activation of T cells (LAT) and for THEMIS phosphorylation by Lck and ZAP-70. Two major sites of tyrosine phosphorylation were mapped to a YY-motif close to proline-rich region 1. The YY-motif was crucial for GRB2 binding, suggesting that this region of THEMIS might control local phosphorylation-dependent conformational changes important for THEMIS function. Finally, THEMIS binding to GRB2 was required for thymocyte development. Our data firmly assign THEMIS to the TCR-proximal signaling cascade as a participant in the LAT signalosome and suggest that the THEMIS-GRB2 complex might be involved in shaping the nature of Ras signaling, thereby governing thymic selection.
Collapse
Affiliation(s)
- Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. PLoS One 2013; 8:e56904. [PMID: 23457638 PMCID: PMC3574117 DOI: 10.1371/journal.pone.0056904] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Phasins are intracellular polyhydroxyalkanoat4e (PHA)-associated proteins involved in the stabilization of these bacterial carbon storage granules. Despite its importance in PHA metabolism and regulation, only few reports have focused so far on the structure of these proteins. In this work we have investigated the structure and stability of the PhaF phasin from Pseudomonas putida KT2440, a protein that is involved in PHA granule stabilization and distribution to daughter cells upon cell division. A structural, three-dimensional model of the protein was built from homology modeling procedures and consensus secondary structure predictions. The model predicts that PhaF is an elongated protein, with a long, amphipathic N-terminal helix with PHA binding capacity, followed by a short leucine zipper involved in protein oligomerization and a superhelical C-terminal domain wrapped around the chromosomal DNA. Hydrodynamic, spectroscopical and thermodynamic experiments validated the model and confirmed both that free PhaF is a tetramer in solution and that most part of the protein is intrinsically disordered in the absence of its ligands. The results lay a molecular basis for the explanation of the biological role of PhaF and, along with an exhaustive analysis of phasin sequence databases, suggest that intrinsic disorder and oligomerization through coiled-coils may be a widespread mechanism among these proteins.
Collapse
|
22
|
Gutierrez-Uzquiza A, Colon-Gonzalez F, Leonard TA, Canagarajah BJ, Wang H, Mayer BJ, Hurley JH, Kazanietz MG. Coordinated activation of the Rac-GAP β2-chimaerin by an atypical proline-rich domain and diacylglycerol. Nat Commun 2013; 4:1849. [PMID: 23673634 PMCID: PMC3700536 DOI: 10.1038/ncomms2834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023] Open
Abstract
Chimaerins, a family of GTPase activating proteins for the small G-protein Rac, have been implicated in development, neuritogenesis and cancer. These Rac-GTPase activating proteins are regulated by the lipid second messenger diacylglycerol generated by tyrosine kinases such as the epidermal growth factor receptor. Here we identify an atypical proline-rich motif in chimaerins that binds to the adaptor protein Nck1. Unlike most Nck1 partners, chimaerins bind to the third SH3 domain of Nck1. This association is mediated by electrostatic interactions of basic residues within the Pro-rich motif with acidic clusters in the SH3 domain. Epidermal growth factor promotes the binding of β2-chimaerin to Nck1 in the cell periphery in a diacylglycerol-dependent manner. Moreover, β2-chimaerin translocation to the plasma membrane and its peripheral association with Rac1 requires Nck1. Our studies underscore a coordinated mechanism for β2-chimaerin activation that involves lipid interactions via the C1 domain and protein-protein interactions via the N-terminal proline-rich region.
Collapse
Affiliation(s)
- Alvaro Gutierrez-Uzquiza
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Francheska Colon-Gonzalez
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Thomas A. Leonard
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - HongBin Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Bruce J. Mayer
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelo G. Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
23
|
Secondary structure, a missing component of sequence-based minimotif definitions. PLoS One 2012; 7:e49957. [PMID: 23236358 PMCID: PMC3517595 DOI: 10.1371/journal.pone.0049957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function.
Collapse
|
24
|
Simister PC, Luccarelli J, Thompson S, Appella DH, Feller SM, Hamilton AD. Novel inhibitors of a Grb2 SH3C domain interaction identified by a virtual screen. Bioorg Med Chem 2012. [PMID: 23182216 DOI: 10.1016/j.bmc.2012.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The adaptor protein Grb2 links cell-surface receptors, such as Her2, to the multisite docking proteins Gab1 and 2, leading to cell growth and proliferation in breast and other cancers. Gab2 interacts with the C-terminal SH3 domain (SH3C) of Grb2 through atypical RxxK motifs within polyproline II or 310 helices. A virtual screen was conducted for putative binders of the Grb2 SH3C domain. Of the top hits, 34 were validated experimentally by surface plasmon resonance spectroscopy and isothermal titration calorimetry. A subset of these molecules was found to inhibit the Grb2-Gab2 interaction in a competition assay, with moderate to low affinities (5: IC50 320μM). The most promising binders were based on a dihydro-s-triazine scaffold, and are the first small molecules reported to target the Grb2 SH3C protein-interaction surface.
Collapse
Affiliation(s)
- Philip C Simister
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
25
|
Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K, Permi P. Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly. Structure 2012; 20:1692-703. [PMID: 22921828 DOI: 10.1016/j.str.2012.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
Intrinsically disordered protein (IDP)-mediated interactions are often characterized by low affinity but high specificity. These traits are essential in signaling and regulation that require reversibility. Enterohaemorrhagic Escherichia coli (EHEC) exploit this situation by commandeering host cytoskeletal signaling to stimulate actin assembly beneath bound bacteria, generating "pedestals" that promote intestinal colonization. EHEC translocates two proteins, EspF(U) and Tir, which form a complex with the host protein IRTKS. The interaction of this complex with N-WASP triggers localized actin polymerization. We show that EspF(U) is an IDP that contains a transiently α-helical N-terminus and dynamic C-terminus. Our structure shows that single EspF(U) repeat forms a high-affinity trimolecular complex with N-WASP and IRTKS. We demonstrate that bacterial and cellular ligands interact with IRTKS SH3 in a similar fashion, but the bacterial protein has evolved to outcompete cellular targets by utilizing a tryptophan switch that offers superior binding affinity enabling EHEC-induced pedestal formation.
Collapse
Affiliation(s)
- Olli Aitio
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. FEBS Lett 2012; 586:2619-30. [DOI: 10.1016/j.febslet.2012.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023]
|
27
|
Saksela K, Permi P. SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett 2012; 586:2609-14. [PMID: 22710157 DOI: 10.1016/j.febslet.2012.04.042] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
An increasing number of SH3 domain-ligand interactions continue to be described that involve the conserved peptide-binding surface of SH3, but structurally deviate substantially from canonical docking of consensus motif-containing SH3 ligands. Indeed, it appears that that the relative frequency and importance of these types of interactions may have been underestimated. Instead of atypical, we propose referring to such peptides as type I or II (depending on the binding orientation) non-consensus ligands. Here we discuss the structural basis of non-consensus SH3 ligand binding and the dominant role of the SH3 domain specificity zone in selective target recognition, and review some of the best-characterized examples of such interactions.
Collapse
Affiliation(s)
- Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and HUSLAB, University of Helsinki Central Hospital, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
28
|
Gorelik M, Davidson AR. Distinct peptide binding specificities of Src homology 3 (SH3) protein domains can be determined by modulation of local energetics across the binding interface. J Biol Chem 2012; 287:9168-77. [PMID: 22277653 DOI: 10.1074/jbc.m111.330753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.
Collapse
Affiliation(s)
- Maryna Gorelik
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 2011; 37:180-9. [PMID: 22014533 DOI: 10.1016/j.jaut.2011.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by T cell overactivation and B cell hyper-stimulation. Hematopoietic progenitor kinase 1 (HPK1, also called MAP4K1) negatively regulates T cell-mediated immune responses. However, the role of HPK1 and the mechanisms that regulate HPK1 expression in SLE remain poorly understood. Using chromatin immunoprecipitation (ChIP) microarray data, we identified markedly increased histone H3 lysine 27 trimethylation (H3K27me3) enrichment at the HPK1 promoter of SLE CD4+ T cells relative to controls, and confirmed this observation using ChIP and real-time PCR experiments. We further found that HPK1 mRNA and protein levels were significantly decreased in CD4+ T cells of patients with SLE, and that this decrease was not caused by exposure to standard SLE medications. Down-regulating HPK1 in healthy CD4+ T cells significantly accelerated T cell proliferation and production of IFNγ and IgG. Consistent with these findings, overexpressing HPK1 in SLE CD4+ T cells caused a significant decrease in T cell reactivity. In addition, we observed a striking decrease in jumonji domain containing 3 (JMJD3) binding, but no marked change in enhancer of zeste homolog 2 (EZH2) binding, at the HPK1 promoter region in SLE CD4+ T cells compared to healthy controls. SiRNA knock down of JMJD3 in healthy CD4+ T cells led to decreased JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter region, thus inhibiting the expression of HPK1. Concordantly, plasmid-induced overexpression of JMJD3 in SLE CD4+ T cells led to increased JMJD3 binding, decreased H3K27me3 enrichment, and up-regulated HPK1 expression. Our results show for the first time that inhibited HPK1 expression in SLE CD4+ T cells is associated with loss of JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter, contributing to T cell overactivation and B cell overstimulation in SLE. These findings suggest that HPK1 may serve as a novel target for effective SLE therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kang Y, Xu J, Liu Y, Sun J, Sun D, Hu Y, Liu Y. Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 410:189-94. [PMID: 21616056 DOI: 10.1016/j.bbrc.2011.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
In the nematode Caenorhabditis elegans, the cell corpse engulfment proteins CED-2, CED-5, and CED-12 act in the same pathway to regulate the activation of the Rac small GTPase, CED-10, leading to the rearrangement of the actin cytoskeleton for engulfing apoptotic cells. Nevertheless, it is not well understood how these proteins act together. Here we report the crystal structures of the CED-2 protein as determined by X-ray crystallography. The full-length CED-2 protein and its truncated form containing the N-terminal SH2 domain and the first SH3 domain show similar three-dimensional structures. A CED-2 point mutation (F125G) disrupting its interaction with the PXXP motif of CED-5 did not affect its rescuing activity. However, CED-2 was found to interact with the N-terminal region of CED-5. Our findings suggest that CED-2 may regulate cell corpse engulfment by interacting with CED-5 through the N-terminal region rather than the PXXP motif.
Collapse
Affiliation(s)
- Yanyong Kang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Gorelik M, Stanger K, Davidson AR. A Conserved residue in the yeast Bem1p SH3 domain maintains the high level of binding specificity required for function. J Biol Chem 2011; 286:19470-7. [PMID: 21489982 DOI: 10.1074/jbc.m111.229294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The yeast Bem1p SH3b and Nbp2p SH3 domains are unusual because they bind to peptides containing the same consensus sequence, yet they perform different functions and display low sequence similarity. In this work, by analyzing the interactions of these domains with six biologically relevant peptides containing the consensus sequence, they are shown to possess finely tuned and distinct binding specificities. We also identify a residue in the Bem1p SH3b domain that inhibits binding, yet is highly conserved for the purpose of preventing nonspecific interactions. Substitution of this residue results in a marked reduction of in vivo function that is caused by titration of the domain away from its proper targets through nonspecific interactions with other proteins. This work provides a clear illustration of the importance of intrinsic binding specificity for the function of protein-protein interaction modules, and the key role of "negative" interactions in determining the specificity of a domain.
Collapse
Affiliation(s)
- Maryna Gorelik
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Siligardi G, Ruzza P, Hussain R, Cesaro L, Brunati AM, Pinna LA, Donella-Deana A. The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Amino Acids 2011; 42:1361-70. [DOI: 10.1007/s00726-011-0831-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
33
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
34
|
Berlin I, Schwartz H, Nash PD. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8·STAM complex. J Biol Chem 2010; 285:34909-21. [PMID: 20736164 PMCID: PMC2966105 DOI: 10.1074/jbc.m109.016287] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/02/2010] [Indexed: 11/06/2022] Open
Abstract
Reversible ubiquitination of activated receptor complexes signals their sorting between recycling and degradation and thereby dictates receptor fate. The deubiquitinating enzyme ubiquitin-specific protease 8 (USP8/UBPy) has been previously implicated in the regulation of the epidermal growth factor receptor (EGFR); however, the molecular mechanisms governing its recruitment and activity in this context remain unclear. Herein, we investigate the role of USP8 in countering ligand-induced ubiquitination and down-regulation of EGFR and characterize a subset of protein-protein interaction determinants critical for this function. USP8 depletion accelerates receptor turnover, whereas loss of hepatocyte growth factor-regulated substrate (Hrs) rescues this phenotype, indicating that USP8 protects EGFR from degradation via an Hrs-dependent pathway. Catalytic inactivation of USP8 incurs EGFR hyperubiquitination and promotes receptor localization to endosomes marked by high ubiquitin content. These phenotypes require the central region of USP8, containing three extended Arg-X-X-Lys (RXXK) motifs that specify direct low affinity interactions with the SH3 domain(s) of ESCRT-0 proteins, STAM1/2. The USP8·STAM complex critically impinges on receptor ubiquitination status and modulates ubiquitin dynamics on EGFR-positive endosomes. Consequently, USP8-mediated deubiquitination slows progression of EGFR past the early-to-recycling endosome circuit in a manner dependent upon the RXXK motifs. Collectively, these findings demonstrate a role for the USP8·STAM complex as a protective mechanism regulating early endosomal sorting of EGFR between pathways destined for lysosomal degradation and recycling.
Collapse
Affiliation(s)
- Ilana Berlin
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Heather Schwartz
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Piers D. Nash
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
35
|
Rubini C, Ruzza P, Spaller MR, Siligardi G, Hussain R, Udugamasooriya DG, Bellanda M, Mammi S, Borgogno A, Calderan A, Cesaro L, Brunati AM, Donella-Deana A. Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies. Biopolymers 2009; 94:298-306. [DOI: 10.1002/bip.21350] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. J Biol Chem 2009; 284:26918-27. [PMID: 19590096 DOI: 10.1074/jbc.m109.028431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SH3 domains, which are among the most frequently occurring protein interaction modules in nature, bind to peptide targets ranging in length from 7 to more than 25 residues. Although the bulk of studies on the peptide binding properties of SH3 domains have focused on interactions with relatively short peptides (less than 10 residues), a number of domains have been recently shown to require much longer sequences for optimal binding affinity. To gain greater insight into the binding mechanism and biological importance of interactions between an SH3 domain and extended peptide sequences, we have investigated interactions of the yeast Abp1p SH3 domain (AbpSH3) with several physiologically relevant 17-residue target peptide sequences. To obtain a molecular model for AbpSH3 interactions, we solved the structure of the AbpSH3 bound to a target peptide from the yeast actin patch kinase, Ark1p. Peptide target complexes from binding partners Scp1p and Sjl2p were also characterized, revealing that the AbpSH3 uses a common extended interface for interaction with these peptides, despite K(d) values for these peptides ranging from 0.3 to 6 mum. Mutagenesis studies demonstrated that residues across the whole 17-residue binding site are important both for maximal in vitro binding affinity and for in vivo function. Sequence conservation analysis revealed that both the AbpSH3 and its extended target sequences are highly conserved across diverse fungal species as well as higher eukaryotes. Our data imply that the AbpSH3 must bind extended target sites to function efficiently inside the cell.
Collapse
Affiliation(s)
- Elliott J Stollar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the SH3C Domain of Grb2. Structure 2009; 17:809-22. [DOI: 10.1016/j.str.2009.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
38
|
Keskin O, Gursoy A, Ma B, Nussinov R. Principles of Protein−Protein Interactions: What are the Preferred Ways For Proteins To Interact? Chem Rev 2008; 108:1225-44. [DOI: 10.1021/cr040409x] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Moran O, Roessle MW, Mariuzza RA, Dimasi N. Structural features of the full-length adaptor protein GADS in solution determined using small-angle X-ray scattering. Biophys J 2008; 94:1766-72. [PMID: 17993503 PMCID: PMC2242750 DOI: 10.1529/biophysj.107.116590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/18/2007] [Indexed: 11/18/2022] Open
Abstract
The Grb2-related adaptor protein GADS plays a central role during the initial phases of signal transduction in T lymphocytes. GADS possesses N- and C-terminal Src homology 3 (SH3) domains flanking a central Src homology 2 (SH2) domain and a 126-residue region rich in glutamine and proline residues, presumed to be largely unstructured. The SH2 domain of GADS binds the adaptor protein LAT; the C-terminal SH3 domain pairs GADS to the adaptor protein SLP-76, whereas the function of the central region is unknown. High-resolution three-dimensional models are available for the isolated SH2 and C-terminal SH3 domains in complex with their respective binding partners, LAT and SLP-76. However, in part because of its intrinsic instability, there is no structural information for the entire GADS molecule. Here, we report the low-resolution structure of full-length GADS in solution using small-angle x-ray scattering (SAXS). Based on the SAXS data, complemented by gel filtration experiments, we show that full-length GADS is monomeric in solution and that its overall structural parameters are smaller than those expected for a protein with a long unstructured region. Ab initio and rigid body modeling of the SAXS data reveal that full-length GADS is a relatively compact molecule and that the potentially unstructured region retains a significant degree of structural order. The biological function of GADS is discussed based on its overall structure.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
| | - Manfred W. Roessle
- European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Roy A. Mariuzza
- Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, 20870 Rockville, Maryland
| | | |
Collapse
|
40
|
Kim J, Lee CD, Rath A, Davidson AR. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. J Mol Biol 2008; 377:889-901. [PMID: 18280496 DOI: 10.1016/j.jmb.2008.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/18/2007] [Accepted: 01/14/2008] [Indexed: 01/14/2023]
Abstract
The yeast Fus1p SH3 domain binds to peptides containing the consensus motif, R(S/T)(S/T)SL, which is a sharp contrast to most SH3 domains, which bind to PXXP-containing peptides. Here, we have demonstrated that this domain binds to R(S/T)(S/T)SL-containing peptides derived from two putative in vivo binding partners from yeast proteins, Bnr1p and Ste5p, with K(d) values in the low micromolar range. The R(S/T)(S/T)SL consensus motif is necessary, but not sufficient for binding to the Fus1p SH3 domain, as residues lying N-terminal to the consensus motif also play a critical role in the binding reaction. Through mutagenesis studies and comparisons to other SH3 domains, we have discovered that the Fus1p SH3 domain utilizes a portion of the same binding surface as typical SH3 domains. However, the PXXP-binding surface, which plays the predominant role in binding for most SH3 domains, is debilitated in the WT domain by the substitution of unusual residues at three key conserved positions. By replacing these residues, we created a version of the Fus1p SH3 domain that binds to a PXXP-containing peptide with extremely high affinity (K(d)= 40 nM). Based on our data and analysis, we have clearly delineated two distinct surfaces comprising the typical SH3-domain-binding interface and show that one of these surfaces is the primary mediator of almost every "non-canonical" SH3-domain-mediated interaction described in the literature. Within this framework, dramatic alterations in SH3 domain specificity can be simply explained as a modulation of the binding strengths of these two surfaces.
Collapse
Affiliation(s)
- JungMin Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
41
|
Gril B, Vidal M, Assayag F, Poupon MF, Liu WQ, Garbay C. Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel. Int J Cancer 2007; 121:407-15. [PMID: 17372910 PMCID: PMC2755772 DOI: 10.1002/ijc.22674] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HER2 represents an important signaling pathway in breast and other cancers. Herceptin has demonstrated clinical activity, but resistance is common. Thus, new therapeutic approaches to the HER2 pathway are needed. Grb2 is an adaptor protein involved in Ras-dependent signaling induced by HER2 receptors. A specific Grb2-SH3 ligand, designed and synthesized in our laboratory, called peptidimer-c, inhibited colony formation in HER2 overexpressing SKBr3 cancer cells. Combined treatment of peptidimer-c with docetaxel further inhibited both colony formation and tumor cell survival compared to docetaxel treatment alone. Efficacy of this combined treatment was correlated with a reduction in the phosphorylation of MAPK and AKT. Finally, peptidimer-c reduced the growth of a HER2(+) human breast cancer (BK111) xenograft in nude mice and potentiated the antitumor effect of docetaxel in a HER2+ hormone-independent human prostate adenocarcinoma (PAC120 HID28) xenograft. These results validate Grb2 as a new target for the HER2 pathway.
Collapse
Affiliation(s)
- Brunilde Gril
- PMC, Pharmacochimie Moléculaire et Cellulaire
CNRS : FRE2718INSERM : U648CNRS : IFR95Université Paris Descartes - Paris VFaculté de Médecine 45, rue des Saints-Pères 75270 PARIS CEDEX 06,FR
| | - Michel Vidal
- PMC, Pharmacochimie Moléculaire et Cellulaire
CNRS : FRE2718INSERM : U648CNRS : IFR95Université Paris Descartes - Paris VFaculté de Médecine 45, rue des Saints-Pères 75270 PARIS CEDEX 06,FR
| | - Franck Assayag
- DIGBFC, Dynamique de l'information génétique : bases fondamentales et cancer
CNRS : UMR7147INST CURIEUniversité Pierre et Marie Curie - Paris VIsection recherche 26 Rue d'Ulm 75248 PARIS CEDEX 05,FR
| | - Marie-France Poupon
- DIGBFC, Dynamique de l'information génétique : bases fondamentales et cancer
CNRS : UMR7147INST CURIEUniversité Pierre et Marie Curie - Paris VIsection recherche 26 Rue d'Ulm 75248 PARIS CEDEX 05,FR
| | - Wang-Qing Liu
- PMC, Pharmacochimie Moléculaire et Cellulaire
CNRS : FRE2718INSERM : U648CNRS : IFR95Université Paris Descartes - Paris VFaculté de Médecine 45, rue des Saints-Pères 75270 PARIS CEDEX 06,FR
| | - Christiane Garbay
- PMC, Pharmacochimie Moléculaire et Cellulaire
CNRS : FRE2718INSERM : U648CNRS : IFR95Université Paris Descartes - Paris VFaculté de Médecine 45, rue des Saints-Pères 75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Christiane Garbay
| |
Collapse
|
42
|
Harkiolaki M, Gilbert RJC, Jones EY, Feller SM. The C-terminal SH3 domain of CRKL as a dynamic dimerization module transiently exposing a nuclear export signal. Structure 2007; 14:1741-53. [PMID: 17161365 DOI: 10.1016/j.str.2006.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/30/2022]
Abstract
CRKL plays essential roles in cell signaling. It consists of an N-terminal SH2 domain followed by two SH3 domains. SH2 and SH3N bind to signaling proteins, but the function of the SH3C domain has remained largely enigmatic. We show here that the SH3C of CRKL forms homodimers in protein crystals and in solution. Evidence for dimer formation of full-length CRKL is also presented. In the SH3C dimer, a nuclear export signal (NES) is mostly buried under the domain surface. The same is true for a monomeric SH3C obtained under different crystallization conditions. Interestingly, partial SH3 unfolding, such as occurs upon dimer/monomer transition, produces a fully-accessible NES through translocation of a single beta strand. Our results document the existence of an SH3 domain dimer formed through exchange of the first SH3 domain beta strand and suggest that partial unfolding of the SH3C is important for the relay of information in vivo.
Collapse
Affiliation(s)
- Maria Harkiolaki
- Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
43
|
Seet BT, Berry DM, Maltzman JS, Shabason J, Raina M, Koretzky GA, McGlade CJ, Pawson T. Efficient T-cell receptor signaling requires a high-affinity interaction between the Gads C-SH3 domain and the SLP-76 RxxK motif. EMBO J 2007; 26:678-89. [PMID: 17235283 PMCID: PMC1794392 DOI: 10.1038/sj.emboj.7601535] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 12/04/2006] [Indexed: 11/08/2022] Open
Abstract
The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.
Collapse
Affiliation(s)
- Bruce T Seet
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics. University of Toronto, Toronto, Ontario, Canada
| | - Donna M Berry
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan S Maltzman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Shabason
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Raina
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tony Pawson
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics. University of Toronto, Toronto, Ontario, Canada
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Room 1084, Toronto, Ontario, Canada M5G 1X5. Tel: +1 416 586 4800 ext 8262; Fax: +1 416 586 8869; E-mail:
| |
Collapse
|
44
|
You X, Nguyen AW, Jabaiah A, Sheff MA, Thorn KS, Daugherty PS. Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci U S A 2006; 103:18458-63. [PMID: 17130455 PMCID: PMC1693684 DOI: 10.1073/pnas.0605422103] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types.
Collapse
Affiliation(s)
- Xia You
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Annalee W. Nguyen
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Abeer Jabaiah
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Mark A. Sheff
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Kurt S. Thorn
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Patrick S. Daugherty
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Dimasi N. Crystal structure of the C-terminal SH3 domain of the adaptor protein GADS in complex with SLP-76 motif peptide reveals a unique SH3-SH3 interaction. Int J Biochem Cell Biol 2006; 39:109-23. [PMID: 17010654 DOI: 10.1016/j.biocel.2006.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/21/2022]
Abstract
The Grb2-like adaptor protein GADS is essential for tyrosine kinase-dependent signaling in T lymphocytes. Following T cell receptor ligation, GADS interacts through its C-terminal SH3 domain with the adaptors SLP-76 and LAT, to form a multiprotein signaling complex that is crucial for T cell activation. To understand the structural basis for the selective recognition of GADS by SLP-76, herein is reported the crystal structure at 1.54 Angstrom of the C-terminal SH3 domain of GADS bound to the SLP-76 motif 233-PSIDRSTKP-241, which represents the minimal binding site. In addition to the unique structural features adopted by the bound SLP-76 peptide, the complex structure reveals a unique SH3-SH3 interaction. This homophilic interaction, which is observed in presence of the SLP-76 peptide and is present in solution, extends our understanding of the molecular mechanisms that could be employed by modular proteins to increase their signaling transduction specificity.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Laboratory for Molecular Medicine, Istituto Giannina Gaslini, Largo Gerolamo Gaslini 5, Genova 16147, Italy.
| |
Collapse
|
46
|
Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Domains, Motifs, and Scaffolds: The Role of Modular Interactions in the Evolution and Wiring of Cell Signaling Circuits. Annu Rev Biochem 2006; 75:655-80. [PMID: 16756506 DOI: 10.1146/annurev.biochem.75.103004.142710] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Living cells display complex signal processing behaviors, many of which are mediated by networks of proteins specialized for signal transduction. Here we focus on the question of how the remarkably diverse array of eukaryotic signaling circuits may have evolved. Many of the mechanisms that connect signaling proteins into networks are highly modular: The core catalytic activity of a signaling protein is physically and functionally separable from molecular domains or motifs that determine its linkage to both inputs and outputs. This high degree of modularity may make these systems more evolvable-in principle, novel circuits, and therefore highly innovative regulatory behaviors, can arise from relatively simple genetic events such as recombination, deletion, or insertion. In support of this hypothesis, recent studies show that such modular systems can be exploited to engineer nonnatural signaling proteins and pathways with novel behavior.
Collapse
Affiliation(s)
- Roby P Bhattacharyya
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
47
|
Duke-Cohan JS, Kang H, Liu H, Rudd CE. Regulation and Function of SKAP-55 Non-canonical Motif Binding to the SH3c Domain of Adhesion and Degranulation-promoting Adaptor Protein. J Biol Chem 2006; 281:13743-13750. [PMID: 16461356 DOI: 10.1074/jbc.m508774200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immune cell adaptor adhesion and degranulation promoting adaptor protein (ADAP) and its binding to T-cell adaptor Src kinase-associated protein of 55 kDa (SKAP-55) play a key role in the modulation of T-cell adhesion. While primary binding occurs via SKAP-55 SH3 domain binding to a proline-rich region in ADAP, a second interaction occurs between the ADAP C-terminal SH3 domain (ADAP-SH3c) and a non-canonical RKXXY294XXY297 motif in SKAP-55. Increasing numbers of non-canonical SH3 domain binding motifs have been identified in a number of biological systems. The presence of tyrosine residues in the SKAP-55 RKXXY294XXY297 motif suggested that phosphorylation might influence this unusual SH3 domain interaction. Here, we show that the Src kinase p59fyn can induce the in vivo phosphorylation of the motif, and this event blocks ADAP-SH3c domain binding to the peptide motif. The importance of tyrosine phosphorylation was confirmed by plasmon resonance interaction analysis showing that phosphorylation of Tyr294 residue plays a central role in mediating dissociation, whereas phosphorylation of the second Tyr297 had no effect. Although loss of this secondary interaction did not result in the disruption of the complex, the Y294F mutation blocked T-cell receptor-induced up-regulation of lymphocyte function-associated antigen-1-mediated adhesion to intercellular adhesion molecule-1 and interleukin-2 promoter activity. Our findings identify a RKXXY294 motif in SKAP-55 that mediates unique ADAP SH3c domain binding and is needed for LFA-1-mediated adhesion and cytokine production.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts 02115.
| | - Hyun Kang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hebin Liu
- Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Christopher E Rudd
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115; Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom.
| |
Collapse
|
48
|
Li SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2006; 390:641-53. [PMID: 16134966 PMCID: PMC1199657 DOI: 10.1042/bj20050411] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions occurring via the recognition of short peptide sequences by modular interaction domains play a central role in the assembly of signalling protein complexes and larger protein networks that regulate cellular behaviour. In addition to spatial and temporal factors, the specificity of signal transduction is intimately associated with the specificity of many co-operative, pairwise binding events upon which various pathways are built. Although protein interaction domains are usually identified via the recognition code, the consensus sequence motif, to which they selectively bind, they are highly versatile and play diverse roles in the cell. For example, a given interaction domain can bind to multiple sequences that exhibit no apparent identity, and, on the other hand, domains of the same class or different classes may favour a given consensus motif. This promiscuity in ligand selection is typified by the SH3 (Src homology 3) domain and several other interaction modules that commonly recognize proline-rich sequences. Furthermore, interaction domains are highly adaptable, a property that is essential for the evolution of novel pathways and modulation of signalling dynamics. The ability of certain interaction domains to perform multiple tasks, however, poses a challenge for the cell to control signalling specificity when cross-talk between pathways is undesired. Extensive structural and biochemical analysis of many interaction domains in recent years has started to shed light on the molecular basis underlying specific compared with diverse binding events that are mediated by interaction domains and the role affinity plays in affecting domain specificity and regulating cellular signal transduction.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
49
|
Faravelli A, Dimasi N. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:52-5. [PMID: 16511262 PMCID: PMC2150940 DOI: 10.1107/s1744309105041023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/07/2005] [Indexed: 11/10/2022]
Abstract
The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized.
Collapse
Affiliation(s)
- Alessandro Faravelli
- Istituto Giannina Gaslini, Molecular Medicine, Largo Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Nazzareno Dimasi
- Istituto Giannina Gaslini, Molecular Medicine, Largo Gerolamo Gaslini 5, 16147 Genova, Italy
- Correspondence e-mail:
| |
Collapse
|
50
|
Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai SI, Nishikawa T. Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3'-phosphoadenosine 5'-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. J Neurochem 2005; 96:30-42. [PMID: 16277611 DOI: 10.1111/j.1471-4159.2005.03501.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-serine in mammalian brains has been suggested to be an endogenous co-agonist of the NMDA-type glutamate receptor. We have explored the molecules regulating D-serine uptake and release from the rat neocortex cDNA library using a Xenopus oocyte expression system, and isolated a cDNA clone designated as dsm-1 (D-serine modulator-1) encoding a protein that reduces the accumulation of D-serine to the oocyte. dsm-1 is the rat orthologue of the human 3'-phosphoadenosine 5'-phosphosulfate transporter 1 (PAPST1) gene. The hydropathy analysis of the deduced amino acid sequence of the Dsm-1 protein predicts the 10 transmembrane domains with a long hydrophobic stretch in the C-terminal like some amino acid transporters. The dsm-1 mRNA is predominantly expressed in the forebrain areas that are enriched with D-serine and NMDA receptors, and in the liver. The transient expression of dsm-1 in COS-7 cells demonstrates a partially Golgi apparatus-related punctuate distribution throughout the cytoplasm with a concentration near the nucleus. dsm-1-expressing oocytes diminishes the sodium-dependent and -independent accumulation of D-serine and the basal levels of the intrinsic D-serine and increases the rate of release of the pre-loaded D-serine. These findings indicate that dsm-1 may, at least in part, be involved in the D-serine translocation across the vesicular or plasma membranes in the brain, and thereby control the extra- and intracellular contents of D-serine.
Collapse
Affiliation(s)
- Dai Shimazu
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|